
This document contains point-to-point reply to Referees and track change version of the 1 

manuscript. (Answerers and Changes are marked in blue) 2 

 3 

The following are our replies Referee #1 (anonymous), Referee #2 (SC), and Referee #3 4 

(anonymous):  5 

 6 

Referee 1 comment and reply: 7 

 8 

(1) We can get limited knowledge if only one precipitation product is investigated. Considering 9 

the special length of precipitation datasets, suggest adding a similar one, the Global Land Data 10 

Assimilation System (GLDAS) precipitation for comparision. You may read (but not limited to) the 11 

following papers as a reference. Gottschalck et al. (2005), J. Gottschalck, J. Meng, M. Rodell, P. 12 

Houser, Analysis of multiple precipitation products and preliminary assessment of their impact on 13 

global land data assimilation system land surface states, J. Hydrometeorol., 6 (2005), pp. 573–598 14 

Wang et al. (2011), Evaluation and application of a fine resolution global data set in a semiarid 15 

mesoscale river basin with a distributed biosphere hydrological model, J. Geophys. Res., 116, 16 

D21108.  17 

Answer: Thank you for the comments. Following your suggestion, we have added the GLDAS 18 

precipitation to compare with gauge observation and satellite product. In the revised manuscript, 19 

ground-based precipitation, GLDAS precipitation and PERSIANNCDR precipitation are used as the 20 

inputs of HIMS hydrologic model for streamflow simulation in the two river basins over TP. All the 21 

figures, tables and descriptions have been updated to the three precipitation datasets. Generally, 22 

GLDAS and PERSIANNCDR precipitation have a good consistency. Please see the revised manuscript 23 

for detail. See blue texts in the revised manuscript Introduction, Methodology and Reference 24 

Section.  25 

 26 

(2) Having better spatial distributions is a big merit of satellite-based precipitation product, 27 

comparing to the sparse ground-based observational sites over the Tibetan Plateau. Suggest 28 

adding the Figures of precipitation in their spatial distributions if possible.  29 

Answer: Thank you for your suggestion. We have added the spatial distribution of the GLDAS 30 

precipitation and PERSIANN-CDR precipitation in the revised manuscript. Please see the new Figure 31 

3 and corresponding texts for details.  32 

 33 

(3) It is hard to compare the hydrological model’s performance with only the basin integrated 34 

streamflows. Suggest adding the comparisons of simulated evapotranspiration (ET) as well, to 35 

confirm the improvements of internal processes besides the final discharge outputs. For the ET 36 

estimation over the two river basins, suggest reading (but not limited to) the following papers: 37 

Zhang, Y. et al. (2007), Trends in pan evaporation and reference and actual evapotranspiration 38 

across the Tibetan Plateau, J. Geophys. Res., 112, D12110. Xue et al. (2013), Evaluation of 39 

evapotranspiration estimates for two river basins in Tibetan Plateau by a water balance method, 40 

Journal of Hydrology, 492, 290-297. Li et al. (2014), Seasonal evapotranspiration changes (1983–41 

2006) of four large basins on the Tibetan Plateau, J. Geophys. Res. Atmos., 119, 13079–13095.  42 

Answer: Thank you for your suggestion. We totally agree that adding evapotranspiration (ET) 43 

comparisons can be a good supplement to verify hydrological model’s performance. The following 44 



figure shows the simulated ET from ground-based precipitation, GLDAS precipitation and 45 

PERSIANN-CDR precipitation by HIMS hydrological model and different ET products from Jung 46 

(2010), Zhang K. et al. (2010) and PenmanMentieth-Leuning (Leuning et al., 2008; Zhang Y. et al., 47 

2016). We tried to compare and judge the different ET estimations, but we find that we maybe do 48 

not have a reliable reference for ET comparisons, because large-scale ET cannot be measured 49 

directly. Generally, large-scale ET estimated by water balance equation is a good reference. 50 

However, rainfall gauge information is limited in the TP as we mentioned in the manuscript, and 51 

we cannot use the limited ground-based precipitation to calculate basin reference ET based on 52 

water balance equation. Similar philosophy applies to other data-sources of precipitation. In other 53 

words, we can either use GLDAS precipitation nor PERSIANN-CDR precipitation to calculate basin 54 

reference ET based on water balance equation, because it would be unfair to compare these ET 55 

values with ET simulation from ground-based precipitation by HIMS hydrologic model. The 56 

purposes of this manuscript are to evaluate the streamflow simulation capability of PERSIANNCDR 57 

daily rainfall product. Therefore, we prefer to not present the ET results in the manuscript to avoid 58 

using any non-reliable ET estimation as reference to evaluate any precipitation products. Readers 59 

who are interested in the ET simulation can see the following figure, since all the discussion 60 

processes are permanently stored online of HESS Journal. Generally, the following figure shows 61 

that the simulated ET from the three precipitation datasets by HIMS model have better consistency 62 

in the upper Yellow River basin than in the upper Yangtze River basin. ET from Jung (2010) and PML 63 

(Leuning et al., 2008; Zhang Y. et al., 2016) are significantly smaller than ET simulated by the three 64 

precipitation based on HIMS model. Jung M, Reichstein M, Ciais P, et al. Recent decline in the global 65 

land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467(7318): 951-954. 66 

Zhang K, Kimball J S, Nemani R R, et al. A continuous satelliteâA˘ Rderived global record of ˇ land 67 

surface evapotranspiration from 1983 to 2006. Water Resources Research, 2010, 46(9). Leuning R, 68 

Zhang Y Q, Rajaud A, et al. A simple surface conductance model to estimate regional evaporation 69 

using MODIS leaf area index and the PenmanâA˘ RMon- ˇ teith equation[J]. Water Resources 70 

Research, 2008, 44(10). Zhang Y, Peña-Arancibia J L, McVicar T R, et al. Multi-decadal trends in 71 

global terrestrial evapotranspiration and its components. Scientific reports, 2016, 6.  72 

 73 

(4) Lack of frozen soil parametrization in HIMS may largely affect the simulated seasonal 74 

variation of water balance components (e.g., streamflow and evapotranspiration). It may bring 75 

certain uncertainties in the discharge comparisons by different precipitation inputs. To address the 76 

modelling issue may be out of the scope of this paper, but you can discuss the 77 

limitations/uncertainties in the "Summary" section.  78 

Answer: Thank you for your suggestion. We agree that lack of frozen soil parameterization in 79 

HIMS definitely will affect the simulated seasonal variation of water balance components. Actually, 80 

we find that all the three precipitation datasets generate smaller streamflow in dry season, which 81 

probably is due to the lack of proper algorithm in the HIMS model to handle frozen soil. We have 82 

added some discussions about the limitations of frozen soil simulation in the conclusion section in 83 

the revised manuscript. Please see line 516-521 of the revised manuscript for detail.  84 

 85 

(5) Line 233: please add the name of two basins here.  86 

Answer: Thank you for your suggestion. We have added the basin name in the revised 87 

manuscript. Please see line 260 of the revised manuscript.  88 



 89 

(6) Line 252, "have similar values": please specify the values here.  90 

Answer: Thank you for your suggestion. We have added the values in the revised manuscript. 91 

Please see line 262-266 of the revised manuscript.  92 

 93 

(7) Line 450: change "are" to "is"; replace "completely" with a more suitable word.  94 

Answer: Thank you for your suggestion. We have improved the grammar in the revised 95 

manuscript.  96 

 97 

 98 

 99 

Referee 2 comments and reply: 100 

In the manuscript, entitled “Evaluating the streamflow simulation capability of PERSIANN-CDR 101 

daily rainfall products in two river basins on the Tibet Plateau”, authors demonstrated an 102 

application study of a new satellite-based precipitation database and comparison with the 103 

precipitation from gauge-network. The study areas are on the Tibet Plateau and the gauge density 104 

is very sparse, which may not be a reliable data source for streamflow simulation and water 105 

resources management. The philosophy authors applies is to evaluate the streamflow simulation 106 

from both precipitation sources and compare the simulations with streamflow gauge observation, 107 

which is believed to be more reliable than rain-gauges with regard to data length, accuracy, and 108 

continuity. The experiments are well designed and conducted, and the manuscript reads well. The 109 

following comments are suggested for author’s consideration.  110 

 111 

The previous reviewer #1 made a couple suggestive comments and I agree with most of the 112 

comments by reviewer #1. In details, (i) a comparison can be added to further strengthen the 113 

comparison. (ii) the evaporation simulation can also serve as the same logic to support authors’ 114 

arguments. After all, the streamflow and evaporation are two of the major components of water 115 

cycle. The hydrological model should be able to provide such information. (iii) In author’s reply to 116 

reviewer #1, authors also agree to provide the evaporation simulation/comparison in the revised 117 

manuscript. I am also interested to see the simulation results and comparison with other data 118 

sources.  119 

Answer: Thank you for your suggestions. Your comments are in-line with Reviewer #1, and 120 

please refer our reply to Reviewer #1 for details. With respect to your three comments, the detailed 121 

responses are lists as follow: As our answers to first referee’s comment, GLDAS precipitation has 122 

been added to compare with gauge information and PERSIANN-CDR precipitation. In addition, the 123 

spatial distribution is added to let readers have a vivid impression on two precipitation datasets. 124 

The following figure shows the simulated ET from ground-based precipitation, GLDAS precipitation 125 

and PERSIANN-CDR precipitation by HIMS hydrological model and different ET products from Jung 126 

(2010), Zhang K. et al. (2010) and Penman-Mentieth-Leuning (Leuning et al., 2008; Zhang Y. et al., 127 

2016). Readers who are interested in the ET simulation can see the following figure, since all the 128 

discussion processes are permanently stored online of HESS Journal. Generally, the following figure 129 

shows that the simulated ET from the three precipitation datasets by HIMS model have better 130 

consistency in the upper Yellow River basin than in the upper Yangtze River basin. ET from Jung 131 

(2010) and PML (Leuning et al., 2008; Zhang Y. et al., 2016) are significantly smaller than ET 132 



simulated by the three precipitation based on HIMS model. More discussion about ET simulation 133 

please refer our reply to comments of referee #1, and also the corresponding contents in the 134 

revised manuscript. We sincerely thank the reviewer’s suggestive comment. The revised 135 

manuscript should be more satisfying. 136 

 137 

 138 

 139 

 140 

References:  141 

Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend 142 

due to limited moisture supply. Nature, 2010, 467(7318): 951-954.  143 

Zhang K, Kimball J S, Nemani R R, et al. A continuous satellite derived global record of land 144 

surface evapotranspiration from 1983 to 2006. Water Resources Research, 2010, 46(9).  145 

Leuning R, Zhang Y Q, Rajaud A, et al. A simple surface conductance model to estimate 146 

regional evaporation using MODIS leaf area index and the PenmanâA˘ RMon- ˇ teith equation[J]. 147 

Water Resources Research, 2008, 44(10).  148 

Zhang Y, Peña-Arancibia J L, McVicar T R, et al. Multi-decadal trends in global terrestrial 149 

evapotranspiration and its components. Scientific reports, 2016, 6.  150 

 151 

Is there a diagram or figure to illustrate the flow chart/conceptual configuration of the used 152 

HIMS hydrological model? By only reading text, reviewer finds it not intuitive on the model 153 

configuration.  154 

Answer: Thank you for your suggestion. We have added the conceptual configuration of the 155 

used HIMS hydrological model. Please see line 227. In addition, the manuscript still has minor and 156 

few editing issues that should be fixed before publication.  157 

 158 

In details:  159 

1. Line 208-209: should be “There are two stopping criteria used in the SCE-UA algorithm ”  160 

Answer: Fixed  161 



 162 

2. Line 212-213: suggest to add population size.  163 

Answer: Added  164 

 165 

3. Line 231: there is an extra period.  166 

Answer: Deleted  167 

 168 

4. Line 236: should be “the runoff coefficients are 0.29 for both PERSIANN-CDR and Gauge. . .” 169 

Answer: Fixed  170 

 171 

5. Line 251: missing comma after “Aug.”  172 

Answer: added  173 

 174 

6. Line 254: missing “the” before “average annual amounts”  175 

Answer: added  176 

 177 

7. Line 281: should be “two data sources”. Basically, two datasets are same type as 178 

precipitation measures.  179 

Answer: Fixed  180 

 181 

8. Line 301: replace “two basin” with specific names since it is the first sentence of a paragraph.  182 

Answer: Fixed  183 

 184 

9. Line 360: there is an extra period Answer: Deleted 10. Line 360: should be “the bias 185 

between simulated and observed streamflow”. Answer: Fixed 11. Line 411: do authors mean 186 

“partially”?  187 

Answer: Yes and Fixed  188 

 189 

12. Line 413: replace “the calibration period” by “calibration”  190 

Answer: Fixed  191 

 192 

13. Line 416: replace “flood and drought conditions” by “extreme conditions, such as flood 193 

and drought”  194 

Answer: Fixed  195 

 196 

14. Line 418: add parentheses to Figure subplot citations  197 

Answer: Added  198 

 199 

15. Line 422: Last sentence maybe change to “Therefore, using such a product with long-term 200 

records as forcings to hydrological models, the confidence of simulated streamflow over the TB 201 

area will correspondingly increase.”  202 

Answer: Changed. 203 

 204 

 205 



Referee 3 comments and reply: 206 

 207 

In this manuscript, authors presented an application of a precipitation estimate product based on 208 

satellite (PERSIANN-CDR) on gauge-sparse area, in which the accuracy of PERSIANN-CDR on two 209 

river basins on the Tibet Plataea of China are evaluated in terms of the simulated streamflow using 210 

a conceptual hydrological model. In the two river basins, gauge or radar information is limited in 211 

mountainous area due to their distribution, coverage, and beam angle. Therefore, satellite 212 

information will be good alternative than other sources of information. Before practical uses, 213 

verification is needed so that decision makers and local agency can have certain level of confidence 214 

which source of information is the most reliable. The contributions of this paper are two in 215 

reviewer’s opinion: (1) it evaluates a recent develop long-term global precipitation dataset against 216 

gauge, and GLADAS (in the revised version attached to AC2), and demonstrates the accuracy of 217 

streamflow simulation for the three sources of information. (2) the provides a way of utilizing 218 

streamflow to verify precipitation products, since streamflow is more reliable in mountainous area. 219 

The approach author took in this manuscript can be applied in other gauge-limited area for 220 

verification study. As mentioned by anonymous referee 1 and short comment reviewer (referee 2), 221 

the comparison with other source of precipitation data will be beneficial to improve the manuscript. 222 

After all, the sore comparison between satellite precipitation with limited gauge network via 223 

streamflow cannot fully support the conclusion of satellite information is better than limited gauge 224 

network for the two river basins on TP. Adding other source of information, such as GLADAS, could 225 

be considered as a more comprehensive study. In addition, the frozen soil issue is common in 226 

conceptual hydrological model, regardless whether the model is distributed, semi-distributed, 227 

lump. However, this does not undermine the approach that authors are trying to propose and the 228 

message authors want to delivery. If using land-surface models instead of hydrological models, that 229 

will be another study that is out of the scope of this study. Last, reviewer think the length of data 230 

is very crucial in simulating the streamflow. As authors did in discussion, different lengths of 231 

calibration data are used to study the sensitivity of data. It is suggested that authors also mention 232 

this in the context that besides the accuracy of data, the length is also important. In general, I noted 233 

that this manuscript has already been revised from its original submission through the a several 234 

open discussion processes. The comments given by anonymous reviewer 1 and short comment 235 

reviewer in previous open discussion phases are suggestive and important. I agree with anonymous 236 

referee 1 and short comment (SC) reviewer that the original submission suffered from not 237 

addressing those key points, including the evaporation, comparison with GLADAS precipitation, 238 

frozen soil issue, and some minor language issues. By comparing the original submission and the 239 

revised version attached to authors’ reply to SC1, I think the authors did a good job in addressing 240 

previous comments: the comparison of GLADAS is added, the evaporation and frozen soil issues 241 

are discussed since they are key element in TP area, and the presentation (grammar) has been 242 

improved. Therefore, I think the revised version is suitable for prompt publication.  243 

Answerer: Thanks for your review comments and inputs. The editing issues you summarized are all 244 

fixed. Please refer to revised manuscript and the track changes version in this reply. Thank you. 245 

 246 

The following are only minor editing issues that can be fixed in proof-reading or revise phase. (Line 247 

numbers refer to the revised version attached to AC2).  248 

 249 



Line 42: “potential to be a reliable” Line 97: missing “the” before United State 250 

Answerer: Fixed 251 

 252 

Line 99: “show” Line 108: add “the” before “limited” and “precipitation”  253 

Answerer: Fixed 254 

 255 

Line: 110: “capabilities”  256 

Answerer: Fixed 257 

 258 

Line: 120: “relatively”  259 

Answerer: Fixed 260 

 261 

Line 122: CMORPH “start”  262 

Answerer: Fixed 263 

 264 

Line 253: “Hydrometeorology”  265 

Answerer: Fixed 266 

 267 

Line 350: replace “both” with “all”  268 

Answerer: Fixed 269 

 270 

Line 423: insert “a” before “previous study”  271 

Answerer: Fixed 272 

 273 

Line 480: “using only”  274 

Answerer: Fixed 275 

 276 

Line 510: replace “both” with “all”  277 

Answerer: Fixed 278 

 279 

Line 512: “have”  280 

Answerer: Fixed 281 

 282 

Line 515: could “not be” fully  283 

Answerer: Fixed 284 

 285 

Line 527: product “has”  286 

Answerer: Fixed 287 

 288 

Line 528: insert “an” before alternative  289 

Answerer: Fixed 290 

 291 

Line 528: replace “for” with “in” 292 

Answerer: Fixed 293 
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Abstract: 319 

On the Tibetan Plateau, the limited ground-based rainfall information owing to a 320 

harsh environment has brought great challenges to hydrological studies. Satellite-based 321 

rainfall products, which allow a better coverage than both radar network and rain 322 

gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating 323 

the hydrological processes and climate change. In this study, a newly developed daily 324 

satellite-based precipitation product, termed Precipitation Estimation from Remotely 325 

Sensed Information Using Artificial Neural Networks–Climate Data Record 326 

(PERSIANN-CDR), is used as input of a hydrologic model to simulate streamflow in 327 

the upper Yellow and Yangtze River Basin on the Tibetan Plateau. The results show that 328 

the simulated streamflows using PERSIANN-CDR precipitation and the Global Land 329 

Data Assimilation System (GLDAS) precipitation are closer to observation than that 330 

using limited gauge-based precipitation interpolation in the upper Yangtze River Basin. 331 

The simulated streamflow using gauge-based precipitation are higher than the 332 

streamflow observation during the wet season. In the upper Yellow River Basin, gauge-333 

based precipitation, GLDAS precipitation and PERSIANN-CDR precipitation have 334 

similar good performance in simulating streamflow. The evaluation of streamflow 335 

simulation capability in this study partly indicates that PERSIANN-CDR rainfall 336 

product has good potential to be a reliable dataset and an alternative information source 337 

of limited gauge network for conducting long term hydrological and climate studies on 338 



the Tibetan Plateau. 339 

Key Words: PERSIANN-CDR daily rainfall product; Streamflow simulation; Tibetan 340 

Plateau 341 

1. Introduction 342 

Precipitation is one of the essential meteorological inputs of hydrologic model and 343 

the key driving force for hydrologic cycle. Errors in precipitation estimation can bring 344 

significant uncertainties in streamflow simulation and prediction (Sorooshian et al., 345 

2011). Three methods are generally used to measure precipitation: traditional gauge 346 

observations, meteorological radar observations and satellite observations (Ashouri et 347 

al., 2015). In many remote regions and mountainous area, rain gauges and 348 

meteorological radar networks are either sparse or non-existent. Thus, satellite-based 349 

precipitation is of great importance in such regions. For instance, there is a great 350 

potential of using satellite-based precipitation estimate on the Tibetan Plateau known 351 

as the “roof of the world” with an average elevation of over 4000m (Yao et al., 2012). 352 

Owing to a harsh environment, the existing meteorological stations managed by the 353 

Chinese Meteorological Administration only form an extremely sparse network, which 354 

create great challenges for water resources management and operation. For example, 355 

on average, there is only 0.3 and 1 station per grid of 1˚×1˚ in the upper Yangtze and 356 

upper Yellow river basins, respectively (Xue et al., 2013a). Moreover, the spatial 357 

distribution of the meteorological stations is highly uneven and most stations are 358 

located around the river channel with relatively low elevation [Figure 1]. Therefore, 359 

streamflow simulation using the limited gauge-based rainfall information might not be 360 



reliable due to the input uncertainties with such a poor spatial resolution. Satellite-based 361 

rainfall products have the advantage of good spatial coverage, which could allow an 362 

accurate streamflow simulation on the Tibetan Plateau. Besides precipitation estimation 363 

from satellites, the Global Land Data Assimilation System (GLDAS), as a global-scale 364 

terrestrial modeling system, is also capable of providing a good spatial coverage to 365 

solve the issue of insufficient observation data over the Tibetan Plateau area (Wang et 366 

al., 2011). 367 

According to Kidd and Levizzani (2011), during the last decade satellite-based 368 

precipitation estimates have reached a good level of maturity. Currently, there are many 369 

satellite rainfall products are available and have been extensively used globally (e.g., 370 

Sorooshian et al., 2000; Huffman et al., 2001; Adler et al., 2003; Xie et al., 2003; Joyce 371 

et al., 2004; Turk and Miller, 2005; Miao et al, 2010 and 2012). Recently, a new 372 

satellite-based precipitation product is released by National Climatic Data Center 373 

(NCDC), which is termed Precipitation Estimation from Remotely Sensed Information 374 

Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) (Ashouri 375 

et al., 2015). PERSIANN-CDR is a multi-satellite, high-resolution and post-time 376 

rainfall product that provides daily precipitation estimates at 0.25˚ spatial resolution 377 

from 1 January 1983 to the present. According to Ashouri et al., (2015), PERSIANN-378 

CDR rainfall product uses the archive of Gridded Satellite (GridSat-B1) Infrared 379 

Radiation (IR) data (Knapp, 2008) as the input to the Artificial Neural Network 380 

algorithm. The retrieval algorithm uses IR satellite data from global geosynchronous 381 

satellites as the primary source of precipitation information. To meet the calibration 382 



requirement of PERSIANN, the model is pre-trained using the National Centers for 383 

Environmental Prediction (NCEP) stage IV hourly precipitation data. Then, the 384 

parameters of the model are kept fixed and the model is run for the full historical record 385 

of GridSat-B1 IR data. To reduce the biases in the estimated precipitation, while 386 

preserving the temporal and spatial patterns in high resolution, the resulting estimates 387 

are then adjusted using the Global Precipitation Climatology Project (GPCP) monthly 388 

2.5˚ precipitation products. The performance of PERSIANN-CDR rainfall product has 389 

been tested and reported in different regions (e.g., Ashouri et al. 2015; Miao et al., 2015; 390 

Zhu et al., 2016). Ashouri et al. (2015) found that PERSIANN-CDR precipitation is 391 

performing reasonably well when compared with radar and ground-based observations 392 

in the 1986 Sydney flood event of Australia and the 2005 Hurricane Katrina of the 393 

United States. Zhu et al. (2016) compared precipitation estimation from PERSIANN-394 

CDR, TRMM-3B42-V7 and CMORPH over the Xiang and Qu River Basins in China 395 

and demonstrated the accuracy of PERSIANN-CDR. Miao et al. (2015) show that 396 

PERSIANN-CDR rainfall product is able to capture the spatial and temporal 397 

characteristics of extreme precipitation events at daily scale in the eastern China 398 

monsoon region when compared with ground-based precipitation dataset. Miao et al. 399 

(2015) also pointed out that the correlation between the PERSIANN-CDR precipitation 400 

and ground-based precipitation is not strong on the Tibetan Plateau and speculated that 401 

the sparse ground-based gauge stations may result in uncertainties of the use of ground-402 

based precipitation estimates as reference on the Tibetan Plateau. Building on Miao et 403 

al. (2015), in this study, PERSIANN-CDR is further applied to a conceptual 404 



hydrological model to simulate streamflow of two river basins on the Tibetan Plateau, 405 

and is compared with the limited gauge information, and the precipitation from GLDAS 406 

with regard to their streamflow simulation capabilities. 407 

Many studies have been carried out to evaluate the suitability of a number of 408 

satellite-based precipitation estimate products in forcing hydrologic models and 409 

simulating streamflow for various regions around the world (e.g., Yilmaz et al., 2005; 410 

Artan et al., 2007; Su et al., 2011; Bitew et al., 2012; Yong et al., 2012). However, there 411 

are few evaluation works focusing on hydrological modeling driven by satellite rainfall 412 

products on the Tibetan Plateau. Among limited number of studies, Tong et al. (2014) 413 

evaluated the streamflow simulation capability of four satellite products (TRMM-414 

3B42-V7, TRMM-3B42RT-V7, PERSIANN and CMORPH) using the Variable 415 

Infiltration Capacity (VIC) hydrologic model in two sub-basins over the Tibetan 416 

Plateau and concluded that the TRMM-3B42-V7 and CMORPH datasets have 417 

relatively better performance than others. One of the limitations is that the data length 418 

of many satellite precipitation products, such as TRMM-3B42RT-V7 and CMORPH 419 

start from 2000 to the present, which is rather short. In this study, there is no such 420 

limitation because PERSIANN-CDR daily rainfall product includes more than 33 years 421 

of data and the length of data grows every year. In Tong et al, (2014), the rain-gauge is 422 

set to be reference to compare different satellite-based rainfall products. However, 423 

given the facts that (1) density of rain-gauges on Tibetan Plateau is rather low as 424 

compared to other regions in China, (2) distribution of gauges are uneven according to 425 

Miao et al, (2015), and (3) rain-gauges are located in low elevation river channels 426 



(Figure 1), authors have the similar concern as Miao et al. (2015) that the use of sparse 427 

rain-gauge as reference to compare satellite products is arguable. Therefore, in this 428 

study, precipitation from limited gauge-network, GLDAS precipitation and 429 

PERSIANN-CDR precipitation are used as the inputs of a hydrologic model for 430 

streamflow simulation on two major river basins, the upper Yangtze River Basin and 431 

the upper Yellow River Basin, on the Tibetan Plateau. Then, the simulation results are 432 

compared with observed streamflow, which is believed to be a more reliable reference 433 

than the limited rainfall observation to judge the qualities of satellite rainfall products 434 

on the Tibetan Plateau. Potential sources of uncertainties are also discussed with regard 435 

to the parameterization of hydrological model and the length of data used for calibration. 436 

 437 

2. Study region, data and hydrological modeling 438 

2.1 Study region and data 439 

Two river basins on the northern Tibetan Plateau, namely, the upper Yangtze River 440 

(UYZR) and upper Yellow River (UYLR) basins are selected, which have a long daily 441 

streamflow record from 1983 to 2012. As shown with red squares in Figure 1, two 442 

hydrological stations, Tangnaihai and Zhimenda, are the outlet stations of the UYZR 443 

and UYLR, which have total drainage areas of 121,972 and 137,704 km2, respectively. 444 

Elevation in the region varies from 3450 to 6621m. According to Yao et al. (2012), the 445 

climate system of the two regions has distinct summer Indian monsoon and East Asian 446 

monsoon characteristics during summer. Figure 1 shows the distribution of 447 

meteorological and hydrological stations in the two basins. The green triangles show 448 



the location of rain-gauges, which are rather unevenly distributed and sparse as 449 

compared to the gauge distribution of China available from Miao et al. (2015).  450 

  451 

Figure 1. The selected river basins (the upper Yellow River and Yangtze River Basin) 452 

on the Tibetan Plateau and location of rainfall stations and river outlets. 453 

The observed daily streamflow data from 1983 to 2012 at the outlets of the two 454 

basins is provided by the Ministry of Water Resources of China. The runoff is calculated 455 

by dividing streamflow by corresponding basin area. The daily gauge meteorological 456 

data in the two basins from 1983 to 2012 is obtained from the China Meteorological 457 

Administration (http://cdc.cma.gov.cn). There are 4 and 11 meteorological stations in 458 

the UYZR and UYLR respectively, which means that on average there is only 0.3 and 459 

1 station per grid of 1˚×1˚ in the two basins, respectively. The precipitation data in 460 

GLDAS comes from three different sources: the Climate Prediction Center Merged 461 

Analysis of Precipitation, Global Data Assimilation System, and the European Centre 462 

javascript:void(0);


for Medium-Range Weather Forecasts (Rodell et al., 2004). The precipitation data used 463 

in GLDAS is a combination of reanalysis and observations, which is believed to have 464 

the advantages of different data sources (Gottschalck et al., 2005). In this study, the 1.0-465 

degree-resolution GLDAS precipitation dataset is re-sampled into 0.25˚×0.25˚ grids 466 

and used as the input of streamflow simulations (http://ldas.gsfc.nasa.gov/gldas/). The 467 

PERSIANN-CDR rainfall dataset is available at the NOAA NCDC website 468 

(ftp://data.ncdc.noaa.gov/cdr/persiann/files/), as well as the Center for 469 

Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine. 470 

In order to compare PERSIANN-CDR with gauge observation, the gauge precipitation 471 

is interpolated into 0.25˚×0.25˚ grids with the inverse distance weighting interpolation 472 

method, which has been demonstrated as being efficient in precipitation interpolation 473 

applications (e.g., Nalder and Wein, 1998; Garcia et al., 2008; Ly et al., 2011). The daily 474 

gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR precipitation 475 

for basin average are compared by the cumulative distribution functions (CDFs) of 476 

daily precipitation value (e.g., Sheffield et al., 2014; Zhang and Tang, 2015), wherein 477 

the two-parameter Gamma distribution function (Thom, 1958) is used to fit the data. 478 

2.2 Hydrological modeling 479 

The hydrologic model used in this study is the Hydro-Informatic Modeling System 480 

(HIMS) rainfall-runoff model (Liu et al., 2006, 2008, 2010a, 2010b), which is one of 481 

the operational hydrological models by the Tibet Government in China. The HIMS 482 

model is a grid-based hydrologic model, which is able to simulate the dominant 483 

hydrological processes such as actual evapotranspiration, infiltration, runoff, 484 

http://ldas.gsfc.nasa.gov/gldas/


groundwater recharge and channel routing. In HIMS model, a catchment is divided into 485 

grids, and grids are linked throughout the stream network based on topological 486 

relationships of channel network and properties of soil, vegetation and land use. In each 487 

grid, actual evaporation is calculated by a formulation between soil water content and 488 

potential evapotranspiration. Potential evapotranspiration ET0 (Hargreaves and Samani, 489 

1985) and actual evaporation ETa are described as follows: 490 

(1) 
491 

))1(1()()( 0

Ct
a

SMSC

SMS
tETtET 

      (2)
 492 

where RA is extraterrestrial radiation (MJ m-2 d-1); T, Tmax and Tmin are daily average, 493 

maximum and minimum temperatures (°C), respectively; L is latent heat of 494 

vaporization (MJ kg-1); SMS and SMSC are soil moisture storage and the maximum soil 495 

storage capacity (mm), respectively; and C is the evapotranspiration coefficient to be 496 

calibrated. 497 

Infiltration process is modeled using an empirical relationship, which has been 498 

confirmed through analysis of data measured in a number of experimental watersheds 499 

and various physical geographic factors in China (Liu et al., 2006): 500 

r

t tf R P                         (3) 501 

where ft is infiltration (mm) and Pt is precipitation (mm). R and r are parameters. 502 

Surface runoff RSt (mm) is calculated by: 503 

r

ttttt PRPfPRS        (4) 
504 

According to the saturation excess mechanism and spatial variability of watershed 505 

characteristics, interflow and groundwater recharge are estimated as linear functions of 506 

50.0
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soil wetness (soil moisture amount divided by soil moisture capacity). Baseflow is 507 

simulated based on the linear reservoir assumption, in which the relationship between 508 

groundwater storage and outflow is linear. Interflow RI (mm), groundwater recharge 509 

REC (mm), baseflow RG (mm), and total runoff TR (mm) are determined by: 510 

( / )t a t tRI L SMS SMSC f        (5) 511 

( / ) ( )t C t t tREC R SMS SMSC f RI      (6) 512 

( )t b t tRG K GW REC         (7) 513 

t t t tTR RS RI RG         (8) 514 

where La, Rc and Kb are coefficients for interflow, groundwater recharge and baseflow, 515 

respectively; SMSC is the maximum value of soil moisture storage capacity(mm); SMS 516 

is the actual soil moisture storage (mm); and GW is groundwater storage(mm). La, Rc, 517 

Kb and SMSC are the parameters in need of calibration. The degree-day snowmelt 518 

algorithm (Hock, 2003) assuming an empirical relationship between air temperature 519 

and snowmelt rate is used to simulate snowmelt runoff. The air temperature within each 520 

grid is adjusted by a commonly used temperature lapse rate (0.65°C/100m). The degree-521 

day factor of snowmelt is set to 4.1mm°C-1 day-1 in the two basins based on the 522 

investigation of Zhang et al. (2006). Surface runoff and baseflow for each grid are 523 

routed to the basin outlet through a channel network. The Muskingum method 524 

(Franchini and Lamberti, 1994) is used for flow channel routing. The detail descriptions 525 

and the conceptual diagram showing the configuration of HIMS model are available in 526 

Liu et al. (2008) and Jiang et al. (2015). 527 

The HIMS model is set up at 0.25°×0.25° spatial resolution grids in the two river 528 



basins. There are nine parameters requiring calibration in the HIMS model (Table 1). 529 

The Shuffle Complex Evolution method (SCE-UA) is used for calibrating the model 530 

parameters (Duan et al., 1992). The optimization objective is to maximize the Nash-531 

Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between the simulated and 532 

measured daily streamflow. There are two stopping criteria for calibrating the 533 

parameters. The first one is the evolution of all simplexes have converged to a limited 534 

parameter space, which is the default convergence criterion of SCE-UA. Another 535 

stopping criterion is the maximum number of function evaluation set by users is met. 536 

In our study, the settings for SCE-UA are: maximum number of function evaluation 537 

equals to 5×108; numbers of complexes equals to 2, which gives a total population of 538 

38; and the percentage change allowed to define convergence is set to 1× 10-6. The 539 

calibration period is from 1983 to 1997 and the verification period is from 1998 to 2012. 540 

The performance of the streamflow simulation is evaluated by comparing simulated 541 

and observed streamflow through two statistics: NSE and relative bias (Rb) between 542 

simulated and observed streamflow: 543 
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 545 

where Qsim and Qobs are the simulated and observed streamflow, respectively; obsQ is 546 

the mean of the observed streamflow; and N is the total number of days in the calibration 547 



period. 548 

Table 1 Description of HIMS model parameters and allowable ranges. 549 

Parameter Description Allowable range 

SMSC The maximum soil storage capacity (mm) 50-1000 

R The infiltration coefficient 0.1-2 

r The infiltration coefficient 0.1-1 

La The interflow coefficient 0.1-2 

RC The groundwater recharge coefficient 0.01-2 

C The evapotranspiration coefficient 0.001-10 

Kb The baseflow coefficient 0.001-1 

C1 The Muskingum coefficient 0.001-1 

C2 The Muskingum coefficient 0.001-1 

3. Results 550 

3.1 Hydrometeorological characteristics of the two basins 551 

Figure 2 and Table 2 show the average monthly amounts of precipitation and 552 

runoff in the UYZR and UYLR from 1983 to 2012. These two river basins have distinct 553 

dry and wet seasons, which are from Sep. to Feb., and Mar. to Oct., respectively. 554 

According to Table 2, precipitation between May and October (wet season) accounts 555 

for 92.5% and 90.1% of the annual total precipitation for the UYZR and UYLR, 556 

respectively. Similar to the temporal distribution of precipitation, runoff during May to 557 

October accounts for 87.6% and 78.4% of annual runoff in the UYZR and UYLR, 558 

respectively. Given the seasonal concurrence of precipitation and runoff, thus, 559 

precipitation in wet season plays a dominant role in annual runoff generation in these 560 

two river basins. The runoff coefficients are 0.22, 0.27 and 0.26 in the UYZR based on 561 

gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR precipitation, 562 

respectively. In the UYLR, the runoff coefficients are 0.29, 0.31 and 0.29 based on the 563 
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three precipitation datasets, respectively. 564 
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Figure 2. The monthly average runoff observed at the river outlet of the upper Yangtze 566 

River and Yellow River Basin, and the precipitation data retrieved from ground-based 567 

observation, GLDAS and PERSIANN-CDR product. 568 

3.2 Comparison between gauge-based precipitation, GLDAS precipitation 569 

and PERSIANN-CDR precipitation 570 

Figure 3 shows the spatial distribution of average annual values of 1.0-degree-571 

resolution GLDAS precipitation and 0.25-degree-resolution PERSIANN-CDR 572 

precipitation. The spatial patterns of the two dataset are generally consistent with each 573 

other. Figure 4 shows the comparison of CDFs for basin-averaged daily gauge-based 574 

precipitation, GLDAS precipitation and PERSIANN-CDR precipitation in the UYZR 575 

and UYLR from 1983 to 2012. At a given probability, GLDAS precipitation generally 576 

has the smallest values, followed by PERSIANN-CDR precipitation and gauge-based 577 

precipitation in the UYZR. In the UYLR, the CDFs of PERSIANN-CDR precipitation, 578 

GLDAS precipitation and gauge-based precipitation show overall better agreement 579 



than that in the UYZR. Table 2 shows the average amounts of gauge-based precipitation, 580 

GLDAS precipitation and PERSIANN-CDR precipitation. In the UYZR, the average 581 

annual precipitation is 436.4 mm from gauge-based data, 365.1 mm from GLDAS 582 

dataset and 374.3 mm from PERSIANN-CDR product. Gauge-based annual 583 

precipitation is 16.6% larger than PERSIANN-CDR annual precipitation. In the UYLR, 584 

average annual amounts of gauge-based precipitation, GLDAS precipitation and 585 

PERSIANN-CDR precipitation are similar, which are 550.2, 547.9 and 556.6 mm, 586 

respectively (Table 2).  587 

 588 

Figure 3  The spatial distribution of average annual values of 1.0-degree-resolution 589 

GLDAS precipitation (a) and 0.25-degree-resolution PERSIANN-CDR precipitation 590 

(b). 591 
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Figure 4  The calculated CDF of daily gauge-based precipitation, GLDAS 593 

precipitation and PERSIANN-CDR precipitation in the upper Yangtze River Basin and 594 

upper Yellow River Basin. 595 

Table 2 Average monthly precipitation and runoff in the upper Yangtze and Yellow 596 

River basins 597 

 Upper Yangtze River   Upper Yellow River 

Period 
Rain_ Rain_ Rain_ Runoff_  Rain_ Rain_ Rain_ Runoff_ 

Gauge GLDAS CDR OBS Gauge GLDAS CDR OBS 

Jan. 3.3 4.0 1.4 1.3  4.4 5.3 3.2 3.7 

Feb. 3.4 4.8 2.5 1.2  6.5 7.5 5.2 3.7 

Mar. 5.0 8.1 7.5 1.5  12.9 16.2 13.1 4.8 

Apr. 10.2 16.2 14.6 3.0  23.7 28.0 25.0 7.7 

May 37.9 34.6 38.2 5.6  62.9 62.3 65.3 11.9 

Jun. 90.4 66.3 72.0 12.9  107.6 96.2 104.6 20.4 

Jul. 105.8 87.6 87.8 21.6  113.5 110.3 111.8 29.6 

Aug. 88.6 69.0 74.5 20.6  92.0 93.3 94.0 23.3 

Sep. 66.9 49.8 53.2 16.0  83.4 83.7 84.4 22.2 

Oct. 20.2 18.0 20.5 9.1  35.3 36.0 41.4 19.4 

Nov. 2.5 3.9 1.7 3.5  5.0 5.8 7.3 10.0 

Dec. 2.3 2.0 0.5 1.6  3.0 3.3 1.5 5.0 

May to Oct. 409.7 325.3 346.1 85.8  494.6 481.8 501.4 126.8 

Annual 436.4 364.3 374.3 98.0  550.2 547.9 556.6 161.8 

Ratio 93.9 89.3 92.5 87.6  89.9 87.9 90.1 78.4 

Note: Rain_Gauge, Rain_GLDAS and Rain_CDR indicate gauge-based precipitation 598 

GLDAS precipitation and PERSIANN-CDR precipitation (mm), respectively. 599 



Runoff_OBS indicates observed runoff (mm). Ratio means the percentage of 600 

precipitation and streamflow during May to November to annual values. 601 

3.3 Streamflow Simulation in the two basins 602 

Due to the previous mentioned concern that sparse gauge-network and its 603 

interpolation cannot perfectly describe the spatial and temporal rainfall characteristics 604 

at river basin scale, the alternative is to evaluate streamflow simulated instead of 605 

treating sparse gauge-network as reference. In this section, the streamflow simulated 606 

by gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR 607 

precipitation are derived from HIMS, and compared with observed streamflow at the 608 

outlet in the UYZR and UYLR. The HIMS model is separately calibrated by 609 

maximizing the NSE between observed streamflow and simulated streamflow driven 610 

by gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR 611 

precipitation from 1983 to 1997. Table 3 shows the calibrated parameter values of the 612 

HIMS model for the two basins. Figure 5 shows daily observed streamflow and 613 

simulated streamflow driven by gauge-based precipitation, GLDAS precipitation and 614 

PERSIANN-CDR precipitation for the two basins from 1983 to 2012. In the UYZR 615 

(Figure 5 a, b and c), the NSE values are 0.63 0.78 and 0.77 in the calibration period 616 

driven by gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR 617 

precipitation respectively, while they are 0.60, 0.71 and 0.73 in the verification period, 618 

respectively. In both calibration and verification period, the NSE values from GLDAS 619 

precipitation and PERSIANN-CDR precipitation are greater than that from gauge-620 

based precipitation, which indicates that using GLDAS precipitation and PERSIANN-621 

CDR precipitation as input to HIMS model is able to generate more accurate streamflow 622 



than using gauge-based precipitation in the UYZR. In the UYLR (Figure 5 d, e and f), 623 

the NSE values between daily observed streamflow and simulated streamflow are 0.82, 624 

0.78 and 0.80 in the calibration period driven by gauge-based precipitation, GLDAS 625 

precipitation and PERSIANN-CDR precipitation, respectively. In the verification 626 

period, the NSE values are 0.81, 0.77 and 0.78 for the three types of data, respectively. 627 

The high NSE value in both calibration and verification periods suggest that gauge-628 

based precipitation, GLDAS precipitation and PERSIANN-CDR precipitation have 629 

similar performances as the drivers of streamflow simulation in the UYLR. 630 
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631 

Figure 5. The comparison between the simulated daily streamflow (red) with ground-632 

based, GLDAS and PERSIANN-CDR precipitation and the observed data (black) at the 633 

outlets of the upper Yangtze River Basin (a, b and c) and upper Yellow River Basin (d, 634 

e and f). 635 

Table 3 Calibrated parameter values in the HIMS model for the upper Yangtze and 636 

Yellow River basins. 637 



Basin input SMSC R r La Rc C Kb C1 C2 

Yangtze 

Gauge_based 302.5 1.47 0.78 0.74 0.05 0.67 0.15 0.18 0.81 

GLDAS 339.2 1.72 0.87 0.82 0.07 0.58 0.18 0.17 0.81 

PERSIANN-CDR 343.8 1.71 0.89 0.87 0.07 0.56 0.18 0.17 0.82 

Yellow 

Gauge_based 334.8 2.08 0.77 1.00 0.03 0.44 0.14 0.14 0.86 

GLDAS 332.5 2.10 0.76 1.02 0.03 0.39 0.14 0.15 0.85 

PERSIANN-CDR 342.1 2.01 0.73 0.98 0.05 0.45 0.14 0.12 0.88 

 638 

Figure 6 and Table 4 compare the simulated and observed average monthly 639 

streamflow for the two basins. In the UYZR, the relative bias between observed 640 

streamflow and simulated streamflow driven by gauge-based precipitation is 10.3% in 641 

wet season, which suggests a considerable overestimate of streamflow. Comparably, 642 

the relative bias between observed streamflow and simulated streamflow driven by 643 

GLDAS precipitation and PERSIANN-CDR precipitation is -1.5% and 0.5% in wet 644 

season, respectively. As compared with the wet season streamflow simulation results 645 

with gauge-based precipitation, the simulated streamflows driven by GLDAS 646 

precipitation and PERSIANN-CDR precipitation are closer to the observed streamflow. 647 

In dry season, streamflow simulations driven by gauge-based precipitation, GLDAS 648 

precipitation and PERSIANN-CDR precipitation all underestimate streamflow with 649 

relative bias of -22.1%, -20.1% and -28.0% in the UYZR, respectively. In the UYLR, 650 

all the three precipitation products slightly overestimate the streamflow in wet season 651 

with relative bias of 2.6%, 1.8% and 2.9%, respectively. Similar to the results in the 652 

UYZR, streamflow simulations driven by gauge-based precipitation, GLDAS 653 

precipitation and PERSIANN-CDR precipitation have similar good performances in 654 

wet season in the UYLR. However, all the three precipitation products tend to produce 655 



smaller streamflow in dry season with relative bias of -33.1%, -26.9% and -27.6%, 656 

respectively. One of the reasons that gauge-based precipitation, GLDAS precipitation 657 

and PERSIANN-CDR precipitation generate smaller streamflow in dry season is the 658 

lack of complex method or proper algorithm in the HIMS model to handle frozen soil. 659 

In dry season, when the amounts of precipitation and streamflow are small, streamflow 660 

melted from frozen soil can account for a significant proportion of total streamflow. In 661 

other words, the frozen soil melt could significantly influence the streamflow 662 

simulation results. The relative high bias of observed streamflow and simulated 663 

streamflow from all the three precipitation products could be due to the lack of proper 664 

modeling component in the HIMS hydrologic model that quantifies the frozen soil 665 

melting effects in dry season. However, the bias between simulated and observed 666 

streamflow is much smaller in wet season, when precipitation and streamflow are 667 

relatively large and streamflow melted from frozen soil accounts for a limited 668 

proportion in total streamflow.  669 

Table 4. The performances of streamflow simulations driven by gauge-based 670 

precipitation, GLDAS precipitation and PERSIANN-CDR precipitation in the two 671 

basins 672 

  Upper Yangtze River Upper Yellow River 

Period Q_obs 
Qs_ 

gauge 

Qs_ 

GLDAS 

Qs_ 

CDR 

Rb_ 

gauge 

Rb_ 

GLDAS 

Rb _ 

CDR 
Q_obs 

Qs_ 

gauge 

Qs_ 

GLDAS 

Qs_ 

CDR 

Rb _ 

gauge 

Rb_ 

GLDAS 

Rb _ 

CDR 

Jan. 68.1  48.4  40.4  32.8  -28.9  -40.7  -51.8  168.9  65.7  71.4  68.0  -61.1  -57.7  -59.8  

Feb. 68.3  32.7  30.2  24.9  -52.1  -55.8  -63.5  168.3  61.6  67.6  60.5  -63.4  -59.8  -64.1  

Mar. 76.9  70.2  75.3  72.4  -8.7  -2.1  -5.8  219.7  110.5  145.1  138.0  -49.7  -34.0  -37.2  

Apr. 158.6  153.2  158.3  147.5  -3.4  -0.2  -7.0  352.0  299.0  311.5  302.5  -15.1  -11.5  -14.0  

May 289.2  253.5  262.1  273.4  -12.3  -9.4  -5.5  543.6  512.9  514.9  524.9  -5.7  -5.3  -3.4  

Jun. 683.9  750.5  679.1  698.4  9.7  -0.7  2.1  928.5  968.6  921.3  946.6  4.3  -0.8  1.9  

Jul. 1108.9  1306.9  1102.5  1111.4  17.9  -0.6  0.2  1350.1  1386.6  1420.2  1431.3  2.7  5.2  6.0  



Aug. 1059.7  1204.0  1042.8  1063.2  13.6  -1.6  0.3  1061.1  1141.4  1102.7  1088.5  7.6  3.9  2.6  

Sep. 850.7  977.4  897.2  918.9  14.9  5.5  8.0  1009.6  1059.7  1062.6  1075.7  5.0  5.2  6.5  

Oct. 469.4  428.1  407.2  420.1  -8.8  -13.3  -10.5  883.7  859.1  861.3  876.5  -2.8  -2.5  -0.8  

Nov. 187.6  169.0  182.3  161.1  -9.9  -2.8  -14.1  457.3  429.1  437.8  456.6  -6.2  -4.3  -0.2  

Dec. 84.5  28.2  27.5  24.5  -66.7  -67.5  -71.0  227.0  100.7  132.8  127.5  -55.7  -41.5  -43.9  

May-Oct. 743.4  819.6  731.9  746.9  10.3  -1.5  0.5  962.7  987.7  980.5  990.4  2.6  1.8  2.9  

Nov.-Apr. 107.2  83.6  85.6  77.2  -22.1  -20.1  -28.0  265.6  177.6  194.2  192.3  -33.1  -26.9  -27.6  

Annual 427.9  454.6  408.7  414.8  6.2  -4.5  -3.1  617.0  586.0  587.8  594.6  -5.0  -4.7  -3.6  

Note: Q_obs indicates observed runoff (m3/s). Qs_gauge, Qs_GLDAS and Qs_CDR 673 

indicate streamflow simulations (m3/s) driven by the gauge-based precipitation, 674 

GLDAS precipitation and PERSIANN-CDR precipitation, respectively. Rb_gauge, 675 

Rb_GLDAS and Rb_CDR indicate relative bias between observed streamflow and 676 

simulated streamflow driven by the gauge-based precipitation, GLDAS precipitation 677 

and PERSIANN-CDR precipitation, respectively. 678 

 679 

In summary, the streamflow simulated by GLDAS precipitation and PERSIANN-680 

CDR precipitation has a good agreement with the observed streamflow in the UYZR 681 

and UYLR. The good agreement between observed streamflow and PERSIANN-CDR 682 

simulated streamflow reveals a strong streamflow simulation capability of PERSIAN-683 

CDR product, which also gives community certain confidence in using PERSIANN-684 

CDR product to study hydrological cycle and climate change on the Tibetan Plateau.  685 
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Figure 6.The comparison between the observed streamflow (black) and the simulated 687 

streamflow using ground-based precipitation (red), GLDAS precipitation (green) and 688 

PERSIANN-CDR precipitation (blue) in the upper Yangtze River Basin and upper 689 

Yellow River Basin. 690 

 691 

4. Discussions 692 

4.1 Parameter uncertainties of hydrological modeling 693 

In this study, model parameters are separately calibrated in terms of highest NSE 694 

between observed streamflow and simulated streamflow driven by gauge-based 695 

precipitation, GLDAS precipitation and PERSIANN-CDR precipitation. Therefore, 696 

these parameter values are highly dependent on the precipitation inputs. When the 697 

precipitation input changes, the parameter values may change accordingly in order to 698 

match the streamflow. Table 3 shows the values of calibrated parameters separately 699 

driven by gauge-based precipitation, GLDAS precipitation and PERSIANN-CDR 700 

precipitation in the two basins. Parameter sensitivity study of the HIMS model indicates 701 



that the HIMS model is most sensitive to parameters of the maximum soil storage 702 

capacity (SMSC) and the infiltration coefficients (R and r) (Jiang et al., 2015). In the 703 

UYLR, the parameters calibrated by the inputs of gauge-based precipitation, GLDAS 704 

precipitation and PERSIANN-CDR precipitation generally have similar values. 705 

However, in the UYZR, SMSC, R and r values calibrated from gauge-based 706 

precipitation are 302.46, 1.47 and 0.78 respectively, while SMSC, R and r values 707 

calibrated from PERSIANN-CDR precipitation are 343.80, 1.71 and 0.89 respectively. 708 

By separately calibrating the HIMS parameters, the gauge-based precipitation, GLDAS 709 

precipitation and PERSIANN-CDR give different optimal parameter values. Thus, the 710 

streamflow simulation bias using gauge-based precipitation, GLDAS precipitation and 711 

PERSIANN-CDR are the joint results of parameter differences and model input bias. 712 

Correspondingly, soil moisture and evapotranspiration estimation could be different 713 

using various precipitation forcings and calibrated parameters. However, the main 714 

purpose of this study is evaluating the streamflow simulation capability of satellite-715 

based precipitation and gauge-based precipitation as inputs to a hydrologic model over 716 

the Tibetan Plateau. Therefore, in spite of the influence of cancellation between 717 

parameter differences and precipitation bias on streamflow simulation, it does not harm 718 

the conclusion that both PERSIANN-CDR and GLDAS precipitation is able to produce 719 

a reasonably good streamflow in the two river basins on the Tibetan Plateau. 720 

In a previous study, Tong et al. (2014) evaluated the streamflow simulation 721 

capabilities of four satellite-based precipitation products (TRMM-3B42-V7, TRMM-722 

3B42RT-V7, PERSIANN and CMORPH) using the VIC hydrologic model in the 723 



UYZR and UYLR from 2006 to 2012. Different from the PERSIANN product that Tong 724 

et al. (2014) used, PERSIANN-CDR is a different product that provides over 33 years 725 

of daily and high resolution precipitation with GPCP monthly information incorporated. 726 

In addition, the parameters in the VIC hydrologic model are calibrated by the input of 727 

interpolated gauge-based precipitation. The calibrated parameter values are then kept 728 

fixed when the VIC model are rerun by inputs of satellite-based precipitation datasets 729 

to evaluate the streamflow simulation capabilities of satellite-based precipitation 730 

datasets. Rerunning the hydrologic model with the fixed parameters calibrated by 731 

gauge-based precipitation partly indicates that Tong et al. (2014) assumed that the 732 

sparse gauge observations a more reliable dataset than satellite-based precipitation 733 

datasets. However, this is a questionable assumption. As we mentioned in the 734 

introduction, not only because the location of rain-gauges is conditioned (relatively low 735 

elevations), but also the sparse distribution of rainfall stations over the Tibetan Plateau 736 

could bring large errors and uncertainties in regional rainfall measurement. Similar 737 

arguments are also raised by Miao et al. (2015). In this study, we rather cautiously 738 

believe that gauge-based precipitation could not be reliable, especially in the UYZR 739 

where there is only one station per 34426 km2 (nearly 1˚×3˚ spatial resolution). 740 

Therefore, separately calibrating hydrologic model by the inputs of different 741 

precipitation datasets instead of using identical parameters will contribute to fairer 742 

comparisons when evaluating streamflow simulation capabilities of different 743 

precipitation datasets, though other hydrological variables such as soil moisture and 744 

evapotranspiration could be incorrectly estimated by different precipitation inputs and 745 



calibrated parameters. 746 

4.2 The influences of precipitation record length on streamflow simulation 747 

capability 748 

Besides of the uncertainties due to hydrological model calibration, another factor 749 

that influences the accuracy of streamflow simulation is the length of precipitation 750 

records used for calibration. As mentioned before, one of the advantages of 751 

PERSIANN-CDR product is the provision of more than 33 years of continuous 752 

sequences of precipitation data, which can allow more extensive streamflow simulation 753 

in the Tibetan Plateau. In this study, comparison experiments (Figure 7) were designed 754 

to test the influences of precipitation record length on the accuracy of streamflow 755 

simulation. In the designed experiments, we investigate the accuracy of streamflow 756 

simulation during 2008 to 2012 with two different calibration scenarios. In the first 757 

scenario, the calibration period is from 2003 to 2007 for both the UYZR (Figure 7a) 758 

and the UYLR (Figure 7b). In the second scenario (Figure 7c and 7d), 15 years of data 759 

from 1983 to 1997 is used for calibration, which is longer than that in the first scenario. 760 

As it is shown in Figure 7 (a and b), in the first scenario the NSE values between daily 761 

observed and simulated streamflow are 0.75 and 0.66 during the verification period 762 

(from 2008 to 2012) for the UYZR and UYLR, respectively. Comparatively, in the 763 

second scenario the NSE values during the verification period (from 2008 to 2012) are 764 

0.81 and 0.82 for the two basins, respectively. The NSE values in the second scenario 765 

are consistently higher than that in the first scenario in the two basins. For the UYLR 766 

in the second scenario (Figure 7d),the NSE value during the verification period is 767 



significantly greater than that in the first scenario. Figure 7(b) also shows that the HIMS 768 

hydrological model significantly underestimates the flow peaks during the summer of 769 

2010 and 2012 when calibrated by 5 years of data from 2003 to 2007. The disagreement 770 

between the observed and simulated flow peaks is partly because the magnitudes of 771 

flood events during the calibration period are all smaller than that during the verification 772 

period and the HIMS hydrological model cannot be well trained during the calibration 773 

period. Therefore, when using a short length precipitation data as input for a 774 

hydrological model, the accuracy of streamflow simulation could be limited, especially 775 

when precipitation data used for calibration cannot cover the flood and drought 776 

conditions of a basin. However, when the HIMS hydrological model is calibrated by 777 

the longer dataset from 1983 to 1997 as it is shown in Figures 7c and d, there is a greater 778 

potential that the characteristics of extreme events can be captured by the hydrological 779 

model than using only 5 years of data from 2003 to 2007. Given the availability of long-780 

term precipitation records (over 33 years) provided by PERSIANN-CDR product, the 781 

extreme events in the historical period could be well captured by a hydrological model. 782 

Therefore, using such a product with long-term records, the confidence of simulating 783 

streamflow over the Tibetan Plateau will correspondingly increase. 784 
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Figure 7  The simulated daily streamflow (red) forced by PERSIANN-CDR rainfall 786 

product in different scenarios and the observed daily streamflow (black) at the outlets 787 

of the upper Yangtze River Basin and upper Yellow River Basin. (a) and (b) is the 788 

scenario that the period 2003 to 2007 is used for calibration and 2008 to 2012 for 789 

verification. (c) and (d) is the scenario that the period 1983 to 1997 is used for 790 

calibration and 2008 to 2012 for verification. 791 

5. Summary 792 

As it is compared to radar-based precipitation measurement and gauge networks, 793 

the main advantage of satellite-based precipitation estimate is the broader coverage at 794 



global scale. This allows a comprehensive understanding of the driving force of 795 

hydrologic cycle, especially for the gauge sparse area. To verify the accuracy of 796 

satellite-based precipitation estimate products, the comparison with ground observation 797 

is necessary. However, in gauge sparse area, a direct comparison on precipitation 798 

temporal and spatial variation will be arguable due to the limited gauge information. 799 

This study provides an alternative way to evaluate satellite-based precipitation products 800 

by forcing both rainfall estimates from satellite and limited gauge network into 801 

hydrological model. Given the confidence in streamflow measurements, which are 802 

more reliable and well monitored than the limited ground-based rainfall measurements, 803 

the comparison of simulated streamflow enables an indirect way to evaluate satellite-804 

based precipitation products. 805 

In this study, PERSIANN-CDR precipitation, GLDAS precipitation and gauge-806 

based precipitation have good agreements in the UYLR, while the three datasets have 807 

different values in the UYZR. Streamflow simulation capabilities of PERSIANN-CDR 808 

precipitation, GLDAS precipitation and gauge-based precipitation are evaluated as the 809 

inputs of the HIMS hydrologic model in the two basins. All the three datasets have 810 

similar good performances in the UYLR, while PERSIANN-CDR precipitation and 811 

GLDAS precipitation have slightly better performance than gauge-based precipitation 812 

in the UYZR. Gauge-based precipitation tends to produce larger streamflow in wet 813 

season in the UYZR. This indicates that in the UYZR, a sparse gauge network could 814 

not be fully reliable to be used as the reference for streamflow simulation due to the 815 

fact that the locations of the limited gauge stations cannot be representative for 816 



measuring the precipitation patterns at the river basin scale. In addition, gauge-based 817 

precipitation, GLDAS precipitation and PERSIANN-CDR precipitation all generate 818 

smaller streamflow in dry season probably because of lack of frozen soil algorithm in 819 

HIMS model. This may bring certain uncertainties in the discharge comparisons by 820 

different precipitation inputs (Xue et al., 2013b). Further studies should be conducted 821 

to improve the frozen soil simulation of HIMS model. 822 

Lack of rainfall gauge stations has brought great challenge to hydrological and 823 

climate studies over the Tibetan Plateau (e.g., Yao et al., 2012; Zhang et al., 2013). 824 

Based on the demonstration in this study that PERSIANN-CDR is able to produce 825 

reasonably good streamflow in the UYZR and UYLR as compared to observed 826 

streamflow, we can speculate that PERSIANN-CDR rainfall product has the potential 827 

to be a useful dataset and an alternative for sparse gauge network in climate change and 828 

hydrological studies on the Tibetan Plateau considering the needs for long-term (more 829 

than 33 years) and high resolution records. 830 
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