
Response to the Editor and the Reviewers 
 

The authors want to thank the Editor and Reviewers #1 and #2 for their valuable comments. Their 

different insights helped us to enhance the paper, better clarify our objectives and highlight the 

contribution of our results to the literature.  

The main improvement brought to the revised version of our paper concern a needed clarification of 

the aim of the paper.  In the revised version, we are better highlighting the main contribution of the 

paper towards the investigation of the impacts of conditioning strategies on different forecast 

attributes. We made it clearer that we are not looking after a conditioning strategy that is the best 

solution for the studied catchments in hydrological seasonal forecasting. To clarify our aim, we did the 

following: 

- We clarified our purposes in the Abstract and Introduction. Namely, we reviewed Section 1.2 

of the Introduction to clarify that we do not search for the best conditioning method, but rather 

we aim for a better understanding of how forecast attributes (such as reliability, sharpness, 

discrimination) are affected by conditioning. We rearranged the literature review to better 

reflect that, and we made clearer the aim of the study in Section 1.3: Scope of the study. 

- We changed the parts of the text where the word "comparison" was giving the wrong idea of 

"searching for the best method". In our paper, all comparisons of performance were made with 

the aim of understanding the impacts on forecast attributes. We think that the changes we 

made, mainly in the titles of the sessions, now help in putting the reader on the right focus of 

our study.  

- We changed the conclusion section and some parts of the analysis of the results to better 

highlight the results that are relevant to the objective of the paper 

We provide below our detailed answers to the comments received. 

Editor’s comments (ED): 

Based on two thoughtful reviews and my own impressions, I suggest major revisions 

before resubmission for a subsequent review cycle. I agree with the reviewers that 

the results are quite equivocal about the relative merits of the tested approaches. 

This outcome is of course publishable, and possibly useful to the field, provided 

the authors draw conclusions that are consistent with the results. Thus, the 

possible conclusion that the methods adopted do not, in fact, robustly improve the 

baseline/reference forecasts, or even degrade them, must be given some 

consideration by the authors -- this seems true beyond the first month, at least.  

Authors’ reply (AR): We clarified our objectives. We do not search for a conditioning method that is 

better (according to all possible forecast attributes) than a reference or baseline. Instead, we propose to 

reflect on how methods such as conditioning-based methods can affect forecast attributes that one is 

searching to improve. We hope that this is clarified in the revised version and shed lights to the 

contribution of the results and conclusions presented in the paper to the literature. 

ED: I also urge the authors to consider the suggestion regarding conditioning with 

temperature or other variables, as this is more skillfully predicted by the GCM, 

and may give more positive results. I realize that this would require significant 

work, however, and let the authors judge whether it would be possible for this 

paper.  



AR: We fully agree that investigating a conditioning based on the SPEI would be valuable if one is 

searching to improve forecast performance. However, following the clarification of our objectives, we 

believe that it is clearer now that this is not a crucial issue to achieve the objectives of the paper. As 

well mentioned by the Editor, this would require substantial additional work and additional analyses, 

to a paper that is already rather long. We also believe that our main conclusions on the impact of 

conditioning on forecast attributes would still be valid, given the characteristics of the studied 

catchments and the hydrological model used. Therefore, we did not add SPEI in the revised version, 

but we have kept the sentence that mentions this interesting perspective for further studies in the 

conclusion section. 

ED: In addition, I think that there are several curious features of the results 

that warrant further explanation. In particular, in Figure 6, I'd like the authors 

to give a more thorough analysis of the flipflop in skill within the first 15 days. 

A second suggestion is that the use of the last obs as a conditioning factor for 

the hist-based ensembles may not be a bad idea, but obscures the impact of the 

conditioning on other factors, which is of interest (and more comparable to the 

Sys4 based ensembles). 

AR: In Fig. 6, we believe that there might be two effects affecting the evolution of performance and 

causing the flipflop at the first lead times. This may be partly influenced by initial conditions and its 

impact over time, and partly by how the catchments respond to precipitation. As the initial conditions 

are common to both systems (the systems assessed and the reference), the second influence might be 

playing a more prominent role. The quality of the precipitation forecasts from Syst4 at these short 

scales, together with the response of the catchments to the forcing, may be responsible for a low 

performance of the reference, causing the high values of CRPSS, for instance. We searched on the 

literature and found that a similar effect was reported by Brown, 2013 (see here: 

http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-

HEFS_Deliverable_02_Phase_I_report_FINAL.pdf) On page 39, they report on how “(…) the  

CRPSS  increases  during  the  first day, peaks with the residual contribution from the MEFP-GFS and 

declines thereafter.”.  This is the only reference we found that reports on this issue. We note that daily 

evaluations of seasonal forecasts are more difficult to find in the literature, as authors usually 

aggregate data at the weekly or monthly time steps. We think the flipflop is an interesting issue but it 

is out of the scope of our paper to investigate it in details. 

Concerning the use of the last observation as a conditioning factor, we agree that it might favours the 

evaluation of the ensembles based on historical streamflows, but we think it would be too damaging to 

the analysis to impose hydrological conditions in the forecasting that could be obviously unrealistic 

given the daily time step we are using in the analysis (from a day to the other, river flows may be very 

different, regardless the fact that they are recorded in the same season). We believe however that the 

impact of this conditioning on our main conclusions is limited to the shorter lead times.  

Reviewer 1 

As an outsider to the professional academic world, I feel that I cannot speak with 

unquestionable credibility to the novelty or scientific soundness of this 

manuscript – I am simply not familiar enough with the wealth of recent research 

into seasonal hydrologic forecasting. However, I can supply my overall impression 

of this work, which may be useful given my background in operational hydrologic 

forecasting. 

 

 

Reviewer’s comment (RC): The authors reference several studies that utilized 

approaches similar to the one undertaken here – conditioning historical 

observation-based ensembles to improve forecasts generated from these ensembles. 

http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf
http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf


Thus, the fundamental direction of the current study is not overly original. 

However, the manner in which the conditioning was applied – using GCM- and 

climatology-derived precipitation indices to select the most relevant historical 

ensembles – does appear to be a novel approach. 

 

Authors’ reply (AR): We thank the reviewer for the comment. We agree that studies that use GCM-

derived precipitation indices as conditioning indices are rare and applications of conditioning 

approaches over mid-latitudes (in our case, France), where the reliability of seasonal weather 

predictions is, in general, low, are important contributions to the community. Additionally, in the 

revised version, we believe that the objectives of our paper are clarified. We highlight that the novel 

aspect of the paper is not on simply using conditioning approaches and trying to improve over a 

reference forecast, but it relies on scrutinizing the analysis of their effects on different forecast 

attributes. We want to draw attention to the fact that it is not straightforward to find a method that is 

best in all quality attributes of an ensemble prediction, whether we are looking for overall 

performance, sharpness, reliability or discrimination for capturing extreme events such as droughts.  
 

 

RC: The potential utility of this approach is presented well in Figure 2, where the 

precipitation indices generated from the GCM hindcasts (ECMWF Sys4) are compared 

against those generated from the historical observations. As the authors state, the 

Sys4 indices perform at least as well as the base indices overall (CRPSS), even 

outperform at one month lead time, but are consistently sharper (IQRSS). Further, 

the Sys4 indices have good reliability overall (Figure 3). The reliability of the 

indices falters when looking at only drier than normal or only wetter than normal 

conditions, but this seems to be unavoidable with any forecasting approach. 

Despite the prefaced potential of using the Sys4 precipitation indices to 

condition, or subset, historical ensembles, this study’s results offer just 

marginal practical insight: 

 

1) Subsetting the ensembles based on the precipitation indices improve the HistQ 

performance more than it does the ESP performance. This result is not very useful, 

however, since the HistQ approach is rudimentary (and likely rarely used), and the 

primary benefit of the conditioning is seen during short lead times (which is 

simply the effect of blending from the last streamflow observation). 

 

AR: The reviewer has clearly understood the aims of the analysis illustrated in Figure 2 and we 

acknowledge the positive comment provided. We believe this first step in analysing the performance 

of the precipitation-based conditioning indices is essential previously to analysing the conditioned 

outputs in terms of streamflow, given the non-linearity in the transformation of precipitation into 

streamflow in a hydrological model.  

Also, we included HistQ in our study because this is a “poorman’s approach” that can serve as a naïve 

benchmark, where no hydrological model but only a long streamflow time series of records is 

available. This comment was added in Section 2.3.1 when presenting HistQ. One of the objectives of 

our study was to see whether this rudimentary approach could be turned into a valuable one provided 

that precipitation anomalies are available. In this sense, the improvement observed in sharpness, for 

instance, as it lasts over longer lead times, is mostly due to the conditioning. This improvement is one 

of the aims of several operational seasonal hydrological prediction systems: obtain sharper predictions, 

while maintaining reliability.  

The revised version has clearer statements on our objectives, and so we believe that the practical 

insights of our analyses are now better highlighted.  
 

 

RC: 2) For ESP, SPI-conditioning appears to outperform SUM-conditioning, but this 

statement is qualitative at best and neither set of conditioned ensembles provides 

any notable improvements over the base ensembles. Compared to the base ESP 

ensembles, the sharpness of the ESP_SPI3 ensembles was improved by up to 10% but 

the reliability was degraded by up to 40% (Figure 7). 

 

AR: We thank the reviewer for these comments, which led us to review carefully the section 

presenting the results from SPI-conditioning and SUM-conditioning. The analysis is illustrated in 

Figure 5. We can see that conditioning on SPI (third and fourth columns) provides better scores over 



(or at least do not degrade the score of) the reference (base ESP ensembles) than conditioning with 

SUM (first and second columns). For instance, based on the IQRSS results, we can see that the SUM-

conditioning may decrease sharpness in some cases, whereas the SPI-conditioning guarantees to 

maintain or even increase sharpness. Based on the PIT diagram analysis, the SUM-conditioning causes 

an overprediction of observations, whereas the SPI-conditioning clearly limits this effect. Figure 7, 

mentioned by the reviewer, provides indeed the means for a more quantitative analysis. However, it 

must be noted that it is restricted to the results for SPI-conditioning. In Figure 7, we can see that we 

can lose on the score for reliability (PIT area) at some catchments when comparing ESP-SPI to the 

base ESP ensembles (mainly at longer lead times), but that, in general, we gain in sharpness. The lost 

in terms of score of reliability does not necessarily mean that the ensemble becomes “unreliable”. As 

illustrated in Figure 5, ESP-SPI ensembles are still not far from the diagonal of perfect reliability of 

the PIT diagram. We think these analyses are useful to illustrate our main objective in this paper: 

better assess (and understand) how conditioning affects different attributes of forecast quality.  

To clarify this issue, we highlighted the aims of the paper in the revised version, and we deleted some 

misleading sentences and assertions from the description of the results.  
 

 

RC: 3) The conditioning improved the performance of HistQ ensembles in forecasting 

low flow events and variables, but the conditioned ensembles were still less 

skilful than the Sys4 and ESP/ESP_SPI3 ensembles.  

 

AR: The reviewer is right, and more can be added to the analyses. In fact, if we look at Figure 6, 

HistQ_SPI3 appears to be less skilful than Sys4, ESP and ESP_SPI3 in terms of overall performance. 

Nevertheless, this ensemble has characteristics of interest for low-flow forecasting. In Figure 9, this 

ensemble is systematically in the best category for deficit duration, probably because it represents 

recessions better than the hydrological model does. This is quite an advantage of this ensemble based 

on historical observations. Again, we were interested in studying this ensemble HistQ because it can 

be a benchmark and a simple approach if a hydrological model is not used. We believe that 

investigating the possible ways of improving the HistQ approach is useful and, notably, provides 

insights to how the model (and its performance) influences (for better or worse) the quality of 

streamflow predictions. We think that by clarifying our objectives and better focusing our results 

towards these useful insights, we made our point clearer in the revised version. 
 

 

RC: 4) The authors state that the ESP_SPI3 approach "systematically appears to be 

one of the best options to forecast deficit volumes." However, this conclusion is 

very subjective, as it is not authoritatively substantiated by the results 

presented in Figures 9 and 10. 

 

AR: We had placed the statement based on Figure 10 only, which is the one that represents the 

reliability of the forecasting systems in terms of deficit in volume (Fig. 9 is for deficit in duration). In 

the revised version, we replaced “systematically” by “for all three lead times” to make the sentence 

clearer and avoid confusion. 
 

 

RC: Although several pages of this manuscript are spent discussing the results in 

great detail, and the authors walk through the discussion in a relatively clean, 

scientific manner, much of this discussion is centered around tangential topics. 

For example, the comparisons between the conditioned ESP/HistQ ensembles to the 

Sys4 ensembles seem irrelevant given that the conditioning did little to improve, 

and actually degraded in some cases, the skill compared to the base ensembles. 

Thus, comparing the conditioned ensembles to the Sys4 ensembles is equivalent to 

comparing the base ensembles to Sys4, which of course is unnecessary. The results 

should be restricted to and presented with the stated goal of the study in mind – 

improving the skill of historical observation-based ensemble forecasting systems. 

 

AR: We thank the review for this comment that helped us to better focus the presentation of the aims 

of the paper and of our results. We rewrote Sections 3.2.2 and 3.2.3 in the light of the new clarified 

objectives. The aim of the comparison with Sys4 is to see which forecast attributes of System 4 got 

“transferred” to the conditioned ensembles and which did not. Section 3.2.2 was substantially reduced 



to better focus on this aspect: ESP and HistQ are no longer compared to Sys4, and Figure 6 was 

limited to the comparison between the conditioned ensembles and System 4. We hope that the new 

presentation of the results also clarifies our general aim. 
 

 

RC: Unfortunately, because there is little to report on the utility of applying 

this conditioning method to seasonal streamflow and low flow forecasting, the 

authors may need to redesign and/or include other experiments before resubmitting 

this paper. One suggestion, actually offered by the authors, is to examine the 

utility of using SPEI to condition the ensembles. Although the SPI is likely 

sufficient to appropriately subset historical precipitation ensembles, it may not 

be sufficient from a streamflow perspective. It seems likely that the relative 

magnitude of an individual SPI value may not always be translated into a similar 

relative magnitude flow or volume value if ET is a major hydrologic control in the 

watershed of interest (i.e. late season streamflows can be very different following 

extended dry but mild vs extended dry but hot conditions). Thus, conditioning the 

ensembles with both precipitation- and temperature-driven indices may provide more 

robust results.  

 

AR: The revised version of the paper clarifies our objectives, which are not towards finding the best 

conditioning method. It seems important to us that a developer or a user of a seasonal forecasting 

system be aware of the different impacts a forecasting method may have on forecast quality, regardless 

of the more or less sophisticated conditioning the user is using or developing. We believe that, by 

clarifying our focus, the revised paper shows our results in a different light and, in this sense, the 

addition of more conditioning methods based on SPEI, although interesting in an inter-comparison 

analysis, becomes less relevant for the investigation we propose on the impacts on forecast attributes. 

We recognize it as an interesting further aspect to be investigated and thus kept the sentence drawing 

attention to it in the conclusion section (see also our reply above to the Editor’s comments). 
 

 

RC: Lastly, the underlying standard of this manuscript is the stated inherent 

reliability of historical observation-based ensembles, but this is a bit 

misleading. In true forecasting (not hindcasting), climatology-driven predictions 

may not be all that reliable. Several decades worth of historical information is 

often sought to build an ensemble forecasting system, but the climatic regime of 

the forecast area may be changing too rapidly for this. Thus, the distribution 

functions of actual forecasts and their corresponding observations may be offset 

from one another (i.e. not fall on a 1:1 line). Perhaps the authors should frame 

the goal more along the lines of using the conditioning to sharpen the ensembles, 

and less along the lines of marrying the reliability of historical ensembles with 

the sharpness of GCMs.  

AR: We thank the reviewer for this interesting comment. We focused on the search for sharper 

ensembles while maintaining reliability, since this is a widespread notion in forecast verification. 

However, we also agree that the main message to convey is on using the conditioning to sharpen the 

ensembles (without deteriorating reliability). By clarifying our objectives and better introducing our 

results, we believe that we now avoid this pitfall in the revised version. 

 

Reviewer 2 

This study proposes an approach to improve short- and long-range (10-90 days) 

streamflow forecasts by conditioning resampled historical observations based on 

ECMWF System 4 forecasts. The conditioning is applied on both precipitation and 

streamflow records. Results are compared with historical resampled streamflow and 

ensemble streamflow prediction (ESP) as reference forecasts. Overall, the paper is 

well written and provides good assessments of different model performances. 

Nevertheless, I am concerned with the proposed method to improve streamflow 

forecasts (selection of resampled data based on GCM forecasts) as well as the 

results (week performance of the proposed method). Therefore, I think the paper is 

not ready for publication and requires major revision.  

 



Authors’ reply (AR): We thank the reviewer for this evaluation. We have now clarified our aim in the 

revised version: we do not search to “propose a method to improve streamflow forecasts”, but we aim 

at investigating how methods (and particularly, conditioning-based methods) affect the evaluation of 

forecast quality according to different attributes (highlighting existing inter-dependencies). For this we 

carried out the extensive analysis proposed in the paper, investigating the limitations and assets of the 

different conditioning approaches, notably when looking at the main attributes of forecast quality that 

are often searched by developers and users of forecasting systems (i.e., overall performance as 

measured by the CRPS, reliability and sharpness, and discrimination for low flow events). Our paper 

provides useful insights to how hydrological seasonal forecasts can benefit from conditioning 

information. Our study also shows that the analysis of the usefulness of a forecasting system should 

not be restricted to evaluating some scores of forecast quality. It should also be extended to show how 

better forecasts impact the forecasting of the main variables of interest for a specific user and its 

decision-making context (in our paper, low-flow forecasting). In this regard, we think that, even if 

only marginal improvements in the performance of the conditioned seasonal forecasts are observed, 

progress can be obtained by reporting on experiments that focus on trying to understand where 

benefits can be expected.  

We think that our revised version now clarifies this point and better highlights the contribution of our 

paper to the literature.  

 
 

Reviewer’s comment (RC): Major comments: 

1) The manuscript states that (P4, L9) the aim of this study is “to generate 

forecasts that benefit from the reliability of climatology-based ensembles and the 

sharpness of System 4 precipitation forecasts.” First the proposed method does not 

seem to benefit from the sharpness of System 4, rather the reason for increased 

precision (sharpness) in the conditioned forecasts is due to the reduced ensemble 

size which is independent of the System 4’s degree of uncertainty. Second, the 

results (e.g. Figures 4-5) show that except for some marginal improvements in 

forecasts for short lead times (Figure 4 upper row), the proposed method degrade 

the performance of the reference methods (CRPSS and PITSS are negative). In several 

instances in the manuscript (such as P9, L17) the authors discuss the improvements 

to the sharpness of the forecasts using their conditioning approach while 

reliability and performance have declined compared to the reference methods which 

undermines the sharpness improvements. The authors state that “...the PIT diagrams 

at 45 days show that this decrease does not affect the overall reliability of the 

conditioned ensembles” This again shows that the proposed method has not been able 

to improve upon the conventional approaches.  

 

Authors’ reply (AR): Our aim was not to propose a method that would improve over a reference or 

baseline. We agree that this was not clear in the original paper and we have clarified this issue in the 

revised version (see also our replies above to Reviewer #1 and the Editor). As illustrated by the 

reviewer’s comment, the discussion on improving sharpness and reliability is an interesting 

one, which attracts attention. We believe that reliability is an attribute of forecast quality that 

we should preserve when bringing improvements to a probabilistic or ensemble-based 

forecasting system. However, we try to show in the paper that sometimes a compromise 

between improving reliability and sharpness needs to be reached, and this is part of the results 

we show here (see also our other paper Crochemore et al., 2016, recently published). We 

illustrate how different approaches have different limitations, but also different assets. In our 

opinion, this is an important contribution, notably to better meet operational and developers’ 

expectations. 
 

 

RC: 2) The proposed method selects forecast ensemble members based on their 

closeness to some statistics (P8, L17). The procedure to choose the number of 

ensemble members to keep, however, is not explained. Is the number of selected runs 

subjectively chosen? If so a sensitivity analysis needs to be conducted. 

 



AR: For a given forecast period, the conditioning statistic is calculated for each member of the System 

4 ensemble forecast. We thus have an ensemble of forecast statistics of the same size as the System 4 

ensemble for the forecast period. For each member of this ensemble of forecast statistics, the closest 

historical scenario is identified and used as an ensemble member in the methods investigated. We 

clarified this in Section 2.3.2 of the revised version. 
 

 

RC: 3) The method conditions the resampled precipitation and streamflow data to GCM 

forecasts. However, GCM forecasts are uncertain particularly at seasonal scales. 

That might explain why the overall results do not show improvements compared with 

conventional ESP. In particular, authors need to discuss how the method will 

perform in regions with high topographical variations (considering that the low-

resolution GCMs cannot capture the regional hydroclimatic variations). Related to 

this please discuss why you compare the proposed conditioning approach (based on 

SYS4) with results of SYS4? 

 

AR: The idea behind this conditioning is that, even though GCM forecasts are uncertain at seasonal 

scales, coarse precipitation statistics (such as the SPI or monthly sums) may be easier to predict than 

precipitation time series. The performance of System 4 in predicting these coarse statistics is presented 

in Figures 2 and 3. Based on these results, we could expect the conditioning to improve sharpness. 

The idea behind the comparison with Sys4 was to evaluate how the conditioned ensembles resemble 

the forecasts directly derived from System 4 time series in terms of reliability and sharpness. Another 

idea was to check the added value of conditioning compared to using Sys4 alone. In the revised 

version, we rewrote Sections 3.2.2 and 3.2.3 to clarify our objectives (which are not to propose a better 

method, but to investigate impacts on attributes of forecast quality; see our replies above) and we hope 

we have clarified these issues.  
 

 

RC: 4) Please clarify which are the statistics (section 2.4.2) calculated for each 

ECMWF ensemble member separately or for the average of the 51 ensemble runs? 

 

AR: The statistics were calculated for each member so as to obtain an ensemble of statistics (see also 

our reply above). We clarified this in the revised version (Section 2.3.2). 
 

 

RC: 5) P8, L25: “when directly selecting scenarios from past streamflow 

observations, the last observed streamflow is added as a conditioning criterion in 

the computation of the Euclidian distance.” This is problematic as the last 

observed (previous year’s(?)) streamflow is not a good indicator of the next year’s 

streamflow in particular with regard to high and low flows which are driven by 

several hydroclimatic factors that do not necessarily repeat at consecutive years. 

 

AR: In fact, the hydrological model is run at the daily time step and “the last observed streamflow” 

refers to the observed streamflow on the day of issuing the forecast (Section 2.2). This was clarified in 

the revised version (Section 2.3.2).  
 

 

RC: 6) Resampled precipitation is considered to drive the hydrologic model, 

however, the mean interannual potential evapotranspiration is used instead of the 

resampled one. Considering that PET might have a substantial role in low flow 

forecasts, I recommend using the resampled PET as well. 

 

AR: We used the mean multi-annual PET instead of the resampled one when conditioning ESP in 

order to compare it with System 4 streamflow forecasts. Indeed, System 4 streamflow forecasts are 

also produced by forcing the model with the mean multi-annual potential evapotranspiration. We have 

checked the results in Figures 5, 6 and 7 for the resampled PET (PET for the years resampled based on 

precipitation), and the results we obtained were very close to those presented in the paper.  
 

 



RC: 7) P12, L12: “The rankings are based on the visual evaluation of Figure 5.” 

Visual evaluation is not an appropriate ranking approach. 

 

AR: The reviewer is right. For a more quantitative analysis, we ranked the methods based on the 

averaged skill scores in the revised version. 
 

 

RC: 8) Results of section 3.4 are based on only one drought event for one catchment 

and cannot provide sufficient evidence for the overall performance of the methods. 

 

AR: We fully agree with the reviewer. The aim of Section 3.4 is purely illustrative and we clarified 

this in the revised version. We notably paid attention not to draw any general conclusions on the 

statistical performance of the systems from the analysis of the figure.  
 

 

RC: 9) P6, section 2.3.1 Please elaborate further on the differences between CRPS 

and PIT and how they should be interpreted when they show inconsistent results 

(e.g. Fig 4). 

 

AR: The CRPS is the sum of several terms, one representing reliability and one being influenced by 

sharpness (Hersbach, 2000). Therefore, the CRPS can be stable even though reliability is deteriorated, 

provided that sharpness, for instance, is improved. In the revised version, we added some sentences in 

Section 2.4.1 to clarify this. 
 

 

RC: 10) Multi-model averaging methods (such as simple mean, Bayesian Model 

Averaging (BMA) etc.) (Duan et al. 2005, Najafi et al. 2015, Raftery et al. 2005) 

have shown to improve short and long term hydrologic forecasts. I would suggest 

discussing the application of these approaches to merge the ensemble of forecasts 

obtained from different methods in this study. 

 

AR: This can be an interesting topic for further studies. We added a sentence on this perspective in the 

conclusion section of the revised version.  
 

 

RC: Specific comments: 

 

- Abstract “…forecasts based on GCM outputs can offer sharper ensembles… :”: does 

“sharper” refer to more precise? Related to this please define “sharpness” and 

“reliability” before using these terms, in the Introduction.  

 

AR: Sharper refers to the range of possible future scenarios. It is a property of the ensembles and do 

not depend on the observations (as is the case of accuracy). We added short definitions to the concepts 

of sharpness and reliability in Section 1.2 of the Introduction in the revised version. 
 

 

RC: - L15: ECMWF System 4: Please expand the full name.  

    - Abstract: “The four conditioned precipitation scenarios were used as input to 

the GR6J hydrological model to obtain eight conditioned streamflow forecast 

scenarios”: The statement is vague as to how four precipitation scenarios result in 

eight streamflow scenarios?  

 

AR: We corrected these issues in the revised version. 
 

 

RC: - P2, L19: ESP is one of the streamflow forecast methods which need to be 

discussed here. Also please note that in ESP all historical meteorological forcings 

can be resampled to run the hydrological model (not just precipitation as stated in 

LP2, L27)  

 



AR: Following the reviewer’s comment, ESP is now discussed in this section in the revised version. 

We also paid attention to refer to all the meteorological forcings to a hydrological model rather than 

just precipitation. 
 

 

RC: - P4, L3 Statement is not clear “although the ensemble conditioned from 

historical streamflows, which was the…”  

    - P4, L12-15: Please move to the results section.  

 

AR: This section was rewritten in the revised version and these sentences were modified and moved in 

the process, following the reviewer’s comments. 
 

 

RC: - P4, L17: Please define “discrimination”  

 

AR: The discrimination of a system is its capacity to detect an event defined by a threshold. We added 

this definition in Section 2.4.1, when presenting the ROC score.  
 

 

RC: - P5, L3: Please explain how many grid cells lie within each catchment in 

average. How was the aggregation performed? Please also indicate the forecast 

starting date.  

 

AR: Each catchment is covered by two to ten grid cells. The aggregation method is a simple weighted 

mean of precipitations from different grid cells, based on the area of the catchment covered by each 

cell. Forecasts are issued for the 1
st
 of each month. We clarified this in the revised version (Section 

2.1). 
 

 

RC: - P5, L23: What do you mean by “systematically”?  

 

AR: We meant that, regardless of the forecast year, the mean potential evapotranspiration is used as 

input to the hydrological model. We replaced “systematically” by “regardless of the forecast year” to 

be more precise and avoid confusion (Section 2.2). 
 

 

RC: - P5, L31-33: What is the range of KGE values? Please show the equations for 

KGE and 1-bias and include their ranges.  

 

AR: We added the ranges of KGE values to Section 2.2. We also added a comment on the way the 

bias was computed. However, we would prefer to avoid adding the equations for these two criteria 

since they are only mentioned once and a reference article is already provided for the KGE.  
 

 

RC: - P6, L9: Please change “The CRPS averages over the evaluation period the area 

between the cumulative forecast distribution…” to “The CRPS averages the area 

between the cumulative forecast distribution… over the evaluation period.” 

Similarly, for L12.  

 

AR: We corrected this in the revised version (Section 2.4.1). 
 

 

RC: - P7, L3: What is the “reference”? Is it HisQ? Please define.  

 

AR: We clarified this point in the text and now explicitly cite the references used in the article as base 

ensembles (Section 2.4.2).  
 

 

RC: - I suggest bringing section 2.4 before section 2.3.  

 



AR: Following the reviewer’s recommendation, we moved Section 2.4 before Section 2.3 so that 

ensemble forecasts are presented before the methods used to evaluate them. 
 

 

RC: - Figure 2: What is the difference between SUM1-3 and SUM3  

 

AR: SUM3 is the sum of precipitations over the 3-month forecast horizon. SUM1-1 corresponds to the 

sum of precipitations over the first month of the forecast horizon, SUM1-2 the second month and so 

on. We detailed this in the legend of Figure 2. We also added a short note in Section 2.3.2 when 

describing the conditioned scenarios. 
 

 

RC: - P9, L1 “The reference forecast used to compute the skill scores is historical 

precipitations (i.e. climatology)”: Do you mean hydrologic model simulation driven 

by historical precipitation?  

 

AR: The reference here is historical precipitations. The analysis refers to precipitations only and not to 

hydrological model simulations. We evaluate precipitation indices derived from GCM-outputs and 

compare them to the precipitation indices derived from all historical years of precipitation. In other 

words, we compare the performance of the precipitation inputs used to obtain System 4 streamflow 

forecasts, to the performance of the precipitation inputs used to obtain ESP. 
 

 

RC: - P9, L3 “SPI forecasts issued from System 4 are reliable overall and in 

standard precipitation conditions” please provide a reference  

 

AR: This sentence is based on the analysis of Figure 3. We explicitly cited Figures 2 and 3 in the 

appropriate sentences in the revised version (Section 3.1).  
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Abstract. Many fields such as drought risk assessment or reservoir management can benefit from long-range streamflow 

forecasts. The simplest way to make probabilistic streamflow forecasts can be to use historical streamflow time series, if 

available. Another approach is to use ensemble climate scenarios as input to a hydrological model. Climatology (i.e. time 10 

series of climate conditions recorded over a long time period) has long been used in long-range streamflow forecasting. 

However, in the last decade, the use of Conditioning methods have been proposed to select or weight relevant historical time 

series from climatology. They are often based on general circulation model (GCM) outputs as input to hydrological models 

has developed. While precipitation climatology and historical streamflows offer reliable ensembles, forecasts based on GCM 

outputs can offer sharper ensembles, partlythat are specific to the forecast date due to the initialisation of GCMs and 15 

hydrological models on current conditions.  

This study proposes to condition historical data basedinvestigates the impact of conditioning methods on GCM precipitation 

forecasts to get the most out of both data sources and improve performance of seasonal streamflow forecasting in France. 

forecasts. Four conditioning statistics based on ECMWF System 4 seasonal forecasts of cumulative precipitation and of the 

Standardized Precipitation Index (SPI) were used to select relevant traces within historical streamflows and historical 20 

precipitations. The four conditioned precipitation scenarios were used as input to the GR6J hydrological model to obtain 

respectively. This resulted in eight conditioned streamflow forecast scenarios. These streamflow scenarios were compared to 

three references: an ensemble based on the climatology of historical streamflows, the widespread Ensemble Streamflow 

Prediction (ESP) ensembleapproach, and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. 

These ensembles were evaluated based on theirThe impact of conditioning was assessed in terms of forecast sharpness, 25 

(spread), reliability and, overall performance. 

An overall comparison of forecast ensembles showed that conditioning past observations based on the three-month 

Standardized Precipitation Index (SPI3) improved the sharpness of ensembles based on historical data, while maintaining a 

good reliability. An evaluation of forecast ensembles for  and low-flow forecasting showed that the SPI3-event detection. 

Forecast attributes from conditioned and unconditioned ensembles provided reliable forecastsare illustrated for a case of 30 

low-flow duration and deficit volume based on the 80
th

 exceedance percentile. Last, drought risk forecasting was illustrated 
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for ; the 2003 drought in France. Results showed that conditioning past observations on seasonal precipitation indices 

generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Reversely, conditioned 

ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitations. In the case of 

low-flow forecasting, conditioning can provide ensembles to assess weekly deficit volumes and durations over a wider range 

of lead times. 5 
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1 Introduction 

1.1 Approaches to seasonal streamflow forecasting 

Numerical prediction is valuable to proactively manage risks in areas such as hydropower, drinking water production and 

drought preparedness (Wilhite et al., 2000). Regardless of the application, probabilistic forecasts are preferred over 

deterministic ones to convey uncertainties (Krzysztofowicz, 2001; Ramos et al., 2013). The main sources of uncertainty in 5 

informing decision-making depend on the variable being forecast, the forecast horizon, but also on the location. For instance, 

region-specific tools have been developed in the world to predict and anticipate drought events weeks, months or even years 

in advance (Anderson et al., 2000; Ceppi et al., 2014; Hao et al., 2014; Sheffield et al., 2013; Shukla et al., 2014). 

Nevertheless, anticipating river runoff events at long lead times remains a challenge (Yuan et al., 2015). 

The predictability of streamflow at long lead times lies in the initial hydrological conditions and the meteorological forcing. 10 

Research has shown that the relative role of each source of predictability mainly depends on the “inertia” or “memory” of the 

studied basin, the forecast season and the forecast lead time (Shukla et al., 2013; Wood and Lettenmaier, 2008; Yossef et al., 

2013). Yossef et al. (2013) showed that in Western Europe, from July to October, streamflow forecasts are more dependent 

on meteorological forcing than they are on initial conditions, even one month ahead. The conclusions of Shukla et al. (2013) 

are quite consistent with these findings. They found that the predictability of a forecast issued in July in France lies in the 15 

meteorological forcing for horizons longer than three months. However, at shorter lead times, their results show that 

predictability can be led by either initial conditions or meteorological forcing, depending on the geographical location in 

France. 

In practice, two approaches are often used to forecast streamflow at the seasonal scale (Easey et al., 2006). Statistical 

approaches rely on past observations and statistical relationships between a predictor and a predictand. Dynamical 20 

approaches rely on coupled general circulation model (GCM) outputs or past observations to feed a hydrological rainfall-

runoff model. The choice of one approach over the other will depend on the purpose of the forecast, the region of interest 

and on the available data. More importantly, some studies have shown that the two approaches can complement and benefit 

from each other (Block and Rajagopalan, 2009; Seibert and Trambauer, 2015). 

Climatology (past observations) is considered a good indicator of the range of possible outcomes for a given time of the 25 

year. Day (1985) introduced the Ensemble Streamflow Prediction (ESP), which is an approach that uses precipitation 

climatology as input to a hydrological model previously initialised for the forecast date. This approach has been extensively 

used, for research purposes and operationally, in seasonal streamflow forecasting (Wang et al., 2011) and reservoir 

operations (Faber and Stedinger, 2001), among other fields. An alternative to climatology is the seasonal forecasts issued by 

GCMs (Yuan et al., 2015). While these are initialized and forced for a specific forecast day, precipitation climatology simply 30 

provides a range of what has been previously observed on the forecast day, regardless of the current atmospheric situation 

and latest observations. 
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Numerical prediction is valuable to proactively manage risks in areas such as hydropower, drinking water production and 

drought preparedness (Wilhite et al., 2000). Regardless of the application, probabilistic forecasts are preferred over 

deterministic ones to convey uncertainties (Krzysztofowicz, 2001; Ramos et al., 2013). The main sources of uncertainty in 

informing decision-making depend on the variable being forecast, the forecast horizon, but also on the location. For instance, 

region-specific tools have been developed in the world to predict and anticipate drought events weeks, months or even years 5 

in advance (Anderson et al., 2000; Ceppi et al., 2014; Hao et al., 2014; Sheffield et al., 2013; Shukla et al., 2014). 

Nevertheless, anticipating river runoff events at long lead times remains a challenge (Yuan et al., 2015). 

The predictability of streamflow at long lead times lies in the initial hydrological conditions and the meteorological forcing. 

Research has shown that the relative role of each source of predictability mainly depends on the “inertia” or “memory” of the 

studied basin, the forecast season and the forecast lead time (Wood and Lettenmaier, 2008; Shukla et al., 2013; Yossef et al., 10 

2013; Wood et al., 2016). Yossef et al. (2013) showed that in Western Europe, from July to October, streamflow forecasts 

are more dependent on meteorological forcing than they are on initial conditions, even one month ahead. The conclusions of 

Shukla et al. (2013) are quite consistent with these findings. They found that the predictability of a forecast issued in July in 

France lies in the meteorological forcing for horizons longer than three months. However, at shorter lead times, their results 

show that predictability can be led by either initial conditions or meteorological forcing, depending on the geographical 15 

location in France. 

In practice, two approaches are often used to forecast streamflow at the seasonal scale (Easey et al., 2006). Statistical 

approaches rely on past observations and statistical relationships between a predictor and a predictand. For instance, 

climatology (past observations) is considered a good indicator of the range of possible outcomes for a given time of the year. 

Dynamical approaches rely on coupled general circulation model (GCM) outputs or past observations to feed a hydrological 20 

rainfall-runoff model. For example, Day (1985) introduced the Ensemble Streamflow Prediction (ESP), which uses the 

climatology of meteorological forcings as input to a hydrological model previously initialised for the forecast date. This 

approach has been extensively used, for research purposes and operationally in seasonal streamflow forecasting (Wang et al., 

2011) and reservoir operations (Faber and Stedinger, 2001), among other fields. An alternative to climatological forcings is 

the seasonal forecasts issued by GCMs (Yuan et al., 2015). While these are initialized and forced for a specific forecast day, 25 

precipitation climatology additionally provides a range of what has been previously observed on that forecast day, regardless 

of the current atmospheric situation and latest observations. The choice of one approach over the other will depend on the 

purpose of the forecast, the region of interest and the available data. More importantly, some studies have shown that 

dynamical and statistical approaches can complement and benefit from each other (Block and Rajagopalan, 2009; Seibert 

and Trambauer, 2015). 30 

1.2 Selecting ensembles to improvefor long-range forecasting 

More recently, research has focused on fine-tuning the traditional ESP method by selecting relevant years within the 

climatology. In that context, several studies have proposed to condition or weight past observations based on climate signals. 



 

5 

 

The proposed approaches are commonly divided in pre-ESP (prior to hydrological modelling, i.e. by conditioning climate 

ensembles) and post-ESP approaches (after hydrological modelling, i.e. by conditioning streamflow ensembles). In Northern 

America, several studies have taken advantage of the influence of the El Niño Southern Oscillation (ENSO) and the Pacific 

Decadal Oscillation (PDO) to improve the skill of seasonal forecasts. Hamlet and Lettenmaier (1999) selected past 

precipitations based on categories of ENSO and PDO to feed a hydrological model for streamflow forecasting, and, later on, 5 

for reservoir operation (Hamlet et al., 2002). Werner et al. (2004) selected and weighted traces based on the ENSO before 

and after hydrological modelling. The authors showed that the post-ESP method yielded greater improvements in forecast 

skill than the pre-ESP method. Their post-ESP method was recently applied by Trambauer et al. (2015) in Southern Africa. 

Gobena and Gan (2010) used the PDO in several pre- and post-ESP resampling, including a pre-ESP approach benefiting 

from monthly precipitation and temperature statistically derived from climate model outputs. Recent studies have 10 

investigated the use of multiple other climate indices in post-ESP techniques (Najafi et al., 2012). At the scale of the globe, 

van Dijk et al. (2013) selected traces within precipitation climatology based on climate indicators that were proven 

influential for the region and time period. They showed that using climate information improved forecast skill in Southeast 

Asia and South America. 

In Europe, teleconnections show complex patterns and strongly depend on the season (Ionita et al., 2015). Bierkens and van 15 

Beek (2009) exploited the teleconnection found between winter precipitations and the Northern Atlantic Oscillation (NAO) 

to select traces within the precipitation climatology and forecast seasonal streamflows. In Czech Republic, Šípek et Daňhelka 

(2015) ran a hydrological model with synthetic series of precipitation and temperature generated from climate forecasts and 

historical meteorological series. In France, Sauquet et al. (2008) forecast low flows in the Rhine river by selecting past 

precipitation scenarios that were close to the forecast day in terms of previous amounts of precipitation. Other approaches 20 

have consisted in directly extracting information from long streamflow records. For instance, Svensson (2016) selected 

analogues within historical streamflows based on the streamflow anomaly observed in the month prior to the forecast date. 

The author aimed to forecast mean streamflow over the coming month or the coming three months in the United Kingdom. 

In California, Carpenter and Georgakakos (2001) and Yao and Georgakakos (2001) tested several streamflow forecasting 

methods to forecast the inflows to the Folsom Lake. Based on the hypothesis that “it is not necessary [...] that low skill in 25 

reproducing regional precipitation is an index of the utility of GCM information for systems acting as low-pass filters, such 

as the hydrological and reservoir systems are”, Carpenter and Georgakakos (2001) conditioned historical precipitations 

based on the precipitation anomaly forecast by a GCM. They found that this conditioning was particularly efficient to 

forecast the low 30-day inflows to the lake: “Global climate model information from the Canadian coupled global climate 

model CGCM1 benefits the mean forecasts significantly mainly for low observed 30-day inflow volumes.” Yao and 30 

Georgakakos (2001) compared this method with the ESP method, and with a forecast ensemble conditioned from historical 

streamflows based on the latest observed reservoir inflows. They found that the GCM-conditioned ensemble outperformed 

the ESP method, although the ensemble conditioned from historical streamflows, which was the most reliable, managed to 

completely eliminate flood damage and generate more energy than the other two ensembles. 
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More recently, research has focused on fine-tuning the traditional ESP method by selecting relevant years within the 

climatology of precipitation. Many studies have proposed to condition or weight past observations based on climate signals. 

In Northern America, for instance, several studies have taken advantage of the influence of the El Niño Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO) to improve the overall skill of seasonal forecasts. Werner et al. (2004) 

selected and weighted traces based on the ENSO and showed that some of the proposed methods yielded improvements in 5 

forecast overall performance. Gobena and Gan (2010) used the PDO in several resampling strategies, including an approach 

benefiting from monthly precipitation and temperature statistically derived from climate model outputs. Their study showed 

that the method yielded moderate improvements to overall forecast skill. At the scale of the globe, van Dijk et al. (2013) 

selected traces within precipitation climatology based on climate indicators that were proven influential for the region and 

time period. They showed that using climate information improved forecast skill in Southeast Asia and South America. 10 

Bierkens and van Beek (2009) exploited the teleconnection found between winter precipitations and the Northern Atlantic 

Oscillation (NAO) to select traces within the precipitation climatology and forecast seasonal streamflows in Europe. Their 

work highlighted the challenges encountered in Europe to using climate indices for seasonal streamflow forecasting. In 

Europe, teleconnections show complex patterns and a strong seasonal dependence (Ionita et al., 2015). Some studies have 

thus proposed to condition past precipitation or streamflow scenarios based on previous amounts of precipitation or on 15 

previous streamflow anomalies (Sauquet et al., 2008; Svensson, 2016).  

In other studies, such as Carpenter and Georgakakos (2001), historical precipitations are conditioned on the precipitation 

anomaly forecast by a GCM, based on the hypothesis that “it is not necessary [...] that low skill in reproducing regional 

precipitation is an index of the utility of GCM information for systems acting as low-pass filters, such as the hydrological 

and reservoir systems are”. They found that this conditioning was particularly efficient to forecast the 30-day low inflow 20 

volumes to the Folsom lake, and that the GCM-conditioned ensemble outperformed ESP (Yao and Georgakakos, 2001)..  

While most studies focus on overall skill, some studies propose to look more closely at specific attributes of the skill, notably 

forecast sharpness (i.e. the width of forecast members), reliability (i.e. the statistical consistency between observed 

frequencies and forecast probabilities) and the capacity of ensemble predictions to detect critical events. In Czech Republic, 

Šípek et Daňhelka (2015) ran a hydrological model with synthetic series of precipitation and temperature generated from 25 

climate forecasts and historical meteorological series. The advantage of this modified ESP approach for forecasting was the 

gain in sharpness, as well as a better capacity to detect high- and low-flow events. Also, Trambauer et al. (2015) recently 

applied the method proposed by Werner et al. (2004) to forecast drought conditions in Southern Africa. They found that the 

skill of the conditioned ensemble was lower than that of GCM-based seasonal forecasts but higher than that of ESP forecasts. 

Some studies have investigated sharpness and reliability simultaneously. For instance, Hamlet and Lettenmaier (1999) 30 

selected past precipitations based on categories of ENSO and PDO to feed a hydrological model for streamflow forecasting, 

and, later on, for reservoir operation (Hamlet et al., 2002). They noted that the conditioning improved forecast sharpness. 

However, in six months of the year, climatology was more reliable than the conditioned ensembles in terms of observed 

streamflow falling within the forecast range. Yao and Georgakakos (2001) compared the method proposed by Carpenter and 
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Georgakakos (2001) with the ESP approach and with a conditioned forecast ensemble based on historical streamflows and 

the latest observed reservoir inflows. An in-depth evaluation of the latter showed a gain in sharpness but also a loss in 

reliability as compared to historical streamflow data. Nevertheless, decisions based on the conditioned ensemble were able to 

eliminate flood damage and generate more energy than decisions based on the other two ensemble approaches. 

1.3 Scope of the study 5 

This study proposes to investigate how selecting historical data based on forecast precipitation indices contributes to the skill 

of seasonal streamflow forecasts. Our approach selects traces of past observed precipitations and streamflows based on 

precipitation indices derived from the System 4 seasonal precipitation forecasts issued by the European Centre for Medium-

range Weather Forecasts (ECMWF). The aim is to generate forecasts that benefit from the reliability of climatology-based 

ensembles and the sharpness of System 4 precipitation forecasts. In a previous study (Crochemore et al., 2016), we assessed 10 

the performance of System 4 precipitation forecasts for seasonal streamflow forecasting. Despite the good overall 

performance of the streamflow forecasts after bias correction, we still observed a lack of reliability of the forecasts generated 

with the hydrological model in summer. In accordance with the results from Carpenter and Georgakakos (2001), we evaluate 

the proposed methods in contexts of low flows and droughts. 

This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. It proposes 15 

an insight into how conditioning approaches impact forecast attributes such as reliability, sharpness and the detection of low-

flow events. The aim is not to provide an overall better ensemble but to shed light on which forecast attributes can be 

expected to improve or deteriorate after conditioning. For that purpose, we used conditioning statistics based on precipitation 

indices derived from the System 4 seasonal precipitation forecasts issued by the European Centre for Medium-range Weather 

Forecasts (ECMWF) to select traces of past observed precipitation and streamflow. Eight streamflow forecast scenarios were 20 

built and analysed.  

Section 2 presents the data and the methodology used to build streamflow forecasts. In Section 3, we present the evaluation 

of the different studied scenarios. First, we analyse the impact of the conditioning on the overall performance, sharpness and 

reliability of seasonal streamflow forecasts over the whole year. Then, we investigate the discrimination and reliabilityability 

of the ensemble prediction systems to forecast low-flow events. We also illustrate the performance of our 25 

approachdifferences in forecastingforecast attributes with a drought risks throughrisk assessment graph for the case of the 

2003 severe drought in France. In Section 4, we discuss the main outcomes and perspectives of the study. 
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2 Data and methods 

2.1 Observed and forecast hydrometeorological data 

Observed precipitation data used in this study come from the SAFRAN reanalysis of Météo-France (Quintana-Seguí et al., 

2008; Vidal et al., 2010). Daily values are available from August 1958 until July 2010 (i.e. 51 complete years) at an 8x8 km 

grid resolution covering France. Data were aggregated at the catchment scale. Mean areal potential evapotranspiration was 5 

computed for each catchment using a temperature-based formula (Oudin et al., 2005) and observed temperatures from the 

SAFRAN reanalysis. Daily streamflow data at the outlet of each catchment come from the French national archive (Banque 

Hydro, Observed precipitation data come from the SAFRAN reanalysis of Météo-France (Quintana-Seguí et al., 2008; Vidal 

et al., 2010). Daily values are available from August 1958 until July 2010 (i.e. 51 complete years) at an 8x8 km grid 

resolution covering France. Data were aggregated at the catchment scale. Mean areal potential evapotranspiration was 10 

computed for each catchment using a temperature-based formula (Oudin et al., 2005) and observed temperatures from the 

SAFRAN reanalysis. Daily streamflow data at the outlet of each catchment come from the French national archive (Banque 

Hydro, www.hydro.eaufrance.fr). 

Seasonal precipitation forecasts used in this study were collected from ECMWF GCM, System 4. Once a month, ECMWF 

provides a 51-member forecast ensemble for the next seven months at a TL255 (~0.7°) spatial resolution (Molteni et al., 15 

2011)(Molteni et al., 2011). ECMWF producedissued hindcasts for the 1
st
 of each month from 1981 to 2010. These hindcasts 

are composed of 51 members when issued in February, May, August and November, and 15 members in other months. For 

the purpose of this study, System 4 forecasts were aggregated at the catchment scale. with a weighted mean based on the 

catchment area covered by each forecast grid cell (two to ten grid cells per catchment). Only forecasts with lead times up to 

90-days were considered. In a previous study, several bias corrections were applied to System 4 precipitation forecasts and 20 

compared based on their impactimpacts on seasonal streamflow forecastingforecasts (Crochemore et al., 2016)(Crochemore 

et al., 2016). The study showed that the empirical distribution mapping of daily values improved the reliability of both 

precipitation and streamflow forecasts. Following these results, System 4 precipitation forecasts used in this studyhere were 

previously bias corrected with the empirical distribution mapping of daily values. 

2.2 Catchments and hydrological model 25 

Sixteen catchments spread over France were selected from the database used by Nicolle et al. (2014). Using a set of 

catchments helps getting more general conclusions (see e.g. Andréassian et al., 2009; Gupta et al., 2014). However, it should 

be noted that identifying relations between performances and catchment characteristics is outside the scope of this study. 

These catchments are dominated by a pluvial regime and the quality of their streamflow data during low flows is good. The 

selected catchments additionally have an average solid fraction of precipitation below 10%. Their location, hydrological 30 

regimes and main characteristics are presented in Figure 1 and Table 1, respectively. In these catchments, low flows are 

http://www.hydro.eaufrance.fr/
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observed between May and October, i.e. from late spring to early autumn. Major drought events in these catchments include 

the droughts of 1976, 1989, 2003 and 2005. Among these, the 2003 drought was estimated to have caused 15,000 deaths and 

cost over a billion euros just in France (UNEP, 2004; Poumadère et al., 2005).(2014). Using a set of catchments helps getting 

more general conclusions (see e.g. Andréassian et al., 2009; Gupta et al., 2014). However, it should be noted that identifying 

relations between performances and catchment characteristics is outside the scope of this study. These catchments are 5 

dominated by a pluvial regime and the quality of their streamflow data during low flows is good. Additionally, the selected 

catchments have an average solid fraction of precipitation below 10%. Their location, hydrological regimes and main 

characteristics are presented in Figure 1 and Table 1, respectively. In these catchments, low flows are observed between May 

and October, i.e. from late spring to early autumn. Major drought events include the droughts of 1976, 1989, 2003 and 2005. 

Among these, the 2003 drought was estimated to have caused 15,000 deaths and cost over a billion euros just in France 10 

(UNEP, 2004; Poumadère et al., 2005). Here, this particular event is used to illustrate the impact of conditioning methods on 

drought risk assessment.  

The hydrological model used in this study is the GR6J model, a daily conceptual model with six free parameters specifically 

proposed for low-flow simulation by Pushpalatha et al. (2011)(2011). The model is composed ofhas three reservoirs (one for 

the production function and two for the routing function), and one unit hydrograph to account for flow delays. Its inputs are 15 

daily precipitation and potential evapotranspiration at the catchment scale, and its output is the streamflow at the catchment 

outlet. In this study, the mean interannual potential evapotranspiration was systematically used as input to the GR6J model. 

For, regardless of the forecast year, i.e. for a given day of the year, the estimated potential evapotranspiration on this day is 

assumed to be the mean of all potential evapotranspiration computed for this day of the year, from 1958 to 2010. Regardless 

of the precipitation scenario fed to the model, the same interannual potential evapotranspiration scenario is systematically 20 

used as input to the model so as. This allows us to focus solely on the influence of precipitation inputs on streamflow 

forecasts. In addition, when the model is applied to forecast streamflowstreamflows, the last observed streamflow at the time 

of forecast is used to update the levels of the routing reservoirs before issuing the forecasts. 

The GR6J model was calibrated in each catchment with the one-year-leave-out method (Arlot and Celisse, 2010) and with 

the Kling-Gupta Efficiency (Gupta et al., 2009) applied to inverse flows to focus on the lowest flows (Pushpalatha et al., 25 

2012). We obtained an average KGE applied to inverse flows of 0.78 in calibration and 0.76 in validation over the sixteen 

catchments. An average KGE applied to flows of 0.78 was obtained in validation, showing that the model also performs well 

for median to high flows. The distance of the bias from 1 (1-bias) is moderate in simulation with values ranging from -0.1 to 

0.1 in all catchments but three. In these three catchments, values of 0.12, -0.14 and -0.94 are obtained. 

The GR6J model was calibrated in each catchment with the one-year-leave-out method (Arlot and Celisse, 2010) and with 30 

the Kling-Gupta Efficiency (Gupta et al., 2009) applied to inverse flows to focus on the lowest flows (Pushpalatha et al., 

2012). We obtained an average KGE of 0.78 in calibration (ranging from 0.46 to 0.94) and 0.76 in validation (ranging from 

0.41 to 0.94) over the sixteen catchments. An average KGE applied to root-squared flows of 0.86 was obtained in validation 

(ranging from 0.54 to 0.94), showing that the model also performs well for median to high flows. The distance of the bias 
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from 1 (i.e. 1-bias, with bias defined as the ratio between observed and simulated streamflows) is moderate in simulation, 

with values ranging from -0.1 to 0.1 in all catchments but three. In these three catchments, values of 0.12, -0.14 and -0.94 are 

obtained. 

2.3 Forecast verification methods 

Many criteria exist to assess the performance of probabilistic forecasts. Here, we assessed their sharpness and reliability 5 

following the paradigm introduced by Gneiting et al. (2007), that is maximizing sharpness while guaranteeing reliability. 

The overall performance and the discrimination of the forecasts were also evaluated. 

2.3.1 Evaluation criteria 

The overall performance of the forecast systems was evaluated by means of the Continuous Rank Probability Score (CRPS, 

Hersbach, 2000). The CRPS averages over the evaluation period the area between the cumulative forecast distribution and 10 

the step function corresponding to the observation. 

Sharpness is an intrinsic attribute of the forecast ensemble. It indicates how spread the members of an ensemble forecast are. 

Here, sharpness was computed as the average over the evaluation period of the difference between the 95
th

 and the 5
th
 

percentiles of the forecast distribution (Gneiting et al., 2007). It thus corresponds to the 90% interquantile range (IQR). 

Reliability refers to the statistical consistency between observed frequencies and forecast probabilities. Reliability was 15 

evaluated with the Probability Integral Transform diagram (PIT, Gneiting et al., 2007; Laio and Tamea, 2007). The PIT 

diagram represents the cumulative distribution of the positions of the observation within the distribution of forecast values. 

The PIT diagram of a perfectly reliable forecast is superposed with the 1:1 diagonal, meaning that the observation uniformly 

falls within the forecast distribution. To numerically compare results for large datasets, Renard et al. (2010) proposed to 

compute the area between the PIT diagram and the 1:1 diagonal. The smaller the PIT area, the more reliable the ensemble. 20 

The Relative Operating Characteristics diagram (ROC, Mason and Graham, 1999) is used to assess the capacity of 

forecasting systems to discriminate between events and non-events. In this study, the threshold used to define events is the 

80
th

 exceedance percentile of observed streamflow. To build the diagram, the proportion of ensemble members below the 

threshold necessary to trigger an alert varies from none to all ensemble members. For each of these proportions, the 

probability of detection is plotted against the false alarm ratio. The ROC diagram is plotted for a given threshold, catchment 25 

and forecast lead time. The Area Under the Curve (AUC) summarizes the ROC diagram into one numerical value that allows 

for an easier comparison of forecast systems. The closer the AUC is to 1, the better the system is at discriminating between 

events and non-events. 

2.3.2 Skill scores 

The skill of forecast systems is computed as follows: 30 
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This normalized skill ranges within [-1,1]. A skill superior to 0 (inferior to 0) indicates that the forecast system performs 

better (worse) than the reference. The skill score was computed based on the CRPS, the IQR and the PIT area. These scores 

are abbreviated CRPSS, IQRSS and PITSS. Three base ensembles (see next section) were used in turn as reference forecasts, 

to assess the skill of built forecast scenarios. Since we compared ensembles with different ensemble sizes (see Table 2), 5 

which is known to induce bias when computing skill scores, the correction proposed by Ferro et al. (2008) was applied to 

remove such bias in the computation of the CRPSS. 

2.4 Forecast scenario building method 

ElevenEight ensemble forecast scenarios were compared basedbuilt to investigate the impact of conditioning on theirforecast 

performance in forecasting streamflows. Three. The eight scenarios are based on four conditioning statistics and three 10 

methods that are commonly used in seasonal streamflow forecasting. These are three methods (named “base ensembles” in 

the following. The remaining eight) and the conditioned scenarios are based on these base ensembles and specific 

conditioning statistics.introduced below.  Table 2 summarizes the different ensemble forecast scenarios comparedanalysed in 

this study. 

2.43.1 Description of the base ensembles 15 

The simplest ensemble forecast scenario uses the long-term statistical variability of historical streamflows. It is assumed that 

the streamflow at a given day of the year is likely to fall within the range of streamflows observed in other years, on that 

same day. Apart from the necessity to haveThis is a “poorman’s approach” that can serve as a naïve benchmark, where no 

hydrological model but only a long streamflow time series of streamflow records, this ensemble is not computationally 

costly is available. It is named HistQ hereafter. 20 

Another base ensemble is the traditional ESP method. It requires a hydrological model and a long time series of precipitation 

records. This ensemble is based on the assumption that the precipitation of a given day is likely to fall within the range of 

past precipitations observed on that same day in previous years, on that same day. For a given forecast day, a precipitation 

ensemble is thus built by using precipitations observed in other years. The precipitation ensemble has as many members as 

the number of years different from the forecast year available in the precipitation record. The states of the GR6J hydrological 25 

model are first initialized with a one year run up to the forecast date. The precipitation ensemble and interannual potential 

evapotranspiration are then used as input to the model. 

The third base ensemble is similar to ESP but uses the bias corrected ECMWF System 4 seasonal precipitation forecasts as 

input to the GR6J hydrological model. Both the System 4 GCM and the hydrological model are initialized for the forecast 
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day. This ensemble can be considered the most costly in terms of implementation and computational needs. Hereafter, this 

ensemble is named Sys4. 

2.43.2 Description of the conditioned scenarios 

From the base ensembles, we built eight other scenarios by selecting traces within the HistQ and the ESP ensembles. The 

conditioning was based on four statistics derived at each forecast date and from each ensemble member of the System 4 5 

precipitation forecasts. FourTwo of these statistics were computed for each forecast date and each member of the seasonal 

forecasting system. Two are based on cumulative rainfalls, and two on the standardized precipitation index (SPI). The SPI 

transforms the distribution fitted to a long precipitation record into a normal distribution (McKee et al., 1993; WMO, 

2012)(McKee et al., 1993; WMO, 2012). An SPI value of 0 corresponds to conditions close to the long-term average of 

precipitations. Negative (positive) SPI values correspond to drier (wetter) conditions. The four conditioning statistics are: 10 

- the cumulative precipitation forecast over the first three months of lead time altogether (Sum3); 

- the series of cumulative precipitation forecast over the first, second and third months separately (i.e. one value per 

lead time, Sum1, decomposed into Sum1-1, Sum1-2 and Sum1-3, depending on the lead month);  

- the SPI over the first three months altogether (SPI3); 

- the SPI over the first, second and third months separately (i.e. one value per lead time, SPI1, decomposed into 15 

SPI1-1, SPI1-2 and SPI1-3, depending on the lead month).  

The statistics (SPI or Sum for the precipitation volumevolumes) derived from System 4 forecasts are then used to select 

traces within HistQ and ESP. For that purpose, statistics are also computed for sequences of historical precipitations. Here, 

we consider sequences that start within 15 days of the forecast date, observed in years different from the forecast year. For a 

given forecast member, the sequence in the historical precipitations that is the closest, in terms of the Euclidian distance, and 20 

to this member with regardrespect to the considered statistics, is selected. When searching for the closest historical sequence, 

we only consider sequences that start within a 31-day window centred on the forecast date and in years different from the 

forecast year. Note that different forecast members can be associated with the same “closest” historical sequence.  can be 

associated to several forecast members. This procedure leads to a conditioned ensemble with the same size as the System4 

forecast. 25 

Once the historical sequences are selected, two optionscases can then lead to a streamflow forecast ensemble: (a) the selected 

precipitation sequences can beare used as input to the hydrological model to generate a streamflow forecast ensemble (this is 

the case for: ESP_Sum3, ESP_Sum1, ESP_SPI3, ESP_SPI1), or (b) the historical streamflows corresponding to the 

selected precipitation sequences can beare directly used as ensemble members to build a streamflow forecast ensemble (this 

is the case for: HistQ_Sum3, HistQ_Sum1, HistQ_SPI3, HistQ_SPI1). In the latter case, conditioningthe streamflow 30 

sequences based on rainfall statisticsobtained may result in unrealistic forecasts forecast scenarios due to an initial 

conditionshydrologic condition on the forecast date that is far from what iswas historically  observed on the forecast datefor 

a selected sequence. Therefore, when directly selecting scenarios from past streamflow observations, we have also added the 
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last observed streamflow is addedobserved on the day of issuing the forecast as a conditioning criterion in the computation 

of the Euclidian distance. 

2.4 Forecast verification methods 

Many criteria exist to assess the performance of probabilistic forecasts. Here, we assessed the overall performance of the 

forecasts, their capacity of discrimination, their sharpness and reliability. For these last two attributes, we consider the 5 

paradigm that better forecasts are those that maximize sharpness while guaranteeing reliability (Gneiting et al., 2007).  

2.4.1 Evaluation of forecast attributes 

The overall performance of the forecast systems was evaluated using the Continuous Rank Probability Score (CRPS, 

Hersbach, 2000). The CRPS averages the area between the cumulative forecast distribution and the step function 

corresponding to the observation over the evaluation period. 10 

Sharpness is an intrinsic attribute of the forecast ensemble. It indicates how spread the members of an ensemble forecast are. 

Here, sharpness was computed as the average difference between the 95
th

 and the 5
th

 percentiles of the forecast distribution 

over the evaluation period (Gneiting et al., 2007). It thus corresponds to the average 90% interquantile range (IQR). 

Reliability refers to the statistical consistency between observed frequencies and forecast probabilities. Reliability was 

evaluated with the Probability Integral Transform diagram (PIT, Gneiting et al., 2007; Laio and Tamea, 2007). The PIT 15 

diagram represents the cumulative distribution of the positions of the observation within the distribution of forecast values. 

The PIT diagram of a perfectly reliable forecast is superposed with the 1:1 diagonal, meaning that the observation uniformly 

falls within the forecast distribution. To numerically compare results for large datasets, Renard et al. (2010) proposed to 

compute the area between the PIT diagram and the 1:1 diagonal. The smaller the PIT area, the more reliable the ensemble. 

Note that the CRPS is sensitive to both the reliability and the sharpness of the forecasts. Each attribute influences two 20 

independent terms of the decomposition of the CRPS. A decrease in one can thus be compensated by an increase in the 

other, which would remain unnoticed in the CRPS value.  

The discrimination of a system is its capacity to detect an event defined by a threshold. The Relative Operating 

Characteristics diagram (ROC, Mason and Graham, 1999) is used to assess the discrimination of the forecasting systems. In 

this study, the threshold used to define events is the 80
th

 exceedance percentile of observed streamflow (i.e. 80% of the 25 

observed values are above this threshold). To build the diagram, the proportion of ensemble members below the threshold 

necessary to trigger an alert varies from none to all ensemble members. For each of these proportions, the probability of 

detection is plotted against the false alarm ratio. The ROC diagram is plotted for a given threshold, catchment and forecast 

lead time. The Area Under the Curve (AUC) summarizes the ROC diagram into one numerical value and allows for an easier 

comparison of forecast systems. The closer the AUC is to 1, the better the system is at discriminating between events (i.e. 30 

threshold exceedances) and non-events. 
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2.4.2 Skill scores 

The skill of forecast systems is computed as follows for a given lead time i: 
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This normalized skill ranges within [-1,1]. A skill superior to 0 (inferior to 0) indicates that the forecast system performs 

better (worse) than the reference. Here, we evaluated the conditioned forecast scenarios against the base ensembles they were 5 

based on (i.e. Sys4, ESP or HistQ). The skill score was computed based on the CRPS, the IQR and the PIT area. These 

scores are abbreviated CRPSS, IQRSS and PITSS. Since we compared ensembles with different ensemble sizes (see Table 

2), which is known to induce bias when computing skill scores, the correction proposed by Ferro et al. 3 Performance(2008) 

was applied to remove such bias in the computation of the CRPSS. 

3 Analysis of the quality of the streamflow forecasting systems 10 

3.1 Skill of System 4 in forecasting conditioning statistics 

Before evaluating the performance of the eleven ensemble forecast scenarios, weWe first evaluated the skill of System 4 in 

forecasting the conditioning statistics (cumulative precipitations Sum and SPI). Figure 2 shows their skill in overall 

performance (CRPSS) and in sharpness (IQRSS), and Figure 3 shows their reliability (PIT diagram). The reference forecast 

used to compute the skill scores is historical precipitations (i.e. climatology). Regardless of the considered statistic, System 4 15 

performs as well as climatology, while being sharper. (Figure 2). In addition, SPI forecasts issued from System 4 are reliable 

overall and in standard precipitation conditions. (Figure 3). In dry conditions (i.e. SPI values smaller than -1), however, 

forecasts tend to overestimate SPI values, while in wet conditions (i.e. SPI values greater than 1) forecasts tend to 

underestimate SPI values. Similar PIT diagrams are observed with SPI forecasts from historical precipitations (not shown). 

Dutra et al. (2014)(2014) did a similar comparison and showed that SPI forecasts from System 4 always had skill as 20 

compared to historical precipitations, with respect to discrimination, accuracy and anomaly correlation, in South Africa. 

3.2 Statistical evaluation of accuracyoverall performance, sharpness and reliability 

3.2.1 Influence of conditioning on streamflow forecasts performance 

We3.2.1 Forecast attributes of the conditioned scenarios with respect to HistQ and ESP base ensembles 

First, we evaluated the gain and loss in skill of daily streamflow forecasts due to the four types of conditioning applied to the 25 

HistQ base ensemble. Figure 4 shows the CRPSS, IQRSS and PITSS for lead times up to 90 days, and the PIT diagram for a 
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lead time of 45 days. The reference for the computation of the skill is HistQ, i.e. historical streamflows with all available 

years. Each line corresponds to one of the 16 catchments. 

The first conclusion from this figure is that all four conditionings lead to similar results. Their impact on forecasts reliability 

(PIT) and sharpness (IQR) is uniform over the lead times, while their impact on overall performance (CRPS) is greater at 

shorter lead times. Conditioning HistQ improves sharpness at most lead times (IQRSS above zero) and, for all conditioning 5 

statistics (Sum or SPI). However, as a direct result of narrower ensembles, there is a decrease in the PIT values (reliability) at 

most lead times (PITSS below zero). Nevertheless, the PIT diagrams at 45 days show that this decrease does not affect the 

overall reliability of the conditioned ensembles: they remain quite reliable as a whole (PIT values close to the diagonal line) 

for all conditioning statistics,), especially when the conditioning is based on the SPI statistics. Regarding overall 

performance (CRPS), the conditioning increases performance up to 5 to 15 to 30 days ahead in most catchments, and up to 10 

30 days in some catchments. Improvement is greater when traces are selected based on cumulative precipitations (Sum3 or 

Sum1) or SPI3 than when they are selected based on the series of SPI1 values. ThisThe improvement in overall performance 

in the first lead times can be attributed to the fact that the conditioning of historical streamflow takes also into account the 

last observed streamflow. to better match current initial conditions (cf. Section 2.3.2). At longer lead times, the overall 

performance of conditioned scenarios is, in the majority of catchments, equivalent or slightly worse than that of HistQ. In 15 

one of the catchments, however, we observed improvements up to 90 days ahead. This catchment corresponds to catchment 

1, in which interannual streamflow variability dominates over seasonality (cf. Section 2.2) due to a high base flow index. 

We also examined the loss and gain in skill due to conditioning applied to the ESP base ensemble.  (Figure 5 is similar to 

Figure 4. It plots the skill scores against lead time and the PIT diagram for a lead time of 45 days.). This time, the reference 

used in the computation of the skill is ESP. Here again, the four conditionings seem to have a similar impact on performance. 20 

Conditioned streamflow forecasts appear to be as performantequivalent or slightly worse than ESP in terms of overall 

performance (CRPSS), for all lead times. This). When conditioning ESP with SPI, this often translates in a gain in sharpness 

(IQRSS) associated with and a loss in reliability (PITSS), as observed). When conditioning with the scenarios conditioned 

from the HistQ base ensemble. Some distinctions between the conditionings based on cumulative precipitations and the 

conditionings based on the SPI can be seen. First, conditionings based on the SPI provide more homogeneous results 25 

betweenSum statistics, forecasts lose sharpness in some catchments for all evaluation criteria. We and reliability in most 

catchments. Results are also observe that the less homogeneous between catchments. The loss in overall performance is also 

greater with the conditionings based on cumulative precipitations, while overall performance of the ensembles conditioned 

with the SPI tend to be equivalent to that of ESP.. The PIT diagrams show that ensembles selected based on cumulative 

precipitations are not all ensembles are perfectly reliable, with observations too often falling below the forecast range in 30 

most catchments. Ensembles selected based on the SPI show a similar tendency, but in fewer catchments. In general, PIT 

values are closer to the diagonal when conditioning based on SPI values, especially with ESP_SPI3, which gives more 

reliable forecasts in most catchments.This tendency may be caused by the precipitation inputs but also by the hydrological 

model, since in ESP-based approaches it also plays a role.   
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In summary, Figures 4 and 5 have shownshow that, in general, conditioning has the conditionings tend to same impact on 

forecast attributes regardless of the conditioning statistics. It tends to increase sharpness and maintain or just slightly 

decrease reliability. Conditioning based on the However, conditioning with cumulative precipitations can also decrease both 

attributes, sharpness and reliability, which is not satisfying. In addition, conditioning based on SPI provides more consistent 

results between catchments and tends to produce more reliable forecasts. More specifically, conditioning based on SPI3 5 

minimizes the loss in reliability andlosses in reliability and overall performance, comparatively to the ESP ensemble.base 

ensembles. In the following paragraphs, only HistQ_SPI3 and ESP_SPI3 were retained in order to further explore the quality 

of conditioned ensembles. 

3.2.2 ComparisonForecast attributes of the conditioned scenarios with therespect to Sys4 base ensemble 

In Figure 6, we compare the quality of ESP, ESP_SPI3, HistQ and HistQ_SPI3 comparatively to Sys4. Figure 6 is similar to 10 

Figures 4 and 5 in that it represents the skill in overall performance, reliability and sharpness as a function of lead time, as 

well as the PIT diagrams at 45 days lead. 

The behaviour of ESP is very similar to that of ESP_SPI3 with respect to Sys4. Both haveIn a previous study (Crochemore et 

al., 2016), we assessed the performance of Sys4 precipitation forecasts for seasonal streamflow forecasting in the studied 

catchments. We observed a good overall performance of the streamflow forecasts after bias correction, but also a general 15 

lack of reliability during summer (June-July-August). In Figure 6, we evaluate the quality of the conditioned scenarios 

ESP_SPI3 and HistQ_SPI3 with respect to Sys4, from which the conditioning statistics are derived.  

ESP_SPI3 conditioned ensembles show better overall performance than Sys4 for lead times shorter than 5 to 10 days, worse 

performance for lead times from 5 to 10 days and up to 2015 days, and equivalent performance at longer lead times. In terms 

of reliability and sharpness, ESP and ESP_SPI3 areis overall more reliable but less sharp than Sys4 but not as sharp, 20 

thoughfor lead times shorter than 45 days. At longer lead times, ESP_SPI3 becomes equivalent to Sys4 for lead times longer 

than 45 days. The PIT diagrams show that ESP and ESP_SPI3 are visually equivalent in terms of reliability, though the 

previously observed tendency of observations falling below the forecast range persists in a few catchments. This tendency 

may not be caused by precipitation inputs but by the hydrological model. 

. If we now look at ensembles based on historical streamflows, we observe that HistQ performs worse than Sys4, at least for 25 

lead times shorter than 50 days. Even though HistQ is more reliable than Sys4, it is not as sharpHistQ_SPI3, it has lower 

overall performance than Sys4, especially for lead times shorter than 30 days. HistQ_SPI3 also has lower overall 

performance than Sys4 but the gap in performance is reduced for lead times shorter than 15 days. HistQ_SPI3, following 

HistQ characteristics,15 days. HistQ_SPI3 provides forecasts that are more reliable than Sys4, except at long lead times in 

some catchments. Contrary to HistQ, conditioning allows HistQ_SPI3 to be as sharp as Sys4 for horizons longer than 30 30 

days. The reliability of HistQ and HistQ_SPI3 is confirmed by their PIT diagrams. These diagrams also show that ensembles 
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based on historical streamflows (HistQ) are more reliable than ensembles based on precipitation climatology (ESP).(more 

than 45 days) in some catchments.  

In summary, Figure 6 illustrates how conditioning the base ensembles from the ESP method or from historical streamflows 

on SPI3 statistics derived from GCM-based seasonal forecasts can be beneficial for several catchments at lead times longer 

than 15 to 30 days since it allows the conditioned ensembles to be at least as sharp as the GCM-based forecasts while being 5 

also, in most cases, more reliable than or as reliable as GCM-based seasonal forecasts.  

3.2.3 Overall comparison of base and conditioned ensemblesinfluence of conditioning on streamflow forecasts 

reliability and sharpness 

The objective now is to see whether we succeeded in benefiting from the reliability of climatology and the sharpness of Sys4 

when conditioning ensemble forecast scenarios. Figure 7 proposes a simultaneous evaluation of the reliability (PIT area) and 10 

sharpness (IQR) of ESP_SPI3 and HistQ_SPI3. For a given catchment, lead time and reference, the skill in reliability is 

plotted against the skill in sharpness. Each point corresponds to a catchment, each column corresponds to a lead time and 

each row corresponds to a forecast ensemble. Two references are chosen for each ensemble: ESP_SPI3 is evaluated against 

ESP and Sys4, and HistQ_SPI3, against HistQ and Sys4. Each reference is identified by its colour and shape (cf. legend). If a 

point is located in the upper left part of the graph, the conditioned ensemble is more reliable but less sharp than the reference 15 

(indicated by the colour of the point) in the corresponding catchment. Reversely, if a point is located in the lower right part, 

the conditioned ensemble is sharper but less reliable than the reference. At best, both reliability and sharpness are improved, 

and points are located in the upper right part of the graph. At worst, both reliability and sharpness are deteriorated with 

respect to the reference, and points are located in the bottom left part of the graph. 

Overall, we can observe that the conditioning tends to have more impact on reliability than on sharpness (y-axes extend 20 

further than x-axes). Also,The main conclusion from this graph is that conditioned ensembles are generally more reliable but 

less sharp than Sys4, and they are sharper but less reliable than the ensembles they are selected fromESP or HistQ. More 

specifically, we observe that: 

- For a lead time of 10 days, ESP_SPI3 and HistQ_SPI3 can be more reliable and sharper than the ensembles they are 

selected from. This applies to mostnine catchments with ESP_SPI3, and to at least twothree catchments with 25 

HistQ_SPI3; 

- For a lead time of 30 days, fewer catchments benefit from a gain in both reliability and sharpness. The loss in 

sharpness and the gain in reliability with respect to Sys4 are less pronounced than for a lead time of 10 days. For 

instance, the maximum PITSS values for ESP_SPI3 move from 0.45 (for a lead time of 10 days) to 0.2 (for a lead 

time of 30 days) and those for HistQ_SPI3 move from 0.7 to 0.4. The gain in sharpness and the loss in reliability 30 

with regardrespect to ESP and HistQ remain in the same ranges as observed for a lead time of 10 days; 
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- For a lead time of 90 days, the gain of ESP_SPI3 over Sys4 is further reduced and varies with the catchment. The 

same is observed to a lesser extent for HistQ_SPI3, even though a positive impact of the conditioning on the 

reliability can still be observed in several catchments. At this lead time, both ESP_SPI3 and HistQ_SPI3 provide 

forecasts that are still sharper, yet less reliable, than the climatology they are selected from. 

Figure 7 can also be interpreted in terms of distancesimilarities in forecast attributes between approaches. Indeed, the (0,0) 5 

coordinatepoint corresponds to the location of the references. used for the skill scores. From this perspective, we observe that 

ESP_SPI3 is closer to ESP than to Sys4 for a lead time of 10 days. ButHowever, as the lead time increases, ESP_SPI3 

becomes closer to Sys4 and further apart from ESP. The proximity between ESP_SPI3 and Sys4 at longer lead times can be 

attributed to the conditioning itself. The proximity between ESP_SPI3 and ESP and their distance to Sys4 at shorter lead 

times may be attributed to the initialization of the climate model. Indeed, sinceSince initial hydrological conditions are the 10 

same for the three forecast ensembles, differences are caused by the meteorological forcingsforcing only. The main 

difference between System 4 precipitationsprecipitation and climatology at such lead times is the initialization of the GCM, 

which leads to sharper System 4 forecasts infor the first lead times. Similarly, we observe that HistQ_SPI3 becomes closer to 

Sys4 as the lead time increases due to conditioning. However, its distance to HistQ remains the same at all lead times. This 

distance is probably due to the use of previous streamflow conditions as a conditioning criterion within HistQ. Therefore, the 15 

three ensembles, HistQ, HistQ_SPI3 and Sys4 are equally distant in the first lead times. 

As a summary guideline, Table 3 proposes a ranking ofranks the different ensembles investigated based on the analyses of 

overall performance, reliability and sharpness, and for different lead time ranges: from 10 to 30 days, from 30 to 60 days and 

from 60 to 90 days. The rankings are based on the visual evaluation of Figure 5. The mean rank is calculated as the mean of 

the ranks obtained in the nine cells of the 3x3 table. Overall performance, reliability and sharpnessaveraged skill score 20 

values. Two ensembles are thus considered equivalent in this final ranking. Note that this may not be representative of 

operational expectations, since(and thus receive the same rank) if the difference in the averaged skill scores is smaller than 

0.01. This table serves as a guideline. For instance, in operational conditions, onea practitioner could choose to emphasize 

one of the three characteristicsattributes of forecast quality over the others.  

Based, and could choose the forecasting approach to be implemented based on this table. From Table 3, we can say that, if 25 

one seeks an overall performing ensemble with 10 to 30 days lead, one would use Sys4. For horizons longer than 30 days, 

ESP and ESP_SPI3 offer good alternatives. If one seeks, above all, a reliable ensemble, one could simply use HistQ, ESP, or 

even HistQ_SPI3 for lead times shorter than 30 days. However, forFor ensembles that are both sharpgood in terms of 

reliability and reliablesharpness, and for horizons longer than 30 days, one could turn to the following ensembles: ESP_SPI3 

for an emphasis on sharpness, or HistQ_SPI3 for an emphasis on reliabilityensembles seem to offer the best trade-off. 30 
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3.3 Statistical evaluation of low flows 

We assess the performance of the ensemble forecast scenarios to forecast summer low flows and drought risks. Many ways 

of characterizing severe low flows and droughts exist in the literature (Mishra and Singh, 2010; Smakhtin, 2001; Tallaksen et 

al., 1997; WMO, 2008). In the following, the low-flow variables considered are the low-flow duration and deficit volume, 

both computed for the 80
th

 exceedance percentile. In this section, only forecast horizons falling within the May to October 5 

period are considered. 

We now investigate the impact of conditioning on the performance of the ensemble forecast scenarios to forecast summer 

low flows and drought risks. Many ways of characterizing severe low flows and droughts exist in the literature (Mishra and 

Singh, 2010; Smakhtin, 2001; Tallaksen et al., 1997; WMO, 2008). In the following, the low-flow variables considered are 

the low-flow duration and deficit volume, both computed for the 80
th

 exceedance percentile. In this section, only forecast 10 

horizons falling within the May to October period are considered. 

3.3.1 CapacityImpact of the ensembles toconditioning on forecast low-flow eventsdiscrimination 

The capacity of the different systems to discriminate between low-flow events and non-events is assessed. Figure 8 presents 

the ranges of the Area Under the Curve (AUC) of the ROC diagram obtained from the five ensemble forecast scenarios, 

namely Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ. AUC values were assessed for the 80
th

 exceedance percentile and for 15 

lead times of 10 days, 30 days and 90 days. Each boxplot gathers the AUC values obtained in the 16 catchments. The letters 

below the boxplots result from the Friedman test (Lowry, 2008)(Lowry, 2008). This test consists in considering catchments 

as judges of the five methods. The test, which is based on rankings as evaluated by the catchments, assesses whether the 

methods are significantly different by assessing whetherevaluating if their rankings resemble a random shuffling. Based on 

this test, two boxplots sharingthat share a letter at a given lead time are not significantly different. 20 

Results show that all ensembles but HistQ are very close in terms of discrimination. As expected, their performance 

decreases as the lead time increases, except for HistQ, whose discrimination does not vary with the lead time. For all lead 

times, ESP significantly provides the best discrimination, with most AUC values superior to 0.88. ESP_SPI3 and Sys4 are 

tiedhave equivalent performance in terms of discrimination and appear as second best, with most AUC values greater than 

0.82. HistQ_SPI3 is also very close to the performances of Sys4 and ESP_SPI3, but does not score as high as they do, 25 

especially for longer lead times. Nevertheless, Overall, the discrimination of the conditioned ensembles is_SPI3 mostly 

provides AUC values larger than 0.81. HistQ always provides AUC values between 0.8that of Sys4 and 0.9, except in 

Catchment 1, in which we have seen that this that of the base ensemble forecast has very low performances. Overall,they are 

selected from (i.e. ESP for ESP-SPI3 and HistQ for HistQ_SPI3). For HistQ_SPI3, this translates into a gain in 

discrimination. However, for ESP_SPI3, this translates into a loss as ESP is already superior to Sys4. Finally, we also note 30 

that ensembles based on hydrological modelling (Sys4, ESP and ESP_SPI3) provide the best skills in terms of forecast 

discrimination, at least for lead times shorter than 90 days, probably because they take into account initial hydrological 
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conditions. We note that allAll these conclusions are also valid when the 60
th

 exceedance percentile is used as threshold (not 

shown). 

3.3.2 CapacityImpact of the ensembles to forecastconditioning on forecasting low-flow variables 

We now compare the forecast systems based on variables of interest for water management during low flows, namely the 

weekly deficit duration and the weekly deficit volume. The weekly deficit duration corresponds to the number of days per 5 

week during which the daily streamflow is below a given threshold. The weekly deficit volume corresponds to the flow 

volume per week below this threshold. Figure 9 presents the PIT areas obtained with Sys4, ESP_SPI3, ESP, HistQ_SPI3 and 

HistQ when forecasting the weekly number of days below the 80
th

 exceedance percentile. Boxplots represent the range of 

PIT areas obtained over the catchment set. Results are presented for lead times of two weeks, five weeks and twelve weeks 

(columns). Again, letters represent the results of the Friedman test. Two boxplots that share a letter are not significantly 10 

different. Figure 10 proposes the same evaluation for the weekly streamflow deficit volume below the 80
th

 exceedance 

percentile. 

Figure 9 shows that the difference between the five ensembles is very tenuous when forecasting the deficit duration. For 

instance, all lower and upper quartiles of Sys4, ESP_SPI3, ESP and HistQ_SPI3 are included in the [0.01, 0.08] interval of 

PIT area values, regardless of the lead time. Overall, ESP, ESP_SPI3 or HistQ_SPI3 perform best to forecast the deficit 15 

duration. All ensembles but HistQ provide quite reliable forecasts (PIT area values close to zero). HistQ_SPI3 is 

significantly the best performing ensemble for a lead time of two weeks. For a lead time of five or twelve weeks, both ESP 

and HistQ_SPI3 are the best options. The analysis of the corresponding PIT diagrams (not presented) showed that all 

ensembles are equivalently reliable, except for HistQ, which systematically overestimates the deficit duration. Here again, 

the reliability of the conditioned ensembles in forecasting low-flow duration is located between that of Sys4 and that of the 20 

base ensemble they are selected from. An exception is that HistQ_SPI3 is significantly the best performing ensemble for a 

lead time of two weeks. In that case, conditioning has managed to improve over both Sys4 and HistQ base ensembles.  

The gap between ensembles widens when looking at the deficit volume (Figure 10). For lead times of two and five weeks, 

ESP and ESP_SPI3 provide consistently reliable ensembles, and lower PIT areas than the others. For a lead time of twelve 

weeks, ESP_SPI3, along with Sys4 and HistQ_SPI3, provide the most reliable ensembles. The corresponding PIT diagrams 25 

(not presented) showed that HistQ_SPI3 tends to underestimate durationsdeficit volumes at all lead times. Ensembles issued 

with hydrological modelling also slightly underestimate the deficit volume at long lead times. Overall, ESP_SPI3 

systematically appears to be one of the best options to forecast deficit volumesAgain, overall, conditioned ensembles are 

located between the two ensembles they are based on (Sys4 for the conditioning statistics and their respective base ensemble 

for the application of the conditioning). Here, the case of ESP_SPI3 is particularly interesting. Indeed, at short lead times, 30 

ESP_SPI3 benefits from ESP, which is more reliable than Sys4. At long lead times, it benefits from Sys4, as it becomes 

more reliable. ESP_SPI3 is thus consistently one of the best options to forecast deficit volumes for all three lead times. This 
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shows that a conditioning approach can be of great interest when the ensembles used to build the conditioned scenarios show 

good performance but at different lead time ranges. 

3.4 Drought impact evaluation 

3.4 Using the conditioned ensembles in drought risk forecasting 

Figure 11 illustrates the case of the 2003 drought with the streamflow forecasts issued on July 1
st
 2003 for the three 5 

months90 days ahead. The figure focuses on catchment 5, the Azergues at Lozanne, in which the 2003 drought was 

hydrologically more severe than the reference 1976 drought. Each column represents the graphs obtained with one of the 

five ensemble forecasts (Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ). The upper row presents the graphical representation 

we propose to assess drought risks based on the ensemble forecasts. The graphs represent the deficit duration against the 

deficit volume, both computed based on the 80
th

 exceedance percentile. The graph is divided into 49 boxes corresponding to 10 

possible combinations and ranges of deficit volumes and durations. The colour within each of these boxes indicates the 

percentage of ensemble members that falls within each box. The darker the boxes, the more ensemble members are 

indicating the associated drought risk in terms of deficit duration (y-axis) and volume (x-axis). Darker boxes may also reflect 

a sharper ensemble, and, if the darker boxes are around the observation, an ensemble with good discrimination (at least for 

the event considered). Coloured dots represent the observation (indicated as “observed”) and two references: the 1976 15 

drought (indicated as “drought”) and the historical mean duration and deficit volume over the forecast period (indicated as 

“climatology).”). The lower row in the figure presents the corresponding hydrographs over the 90-day forecast period. The 

black line represents the observed streamflow, the red line represents the 80
th

 exceedance percentile and the blue lines 

represent the members of the ensemble forecast. 

All ensembles produce similar patterns, but with different probabilities. The maximum probability is obtained with 20 

HistQ_SPI3 with 60 % of the ensemble members falling in the same cell. Ensembles based on hydrological modelling reach 

maximum probabilities of 20 to 30 %, and HistQ does not exceed a probability of 14 %. These colours translate in a way the 

sharpness ofreflect how sharp the ensemble forecasts. are for this forecast. The objective with the graph is to have a 

maximum of darker cells close to the observation (represented by the black dot).. We observe that the graph obtained with 

HistQ puts equivalent weights to a wide range of scenarios indicating, ranging from no risk to high risks.risk of a drought 25 

situation, which remind us of its good reliability but poor sharpness. This ensemble thus conveys little information to assess 

drought risks. HistQ_SPI3, as opposed to HistQ, offers a more confident risk assessment with the highest forecast 

probabilities and only three coloured cells. Eighty percent of the forecast members indicate a drought equivalent or more 

severe than that of 1976. The high probability may be explained by the fact that SPI forecast members and initial 

hydrological conditions were often best represented by the same driest year (as suggested by the hydrographs), namely 1976.  30 

The ESP forecast provides a wider view of risksthe risk of drought, with higher probabilities located in the upper right part 

of the graph, and small probabilities of having months with moderately drymoderate low flow conditions. ESP is able to 
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forecast a more severe event than the one observed during the 1976 drought. This good performance can only be attributed to 

the initial hydrological conditions since ESP does not have any information on future precipitations apart from climatology. 

Conditioning ESP (ESP_SPI3) slightly reduces the number of coloured cells with slightly higher probabilities in some of the 

upper right cells. The difference between ESP and ESP_SPI3 is clear when looking at the hydrographs. With ESP_SPI3, the 

number of high-flow peaks is reduced. The SPI3 conditioning seems to prevent the selection of some wet sequences from the 5 

climatology.  

Sys4 also provides a quite good risk assessment since only the upper right cells are coloured. WhileFor this event, there 

seems to be an added value from the use of GCM-based forecasts (directly as forcing to a streamflow forecasting model or 

through a conditioning statistics) to better assess the risk of drought. Notably, in the specific case illustrated here, the 

conditioned ensembles (ESP_SPI3 and HistQ_SPI3) indicated a (small) probability of drought in the box corresponding to 10 

the observation, while their base ensembles (ESP and HistQ, respectively) indicated none.    

In summary, while ensembles based on hydrological modelling, i.e. ESP, ESP_SPI3 and Sys4, are limited by the capacity of 

the model to reproduce small low-flow variations and thus to slightly underestimate the deficit volume, ensembles based on 

historical streamflows are limited within the range of past precipitation and streamflow scenarios. This highlights the fact 

that the studied methods, and here specifically Sys4, ESP_SPI3 and HistQ_SPI3, have different limitations, but also different 15 

assets. We have illustrated their performances to forecast a given drought event in France. We should however keep in 

mindNote that different contexts might penalize or favour different methods. 

4 Conclusion 

We have investigated the potential of seasonal streamflow impact on forecast ensembles built byattributes from conditioning 

precipitation climatology and historical streamflows based on precipitation indices derived from ECMWF System 4 (GCM) 20 

seasonal forecasts. In a first step, the performance of the conditioned ensembles was assessed in termsattributes of overall 

performance, sharpness and reliability for leadof the conditioned ensembles were analysed with respect to the performance 

of the ensembles they were based on. Lead times up to 90 days. Here are the  and 16 catchments in France were considered. 

The main conclusions from this comparisonanalysis are: 

- Selecting traces within precipitation climatology or historical streamflow generally improved sharpness and 25 

decreased reliability. Conditioning based on the SPI provided more consistent results between catchments and more 

reliable forecasts than conditioning based on cumulative precipitations. More specifically, conditioning based on 

SPI3 improved overall performance as compared to historical streamflow and maintained overall performance as 

compared to precipitation climatology used as input to a hydrological model, while providing reliable forecasts. 

- Particularly, conditioning based on SPI3 statistics derived from GCM-based seasonal forecasts proved to be 30 

beneficial for several catchments at lead times longer than 15 to 30 days. The performance analysis showed that the 
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conditioned ensembles could be at least as sharp as the GCM-based forecasts while being also, in most cases, more 

reliable than or as reliable as GCM-based seasonal forecasts. 

- A simultaneous evaluation of the attributes of sharpness and reliability of the conditioned ensembles showed that 

conditioning led to ensembles that were more reliable and less sharp than the streamflow forecasts generated from 

System 4 precipitations, and. The conditioned ensembles were however less reliable and sharper than the ensembles 5 

they were selected from. (here, ESP and historical streamflows). Also, the conditioned ensembles benefit 

fromseemed to take advantage of the information of either precipitation climatology or historical streamflows at the 

shorter lead times and fromof the information of GCM-based forecasts at the longer lead times. 

- Ensembles selected from precipitation climatology and historical streamflow offer a good compromise between 

sharpness and reliability, with an emphasis on sharpness with precipitation climatology, and an emphasis on 10 

reliability with historical streamflows. 

- Conditioning could, in some cases, improve reliability and sharpness simultaneously, especially for lead times 

shorter than a month ahead. Nevertheless, this was seen in a few cases and, more often, a trade-off between 

reliability and sharpness was highlighted. This is in accordance with other studies (Hamlet and Lettenmaier, 1999; 

Yao and Georgakakos, 2001). 15 

The performance of the ensembles in forecasting low-flow events and low-flow variables was then evaluated, with an 

illustration on the 2003 drought in France. Their capacity to discriminate between low-flow events and non-events and their 

capacity to forecast streamflow deficit volume and duration, as defined by the 80
th

 exceedance percentile, were assessed. The 

main conclusions from this second evaluation are: The main conclusion from this evaluation is that building conditioned 

scenarios in seasonal low flow forecasting can be especially valuable when the forecasts that provide information for the 20 

conditioning approach (either by providing a conditioning statistics or by serving as a base ensemble to which the 

conditioning will be applied) perform well for different lead times. Conditioned ensembles can benefit from the good 

performance of different ensembles at different lead times. They can thus provide more consistent performances throughout 

a wider range of lead times. 

- Forecast ensembles using hydrological modelling provided better discrimination than ensembles based on historical 25 

streamflows. Nevertheless, all forecast ensembles provided good performance, except for historical streamflows for 

lead times shorter than a month. 

- Even though differences between ensembles are tenuous when forecasting low-flow duration, the gap widens when 

forecasting deficit volume. The ensemble selected within precipitation climatology systematically provides some of 

the most reliable deficit volume forecasts. 30 

- Lastly, a graphic representation of the forecast drought risks was proposed. It was illustrated with the 2003 drought. 

We showed that, for this drought event, conditioned ensemble forecasts (either based on precipitation climatology 

or historical streamflows) provided good drought risk assessment. 
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We investigated conditionings within climatology solely based on past precipitations and catchment conditions. SPI values 

were computed after an aggregation of System 4 precipitation forecasts at the catchment scale, therefore the conditioning and 

the spatial aggregation were independent.Lastly, a drought-risk graphic representation was proposed to illustrate how 

different conditioned ensembles, with different performance in terms of the main forecast attributes evaluated in this study, 

could detect a drought event that occurred in 2003 in France. In this particular case, a 3-month forecast with conditioned 5 

ensembles based on SPI3 showed better results in terms of indicating higher probabilities closer to the observed deficits in 

duration and volume of streamflows below the 80% percentile.  

In this paper, we evaluated eight streamflow forecast scenarios with the aim of investigating the impact of conditioning on 

forecast attributes. Further investigations could assess the potential of this method for spatial downscaling of System 4 

precipitation forecasts.  10 

In this paper, thebe done with other conditioning based methods of interest for operational use. For instance, the conditioning 

based on the forecast SPI or on the forecast SPI or cumulative precipitationsprecipitation for the three coming months puts 

an equivalent weight on all three lead times to select past precipitations. As we showed in this paper, the System 4However, 

seasonal forecasts issued by GCMs usually have more skill for the coming month than for the second and third months. 

Therefore, we could explore a weighting of these three forecast lead times, in order to put more weight on the first lead 15 

month lead time in the selection of past precipitations.  

OneIn addition, one important parameter to forecast low flows and droughts is the temperature. A more advanced approach 

would consist in selecting past scenarios based on the SPEI (Standardized Precipitation-Evapotranspiration Index) calculated 

from seasonal precipitation and temperature forecasts. 

Finally, other types of combinations can be found in the literature and could be investigated along with the proposed 20 

conditionings. As an example, Werner et al. (2005) or Shukla et al. (2012) have investigated the use of medium-range 

weather forecasts to improve long-range forecasting. These approaches are based on the fact that short-term events are well 

forecast by short-term to medium-term forecasts issued by GCMs and that the benefit from medium-range forecasts can be 

extended to longer lead times through the inertia of a catchment.  

Other types of conditionings can be found in the literature and could also be investigated. As an example, Werner et al. 25 

(2005) and Shukla et al. (2012) have investigated the use of medium-range weather forecasts to improve long-range 

forecasting. These approaches rely on the fact that short-term events are well forecast by short-term to medium-term 

forecasts issued by GCMs and that the benefit from medium-range forecasts can be extended to longer lead times through 

the inertia of a catchment. One could also apply a multi-model averaging method to merge the forecasts from the different 

ensembles investigated in this paper (see, for instance, Raftery et al., 2005; Duan et al., 2007; Najafi and Moradkhani, 2016). 30 

The influence of such a method on the evaluation of forecast attributes could be compared to the findings of this study with 

the conditioning approaches, especially towards a better assessment of the trade-off between reliability and sharpness. 
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Finally, we investigated conditionings within climatology solely based on past precipitations, past streamflows and 

catchment conditions. SPI values were computed after an aggregation of System 4 precipitation forecasts at the catchment 

scale, and, therefore, the conditioning and the spatial aggregation were independent. Further investigations could assess the 

potential of the conditioning methods for the spatial downscaling of System 4 seasonal precipitation forecasts before their 

application to hydrologic forecasting. 5 
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Figure 1 Location in France and hydrological regime of the 16 catchments. Solid lines represent mean interannual monthly flows. Grey-

shaded areas represent the 10th and 90th percentiles of interannual monthly flows. Dotted red lines represent the 80th exceedance percentile 

(i.e. the daily flow exceeded by 80 % of the data). The catchments are numbered from the smallest to the largest. Statistics are computed 

over the streamflow record available for each catchment, i.e. 36 to 52 years (cf. Table 1). 5 
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Figure 2 CRPSS and IQRSS of SPI forecasts and forecasts of cumulative precipitations produced from bias corrected System 4 

precipitation forecasts. The reference for the skill scores is climatology. Skill scores are presented for statistics calculated for each month 

of the three-month lead time (SUM1 and SPI1) and over the three months altogether (SUM3 and SPI3). Columns correspond to scores 

computed for sums, SPI values, SPI values smaller than -1 (dry), SPI values within -1 and 1 (normal) and SPI values greater than 1 (wet). 5 
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Figure 3 Reliability of SPI forecasts and forecasts of cumulative precipitations produced from bias corrected System 4 precipitation 

forecasts. PIT diagrams are presented for statistics calculated over the first three months altogether (Sum3 and SPI3). Columns correspond 

to scores computed for sums, SPI values, SPI values smaller than -1 (dry), SPI values within -1 and 1 (normal) and SPI values greater than 

1 (wet).   15 
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Figure 4 Skill scores (CRPSS, IQRSS, PITSS; first three rows) and PIT diagrams for a lead time of 45 days (last row) of the conditioned 

ensemble forecast scenarios: HistQ_Sum3, HistQ_Sum1, HistQ_SPI3 and HistQ_SPI1. In the skill scores, the reference forecast is the 

base ensemble HistQ. Each line represents one of the 16 catchments investigated. 

 5 



 

33 

 

 

Figure 5 Same as Figure 4 but the forecast ensembles are ESP_Sum3, ESP_Sum1, ESP_SPI3 and ESP_SPI1 and the reference for the 

computation of the skill is ESP. 
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Figure 6 Skill scores (CRPSS, IQRSS, PITSS) of the conditioned ensemble forecast scenarios: ESP_SPI3 and HistQ_SPI3. In the skill 

scores, the reference forecast is the base ensemble Sys4. Each line represents one of the 16 catchments investigated. 
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Figure 7 PITSS (reliability) versus IQRSS (sharpness) for ESP_SPI3 (upper row) and HistQ_SPI3 (lower row), and lead times of 10, 30 

and 90 days (columns). ESP_SPI3 is compared to Sys4 (red) and ESP (grey), while HistQ_SPI3 is compared to Sys4 (red) and HistQ 

(blue). Each point represents one of the 16 catchments. 
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Figure 8 Ranges of the Area Under the Curve (AUC) of the ROC diagram based on the 80th exceedance percentile for each of the five 

selected ensemble forecasts (Sys4, ESP, HistQ, ESP_SPI3, HistQ_SPI3). Boxplots gather the AUC values for the 16 catchments. The 

boxes extend to the 25th and 75th percentiles and the whiskers, to the data extremes. Graphs are presented for 10-day, 30-days and 90-day 

lead times (columns). The letters below the boxplots result from the Friedman test. For a given lead time, two boxplots sharing a letter are 5 
not significantly different. 
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Figure 9 Same as Figure 7 but for PIT area ranges computed for deficit duration. Ranges are represented by boxplots which gather the PIT 

areas for the 16 catchments. Graphs are presented for lead times of two weeks, five weeks and twelve weeks (columns). 
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Figure 10 Same as Figure 8 for deficit volume. 
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Figure 11 Risk graphs presenting the probabilities of deficit duration versus deficit volume based on the 80th exceedance percentile (upper 

row) and corresponding hydrographs (lower row). The maximum probability varies with the ensemble and the situation and is indicated in 

the colour scale. The black point corresponds to the observation, the dark red dot to the drought of 1976 and the blue dot to the mean 

duration and deficit volume observed in past streamflows. Each column corresponds to one of the five ensemble forecasts. Forecasts were 5 
issued for the Azergues at Lozanne (catchment 5) on 1 July 2003 for the next 90 days. 
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Table 1 River and gauging station, period with available streamflow observations, area and main hydroclimatic characteristics of the 16 

catchments (ranked from the smallest to the largest). The mean annual streamflow is computed over the period of streamflow availability. 

The mean annual precipitation and evapotranspiration are computed over the 1958-2010 period. 

# River Gauging station Streamflow availability 
Area 

(km
2
) 

Mean 

annual 

precipitatio

n 

(mm/yr) 

Mean 

annual 

potential 

evapotrans

piration 

(mm/yr) 

Mean 

annual 

streamflow 

(mm/yr) 

1 Andelle Vascoeuil 01/01/1973 - 27/02/2010 377 952 628 332 

2 Orne 

Saosnoise 

Montbizot [Moulin Neuf 

Cidrerie] 
01/12/1967 - 04/03/2010 501 735 696 163 

3 Briance 
Condat-sur-Vienne 

[Chambon Veyrinas] 
01/01/1966 - 28/03/2010 605 1100 706 427 

4 Ill Didenheim 01/11/1973 - 02/03/2010 668 956 664 309 

5 Azergues Lozanne 01/01/1965 - 28/03/2010 798 931 689 296 

6 Seiche Bruz [Carcé] 01/12/1967 - 11/03/2010 809 732 696 181 

7 
Petite 

Creuse 

Fresselines [Puy 

Rageaud] 
01/08/1958 - 28/03/2010 853 899 680 316 

8 Sèvre 

Nantaise 
Tiffauges [la Moulinette] 01/11/1967 - 04/03/2010 872 898 712 331 

9 Vire 
Saint-Lô [Moulin des 

Rondelles] 
01/01/1971 - 03/02/2010 882 958 629 448 

10 Orge  Morsang-sur-Orge 01/10/1967 - 07/03/2010 934 658 680 131 

11 Serein  Chablis 01/08/1958 - 03/03/2010 1119 842 675 220 

12 Sauldres  Salbris [Valaudran] 01/01/1971 - 28/03/2010 1220 803 684 240 

13 Eyre  Salle 01/01/1967 - 19/03/2010 1678 1025 785 323 

14 Arroux  
Etang-sur-Arroux [Pont 

du Tacot] 
01/11/1971 - 27/03/2010 1792 981 655 390 

15 Meuse  Saint-Mihiel 01/07/1968 - 03/01/2010 2543 948 639 372 

16 Oise Sempigny 01/08/1958 - 02/03/2010 4320 805 639 250 
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Table 2 Summary of the methodology used to build the ensemble forecast scenarios.  

 

Name 

Statistic on 

seasonal 

forecast used 

as condition 

Additional 

condition 
Size 

Initial 

hydrological 

conditions 

Hydrological 

model 

Precipitation 

forecast 

B
a

se
 e

n
se

m
b

le
s 

HistQ No condition - 

Between 35 and 51 

depending on flow 

data availability 

(see Table 1) 

no no no 

 ESP No condition - 50 yes yes no 

Sys4 No condition - 15 or 51 yes yes yes 

C
o

n
d

it
io

n
ed

 e
n

se
m

b
le

s 

HistQ_Sum3 
Precipitation 

volume 

previous 

streamflow 
15 or 51 yes no no 

HistQ_Sum1 

Monthly 

precipitation 

volume 

  yes no no 

HistQ_SPI3 SPI3 
  

yes no no 

HistQ_SPI1 SPI1 yes no no 

ESP_Sum3 
Precipitation 

volume 
- 15 or 51 yes yes no 

ESP_Sum1 

Monthly 

precipitation 

volume 

  yes yes no 

ESP_SPI3 SPI3   yes yes no 

ESP_SPI1 SPI1   yes yes no 
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Table 3 Rankings of the Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ streamflow ensembles, as evaluated by three evaluation criteria (in 

rows) and three lead time ranges (columns). The rankings are based on averaged skill scores for each ensemble, all catchments and for lead 

times 10 to 30, 31 to 60 and 61 to 90. 

 10-30 days lead 30-60 days lead 60-90 days lead 

Overall performance 

1. Sys4 

2. ESP_SPI3 

2. ESP 

4. HistQ_SPI3 

5. HistQ 

1. Sys4 

1. ESP_SPI3 

1. ESP 

4. HistQ_SPI3 

4. HistQ 

1. Sys4 

1. ESP_SPI3 

1. ESP 

4. HistQ 

5. HistQ_SPI3 

Sharpness 

1. Sys4 

2. ESP_SPI3 

3. HistQ_SPI3 

4. ESP 

5. HistQ 

1. Sys4 

1. ESP_SPI3 

1. HistQ_SPI3 

4. ESP 

5. HistQ 

1. Sys4 

1. ESP_SPI3 

1. HistQ_SPI3 

4. ESP 

5. HistQ 

Reliability 

1. HistQ 

2. HistQ_SPI3 

3. ESP 

4. ESP_SPI3 

5. Sys4 

1. HistQ 

2. ESP 

3. HistQ_SPI3 

4. ESP_SPI3 

5. Sys4 

1. HistQ 

2. ESP 

3. HistQ_SPI3 

4. Sys4 

5. ESP_SPI3 
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