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Abstract. The parameters are usually calibrated to achieve good performance of hydrological models, owing to the highly 10 

non-linear problem of hydrology process modelling. However, parameter calibration efficiency has a direct relation with 

parameter range. Furthermore, parameter range selection is affected by probability distribution of parameter values, parameter 

sensitivity and correlation. A newly proposed method is employed to determine the optimal combination of multi-parameter 

ranges for improving the calibration of hydrological models. At first, the probability distribution was specified for each 

parameter of the model based on Genetic Algorithms (GA) calibration. Then, several ranges were selected for each parameter 15 

according to the corresponding probability distribution and subsequently the optimal range was determined by comparing the 

model results calibrated with the different selected ranges. Next, parameter correlation and sensibility were evaluated by 

quantifying two indexes 푅 	 ,  and 푆  which can be used to coordinate with the negatively correlated parameters to specify 

the optimal combination of ranges of all parameters for calibrating models. It is shown from the investigation that the 

probability distribution of calibrated values of any particular parameter in a Xinanjiang model approaches a normal or 20 

exponential distribution. The multi-parameter optimal range selection method is superior to the single-parameter one for 

calibrating hydrological models with multiple parameters. The combination of optimal ranges of all parameters is not the 

optimum inasmuch as some parameters have negative effects on other parameters. The application of the proposed 

methodology gives rise to an increase of 0.01 in minimum Nash-Sutcliffe efficiency (ENS) compared with that of the pure GA 

method. The rising of minimum ENS with little change of the maximum may shrink the range of the possible solutions, which 25 

can effectively reduce uncertainty of the model performance. 
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1. Introduction 

Hydrological process modelling is an important tool for research on water resources management, flood control and disaster 

mitigation, water conservancy project planning and design, hydrological response to climate change and so on (Zanon et al., 

2010;Papathanasiou et al., 2015). The initial hydrological model was a black-box model in 1932 (Sherman, 1932) and 

conceptual & physically-based models are subsequently put forward in 1960s (Freeze and Harlan, 1969). The three kinds of 5 

hydrological models have been significantly improved in recent years with their structures becoming more mature. 

Theoretically, the physically-based model has definite physical mechanism of the water cycle and all parameters can be 

measured in-situ (Abbott et al., 1986;Huang et al., 2014). Conceptual models express hydrological processes in form of some 

abstract models which come from some physical phenomenon and experience. For example, the interflow and the base flow 

are simplified as the flow from linear reservoirs (Caviedes-Voullième et al., 2012;Lü et al., 2013). As a result, some parameters 10 

of conceptual models need calibrating. In general, conceptual models have better performance in modelling the streamflow at 

the catchment outlet than physically-based distributed models do, especially for catchments lacking sufficient data (Bao et al., 

2010;Cullmann et al., 2011). Thus, many conceptual models such as HBV model, TOPMODEL, Tank model and Xinanjiang 

model are of strong vitality (Abebe et al., 2010;Vincendon et al., 2010;Hao et al., 2015; Xie et al., 2015). Additionally, the 

performance of physically-based distributed models can be improved after calibration of some parameters (Chen et al. 2016). 15 

Therefore, all of the hydrological models should be calibrated before engineering applications. 

There are two kinds of calibration methods for hydrological models, the trial-error method and auto-calibration method. The 

trial-error method depends on plenty of trials for reducing the error of the objective. However, it is difficult to obtain an exact 

optimal solution due to limited enumeration (Boyle et al., 2000). The auto-calibration method is based on stochastic or 

mathematical calculations and thus more widely applied in the non-linear parameter optimization. Compared with the trial-20 

error method, it is more efficient and effective, avoiding the interference of anthropogenic factors (Madsen, 2000;Getirana, 

2010). The initial automatic optimization methods, such as the Rosenbrock Method (Rosenbrock, 1960) and the Simplex 

Method (Nelder and Mead, 1965), are classical and useful methods, but at the same time has a negative side of being bounded 

by initial value ranges of parameters. Therefore, it can only be regarded as local optimization algorithms (Gupta and Sorooshian, 

1985). Different from classical methods above, the Genetic Algorithm (GA) which is designed with random search strategy 25 

can avoid the problem of local search, thus is a global optimization algorithm in its essence (Wang, 1991, 1997;Sedki et al., 

2009;Chandwani et al., 2015). After that, many global optimization algorithms have been proposed inheriting the random 

search strategy. The Shuffled Complex Evolution (SCE-UA) method combines many advantages of Genetic Algorithm and 

Simplex Method, having a powerful capability of calibrating the rainfall-runoff model (Duan et al., 1994;Zhang and Shi, 2011). 

The Particle Swarm Optimization (PSO) based on random solution can directly obtain the identification parameters through 30 

the iterative search for an optimal solution (Kennedy, 1997;Zambrano-Bigiarini and Rojas, 2013). Although the auto-

calibration method has been intensively employed to calibrate parameters in the field of hydrology, the most advanced 
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algorithm inevitably falls into local solution because of the strong non-linear problem of a hydrological model and parameter 

correlation (Chu et al., 2010;Jiang et al., 2010;Jiang et al., 2015).  

In general, parameter variables follow some specific probability distributions within the given range after multiple 

independent calibrations (Viola et al., 2009;Jin et al., 2010;Li et al., 2010). Graziani et al. (2008) stated that the shape of a 

parameter probability distribution can be significantly affected by a parameter range. Ben et al. (2013) studied the effect of 5 

different probability distributions (e.g., Normal distribution and uniform distribution) of parameters values on parameter 

sensitivity, and found that the probability distribution can provide a clue to realize parameter sensitivity. Although normal and 

uniform distributions are greatly studied in practice, other types of probability distributions were seldom investigated in 

previous researches (Kucherenko et al., 2012;Esmaeili et al., 2014). 

Most hydrological models contain many parameters of different sensitive characteristics and correlation patterns. Some 10 

researchers believe that the sensitive parameter should be calibrated, while the insensitive parameter can be set as a fixed value 

by experience (Beck, 1987;Cheng et al., 2006). Inappropriate parameter ranges or fixed values may result in the instability of 

calibrated results. Furthermore, the range setting of one parameter may influence the calibration of other related parameters 

(Song et al., 2015). The model parameter sensitivity analysis has been a growing concern in recent years. Parameters sensitivity 

varies with catchment characteristics, objective functions and parameter ranges (van Griensven et al., 2006). Wang et al. (2013) 15 

noted the different parameter ranges could lead to changes in parameter sensitivity. Shin et al. (2013) reported that reducing 

or extending ranges might render insensitive parameters into sensitive ones or vice versa. Thus, parameter ranges and 

correlation should be taken into consideration when the calibration of multi-parameter models is performed. 

Parameter ranges are generally given roughly due to lack of knowledge concerning physical settings of a local catchment 

(Song et al., 2013;Hao et al., 2015). The more deviation between an optimal range and a given range, the more uncertainty of 20 

the calibration result. The selection of appropriate parameter ranges is critical for calibrating the model efficiently. However, 

few literature has been documented on how to select the appropriate parameter range for improving the calibration of 

hydrological models. Furthermore, the calibration of multiple parameters is more complex due to parameter sensitivity and 

correlation. Hence, it is necessary to find a way to coordinate the range settings of all parameters. 

Considering the effect of parameter ranges on calibration efficiency of hydrological models, an approach of parameter 25 

ranges selection (PRS) is put forward to improve the calibration of hydrological models with multiple parameters. At first, 

probability distribution of each parameter was analysed based on many independent calibrations by using a GA method. Then 

the optimal range of a single parameter was specified for calibration according to its probability distribution. Finally, parameter 

correlation and sensitivity were estimated to determine the optimal combination of multiple parameters ranges. The proposed 

method is expected to be helpful for an effective and efficient calibration of hydrological models with multiple parameters. 30 

2. Study area and data collection 

The Chaotianhe River catchment is located in the northeast of Guangxi Zhuang Autonomous Region in Southwest China (Fig. 

1). The Chaotianhe River is the major tributary of the Lijiang River of well-known karst landscape. The total catchment area 
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is 476.24 km2. The annual precipitation is approximately 1704 mm and 78% precipitation concentrates in flood seasons (March 

to August).The thickness of soil varies spatially in most karst areas. Limestone is exposed to air in some peak-cluster region. 

Clay soil with thickness ranging from 2 to 10 m is distributed in the depressions and valleys. In clastic rock mountain areas, 

the thickness of the soil is usually less than 0.5 m. Thus, the soil moisture storage capacity varies significantly with space. 

Moreover, the underground rivers are very well developed in the karst area, which makes the flood gather rapidly and recess 5 

slowly due to higher underground flow rate. 

The data concerning daily precipitation, evaporation and streamflow were collected from national gauging stations for the 

5-year period of 1996–2000. Four precipitation stations, one streamflow gauging station and one evaporation station are 

selected for the investigation. Areal precipitation was calculated using data from the four precipitation stations by using a 

Thiessen polygon method under GIS environment (Cai et al., 2014). The streamflow gauging station is at the catchment outlet. 10 

Some hydro-meteorological statistical data of the studied catchment are summarized in Table 1. From 1996–2000, the 

maximum of daily streamflow was about 719 m3/s, the minimum 0.53 m3/s and the average was 13.31 m3/s at the outlet. The 

maximum areal daily precipitation varies with years in the studied catchment and reached the value of 235 mm/d in 1996. 

3. Methodology 

3.1 Hydrological model selection 15 

The method of parameters ranges selection (PRS) is designed for most of hydrological models. At present, there have been 

many hydrological models for hydrological processes simulation. Considering the climate characteristics of the study area, the 

Xinanjiang model which is suitable for humid regions was chosen to serve as a hydrological model for the investigation. The 

Xinanjiang model mainly includes three evapotranspiration layers and three runoff components (i.e. surface-, subsurface runoff 

and groundwater) (Zhao et al., 1980;Zhao, 1992). The surface runoff is routed by the Unit Hydrograph (UH) which is derived 20 

from the observed streamflow and, other runoff components are simplified as linear reservoirs (Ju et al., 2009). With regard to 

the Xinanjiang model, there are 10 parameters that should be calibrated. The definitions of the parameters are given in Table 

2 (Lin et al., 2014;Hao et al., 2015). The proposed PRS method is introduced as follows, when a Xinanjiang model is taken as 

an example. 

3.2 Probability distribution analysis of calibrated parameter value 25 

3.2.1 Sample collection of calibrated parameter value 

In theory, the parameter values calibrated by using a stochastic-based auto-calibration method are not same to each other but 

follow a specific probability distribution under a reasonable convergence condition (Jiang et al., 2015). The stochastic-based 

auto-calibration is used to calibrate the model, and samples of calibrated parameters values are obtained in order to analyse 

the probability distribution of parameter values. The sample size of 100 is adequate for to estimating the probability distribution 30 
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of calibrated parameter values in the investigation, which is deduced from the results of trial tests as shown in Fig. 2. It can be 

seen that both maximum and minimum ENS keep stable when sample size is greater than 100. 

A Genetic Algorithm (GA) was selected as the auto-calibration method in the investigation, because GA is a common and 

widespread used global optimization algorithm based on stochastic and evolutionary optimization. Many studies show that 

evolutionary algorithms provide equal or better performance of a model than other algorithms do (Cooper et al., 1997;Jha et 5 

al., 2006;Zhang et al., 2009). The Nash–Sutcliffe efficiency (ENS) was chosen as an objective function (Eq. (1)) for GA, which 

represents the agreement between observed and simulated data.  

퐸 = 1−
∑ (푄obs,i−푄sim,i)

2푛
푖=1

∑ (푄obs,i−푄mean)
2푛

푖=1
 (1) 

where ENS is Nash–Sutcliffe efficiency, i serial number of the step; n total number of the observed streamflow data, 푄 ,  the 

observed streamflow at step i, 푄 ,  the simulated streamflow at step i, and 푄  is the mean value of observed streamflow. 10 

3.2.2 Determination of probability distribution types 

The probability distributions of calibrated parameters values can be estimated roughly by using box-plot charts, cumulative 

frequency curves and frequency histograms. The symmetry of the box-plot chart (including one box and two whiskers) and 

the length ratio of the whisker to the box, the shape of the cumulative frequency curve and the frequency histogram are 

important indicators for the identification of the distribution type. Based on these indicators, three types of probability 15 

distributions are listed as follows: (1) Normal distributions, the box and whiskers are approximately symmetrical along the Y-

axis direction, the length of either whisker is longer than half height of the box in a box-plot chart (Fig. 3a), the cumulative 

frequency curve is S shaped and the histogram bell shaped (Fig. 3b); (2) Exponential distributions, the whole chart is distinctly 

asymmetrical in the Y-axis direction, which means that the average value (marked with a small hollow square) deviates from 

the median value (marked with a centre line in box), the box is inclined to one side with the extreme shorter whisker (Fig. 3a), 20 

the cumulative frequency curve is parabola shaped, and the histogram tends to increase or decline gradually (Fig. 3c); (3) 

Uniform distribution, the box and whiskers are approximately symmetrical along the Y-axis direction, the length of two 

whiskers is close to that of the box (Fig. 3a), the cumulative frequency curve tends to a straight line and the histogram varies 

little along the X-axis (Fig. 3d).  

A Kolmogorov-Simirnov test (K-S test) is geared to examining whether a data set fits a reference probability distribution or 25 

not (Haktanir, 1991). In a K-S test, for any variable xi in a data set, the empirical distribution function value (Fi) is calculated 

by using a plotting position formula, and the cumulative distribution function value (Fi*) is computed by using the reference 

probability distribution. The maximum deviation between the two values, ∆ , is expressed in Eq. (2). 

∆ = |퐹∗ − 퐹 | (2) 

According to the acceptable level of significance 훼 (훼=0.2) and the total number of values in a data set n, ∆  can be obtained 30 

from the K-S table. If ∆ < ∆ , the reference probability distribution is identified to fit to the data set. 
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3.3 Parameters ranges selections 

3.3.1 Single parameter range selection (S-PRS) 

In order to improve ENS, the initial range of a parameter requires adjusting properly. Given the three probability distribution 

types mentioned above, the different ways to specify the optimal range for a single parameter are presented in the investigation. 

For the parameter of a uniform distribution, it is better to keep the initial range due to the weak influence of ranges on 5 

calibration results. For the parameter of a normal distribution, the cumulative frequency curve is employed to seek some 

reduced ranges with a given cumulative frequency (e.g. 50%), and the minimum and maximum ranges (namely MINR and 

MAXR) are obtained as depicted in Fig. 4. The MINR and MAXR represent the ranges of maximum and minimum probability 

density of parameter values under a given cumulative frequency. As for the parameter of an exponential distribution, the initial 

range can be extended appropriately towards one side of high probability density, if the parameter has reasonable meaning in 10 

the extended range. Then, the optimal range of the parameter can be specified by comparing different ENS calculated separately 

by using the initial range, the MINR or MAXR of the initial range, the MINR or MAXR of the extended range. If the initial 

range cannot be extended, the MINR and MAXR are sought out according to the cumulative frequency curve. Figure 5 gives 

the variation curves of maximum and minimum ENS of a single parameter with cumulative frequency values. It is found that 

the maximum ENS remains constant despite a cumulative frequency value varying, while the minimum ENS approaches the peak 15 

value of 0.881 when the cumulative frequency value is equal to 50%. Considering that higher minimum ENS contributes to 

more efficient calibration, the fixed cumulative frequency value of 50% was selected to determine the ranges of maximum and 

minimum probability density (i.e. MINR and MAXR) for each parameter. In short, the optimal range of a single parameter can 

be determined by properly extending or reducing the initial range to make calibrated parameter values distributed quite closely 

to a uniform distribution.  20 

3.3.2 Multiple parameters ranges selection (M-PRS) 

In general, there is more or less correlation between parameters for most hydrological models. As far as a Xinanjiang model 

is concerned, parameters WM and B refer to the water storage volume – area curve that represents the spatial variability of soil 

moisture storage. If the curve is fixed, a larger WM results in a smaller B (Zhao et al., 1980). As a result, the range change of 

parameter WM may affect the range setting and calibration of parameter B. If the ranges of the related parameters required 25 

adjusting, the correlations among parameters, therefore, should be taken into account. If the range change of one parameter 

has positive influence on calibration of other parameters, using the optimal range of the parameter instead of the initial one 

can contribute to better calibration results. On the contrary, the negative impact may result in a worse model calibration, even 

though the optimal ranges of the parameters are used. Thus, some coordination measures should be taken to deal with such a 

contradiction. The index RC (Eq. (3)) was quantified to analyse the influence degree of one-parameter range change on the 30 

calibration of other parameters. When 푅 	 ,  is closer to 1, the range change of parameter X has a greater positive influence on 

the calibration of parameter Y. If 푅 	 ,  is minus, it exerts a negative influence. 
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푅 	 , = 1− , ,

, ,
 (3) 

Where 푅 	 ,  is the influence degree of the range change of parameter X on the calibration of parameter Y; 퐿 ,  the range of 

parameter Y calibrated with the optimal range of parameter X and initial ranges of other parameters, 퐿 ,  the range of parameter 

Y calibrated with the optimal range of parameter Y and initial ranges of other parameters, and 퐿 ,  is the range of parameter 

Y calibrated with initial ranges of all parameters. The calibrated range of any parameter is calculated except extreme outliers. 5 

If there is a negative influence between two parameters, the optimal range of the parameter of higher sensitivity is used and 

the initial range of the other parameter is kept for calibration generally to mitigate the negative impact. It is due to the fact that 

sensitive parameters play more important roles than insensitive parameters do in a multi-parameter calibration. In order to 

assess the sensitivity of parameter range change to ENS, index SE as expressed in Eq. (4) is computed by performing an S-PRS 

method on each parameter. The larger value of RE, the more concentrated distribution of ENS which means more efficient 10 

parameter calibration. Thus, the parameter of higher SE is given priority to the optimal range when the RC of two parameters 

is minus.  

푆 = 1 − 	 	

	 	
 (4) 

where SE is sensitivity of parameter range change to ENS, 퐸 	  and 퐸 	  maximum and minimum ENS calibrated with an 

initial range, 퐸 	  and 퐸 	  are maximum and minimum ENS calibrated with an optimal range. The statistical analysis of 15 

ENS excludes extreme outliers. 

Given the fact that there are more than two parameters in most hydrological models, the accumulative influence and the 

coordination of range selection were investigated in the study. The mean value of RC (RC mean) is the index to judge the 

accumulative influence of one-parameter range change on the calibration of other parameters. Thus, for parameters of a 

negative RC mean, the initial ranges instead of the optimal ones are adopted for the multi-parameters calibration. 20 

The flow chart of the parameter range selection method is shown in Fig. 6. In stage 1, a set of initial ranges of parameters 

are given for a hydrological model and the probability distribution for each parameter analysed based on the 100 independent 

parameters values calibrated by an auto-calibration method. In stage 2, there are three range adjustment methods with response 

to a probability distribution of parameter values: for a normal distribution, the optimal range of a single parameter is obtained 

by reducing the initial range; for an exponential distribution, the initial range of a single parameter is extended to specify the 25 

optimal range, or the initial range is reduced to seek the optimal range for calibration when the extension of the parameter 

range is limited; for a uniform distribution, the initial range is kept. In stage 3, the single-parameter range selection (S-PRS) is 

performed on each parameter. Based on the indexes SE and RC estimated, the optimal combination of ranges is determined by 

coordinating the range selection of all parameters.  



8 
 

4. Results and discussion 

4.1 Probability distribution characteristics of calibrated parameter values of the Xinanjiang model 

A series of calibrated parameters values were obtained through 100 independent calibration runs by using a GA method. Trial 

tests were employed to determine the optimal GA control parameters: crossover probability of 0.5, mutation probability of 0.7 

for the individual, mutation probability of 0.5 for each gene, population size of 21, maximum generation number of 500 and 5 

maximum iteration number of 50. These parameters were kept constant for GA calibrations in the investigation. The initial 

and calibrated ranges of parameters are presented in Table 3. The ratio of the calibrated range length to the initial one in Table 

3 is less than 60% for most parameters (i.e. parameter CI, Kc, KI, SM, B, and WM), which implies that reducing the ranges 

can help calibrate most parameters efficiently. For any particular parameter, calibrated values were normalized by dividing a 

deviation between a calibrated value and the lower limit of the initial range by the length of the initial range. Based on 100 10 

calibrated values after normalization, a box-plot for a parameter is depicted. It is obvious from Fig. 7 that the box and whiskers 

are approximately symmetrical and the length of whiskers is longer than that of half box along the direction of the Y axis for 

parameters CI, SM and Kc. But for other parameters, it is shown from the box-plot charts that the mean value deviates from 

the median one, which means an asymmetric chart. According to the characteristics of the box-plots, the probability 

distributions of the calibrated values are normal for parameters CI, SM, and Kc, while those are exponential for other 15 

parameters. Furthermore, K-S tests were employed to determine the probability distributions of parameters and the 

corresponding results are listed in Table 3. It is shown that only a normal distribution is accepted for parameters CI & SM. 

Despite the fact that both normal and uniform distributions are accepted for parameter KC, the probability distribution of 

parameter KC is regarded as a normal distribution. It is because that the ∆  will become smaller if a normal distribution 

serves as a reference distribution instead of a uniform distribution. In addition, just an exponential distribution is accepted for 20 

the rest of the parameters. Thus, the three parameters follow normal distributions and the others exponential distributions in 

the Xinanjiang model. The ratio of the calibrated range length to the initial range length is less than 30% for parameters CI, 

SM, and Kc, while the ratio exceeds 30% for parameters B, WM, C, EX, CG, and Im. It indicates that reducing the initial 

ranges can improve the calibration for parameters whose values observe normal distributions. 

4.2 Effect of range adjustment pattern on calibration results 25 

Since the probability distribution of a single parameter has a direct relation with the parameter range selection, the range 

adjustment pattern of a single parameter was discussed on the basis of the parameter probability distribution in the investigation. 

For a normal distribution, the range was reduced to find the optimal range. Figure 8 shows the calibration results of parameter 

CI when the different ranges are selected. The MINR (0.679–0.713) and the MAXR (0.623–0.694) were picked out based on 

the cumulative frequency curve derived from calibrations with the initial range (0–0.900). From the cumulative curves and the 30 

histograms in Fig. 8a, 8b and 8c, it is found that the probability distribution of parameter CI values is converted from a normal 

distribution to a uniform distribution when the initial range is reduced to the MINR, whereas the probability distribution 
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approximates an exponential one when the MAXR is used. Figure 8d reveals the contribution of the parameter range selection 

to ENS. It is found that the minimum ENS except extreme outliers rises from 0.881 to 0.884 and the ENS concentrates at a higher 

value range, when the MINR is used instead of the initial range. Using the reduced range of high probability density is, therefore, 

helpful to make calibration more stable and more efficient. 

To an exponential distribution, both reduced ranges and extended ranges of reasonable meaning were used to select the 5 

optimal range for parameter calibration. Figure 9 shows the calibration results under three different input ranges of parameter 

KI. Since the initial range of parameter KI cannot be extended, the two reduced ranges (i.e. the MINR (0.660–0.700) and the 

MAXR (0.522–0.660)) were picked out according to the cumulative frequency curve. From the cumulative curves and the 

histograms in Fig. 9a, 9b and 9c, it is found that the probability distribution of parameter KI values is similar to a uniform 

distribution in the case of the MINR, whereas that is still exponential in the case of the MAXR. The contributions of the three 10 

parameter ranges to ENS are shown in Fig. 9d. Thus, the MINR is best for calibration of parameter KI when compared with the 

MAXR or the initial range, which is similar to the calibration result of parameter CI. In general, the MINR is better than the 

MAXR for parameter calibration, because the parameter values that may achieve a higher ENS can be easily picked out from 

the MINR of higher probability density. 

Figure 10 shows the calibration results of parameter B whose initial range can be extended. Parameter B generally ranges 15 

from 0.1 to 0.4 for most areas, but it is quite different for karst areas where the soil moisture storage varies remarkably with 

space. As a result, the value of parameter B can be greater than 0.4. From Fig. 10a and 10b, it is shown that the probability 

distribution of parameter B is converted from an exponential distribution to a normal distribution when the initial range is 

extended to new one (B=0.1–0.6). After the MINR selection was performed on the initial range and the extended range, the 

two ranges, i.e. the MINR (B=0.36–0.40) and the extension-MINR (B=0.379–0.488) were obtained and then used to calibrate 20 

parameter B. From Fig. 10c and 10d, it is found that the probability distribution of parameter B approximates a uniform 

distribution when the MINR or the extension-MINR is used. The box-plots of ENS for different ranges are shown in Fig. 10e. 

It is shown that there is little improvement in maximum ENS when MINR is used for calibration instead of the initial range. 

There is an increase of 0.0003 in maximum ENS if the initial range is replaced with the extension range or the extension-MINR. 

As for minimum ENS (except outliers), an increase of 0.001 in the case of the MINR, a decrease of 0.003 in the case of the 25 

extension range and an increase of 0.003 in the case of the extension-MINR are found when they replace the initial range. It 

suggests that an appropriate range extension followed by a MINR selection is helpful to improve calibration for the parameter 

whose probability distribution is exponential and initial range can be extended.  

4.3 Effect of multiple parameters ranges combination on calibration results 

The S-PRS method was employed to determine the optimal range for each parameter. According to the optimal ranges and the 30 

corresponding initial ranges, indexed RC and SE were quantified to understand parameter correlation and sensitivity. It is 

obvious from Table 4 that RC values in the columns of parameters CI and WM are positive, but most RC values in the column 

of parameter Im are negative. The negative RC related to two parameters means that using the optimal range of one parameter 
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is adverse to calibrate the other. Both RC EX,Im and RC Im,EX are negative in spite of small values, indicating that using the optimal 

ranges of parameters EX and Im simultaneously is not conductive to calibrating these two parameters. The mean of RC (RC 

mean) varies with parameters. Parameter CI has the maximum RC mean of 0.465 and parameter Im the minimum RC mean of –0.026. 

Furthermore, all parameters have positive RC mean values except for parameter Im, owing to the accumulative negative 

correlation between parameter Im and the others.  5 

To coordinate with negatively related parameters, the index SE was used to pick out parameters of higher sensitivity to ENS. 

From Table 4, it is found that parameter CI has the maximum SE of 54.7% and parameter Im the minimum SE of 0.3%. Most 

SE values are more than 20% except those of parameters C, EX and Im. It suggests that parameters C, EX and Im are of low 

sensitivity to ENS and the others highly sensitive to ENS. Parameter CI is the most sensitive while Im the most insensitive, which 

agrees with the work of Lü et al. (2013) and Song et al. (2013). For the well-developed karst areas, the thin layer of soil and 10 

strong permeability of limestone make rainfall easy to penetrate into the ground. Moreover, the existence of karst caves and 

subsurface streams contribute to great interflow storage which accounts for a large proportion of streamflow. As a result, the 

calibration of parameters KI (representing the penetrability of free water to interflow) and CI (representing recession capacity 

of interflow storage) has a significant influence on rainfall-runoff simulation results. Hence, parameters KI and CI are highly 

sensitive in the investigation. Thus, the optimal ranges of parameters of higher sensitivity should be used to improve calibration. 15 

In order to determine the optimal range combination of multiple parameters, seven cases were investigated with different 

range combinations of parameters (Table 5). Case 1 was defined as the initial case using all initial ranges. Cases 2–4 were 

defined as the single parameter range selection (S-SPR) cases. Cases 5–7 were set as the multiple parameters ranges selections 

(M-SPR) cases. The box-plots of ENS for different cases are given in Fig. 11. There is a little decrease in ENS when Case 4 is 

separately compared with Case 1, Case 2 and Case 3. It can be explained that both RC EX,Im and RC Im,EX are negative and the 20 

combination of the optimal ranges corresponding to the two parameters leads to a worse calibration result. As the SE value of 

parameter Im is less than that of parameter EX, parameter EX is given priority to use the optimal range. It is the reason why 

the calibration result of Case 3 is better than that of Case 2. As for the cases with the multi-parameter range selection (i.e. 

Cases 5–7), the ENS values are more robust than those of cases 1-4. There is approximately an increase of 0.001 in maximum 

ENS and an increase of 0.01 in minimum ENS when the multi-parameter range selection is performed. There are some differences 25 

in ENS with the comparison between Cases 5–7 in a magnified box-plot chart. Case 6 has the most concentrated values of ENS 

and the largest mean value of ENS among the three cases. It means that the combination of optimal ranges of all parameters 

(see Case 7) is not the optimum to calibrate a multi-parameter model inasmuch as some parameters like Im have negative 

correlation on other parameters. Hence, the initial ranges of parameters having negative mean values of RC and low values of 

SE are supposed to be used to calibrate parameters instead of the corresponding optimal ranges. 30 

Through a calibration run, a set of calibrated values of all parameters and the corresponding ENS are obtained. Figure 12 

shows the variation curves of maximum and minimum values of ENS with number of runs by using a GA method and a proposed 

PRS method. It is indicated from Fig. 12 that no mater it is maximum or minimum ENS, the PRS-based value is essentially the 

same as the GA-based one when the number of runs does not exceed 100. It is because that the PRS method initially need 100 
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runs of GA calibration to obtain parameter value samples for selecting the optimal ranges. If a proposed method is used for 

calibration instead of a GA method, there are approximately an increase of 0.001 in maximum ENS and an increase of 0.01 in 

minimum ENS when the number of runs is greater than 100. Thus, for any particular run number, the value of ENS calculated 

by using a PRS method is not less than that by using a GA method. Additionally, it is found from the investigation that there 

is no significant difference in computational time between the two methodologies. The application of a proposed method, 5 

therefore, contributes to a relatively efficient calibration. 

5. Conclusions 

Considering that there is a relation between the selection of multi-parameter ranges and the calibration effect of a hydrological 

model, an approach to determine an optimal combination of ranges for the multi-parameter calibration was put forward by 

analysing parameter probability distribution, parameter sensitivity and correlation between parameters. The newly proposed 10 

method was applied for the calibration of a Xinanjiang model for karst areas, and some findings are presented as follows. 

In the Xinanjiang model, parameters CI, Kc, SM and B approximately obey normal probability distributions and parameters 

WM, C, EX, KI, CG and Im exponential probability distributions after 100 independent calibration runs. For the parameters 

of a normal distribution, the MINR defined by using a cumulative frequency curve of calibrated values is preferred to be 

selected as the optimal parameter range for calibration. For the parameters of an exponential distribution, the extension-MINR 15 

is recommended to be used for calibration if the initial range can be extended towards the high-probability side; otherwise the 

MINR is selected as the optimal range for calibration.  

The proposed parameter range selection (PRS) method improves the minimum and mean values of ENS. The application of 

the proposed methodology results in an increase of 0.01 in minimum ENS, compared with that of the pure GA method. The 

rising of minimum ENS with little change of the maximum may shrink the range of the possible solutions. As a result, the 20 

uncertainty of the model performance can be effectively controlled.  

The M-SPR method is superior to the S-SPR one for calibrating hydrologic models with multiple parameters. The RC and 

SE are two important indexes that can help to analyse the sensitivity and correlation between parameters and consequently to 

coordinate with the negatively related parameters. The initial ranges of parameters of relatively low SE and negative RC mean 

and the optimal ranges of parameters of positive RC mean should be preferred to be chosen for the multi-parameter model 25 

calibration. 
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Fig. 1. Location of the study area 
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Fig. 2. Variation curves of maximum and minimum ENS with sample sizes 
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Fig. 3. Different probability distribution types of calibrated parameter values 

(a) Box-plot charts of normal, exponential and uniform distribution;  

Cumulative frequency curve and histogram for normal (b), exponential (c) and uniform (d) distributions 5 

 
 

Normal Exponential Uniform

0.0

0.5

1.0

 

 

N
or

m
al

iz
ed

 v
al

ue

Distribution

0.0 0.5 1.0

0.0

0.5

1.0

 

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Parameter value

0

10

20

30

40

50
  c)

Exponentional distribution

C
ou

nt

0.0 0.5 1.0

0.0

0.5

1.0

 

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Parameter value

0

10

20

30

40

50
  b)

Co
un

t

Normal distribution

0.0 0.5 1.0

0.0

0.5

1.0

  d)
Uniform distribution

 

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Parameter value

0

10

20

30

40

50

C
ou

nt

(a) (b)

(c) (d)



19 
 

 
Fig. 4. Selection of minimum and maximum range (MINR and MAXR) with a cumulative frequency of 50% 

 

 
Fig. 5. Variation curves of maximum and minimum ENS of a single parameter with cumulative frequency values 5 
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Fig. 6. The flow chart of multiple parameters ranges selections 
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Fig. 7. The box-plot chart of normalized calibrated values for parameters of Xinanjiang model 
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Fig. 8. Results of range selection of parameter CI  

Probability distribution of parameter values for schema initial range (a), CI-MINR (b) and CI-MAXR (c); 

(d) Box-plot chart of ENS for three schemas 
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Fig. 9. Results of range selection of parameter KI 

Probability distribution of parameter values for schema initial range (a), KI-MINR (b) and KI-MAXR (c);  

(d) Box-plot chart of ENS for three schemas 
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Fig. 10. Results of range selection of parameter B 

Probability distribution for schema initial range (a), B–Extension (b), B–MINR (c) and B–Extension–MINR (d); 

(e) Box–plot chart of ENS for four schemas 
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Fig. 11. The box–plot chart of ENS for different cases 
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Fig.12. The variation curves of maximum and minimum ENS with number of runs by using a GA method and a proposed PRS method 
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Table 1. Metro-hydrological statistical data of the study area 

QMax, QMin and QAvg mean the maximum, minimum and average value of daily streamflow, respectively, and PMax means the maximum value 

of daily precipitation. 

  

Year QMax （m3/s） QMin（m3/s） QAvg（m3/s） PMax（mm/d） 

1996 719 0.76 14.38 235 

1997 308 0.76 14.32 155 

1998 369 0.66 13.67 157 

1999 282 0.53 12.81 144 

2000 339 1.14 11.37 107 
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Table 2. Parameters of Xinanjiang model 

Parameter Definition Units 

CI Recession constants of the lower interflow storage dimensionless 

Kc Ratio of potential evapotranspiration to pan evaporation dimensionless 

KI Outflow coefficients of the free water storage to interflow dimensionless 

SM 
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
mm 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity of 

the spatial 
dimensionless 

WM  Averaged soil moisture storage capacity of the whole layer mm 

C 
Coefficient of the deep layer, that depends on the proportion of the basin area covered by 

vegetation with deep roots 
dimensionless 

EX Exponent of the free water capacity curve influencing the development of the saturated area dimensionless 

CG Recession constants of the groundwater storage relationships dimensionless 

KG* Outflow coefficients of the free water storage to groundwater relationships dimensionless 

Im Percentage of impervious and saturated areas in the catchment dimensionless 

* the value of KG is calculated by the function 0.7-KI 

 5 
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Table 3. Range changes and K-S tests (훼=0.2) of parameters in schema Initial 

Parameter Initial range Calibrated range* Ratio** (%) 

∆ *** 

Normal 

distribution 

Expoential 

distribution 

Uniform 

distribution 

CI 0–0.9 0.630–0.745 12.78 0.062 (pass) 0.328 (fail) 0.115 (fail) 

Kc 0–1.1 0.81–1.09 25.45 0.076 (pass) 0.305 (fail) 0.089 (pass) 

KI 0–0.7 0.534–0.7 23.71 0.128 (fail) 0.076 (pass) 0.173 (fail) 

SM 10–50 31–39.4 21.00 0.060 (pass) 0.304 (fail) 0.110 (fail) 

B 0.1–0.4 0.238–0.4 54.00 0.180 (fail) 0.062 (pass) 0.203 (fail) 

WM 120–200 120–150 37.50 0.181 (fail) 0.072 (pass) 0.231 (fail) 

C 0.1–0.2 0.1–0.2 100.00 0.163 (fail) 0.082 (pass) 0.217 (fail) 

EX 1.0–1.5 1.0–1.5 100.00 0.118 (fail) 0.079 (pass) 0.135 (fail) 

CG 0.950–0.998 0.950–0.994 91.67 0.123 (fail) 0.102 (pass) 0.139 (fail) 

Im 0.01–0.04 0.01–0.04 100.00 0.134 (fail) 0.076 (pass) 0.148 (fail) 

* the calibrated parameter range except the extreme outlier 

** the ratio is calculated by dividing the length of the range derived from 100 GA calibration runs by the initial range length 
*** the ∆  is calculated by using the normalnized parameter values 5 
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Table 4. The indexed RC and SE of parameters when the optimal range of each parameter is used for calibration 

Parameter* CI Kc KI SM B WM C EX CG Im 

Optimal range of 

a single parameter 
0.679–
0.713 

0.95–
1.05 

0.66–
0.7 

35–39 
0.379–
0.488 

105–
110 

0.175 

–0.2 
1–1.118 

0.95–
0.966 

0.01–
0.0245 

RC 

CI 1.000  0.334  0.371  0.462  0.322  0.113  0.105  0.115  –0.128  0.272  

Kc 0.689  1.000  0.467  0.429  0.504  0.503  0.389  0.102  0.284  0.150  

KI 0.778  0.315  1.000  0.445  0.574  0.268  0.456  0.328  0.060  0.258  

SM 0.508  –0.199  0.422  1.000  –0.089  0.009  –0.063  0.383  0.218  –0.032  

B 0.914  0.560  0.698  –0.017  1.000  0.972  –0.175  0.007  –0.319  –0.722  

WM 0.575  0.311  0.439  0.553  0.325  1.000  0.229  0.360  –0.069  –0.235  

C 0.208  0.273  0.083  0.151  0.277  0.335  1.000  0.077  0.200  0.210  

EX 0.054  0.047  –0.011  0.018  0.371  0.045  0.009  1.000  –0.021  –0.025  

CG 0.221  0.246  –0.135  0.022  0.010  0.198  –0.034  –0.009  1.000  –0.112  

Im 0.238  0.073  –0.025  0.045  0.031  0.030  –0.026  –0.020  0.001  1.000  

Mean of RC 0.465  0.218  0.257  0.234  0.258  0.275  0.099  0.149  0.025  –0.026  

SE (%) 54.7 47.9 36.6 41.7 48.1 39.9 10.8 14.7 21.9 0.3 

* The parameter represents parameter X in Eq. 2. 



 

 

 

Table 5. Parameter ranges setting for different cases 

The symbol ‘I’ represents the initial range of the parameter in Table 3, and ‘O’ the optimal range of the parameter in Table 4. 

Case 
Range setting of parameter 

CI Kc KI SM B WM C EX CG Im 

1 I I I I I I I I I I 
2 I I I I I I I I I O 
3 I I I I I I I O I I 
4 I I I I I I I O I O 
5 O O O O O O O O I I 
6 O O O O O O O O O I 
7 O O O O O O O O O O 


