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Part 1 Responses to Referee’s comments 

We appreciate the comments from the reviewer and truly believe these comments can help us to 
improve our manuscript. We consider the corresponding changes can be included in the revised 
document to achieve publication status. We provide responses to the main and specific comments in 
sequential order as follow: 5 

Responses to Referee #1 
Main comment #1 
"Probability distribution functions considered in the study. In this study, the authors propose a method 
to constrain parameter ranges for parameters that follow uniform, normal, and exponential probability 
distribution functions. These are the probability distribution functions that the case study model 10 
parameters reportedly follow. Some of the claims are debatable. For instance, parameters CI and Kc 
are reported to follow normal distributions (page 7, line 29) based on the following statement (page 7, 
line 25): "It is obvious that the box and whiskers are symmetrical and the length of whiskers is longer 
than that of the box [...].". Looking at Fig. 5, however, the whiskers are not symmetrical and, on the 
upper side, not longer than the box, suggesting that the ranges of these parameters do not follow a 15 
normal probability distribution. Therefore, the method used to constrain the ranges of these parameters 
might not be the optimal, potentially changing the results of the study." 
Responses to main comment #1: 
There are three types of distribution discussed in the investigation. In order to distinguish them, a 
simple method in section 3.2.2 was used based on shapes of the cumulative frequency curve and the 20 
histogram as well as the sizes of whiskers and box in the box-plot. Despite simplicity, it is subjective 
and unintelligible to readerships. For avoiding the confusion as described in this comment, a 
Kolmogorov-Smirnov (K-S) test will be employed to objectively identify each distribution type in the 
revised paper. Indeed, we carried out K-S tests to evaluate statistical distributions of all parameters in 
the hydrologic model. The results of K-S tests for parameters CI, Kc, and SM are listed in the following 25 
Table A. It is shown that both exponential and uniform distributions are rejected for the three 
parameters while normal distribution is not. It implies that the three parameters follow normal 
distributions. Therefore, the simple method used earlier does not change the results of the study, 
although it is subjective. 
 30 
Table A. The results of K-S tests for parameters CI, Kc, and SM  

 

CI Kc SM

Normal Exponential
（2P） Uniform Normal Exponential

（2P） Uniform Normal Exponential
（2P） Uniform

Statistic 0.0623 0.32805 0.1151 0.09199 0.37961 0.10694 0.05983 0.30392 0.10982

P-Value 0.80925 5.40E-10 0.1306 0.34466 3.08E-13 0.18882 0.84521 1.23E-08 0.16628

ߙ 0.2 0.01 0.2 0.2 0.01 0.2 0.2 0.01 0.2

Reject? No Yes Yes No Yes Yes No Yes Yes



 2 / 35 
 

Main comment #2 
"The authors report that parameter range selection has a direct impact on calibration efficiency and 
propose a new method to improve model calibration (page 1, line 12). The reported results, however, 
indicate that the improvement in the calibration efficiency by the proposed methodology is quite 
modest. For instance, in Fig. 9 different cases involving different combinations of parameters keeping 5 
the initial range and others having the "optimal" range are compared. The model efficiency different 
between case I (all the parameters set at the initial ranges) and any other of the considered cases is of 
the order of 0.002 at best. This suggests that the benefits of using the proposed technique are small." 
Responses to main comment #2: 
Notwithstanding a small increase in maximum ENS, there is a significant improvement in minimum 10 
ENS by using the proposed method. Comparing case 6 (using the optimal combination of ranges) with 
case 1 (using the initial ranges) in Fig. 9, we find that the maximum ENS increases by 0.001 while the 
minimum ENS (except outliers) increases by 0.01. The rising minimum ENS with the fixed maximum 
contributes to the shrinkage of the range of the possible solutions. As a result, the uncertainty of the 
model performance can be effectively controlled. Moreover, the methodology can be used to analyze 15 
the parameter correlation and sensitivity by computing two indexes ܴେ	ଢ଼,ଡ଼ and ܵா. The paper presents 
the preliminary study of the proposed methodology. In the preliminary study, we adopt a Xinanjiang 
model with several parameters to evaluate the calibration efficiency of the methodology. Since the 
parameter Im having negative effect on other parameters is a little bit insensitive in a Xinanjiang model, 
a modest improvement in calibration efficiency is found after the application of the methodology. In 20 
future, we will consider using other complicated hydrologic models with more parameters to further 
study the application of the methodology. 
 

Main comment #3 
"The language should be improved to make the manuscript easier to understand and more compelling. 25 
More specifically, the following aspects should be revised: verb tenses (e.g. page 3, line 23-24: "single 
parameter is selected" - "correlation and sensitivity were estimated"; page 6, line 15: "The index Rc 
was quantified" instead of "The index Rc were quantified"), spelling errors (e.g. page 6, line 13: 
"contribute" instead of "contributes"; page 9, line 25: "of" instead of "pf"), and sentence structure (e.g. 
page 9, line 15 "[...] parameters [...] are of high sensitive to Ens"). I would strongly recommend the 30 
article to be checked for language." 
 
Responses to main comment #3: 
We will revise the manuscript as the suggestion: 
Page 3, line 23-24: "single parameter is selected" >> "single parameter was selected" 35 
Page 6, line 15: "The index Rc were quantified" >> "The index Rc was quantified" 
Page 6, line 13: "contributes" >> "contribute" 
Page 9, line 25: "pf" >> "of" 
Page 9, line25-26: "...when Case 4 compared with Case 1, Case 2 and Case 3 It can be explained..." >> 

"... when Case 4 is compared with Case 1, Case 2 and Case 3. It can be explained..." 40 
Page 9, line 15: "… and CG are of high sensitive to ENS"  >> "... and CG are highly sensitive to 
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ENS" 
 
In addition, we will check the paper carefully and correct the other language errors. For example: 
Page 1, line 3: "Qiaofeng." >> "Qiaofeng" 
Page 1, line 14: "characteristics of single parameter value was analysed" >> "of single parameter 5 

value was analysed" 
Page 1, line 17: "corresponding to the distribution" >> "corresponding to the distribution type" 
Page 2, line 4: "mechanism of water cycle" >> "mechanism of the water cycle" 
Page 2, line 9: "the streamflow at catchment outlet" >> "the streamflow at the catchment outlet"  
Page 3, line 30: "in flood reason" >> "in flood season" 10 
Page 4, line 18: "from observed streamflow" >> "from the observed streamflow" 
Page 5, line 3: "which representing agreement between observed and simulated data" >> "which 

represents the agreement between observed and simulated data" 
Page 5, line 11: "whisker to the box" >> "the whisker to the box" 
Page 5, line 23: "…, the initial range of parameter is required adjusting properly" >> "…, the initial 15 

range of parameter requires adjusting properly" 
Page 5, line 28: "represents the ranges" >> "represent the ranges" 
Page 6, line 4: "in case of larger percentage" >> "in case of a larger percentage" 
Page 6, line 5: "... values can transform and finally convert into..." >> "... values can be converted 

into..." 20 
Page 6, line 11: "may more and less effect" >> "may affect" 
Page 6, line 17: "the greater positive influence" >> "greater positive influence" 
Page 7, line 2: "The statistic analysis" >> "The statistical analysis" 
Page 7, line 6: "ranges is substituted" >> "ranges are substituted" 
Page 7, line 8: "the selected one is adopted for calibration of multiple parameters." >> "the selected 25 

ones are adopted for multi-parameters model calibration." 
Page 7, line 16: "In stage 3 the ... " >> "In stage 3, the ..." 
Page 7, line 26: "direction of Y axis" >> "direction of the Y axis" 
Page 7, line 30-31: "The ratio of calibrated parameter range to initial one is less than 30% for 

parameters CI, SM, and Kc" >> "The ratios of the calibrated parameter range to the initial one are 30 
less than 30% of parameters CI, SM, and Kc"  

Page 7, line 31: "It suggest that" >> "It suggests that" 
Page 8, line 6: "To normal distribution" >> "For normal distribution" 
Page 8, line 7: "different parameter range are selected" >> "different parameter ranges are selected" 
Page 8, line 13: "concentrates at larger value zone" >> "concentrates at a higher value range" 35 
Page 8, lien 24: "Because the parameter values in MINR indicate a high probability to be picked out 

to achieve high ENS, vice versa." >> "It is because that the parameter values that may achieve a 
higher ENS can be easily picked out from the MINR of higher probability density." 

Page 8, line 33: "box-plot chart of ENS for different ranges are shown in Fig. 8e" >> "box-plots for 
different ranges are shown in Fig. 8e" 40 

Page 9, line 6: "value in columns" >> "values in columns" 
Page 9, line 20: "penetrate" >> "penetrability" 
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Page 9, line 23: "there is contradiction owing to it" >> "there is a contradiction owing to it" 
Page 10, line 13: "the extension range followed by" >> "the extended range followed by" 
Page 10, line 17: "to adopted" >> "to be adopted" 
 
Specific comment #1 5 
"Page 4, line 28 and page 6, line 2: "plenty of tests". The text suggests that the authors defined their 
sampling size and cumulative frequency value through a process of trial and error. Since this might 
affect the subsequent results I think that evidence should be provided to support the authors’ claims." 
Responses to specific comment #1: 
Before defining sampling size and cumulative frequency value, we performed a lot of trial tests. Figure 10 
A shows the variation curves of maximum and minimum ENS with sample size. It is indicated that both 
maximum and minimum ENS keep stable when sampling size is greater than 100. Avoiding the time-
consuming computation, we assigned sampling size for the study as 100. Figure B gives the variation 
curves of maximum and minimum ENS with cumulative frequency value. It is found that the maximum 
ENS keeps constant despite a cumulative frequency value varying, while the minimum ENS approaches 15 
the peak value of 0.881 when the cumulative frequency value is equal to 50%. Considering that higher 
minimum ENS contributes to more efficient calibration, we selected the fixed cumulative frequency 
value of 50% to determine the ranges of maximum and minimum probability density (i.e. MINR and 
MAXR) for each parameter.  
 20 

 
Figure A. Variation curves of maximum and minimum ENS with sample size   
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Figure B. Variation curves of maximum and minimum ENS with cumulative frequency value 

 
Specific comment #2 
"Page 8, line 34: "[...] there is considerable improvement [...]". "Considerable" is a vague word, please 5 
provide a quantitative measure of the improvement. Similar problem in page 8, line 12. Please revise 
the results section to ensure that no vague words are used." 
Responses to specific comment #2: 
According to the review comments, we will revise the corresponding parts as follows: 

Page 8, line 34: "It is indicated that there is a considerable improvement of both maximum and 10 
minimum ENS when extension-MINR is used for calibration."  >> "It is shown from Fig. 8e that there 
is little improvement in maximum ENS when MINR is used for calibration instead of the initial range. 
There is an increase of 0.0003 in maximum ENS if the initial range is replaced with the extension range 
or extension-MINR. As for minimum ENS (except outliers), an increase of 0.001 in the case of MINR, 
a decrease of 0.003 in case of the extension range and an increase of 0.003 in the case of extension-15 
MINR are found when the initial range is substituted with the three ranges respectively." 

Page 8, line 12: "It is found that the minimum ENS except extreme outliers rises convincingly and 
ENS concentrates at larger value zone when MINR is used instead of the initial range." >> "It is found 
that the minimum ENS except extreme outliers rises from 0.8805 to 0.8842 and ENS concentrates at 
larger value zone when MINR is used instead of the initial range." 20 

Page 9, line 29-30: "As for the cases of multi-parameter range selection (i.e. Case 5, Case 6 and 
Case 7), the results are much better than of Case 1-4."  >> "As for the cases with multi-parameter 
range selection (i.e. Cases 5-7), the results are much better than those of cases with initial range or 
single-parameter range selections (i.e. Cases 1-4). There is approximately an increase of 0.001 in 
maximum ENS and an increase of 0.01 in minimum ENS when the multi-parameter range selection is 25 
performed. " 
 

Specific comment #3 
"Page 9, line 24: Seven cases are investigated with different combinations of parameter ranges. What 
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is the rationale behind the chosen combinations? Please specify." 
Responses to specific comment #3: 
The seven cases were set to demonstrate three primary results. Firstly, the multi-parameter optimal 
range selection method is superior to the single-parameter one for calibrating hydrologic models with 
multiple parameters. It can be deduced from higher ENS values of Cases 5-7 than those of Cases 1-4. 5 
Secondly, merely using the optimal range of the parameter of relatively higher sensitivity contributes 
to more efficient calibration when the two parameters have negative effect on each other. It can be 
concluded by comparing the ENS values of Cases 2-4 referring to the two parameters EX and Im. 
Thirdly, the combination of optimal ranges of all parameters is not the optimum inasmuch as some 
parameters like Im have negative effects on other parameters. It can be inferred through analyzing the 10 
ENS values of Cases 5-7. The analysis of sensitivity and correlation between parameters is, therefore, 
very important to determine the optimum ranges combination of all parameters for model calibration.  
 

Specific comment #4 
"Figure 1: The chosen color scale makes the figure difficult to read in black and white. Please consider 15 
modifying it to facilitate reading the figure in printed form. The elevation units should be "m a.s.l." 
instead of "m". The lowest elevation in the catchment is reported to be 19 m below the sea level; is 
that so?" 
Responses to specific comment #4: 
We will use the gray ribbon for DEM rendering to make Figure 1 easy to read in printed form. The 20 
unit "m a.s.l." will be used instead of "m" in revised Figure 1. In addition, there exist dolines (known 
as sinkholes) in the catchment. It is the reason why the lowest elevation in the catchment is 19 m below 
the sea level. 
 

Specific comment #5 25 
"Figure 2: Please correct "cure" in the figure caption." 
Responses to specific comment #5: 
We will change "cure" to "curve" in the caption of Figure 2. 
 
Specific comment #6 30 
"Figure 5: Since the figure represents normalized parameter values on the y-axis, it would be more 
informative to constrain this axis between 0 and 1." 
Responses to specific comment #6: 
We will constrain the y-axis of Figure 5 between 0 and 1 in the revised paper. The Fig. 5 modified is 
presented as follows. 35 
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Fig. 5. The box-plot chart of normalized calibrated values for parameters of Xinanjiang model 

 

Specific comment #7 
"Table 2: please provide units for all the parameters. In the case of dimensionless parameters indicate 5 
so." 
Responses to specific comment #7: 
We will give units for parameters in a Xinanjiang model, as it is shown in Table 2 below. 
 

Specific comment #8 10 
"Table 2, 3, 4: In order to facilitate the readability of the different tables it might be convenient to order 
the parameters in the same way in all the tables." 
Responses to specific comment #8: 
We will modify Tables 2, 5 so that the parameters are ordered in the same way in the related tables. 
Moreover, the column “range” of Table 2 will be changed as column “Units” because the ranges for 15 
parameters are reported in Table 3. 
 
Table 2. Parameters of Xinanjiang model 

Parameter Definition Units 

CI Recession constants of the lower interflow storage dimensionless 

Kc Ratio of potential evapotranspiration to pan evaporation dimensionless 

KI Outflow coefficients of the free water storage to interflow dimensionless 

SM 
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
mm 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity 

of the spatial 
dimensionless 

WM  Averaged soil moisture storage capacity of the whole layer mm 

C Coefficient of the deep layer, that depends on the proportion of the basin area covered by dimensionless 
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vegetation with deep roots 

EX 
Exponent of the free water capacity curve influencing the development of the saturated 

area 
dimensionless 

CG Recession constants of the groundwater storage relationships dimensionless 

KG* Outflow coefficients of the free water storage to groundwater relationships dimensionless 

Im Percentage of impervious and saturated areas in the catchment dimensionless 

* the value of KG is calculated by the function 0.7-KI 

 
Table 5. Parameter ranges setting for different cases 

The symbol ‘I’ represents the initial range of the parameter in Table 3, and ‘O’ the optimal range of the parameter in Table 4. 

Case 
Range setting of parameter 

CI Kc KI SM B WM C EX CG Im 

1 I I I I I I I I I I 

2 I I I I I I I I I O 

3 I I I I I I I O I I 

4 I I I I I I I O I O 

5 O O O O O O O O I I 

6 O O O O O O O O O I 

7 O O O O O O O O O O 
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Responses to Referee #2 
Main comment #1 
"My main concern is related to the real impact of the proposed methodology. The benefit in terms of 
NSE is very small: see Fig. 9. Is this improvement relevant for hydrological application? If we focus 
exclusively on model performances I do not think this methodology shows a significant improvement. 5 
I suggest to emphasize more the physical considerations that may rise from the application, for example 
in terms of sensitivity of specific parameters in relation to the particular nature of the study area, or 
regarding the evaluation of parameters correlation. From my point of view this methodology may 
provide additional insights regarding the interactions among model parameters under different 
hydrological conditions. In other words: since the improvement in terms of NSE seems to be not 10 
relevant, what are the added values of this methodology compare to existing ones?" 
Responses to main comment #1: 
Notwithstanding a small increase in maximum ENS, there is a significant improvement in minimum 
ENS by using the proposed method. Comparing case 6 (using the optimal combination of ranges) with 
case 1 (using the initial ranges) in Fig. 9, we find that the maximum ENS increases by 0.001 while the 15 
minimum ENS (except outliers) increases by 0.01. The rising minimum ENS with the fixed maximum 
contributes to the shrinkage of the range of the possible solutions. As a result, the uncertainty of the 
model performance can be effectively controlled. Moreover, the methodology can be used to analyze 
the parameter correlation and sensitivity by computing two indexes ܴେ	ଢ଼,ଡ଼ and ܵா. The paper presents 
the preliminary study of the proposed methodology. In the preliminary study, we adopt a Xinanjiang 20 
model with several parameters to evaluate the calibration efficiency of the methodology. Since the 
parameter Im having negative effect on other parameters is a little bit insensitive in a Xinanjiang model, 
a modest improvement in calibration efficiency is found after the application of the methodology. In 
future, we will consider using other complicated hydrologic models with more parameters to further 
study the application of the methodology. 25 
 
Main comment #2 
"Continuing on the effectiveness of the methodology, the Author do not provide any information 
regarding the initial GA calibration. Are there benefits from the application of the methodology in 
terms of NSE values? What are the computational/time efforts required for the implementation of the 30 
calibration framework compared to other techniques?" 
Responses to main comment #2: 
Since the GA method is very common tool for parameter calibration of hydrologic models, we provide 
a little information about GA calibration. In the study, we carried out trial tests to determine the optimal 
combination of control parameters: crossover probability of 0.5, mutation probability of 0.7 for the 35 
individual, mutation probability of 0.5 for each gene, population size of 21, maximum generation 
number of 500 and maximum iteration number of 50. These parameters were kept constant for GA 
calibration in the investigation. The application of the proposed methodology results in an increase of 
0.01 in minimum ENS, compared with that of the pure GA method. The rising of minimum ENS with 
little change of the maximum may shrink the range of the possible solutions. As a result, the uncertainty 40 
of the model performance can be effectively controlled. 
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  Through a run of calibration framework, a combination of values of all parameters and the 
corresponding ENS are obtained. Figure C shows the variation curves of maximum and minimum 
values of ENS with number of runs by using a GA method and a proposed PRS method, respectively. 
It is indicated from Figure A that no mater it is maximum or minimum ENS, the value calculated with 
a proposed method is almost the same as that with a GA method when the number of runs is less than 5 
100. If a proposed method is used for calibration instead of a GA method, there are approximately an 
increase of 0.001 in maximum ENS and an increase of 0.01 in minimum ENS when the number of runs 
is greater than 100. Thus, for any particular run number, the value of ENS calculated with a PRS method 
is not less than that with a GA method. The application of a proposed method, therefore, contributes 
to a more efficient calibration than that of a GA method does.  10 
 

 

Figure C. the variation curves of maximum and minimum ENS with number of runs by using a GA method and 
a proposed PRS method 

 15 
Main comment #3 
"Is there a specific reason for considering the MAXR range interval in addition to MINR (see Figure 
3). Why a modeler should consider the range of minimum probability density of the parameter values? 
If it is not necessary I suggest to consider its removal from the analysis." 
Responses to main comment #3: 20 
In order to figure out how the selections of two typical ranges, MINR and MAXR, affect respectively 
the calibration efficiency under different distribution types, we considered the MAXR range internal 
in Figure 3. From the results shown in Figures 6-7 (referring to parameter CI of a normal distribution 
and parameter KI of an exponential distribution), it is indicated that MINR is better than MAXR for 
improving calibration whichever distribution is specified. We removed, therefore, the MAXR range 25 
interval from the later analysis presented in Figure 8. As it is one of the main results of the study that 
MINR is better than MAXR for improving calibration, we would like to keep the MAXR range interval 
in Figures 3/6/7. 
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Main comment #4 
"At P7, line 25. Why this is obvious? Looking at Fig. 5 this is not. Do the Authors apply statistical 
tests to evaluate the statistical distribution of the parameters?" 
Responses to main comment #4: 5 
There are three types of distribution discussed in the investigation. In order to distinguish them, a 
simple method in section 3.2.2 was used based on shapes of the cumulative frequency curve and the 
histogram as well as the sizes of whiskers and box in the box-plot. Despite simplicity, it is subjective 
and unintelligible to readerships. For avoiding the confusion as described in this comment, a 
Kolmogorov-Smirnov (K-S) test will be employed to objectively identify each distribution type in the 10 
revised paper. Indeed, we carried out K-S tests to evaluate statistical distributions of all parameters in 
the hydrologic model. The results of K-S tests for parameters CI, Kc, and SM are listed in the following 
Table B. It is shown that both exponential and uniform distributions are rejected for the three 
parameters while normal distribution is not. It implies that the three parameters follow normal 
distributions. Therefore, the simple method used earlier does not change the results of the study, 15 
although it is subjective. 
 
Table B. The results of K-S tests for parameters CI, Kc, and SM  

 
 20 
Main comment #5 
"Concerning the 7 scenarios reported in table 5, how have you defined them? Are there specific reasons 
behind the use of initial or optimal ranges for cases 5, 6 and 7? In addition, I suggest to keep the same 
column order for parameters, it’s easier to read table 5 in relation to the values of table 4." 
Responses to main comment #5: 25 
Case 1 was defined as the initial case using all initial ranges. Cases 2-4 were defined as the single 
parameter range selection (S-SPR) cases. Cases 5-7 were defined as the multiple parameters ranges 
selections (M-SPR) cases.  
  The seven cases were set to demonstrate three primary results. Firstly, the M-SPR method is superior 
to the S-SPR one for calibrating hydrologic models with multiple parameters. It can be deduced from 30 
higher ENS values of Cases 5-7 than those of Cases 1-4. Secondly, merely using the optimal range of 
the parameter of relatively higher sensitivity contributes to more efficient calibration when the two 
parameters have negative effect on each other. It can be concluded by comparing the ENS values of 

CI Kc SM

Normal Exponential
（2P） Uniform Normal Exponential

（2P） Uniform Normal Exponential
（2P） Uniform

Statistic 0.0623 0.32805 0.1151 0.09199 0.37961 0.10694 0.05983 0.30392 0.10982

P-Value 0.80925 5.40E-10 0.1306 0.34466 3.08E-13 0.18882 0.84521 1.23E-08 0.16628

ߙ 0.2 0.01 0.2 0.2 0.01 0.2 0.2 0.01 0.2

Reject? No Yes Yes No Yes Yes No Yes Yes
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Cases 2-4 referring to the two parameters EX and Im. Thirdly, the combination of optimal ranges of 
all parameters is not the optimum inasmuch as some parameters like Im have negative effects on other 
parameters. It can be inferred through analyzing the ENS values of Cases 5-7. The analysis of sensitivity 
and correlation between parameters is, therefore, very important to determine the optimum ranges 
combination of all parameters for model calibration.  5 
  As for the column order of tables, we will modify Table 2, 5 so that the parameters are ordered in 
the same way as they do in Table 4. 
 

Main comment #6 
"The writing in some part of the manuscript should be improved. I suggest to carefully go through the 10 
overall manuscript and check verbs and syntax (here some example: P5, L3; P5, L23; P6, L5, P9, L25-
26; ...; P10, L17)." 
Responses to main comment #6: 
We will revise the manuscript as the suggestion: 
Page 5, line 3: "which representing agreement between observed and simulated data" >> "which 15 

represents the agreement between observed and simulated data" 
Page 5, line 23: "…, the initial range of parameter is required adjusting properly" >> "…, the initial 

range of parameter requires adjusting properly" 
Page 6, line 5: "... values can transform and finally convert into..." >> "... values can be converted 

into..." 20 
Page 9, line25-26: "...when Case 4 compared with Case 1, Case 2 and Case 3 It can be explained..." >> 

"... when Case 4 is compared with Case 1, Case 2 and Case 3. It can be explained..." 
Page 10, line 17: "to adopted" >> "to be adopted" 
 
In addition, we will check the paper carefully and correct the other language errors. For example: 25 
Page 1, line 3: "Qiaofeng." >> "Qiaofeng" 
Page 1, line 14: "characteristics of single parameter value was analysed" >> "of single parameter 

value was analysed" 
Page 1, line 17: "corresponding to the distribution" >> "corresponding to the distribution type" 
Page 2, line 4: "mechanism of water cycle" >> "mechanism of the water cycle" 30 
Page 2, line 9: "the streamflow at catchment outlet" >> "the streamflow at the catchment outlet"  
Page 3, line 23-24: "single parameter is selected" >> "single parameter was selected" 
Page 3, line 30: "in flood reason" >> "in flood season" 
Page 4, line 18: "from observed streamflow" >> "from the observed streamflow" 
Page 5, line 11: "whisker to the box" >> "the whisker to the box" 35 
Page 5, line 28: "represents the ranges" >> "represent the ranges" 
Page 6, line 4: "in case of larger percentage" >> "in case of a larger percentage" 
Page 6, line 11: "may more and less effect" >> "may affect" 
Page 6, line 13: "contributes" >> "contribute" 
Page 6, line 15: "The index Rc were quantified" >> "The index Rc was quantified" 40 
Page 6, line 17: "the greater positive influence" >> "greater positive influence" 
Page 7, line 2: "The statistic analysis" >> "The statistical analysis" 
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Page 7, line 6: "ranges is substituted" >> "ranges are substituted" 
Page 7, line 8: "the selected one is adopted for calibration of multiple parameters." >> "the selected 

ones are adopted for multi-parameters model calibration." 
Page 7, line 16: "In stage 3 the ... " >> "In stage 3, the ..." 
Page 7, line 26: "direction of Y axis" >> "direction of the Y axis" 5 
Page 7, line 30-31: "The ratio of calibrated parameter range to initial one is less than 30% for 

parameters CI, SM, and Kc" >> "The ratios of the calibrated parameter range to the initial one are 
less than 30% of parameters CI, SM, and Kc"  

Page 7, line 31: "It suggest that" >> "It suggests that" 
Page 8, line 6: "To normal distribution" >> "For normal distribution" 10 
Page 8, line 7: "different parameter range are selected" >> "different parameter ranges are selected" 
Page 8, line 13: "concentrates at larger value zone" >> "concentrates at a higher value range" 
Page 8, lien 24: "Because the parameter values in MINR indicate a high probability to be picked out 

to achieve high ENS, vice versa." >> "It is because that the parameter values that may achieve a 
higher ENS can be easily picked out from the MINR of higher probability density." 15 

Page 8, line 33: "box-plot chart of ENS for different ranges are shown in Fig. 8e" >> "box-plots for 
different ranges are shown in Fig. 8e" 

Page 9, line 6: "value in columns" >> "values in columns". 
Page 9, line 15: "… and CG are of high sensitive to ENS" >> "... and CG are highly sensitive to ENS" 
Page 9, line 20: "penetrate" >> "penetrability" 20 
Page 9, line 23: "there is contradiction owing to it" >> "there is a contradiction owing to it" 
Page 9, line 25: "pf" >> "of" 
Page 10, line 13: "the extension range followed by" >> "the extended range followed by" 
 

Specific comment #1 25 
"Abstract: in the last part of the abstract, roughly from line 20 on, the Authors report some specific 
methodological considerations that may not be really clear to one who has not already read the paper. 
I suggest to focus more on the scope and aims of the analysis, reporting also that the methodology 
proposes indexes for the evaluation of parameter sensitivity and correlations, as well as a summary of 
the main outcomes." 30 
Responses to specific comment #1: 
According to the comments of the referee, we will rewrite the abstract as follows: 
The parameters are usually calibrated to achieve good performance of hydrological models, owing to 
the highly non-linear problem of hydrology process modelling. However, parameter calibration 
efficiency has a direct relation with parameter range. Furthermore, parameter range selection is 35 
affected by probability distribution of parameter values, parameter sensitivity and correlation. A newly 
proposed method is employed to determine the optimal combination of multi-parameter ranges for 
improving the calibration of hydrological models. At first, single-parameter probability distributions 
were analyzed based on 100 samples obtained from independent Genetic Algorithms (GA) calibration 
performed on a Xinganjiang model with a corresponding initial parameter range and, the distribution 40 
type (i.e. normal, exponential and uniform distributions) was specified for each parameter of the model. 
Then, the optimal range for each parameter was determined by comparing ENS values calculated 
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separately with the initial range, the minimum and maximum ranges of a given cumulative frequency 
of 50% (i.e. MINR and MAXR) and the extended range. Next, parameter correlation and sensibility 
were evaluated by quantifying two indexes ܴେ	ଢ଼,ଡ଼ and ܵா which can be used to coordinate with the 
negatively correlated parameters to specify the optimal combination of ranges of all parameters for 
calibrating models. It is shown from the investigation that the probability distribution of calibrated 5 
values of any particular parameter in a Xinanjiang model is closely approximated by a normal or 
exponential distribution. The multi-parameter optimal range selection method is superior to the single-
parameter one for calibrating hydrologic models with multiple parameters. The combination of optimal 
ranges of all parameters is not the optimum inasmuch as some parameters like Im have negative effects 
on other parameters. The application of the proposed methodology gives a rise to an increase of 0.01 10 
in minimum ENS compared with that of the pure GA method. The rising of minimum ENS with little 
change of the maximum may shrink the range of the possible solutions, which can effectively reduce 
uncertainty of the model performance. 
 

Specific comment #2 15 
"P1, L29: is “method” appropriate to indicate hydrological process modelling? I would suggest 
something like “tools” or similar." 
Responses to specific comment #2: 
We will replace “method” with “tool” in the first sentence of “Introduction”. 
 20 
Specific comment #3 
"P4, L28: On which base you say that 100 samples are enough? Have you adopted some statistical 
texts to verify the statistical distribution of the considered parameters." 
Responses to specific comment #3: 
Before defining sampling size value, we performed a lot of trial tests. Figure D shows the variation 25 
curves of maximum and minimum ENS with sample size. It is indicated that both maximum and 
minimum ENS keep stable when sampling size is greater than 100. Avoiding the time-consuming 
computation, we assigned sampling size for the study as 100. 
  With regard to the statistical distribution of the parameters, we performed the K-S tests to define the 
distribution type for each parameter. The results of some K-S tests are given in the response to main 30 
comment #4.  
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Figure D. Variation curves of maximum and minimum ENS with sample size 

 

Specific comment #4 
"P4, L3: “A Genetic Algorithm (GA) was selected”" 5 
Responses to specific comment #4: 
Actually, the sentence mentioned above appears in P4, L30. We will modify it as it is suggested. 
 

Specific comment #5 
"P9, L6: why do you say that it is obvious?" 10 
Responses to specific comment #5: 
According to the values in Table 4, RC value in columns of parameters CI and WM are positive, 
most RC values in column of parameter Im are negative. In order to make it easy to read, we will 
change it to “It is obvious from Table 4 that […]”. 
 15 
Specific comment #6 
"P10, L7: please remove the colon;" 
Responses to specific comment #6: 
We will remove the colon in Line 7 of Page 10. 
 20 
Specific comment #7 
"Fig. 2: check “curve”; I also suggest to re-word the caption as: [...]; Cumulative frequency and [...] 
distribution for normal (b), exponential (c) and uniform (d) distributions." 
Responses to specific comment #7: 
We will replace "cure" with "curve" in the caption of Figure 2. In addition, we will modify the caption 25 
of Figure 2 as suggested: “…; Cumulative frequency curve and histogram for normal (b), exponential 
(c) and uniform (d) distributions”. 
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Specific comment #8 
"Fig. 6, 7 and 8: is it necessary to report the label “schema”?" 
Responses to specific comment #8: 
We will remove the label “schema” in Figs. 6a, 6b, 6c, 7a, 7b, 7c, 8a, 8b, 8c and 8d. 5 
 

Specific comment #9 
"Table 1: is P the average or the max?" 
Responses to specific comment #9: 

We will modify the note on Table 1 as follows: "QMax, QMin and QAvg mean the maximum, minimum 10 
and average value of daily streamflow, respectively, and PMax means the maximum value of daily 
precipitation.". Meanwhile, we will modify the corresponding description in section 2 to avoid the 
misunderstanding. 
 

Specific comment #10 15 
"Table 2: the definition of parameter B seems not complete. Also, the column “range” of Table 2 is 
reported twice (see Table 3)." 
Responses to specific comment #10: 
We will complete the definition of parameter B in the modified Table 2 presented below. The column 
“range” of Table 2 will be changed as column “units” because the ranges of parameters are reported in 20 
Table 3. 
 
Table 2. Parameters of Xinanjiang model 

Parameter Definition Units 

CI Recession constants of the lower interflow storage dimensionless 

Kc Ratio of potential evapotranspiration to pan evaporation dimensionless 

KI Outflow coefficients of the free water storage to interflow dimensionless 

SM 
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
mm 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity 

of the spatial 
dimensionless 

WM  Averaged soil moisture storage capacity of the whole layer mm 

C 
Coefficient of the deep layer, that depends on the proportion of the basin area covered by 

vegetation with deep roots 
dimensionless 

EX 
Exponent of the free water capacity curve influencing the development of the saturated 

area 
dimensionless 

CG Recession constants of the groundwater storage relationships dimensionless 

KG* Outflow coefficients of the free water storage to groundwater relationships dimensionless 

Im Percentage of impervious and saturated areas in the catchment dimensionless 

* the value of KG is calculated by the function 0.7-KI 
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Specific comment #11 
"Table 3: the main legend is not really clear, I suggest to re-word it. ** “ratio of calibrated 
parameter ...”" 
Responses to specific comment #11: 5 
The definition of “Ratio” in Table 3 will be modified as follows: “** the ratio is calculated by dividing 
the parameter range derived from 100 GA calibration by the initial parameter range”. 
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Part 2 Relevant Changes Following Referees’ Comments 
1. Following “Referee #1 Main comment #1”, “Referee #2 Main comment #4” and “Referee #2 

Specific comment #3” comments, we have modified sections 3.2.2 & 4.1 and Table 3. The 
following were added and/or modified: 
a. Page 5, line 8-20: 5 

The probability distributions of calibrated parameters values can be estimated roughly by 
using box-plot charts, cumulative frequency curves and frequency histograms. The 
symmetry of the box-plot chart (including one box and two whiskers) and the length ratio 
of the whisker to the box, the shape of the cumulative frequency curve and the frequency 
histogram are important indicators for the identification of the distribution type. Based on 10 
these indicators, three types of probability distributions are listed as follows: (1) Normal 
distributions, the box and whiskers are approximately symmetrical along the Y-axis 
direction, the length of either whisker is longer than half height of the box in a box-plot chart 
(Fig. 3a), the cumulative frequency curve is S shaped and the histogram bell shaped (Fig. 
3b); (2) Exponential distributions, the whole chart is distinctly asymmetrical in the Y-axis 15 
direction which means that the average value (marked with a small hollow square) deviates 
from the median value (marked with a centre line in box), the box is inclined to one side 
with the extreme shorter whisker (Fig. 3a), the cumulative frequency curve is parabola 
shaped, and the histogram tends to increase or decline gradually (Fig. 3c); (3) Uniform 
distribution, the box and whiskers are approximately symmetrical along the Y-axis direction, 20 
the length of two whiskers is close to that of the box (Fig. 3a), the cumulative frequency 
curve tends to a straight line and the histogram varies little along the X-axis (Fig. 3d). 

b. Page 5, line 21: 
"A Kolmogorov-Simirnov test (K-S test) tries to examine whether a data set fit a reference 
probability distribution or not (Haktanir, 1991). In a K-S test, for any variable xi in a data 25 
set, the empirical distribution function value (Fi) is calculated by using a plotting position 
formula, and the cumulative distribution function value (Fi*) is computed by using the 
reference probability distribution. The maximum deviation between the two values, ∆ெ௔௫, 
is expressed in Eq. (2). 
∆ெ௔௫= ∗௜ܨ| −  ௜|                                                        (2) 30ܨ
According to the acceptable level of significance (0.2=ߙ) ߙ and the total number of values 
in a data set n, ∆௧௔௕௟௘  can be obtained from the K-S table. If ∆ெ௔௫< ∆௧௔௕௟௘ , the reference 
probability distribution is identified to fit to the data set." 

c. Page 7, line 25-27: 
"It is obvious that the box and whiskers are symmetrical and the length of whiskers is longer 35 
than that of box along the direction of Y axis for parameter CI, SM and Kc." >> " It is 
obvious from Fig. 7 that the box and whiskers are approximately symmetrical and the length 
of whiskers is longer than that of half box along the direction of the Y axis for parameters 
CI, SM and Kc." 

d. Page 7, line 30: 40 
"Furthermore, K-S tests were employed to determine the probability distributions of 
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parameters and the corresponding results are listed in Table 3. It is shown that only a normal 
distribution is accepted for parameters CI & SM. Despite the fact that both normal and 
uniform distributions are accepted for parameter KC, the probability distribution of 
parameter KC is regarded as a normal distribution. It is because that the ∆ெ௔௫ will become 
smaller if a normal distribution serves as a reference distribution instead of a uniform 5 
distribution. In addition, just an exponential distribution is accepted for the rest of the 
parameters. Thus, the three parameters follow normal distributions and the others 
exponential distributions in the Xinanjiang model." 

e. Page 23: 
Table 3. Range changes and K-S tests (0.2=ߙ) of parameters in schema Initial 10 

Parameter Initial range Calibrated range* Ratio** (%) 

∆ெ௔௫*** 

Normal 

distribution 

Expoential 

distribution 

Uniform 

distribution 

CI 0–0.9 0.630–0.745 12.78 0.062 (pass) 0.328 (fail) 0.115 (fail) 

Kc 0–1.1 0.81–1.09 25.45 0.076 (pass) 0.305 (fail) 0.089 (pass) 

KI 0–0.7 0.534–0.7 23.71 0.128 (fail) 0.076 (pass) 0.173 (fail) 

SM 10–50 31–39.4 21.00 0.060 (pass) 0.304 (fail) 0.110 (fail) 

B 0.1–0.4 0.238–0.4 54.00 0.180 (fail) 0.062 (pass) 0.203 (fail) 

WM 120–200 120–150 37.50 0.181 (fail) 0.072 (pass) 0.231 (fail) 

C 0.1–0.2 0.1–0.2 100.00 0.163 (fail) 0.082 (pass) 0.217 (fail) 

EX 1.0–1.5 1.0–1.5 100.00 0.118 (fail) 0.079 (pass) 0.135 (fail) 

CG 0.950–0.998 0.950–0.994 91.67 0.123 (fail) 0.102 (pass) 0.139 (fail) 

Im 0.01–0.04 0.01–0.04 100.00 0.134 (fail) 0.076 (pass) 0.148 (fail) 

* the calibrated parameter range except the extreme outlier 

** the ratio is calculated by dividing the length of the range derived from 100 GA calibration runs by the initial range length 
*** the ∆ெ௔௫ is calculated by using the normalnized parameter values 

 
2. Following “Referee #1 Main comment #3” and “Referee #2 Main comment #6” comments, we 15 

have revise the manuscript as the suggestion. In addition, we have checked the paper carefully and 
corrected the other language errors. The following were added and/or modified: 
Page 1, line 3: "Qiaofeng." >> "Qiaofeng" 
Page 1, line 14: "characteristics of single parameter value was analysed" >> "of single parameter 

value was analysed" 20 
Page 1, line 17: "corresponding to the distribution" >> "corresponding to the distribution type" 
Page 2, line 2: "The hydrological model is a type of black-box model in 1932 originally (Sherman, 

1932), and conceptual models and distributed models are subsequently put forward in 1960s 
(Freeze and Harlan, 1969)." >> "The initial hydrological model was a black-box model in 1932 
(Sherman, 1932) and conceptual & distributed models are subsequently put forward in 1960s 25 
(Freeze and Harlan, 1969)." 

Page 2, line 4: "mechanism of water cycle" >> "mechanism of the water cycle" 
Page 2, line 6: "the interflow and base flow are simplified" >> "the interflow and the base flow are 

simplified" 
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Page 2, line 9: "the streamflow at catchment outlet" >> "the streamflow at the catchment outlet"  
Page 2, line 15-16: "obtain exact optimal solution" >> "obtain an exact optimal solution" 
Page 2, line 17: "mathematical methods, having wide application in …" >> "mathematical 

calculations, having a wide application in …" 
Page 2, line 25: "having powerful capability" >> "having a powerful capability" 5 
Page 2, line 27: "search for the optimal solution" >> "search for the an optimal solution" 
Page 2, line 30: "of the hydrological model" >> "of a hydrological model" 
Page 2, line 31-32: "In general, parameter variables obey some types of probability distribution in 

the given range after multiple independent repeat calibration by an auto-calibration method" >> 
"In general, parameter variables obey some special probability distributions within the given 10 
range after multiple independent calibration" 

Page 2, line 32-33: "Graziani et al. (2008) stated that the shape of the parameter value probability 
distributions can be significantly affected by their ranges. " >> "Graziani et al. (2008) stated that 
the shape of a parameter probability distribution can be significantly affected by a parameter 
range. " 15 

Page 3, line 2: "Although Normal …" >> "Although normal …" 
Page 3, line 7-8: "calibration of other parameters correlated with it" >> "calibration of other related 

parameters" 
Page 3, line 9: "varies with catchment characteristic, objective function …" >> "varies with 

catchment characteristics, objective functions …"  20 
Page 3, line 10: "parameter ranges lead to" >> "parameter ranges could lead to" 
Page 3, line 11: "reducing or extending the ranges would affect the parameters sensitivity, making 

insensitive parameters …" >> "reducing or extending ranges might make insensitive 
parameters …" 

Page 3, line 15-16: "The more deviation between true ranges and given range, the more instability 25 
of calculated result." >> "The more deviation between an optimal range and a given range, the 
more uncertainty of the calculation results." 

Page 3, line 16: "Appropriate parameter ranges selection is ..." >> "The selection of appropriate 
parameter ranges is …" 

Page 3, line 16: "few literature reported" >> "few literature covers information on" 30 
Page 3, line 21-23: "At first, probability distribution characteristics of parameter values were 

analysed based on the parameter value samples that calibrated by using a GA method." >> "At 
first, probability distribution of each parameter was analysed based on a lot of independent 
calibrations by using a GA method." 

Page 3, line 23-24: "range of single parameter is selected" >> "range of a single parameter was 35 
specified" 

Page 3, line 30: "in flood reason" >> "in flood season" 
Page 3, line 31: "The thickness of soil varies in most karst areas tremendously different with space: 

limestone exposed in some peak-cluster region, 2-10 m thickness clay covered in the depression 
and valley bottom." >> "The thickness of soil varies spatially in most karst areas. Limestone is 40 
exposed to air in some peak-cluster region. Clay soil with thickness ranging from 2 to 10m is 
distributed in the depressions and valleies." 
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Page 4, line 8-10: "The maximum areal precipitation of the studied catchment varies with year, the 
value is 235 mm/d of 1996 while 107 mm/d of 2000. The average streamflow decreases from 
14.38 to 11.37 m3/d during the studied period." >> "The maximum areal daily precipitation 
varied with years in the studied catchment and reached the value of 235 mm/d in 1996." 

Page 4, line 13: "parameters ranges selections" >> "parameters ranges selection" 5 
Page 4, line 18: "from observed streamflow" >> "from the observed streamflow" 
Page 4, line 19: "the meaning and the common range of …" >> "the definitions of …" 
Page 4, line 20-21: "The proposed PRS method is introduced as follows, taking a Xinanjiang model 

for example." >> "The proposed PRS method is introduced as follows, when a Xinanjiang model 
is taken as an example." 10 

Page 4, line 24: "In theory, the results of calibration by using a stochastic-based auto-calibration 
method are not completely same but similar in a reasonable convergence condition, which obey 
some probability distributions." >> "In theory, the parameter values calibrated by using a 
stochastic-based auto-calibration method are not same to each other but obey a certain 
probability distribution under a reasonable convergence condition." 15 

Page 4, line 28: "… calibrated parameter values" >> "… calibrated parameter values in the 
investigation" 

Page 4, line 30: "because GAs are common …" >> "because GA is a common …" 
Page 4, line 31-32: "Many studies showed that the evolutionary algorithms could provide equal or 

better performance than other algorithms" >> "Many studies show that evolutionary algorithms 20 
provide equal or better performance of a model than other algorithms do" 

Page 5, line 3: "which representing agreement between observed and simulated data" >> "which 
represents the agreement between observed and simulated data" 

Page 5, line 5-6: "… observed streamflow … observed streamflow … simulated streamflow … 
mean value …" >> "… the observed streamflow … the observed streamflow … the simulated 25 
streamflow … the mean value …" 

Page 5, line 11: "whisker to the box" >> "the whisker to the box" 
Page 5, line 23: "…, the initial range of parameter is required adjusting properly" >> "…, the initial 

range of a parameter requires adjusting properly" 
Page 5, line 24: "the different ways to adjust specify the optimal ranges for a single parameters" >> 30 

"the different ways to adjust specify the optimal ranges for a single parameter" 
Page 5, line 25: "For uniform distribution, it is better to keep initial range due to little influence of 

the range on calibration results." >> "For the parameter of a uniform distribution, it is better to 
keep the initial range due to little influence of ranges on calibration results." 

Page 5, line 25-26: "For normal distribution, the cumulative frequency curve is employed to seek 35 
several of reduced ranges …" >> "For the parameter of a normal distribution, the cumulative 
frequency curve is employed to seek some reduced ranges …" 

Page 5, line 28: "represents the ranges …with a given cumulative frequency …" >> "represent the 
ranges …under a given cumulative frequency …" 

Page 5, line 29-30: "As for exponential distribution, the initial range can be doubled from the 40 
boundary of high probability density to the outside, if the parameter has reasonable meaning in 
the new range." >> "As for the parameter of an exponential distribution, the initial range is 
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symmetrically duplicated on one side of high probability density, if the parameter has reasonable 
meaning in the extended range." 

Page 5, line 30-31: "Thus, the exponential distribution can be converted into normal distribution 
and then the optimal range can be selected by using the method for normal distribution." >> " 
Then, the optimal range of the parameter can be specified by comparing different ENS calculated 5 
separately by using the initial range, the MINR or MAXR of the initial range, the MINR or 
MAXR of the extended range." 

Page 6, line 5: "... values can transform and finally convert into..." >> "... values can be converted 
into..." 

Page 6, line 8-10: "As far as the Xinanjiang model … both parameter WM and B refer to the water 10 
storage volume – area curve that representing ..." >> "As far as a Xinanjiang model … parameters 
WM and B refer to the water storage volume – area curve that represents ..." 

Page 6, line 10: "If the curve is fixed, a larger WM results in a smaller B" >> "If the curve is fixed, 
the larger WM results in the smaller B" 

Page 6, line 10-11: "The change of a parameter range may more or less effect the calibration of 15 
other parameters." >> "As a result, the range change of parameter WM may affect the range 
setting and calibration of parameter B." 

Page 6, line 11: "if several parameters ranges require adjusting" >> "if the ranges of the related 
parameters require adjusting" 

Page 6, line 13: "If the change of one parameter … other parameters, the selected ranges for the 20 
parameter will contributes to ..." >> " If the range change of one parameter … other parameters, 
using the optimal range of the parameter instead of the initial one can contribute to ..." 

Page 6, line 14: "… the negative influence may make the contribution of the selected ranges against 
model calibration." >> "… the negative impact may result in a worse model calibration, although 
the optimal ranges of the parameters are used." 25 

Page 6, line 15-16: "The index Rc were quantified quantified to analyse the influencing degree of 
one parameter range …" >> "The index Rc was quantified to analyse the influence degree of 
one-parameter range …" 

Page 6, line 16-18: "The more close value of ܴେ	ଢ଼,ଡ଼ to 1, the greater positive influence of range 
change of parameter X on calibration of parameter Y. If ܴେ	ଢ଼,ଡ଼ less than 0 ..." >> "When ܴେ	ଢ଼,ଡ଼ 30 
is closer to 1, the range change of parameter X has a greater positive influence on the calibration 
of parameter Y. If ܴେ	ଢ଼,ଡ଼ is minus ..." 

Page 6, line 20: "the influencing degree of range change … on calibration of parameter Y" >> "the 
influence degree of the range … on the calibration of parameter Y" 

Page 6, line 22-23: "selected range" >> "the optimal range" 35 
Page 6, 24-26: "If there is negative influence between two parameters, the parameter of high 

sensitivity is ranked as primary one and its selected ranges can be kept in the range combination 
for all parameters, while the initial range is used in place of the selected range to minimize the 
negative effect for the other parameter of low sensitivity." >> "If there is a negative influence 
between two parameters, the optimal range of the parameter of higher sensitivity is used and the 40 
initial range of the other parameter kept for calibration generally to mitigate the negative impact." 

Page 6, line 26: "It is due to the fact that" >> "It is due to that" 
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Page 6, line 27: "… parameters do during multi-parameter calibration …" >> "… parameters do in 
a multi-parameter calibration …" 

Page 6, line 28: "by performing S-PRS method" >> "by performing a S-PRS method" 
Page 6, line 29-30: "The larger RE, the more concentrated ENS distribution, which means parameter 

calibration is stable and efficient. Thus, the parameter of high SE is given priority to use the 5 
selected range ..." >> "The larger value of RE, the more concentrated distribution of ENS which 
means more efficient parameter calibration. Thus, the parameter of higher SE is given priority to 
use the optimal range ..." 

Page 7, line 2: "with initial range … with selected range … The statistic analysis …" >> "with an 
initial range … with an optimal range … The statistical analysis…" 10 

Page 7, line 5: "range selection are investigated" >> "range selection were investigated" 
Page 7, line 7: "of one parameter range change" >> "of one-parameter range change" 
Page 7, line 6: "ranges is substituted" >> "ranges are substituted" 
Page 7, line 8: "the selected one is adopted for calibration of multiple parameters." >> "the optimal 

ones are adopted for the multi-parameters calibration." 15 
Page 7, line 16: "In stage 3 the ... " >> "In stage 3, the ..." 
Page 7, line 20: "of Xinanjiang model" >> "of the Xinanjiang model" 
Page 7, line 21: "100 times independent calibration" >> "100 independent calibration runs" 
Page 7, line 24-25: "The 100 calibrated values for single parameters were normalized by dividing 

them by the corresponding initial range, and the box-plot chart of the results is shown in Fig. 5. 20 
It is obvious 7 that … " >> "For any particular parameter, calibrated values were normalized by 
dividing a deviation between a calibrated value and the lower limit of the initial range by the 
length of the initial range. Based on 100 calibrated values after normalization, a box plot for a 
parameter is depicted. It is obvious from Fig. 7 that …" 

Page 7, line 26: "direction of Y axis" >> "direction of the Y axis" 25 
Page 7, line 30-31: "The ratios of calibrated parameter range to the initial one are less than 30% of 

parameters CI, SM, and Kc, while the ratio varies from 23% to 100% for parameters such as KI, 
B, CG, and Im." >> "The ratio of the calibrated range length to the initial range length is less 
than 30% for parameters CI, SM, and Kc, while the ratio exceeds 30 % for parameters B, WM, 
C, EX, CG, and Im."  30 

Page 7, line 31: "It suggest that" >> "It implies that" 
Page 8: "MINR >> the MINR" & "MAXR" >> "the MAXR" & "in case of" >> "in the case of" 
Page 8, line 1-2: "that reducing the ranges is suitable to improve calibration for parameters whose 

values obey normal distributions, whereas that is not enough for parameters whose values obey 
exponential distributions." >> "that reducing the initial ranges can improve the calibration for 35 
parameters whose values obey normal distributions." 

Page 8, line 6: "To normal distribution, reducing the range is generally used to select the appropriate 
range." >> "For a normal distribution, reducing the range was used to find the optimal range." 

Page 8, line 7: "different parameter range are selected" >> "different ranges are selected" 
Page 8, line 10-11: "whereas the normal distribution is changed to the exponential one when the 40 

range is cut to MAXR." >> "whereas the probability distribution approximates an exponential 
one when the MAXR is used." 
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Page 8, line 13: "concentrates at larger value zone" >> "concentrates at a higher value range" 
Page 8, line 13-14: "It is indicated that the reduced range of high probability density is helpful to 

make calibration more steady and efficient." >> "Using the reduced range of high probability 
density is, therefore, helpful to make calibration more stable and more efficient." 

Page 8, line 16-18: "Figure 7 shows the calibration results of parameter KI. Since the initial range 5 
of parameter KI can not be extended, the reduced range was searched by using the cumulative 
frequency curve, the MINR (0.660–0.700) and MAXR (0.522–0.660) were picked out." >> 
"Figure 9 shows the calibration results under three different input ranges of parameter KI. Since 
the initial range of parameter KI cannot be extended, the two reduced ranges (i.e. the MINR 
(0.660–0.700) and the MAXR (0.522–0.660)) were picked out by using the cumulative 10 
frequency curve." 

Page 8, line 19-20: "… parameter KI values is converted from exponential distribution to uniform 
distribution when the initial range is reduced to MINR, whereas the exponential distribution is 
still kept when the range is cut to MAXR." >> "…parameter KI values is similar to a uniform 
distribution in the case of the MINR, whereas that is still exponential in the case of the MAXR." 15 

Page 8, line 20-22: "The contribution of parameter ranges to ENS is shown in Fig. 7d. Similar to the 
results of parameter CI, MINR is best for calibration when compared with MAXR or initial 
range." >> "The contributions of the three parameter ranges to ENS are shown in Fig. 9d. Thus, 
the MINR is best for calibration of parameter KI when compared with the MAXR or the initial 
range, which is similar to the calibration result of parameter CI." 20 

Page 8, lien 24: "Because the parameter values in MINR indicate a high probability to be picked 
out to achieve high ENS, vice versa." >> "It is because that the parameter values that may achieve 
a higher ENS can be easily picked out from the MINR of higher probability density." 

Page 8, line 31-32: "… the probability distribution of parameter B values is converted into 
approximate uniform distribution when the range is reduced from initial range to MINR or from 25 
the extended range to extension-MINR." >> "… the probability distribution of parameter B 
approximates a uniform distribution when the MINR or the extension-MINR is used." 

Page 8, line 33: "box-plot chart of ENS for different ranges are shown in Fig. 8e" >> "box-plots for 
different ranges are shown in Fig. 10e" 

Page 9, line 5: "The S-PRS method was employed to select the one-parameter optimal range for 30 
each parameter, and the optimal ranges, indexed RC and SE values are listed in Table 4." >> "The 
S-PRS method was employed to determine the optimal range for each parameter. According to 
the optimal ranges and the corresponding initial ranges, indexed RC and SE were quantified to 
understand parameter correlation and sensitivity." 

Page 9, line 6: "value in columns of parameter CI and WM" >> "values in the columns of 35 
parameters CI and WM". 

Page 9, line 10-12: "Parameter CI has the maximum RC mean of 0.465, while parameter Im the 
minimum RC mean of –0.026. Furthermore, RC mean values for all parameters are positive except 
for that for parameter Im. It is due to the accumulative negative influence of parameter Im on 
others." >> "Parameter CI has the maximum RC mean of 0.465 and parameter Im the minimum RC 40 
mean of –0.026. Furthermore, all parameters have positive RC mean values except for parameter Im, 
owing to the accumulative negative correlation between parameter Im and the others." 
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Page 9, line 13: "To coordinate the contradiction between parameters, the index SE is used to pick 
parameters of high sensitivity to ENS." >> "To coordinate with negatively related parameters, the 
index SE was used to pick out parameters of higher sensitivity to ENS." 

Page 9, line 15: "It suggests that parameters CI, B, SM, KI, Kc, WM and CG are highly sensitive 
to ENS, and parameters C, EX and Im of low sensitivity for ENS. CI is the most sensitive parameter 5 
while Im the most insensitive parameter …" >> "It suggests that parameters C, EX and Im are 
of low sensitivity to ENS and the others highly sensitive to ENS. Parameter CI is the most sensitive 
while Im the most insensitive …" 

Page 9, line 20: "penetrate" >> "penetrability" 
Page 9, line 22-23: "It can be deduced that the optimal range of insensitive parameter Im cannot be 10 

taken into account when there is a contradiction owing to it, in order to improve calibration." >> 
"Thus, the optimal ranges of parameters of higher sensitivity should be used to improve 
calibration." 

Page 9, line 24: "seven cases are investigated" >> "seven cases were investigated" 
Page 9, line 25: "pf" >> "of" 15 
Page 9, line 25: "The results of seven cases are compared in Fig. 9." >> "The box plots of ENS for 

different cases are given in Fig. 11." 
Page 9, line25-26: "...when Case 4 compared with Case 1, Case 2 and Case 3 It can be 

explained..." >> "... when Case 4 is separately compared with Case 1, Case 2 and Case 3. It can 
be explained..." 20 

Page 9, line 27: "As SE of parameter Im is less than that of parameter EX, parameter EX is given 
priority to select the optimal range," >> "As the SE value of parameter Im is less than that of 
parameter EX, parameter EX is given priority to use the optimal range." 

Page 9, line 31-page 10, line 2: "The box and whisker of ENS for Case 6 rise, which means Case 6 
has a better performance of calibration than Case 5 does, when the optimal range of parameter 25 
CG is included. But the box and whisker of ENS for Case 7 decline when the optimal range of 
parameter Im is included. Because the mean RC value of parameter Im is negative and its SE 
much less than that of others, using the optimal range of Im is adverse to multi-parameter 
combined calibration." >> "Case 6 has the most concentrated values of ENS and the largest mean 
value of ENS among the three cases. It means that the combination of optimal ranges of all 30 
parameters (see Case 7) is not the optimum to calibrate a multi-parameter model inasmuch as 
some parameters like Im have negative correlation on other parameters. Hence, the initial ranges 
of parameters having negative mean values of RC and low values of SE are supposed to be used 
to calibrate parameters instead of the corresponding optimal ranges." 

Page 10, line 4-7: "Considering that there is the relation between the parameter ranges and 35 
probability distributions of parameter value, an approach to determine the optimal range 
combination for multi parameters of hydrological models is put forward by analysing the 
parameter value probability distribution, parameter sensitivity and parameter correlation. A case 
of improving the calibration of the GA-based Xinanjiang model for karst areas is studied, and 
some findings are presented as follows." >> "Considering that there is a relation between the 40 
selection of multi-parameter ranges and the calibration effect of a hydrological model, an 
approach to determine an optimal combination of ranges for the multi-parameter calibration was 
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put forward by analysing parameter probability distribution, parameter sensitivity and 
correlation between parameters. The newly proposed method was applied for the calibration of 
a Xinanjiang model for karst areas, and some findings are presented as follows." 

Page 10, line 13: "the extension range followed by MINR is recommended" >> "the extension-
MINR is recommended" 5 

Page 10, line 17: "to adopted" >> "to be adopted" 
Page 10, line 18-19: "The investigation is financially supported by special funds for scientific 

research on public causes of Chinese Ministry of Water Resources" >> "The investigation is 
supported by special funds for public welfare industry research projects of the Ministry of Water 
Resources of the People’s Republic of China" 10 

 
3. Following “Referee #1 Specific comment #1” and “Referee #2 Specific comment #3” comments, 

we have expanded sections 3.2.1 & 3.3.1 and add Figures 2 & 5 to clarify more on how to determine 
the sampling size and cumulative frequency value. The following were added and/or modified: 
a. Page 4, line 27-29: 15 

"As far as the sample size is concerned, 100 samples are enough to estimate the probability 
distribution of calibrated parameter values in the investigation, which is deduced from the 
results of trial tests as shown in Fig. 2. It can be seen that both maximum and minimum ENS 
keep stable when sampling size is greater than 100." 

b. Page 15: 20 

 
Fig. 2. Variation curves of maximum and minimum ENS with sample sizes 

 
c. Page 6, line 4: 

"Figure 5 gives the variation curves of maximum and minimum ENS of a single parameter 25 
with cumulative frequency values. It is found that the maximum ENS keeps constant despite 
a cumulative frequency value varying, while the minimum ENS approaches the peak value 
of 0.881 when the cumulative frequency value is equal to 50%. Considering that higher 
minimum ENS contributes to more efficient calibration, the fixed cumulative frequency value 
of 50% was selected to determine the ranges of maximum and minimum probability density 30 
(i.e. MINR and MAXR) for each parameter." 
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d. Page 16: 

 

Fig. 5. Variation curves of maximum and minimum ENS of a single parameter with cumulative frequency values 

 
4. Following “Referee #1 Specific comment #2” comments, we have revise the result section as the 5 

suggestion. The following were added and/or modified: 
a. Page 8, line 12: 

"It is found that the minimum ENS except extreme outliers rises convincingly and ENS 
concentrates at larger value zone when MINR is used instead of the initial range." >> " It is 
found that the minimum ENS except extreme outliers rises from 0.881 to 0.884 and the ENS 10 
concentrates at a higher value range when the MINR is used instead of the initial range." 

b. Page 8, line 34: 
"It is shown that there is little improvement in maximum ENS when MINR is used for 
calibration instead of the initial range. There is an increase of 0.0003 in maximum ENS if the 
initial range is replaced with the extension range or the extension-MINR. As for minimum 15 
ENS (except outliers), an increase of 0.001 in the case of the MINR, a decrease of 0.003 in 
the case of the extension range and an increase of 0.003 in the case of the extension-MINR 
are found when the initial range is substituted with the three ranges respectively." 

c. Page 9, line 29-30: 
"As for the cases of multi-parameter range selection (i.e. Case 5, Case 6 and Case 7), the 20 
results are much better than of Case 1-4."  >> "As for the cases with the multi-parameter 
range selection (i.e. Cases 5–7), the ENS values are much greater than those of cases 1-4. 
There is approximately an increase of 0.001 in maximum ENS and an increase of 0.01 in 
minimum ENS when the multi-parameter range selection is performed." 

 25 
5. Following “Referee #1 Specific comment #3” and “Referee #2 Main comment #5” comments, we 

have modified section 4.3 & 5. The following were added and/or modified: 
Page 9, line 25: 

"Case 1 was defined as the initial case using all initial ranges. Cases 2–4 were defined as the 
single parameter range selection (S-SPR) cases. Cases 5–7 were set as the multiple parameters 30 
ranges selections (M-SPR) cases." 

Page 10, line 8-17: 
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"In the Xinanjiang model for karst areas, parameters CI, Kc, SM and B approximately obey 
normal probability distributions, and parameters WM, C, EX, KI, CG and Im exponential 
probability distributions after 100 independent calibration runs. For the parameters of a normal 
distribution, the MINR defined by using a cumulative frequency curve of calibrated values is 
preferred to be selected as the optimal parameter range for calibration. For the parameters of 5 
an exponential distribution, the extension-MINR is recommended to be used for calibration if 
the initial range can be extended towards the high-probability side, otherwise the MINR is 
selected as the optimal range for calibration.  

The proposed parameter range selection (PRS) method improves the minimum and mean 
values of ENS. The application of the proposed methodology results in an increase of 0.01 in 10 
minimum ENS, compared with that of the pure GA method. The rising of minimum ENS with 
little change of the maximum may shrink the range of the possible solutions. As a result, the 
uncertainty of the model performance can be effectively controlled.  

The M-SPR method is superior to the S-SPR one for calibrating hydrologic models with 
multiple parameters. The RC and SE are two important indexes that can help to analyse the 15 
sensitivity and correlation between parameters and consequently to coordinate with the 
negatively related parameters. The initial ranges of parameters of relatively low SE and negative 
RC mean and the optimal ranges of parameters of positive RC mean should be preferred to be chosen 
for the multi-parameter model calibration." 

 20 
6. Following “Referee #1 Specific comment #4” comments, we have revise Figure 1 as the suggestion. 

The following were added and/or modified: 
Page 14: 

 
Fig. 1. Location of the study area 25 

 
7. Following “Referee #1 Specific comment #5” and “Referee #2 Specific comment #7” comments, 
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we have revise the caption of Figure 2 as the suggestion. The following were added and/or modified: 
Page 15, line 13: 

“(a) Box-plot charts of normal, exponential and uniform distribution; Cumulative frequency 
curve and histogram for normal (b), exponential (c) and uniform (d) distributions” 

 5 
8. Following “Referee #1 Specific comment #6” comments, we have revise Figure 5 as the suggestion. 

The following were added and/or modified: 
Page 17: 

 
Fig. 7. The box-plot chart of normalized calibrated values for parameters of Xinanjiang model 10 

 
9. Following “Referee #1 Specific comment #7”, “Referee #1 Specific comment #8” and “Referee 

#2 Specific comment #10” comments, we have modified Table2. The following were added and/or 
modified: 
Page 22: 15 
Table 2. Parameters of Xinanjiang model 

Parameter Definition Units 

CI Recession constants of the lower interflow storage dimensionless 

Kc Ratio of potential evapotranspiration to pan evaporation dimensionless 

KI Outflow coefficients of the free water storage to interflow dimensionless 

SM 
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
mm 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity 

of the spatial 
dimensionless 

WM  Averaged soil moisture storage capacity of the whole layer mm 

C 
Coefficient of the deep layer, that depends on the proportion of the basin area covered by 

vegetation with deep roots 
dimensionless 

EX 
Exponent of the free water capacity curve influencing the development of the saturated 

area 
dimensionless 
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CG Recession constants of the groundwater storage relationships dimensionless 

KG* Outflow coefficients of the free water storage to groundwater relationships dimensionless 

Im Percentage of impervious and saturated areas in the catchment dimensionless 

* the value of KG is calculated by the function 0.7-KI 

 
10. Following “Referee #2 Main comment #5” comments, we have revise Table 5 as the suggestion. 

The following were added and/or modified: 
Page 24: 5 
Table 5. Parameter ranges setting for different cases 

The symbol ‘I’ represents the initial range of the parameter in Table 3, and ‘O’ the optimal range of the parameter in Table 4. 
 

11. Following “Referee #2 Specific comment #11” comments, we have revise the main legend of Table 
3 as the suggestion. The following were added and/or modified: 10 
Page 21, line 3: 

"** the ratio is calculated by dividing the parameter range size derived from 100 GA calibration 
by the initial parameter range size" 

 
12. Following “Referee #2 Main comment #2” comments, we have expanded sections 3.2.1 & 4.3 and 15 

add Figure 11 to clarify more on GA parameters and computational/time efforts. The following 
were added and/or modified: 
a. Page 7, line 21: 

"Trial tests were employed to determine the optimal GA control parameters: crossover 
probability of 0.5, mutation probability of 0.7 for the individual, mutation probability of 0.5 20 
for each gene, population size of 21, maximum generation number of 500 and maximum 
iteration number of 50. These parameters were kept constant for GA calibrations in the 
investigation." 

b. Page 10, line 3: 
"Through a calibration run, a set of calibrated values of all parameters and the corresponding 25 
ENS are obtained. Figure 12 shows the variation curves of maximum and minimum values 
of ENS with number of runs by using a GA method and a proposed PRS method, respectively. 
It is indicated from Figure 12 that no mater it is maximum or minimum ENS, the value 
calculated by using a proposed method is almost the same as that by using a GA method 
when the number of runs does not exceed 100. If a proposed method is used for calibration 30 

Case 
Range setting of parameter 

CI Kc KI SM B WM C EX CG Im 

1 I I I I I I I I I I 

2 I I I I I I I I I O 

3 I I I I I I I O I I 

4 I I I I I I I O I O 

5 O O O O O O O O I I 

6 O O O O O O O O O I 

7 O O O O O O O O O O 
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instead of a GA method, there are approximately an increase of 0.001 in maximum ENS and 
an increase of 0.01 in minimum ENS when the number of runs is greater than 100. Thus, for 
any particular run number, the value of ENS calculated by using a PRS method is not less 
than that by using a GA method. The application of a proposed method, therefore, 
contributes to a relatively efficient calibration." 5 

c. Page 21: 

 
Figure 12. The variation curves of maximum and minimum ENS with number of runs by using a GA method and a proposed 

PRS method 

 10 
13. Following “Referee #2 Specific comment #1” comments, we have revise the abstract as the 

suggestion. The following were added and/or modified: 
Page 1: 
"The parameters are usually calibrated to achieve good performance of hydrological models, owing 
to the highly non-linear problem of hydrology process modelling. However, parameter calibration 15 
efficiency has a direct relation with parameter range. Furthermore, parameter range selection is 
affected by probability distribution of parameter values, parameter sensitivity and correlation. A 
newly proposed method is employed to determine the optimal combination of multi-parameter 
ranges for improving the calibration of hydrological models. At first, single-parameter probability 
distributions were analysed based on 100 samples obtained from independent Genetic Algorithms 20 
(GA) calibration performed on a Xinganjiang model with a corresponding initial parameter range 
and, the distribution type (i.e. normal, exponential and uniform distributions) was specified for 
each parameter of the model. Then, the optimal range for each parameter was determined by 
comparing ENS values calculated separately with the initial range, the minimum and maximum 
ranges of a given cumulative frequency of 50% (i.e. MINR and MAXR) and the extended range. 25 
Next, parameter correlation and sensibility were evaluated by quantifying two indexes ܴେ	ଢ଼,ଡ଼ and 
ܵா  which can be used to coordinate with the negatively correlated parameters to specify the 
optimal combination of ranges of all parameters for calibrating models. It is shown from the 
investigation that the probability distribution of calibrated values of any particular parameter in a 
Xinanjiang model is closely approximated by a normal or exponential distribution. The multi-30 
parameter optimal range selection method is superior to the single-parameter one for calibrating 
hydrological models with multiple parameters. The combination of optimal ranges of all 
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parameters is not the optimum inasmuch as some parameters like Im have negative effects on other 
parameters. The application of the proposed methodology gives a rise to an increase of 0.01 in 
minimum ENS compared with that of the pure GA method. The rising of minimum ENS with little 
change of the maximum may shrink the range of the possible solutions, which can effectively 
reduce uncertainty of the model performance." 5 

 
14. Following “Referee #2 Specific comment #2” comments, we have replaced “method” with “tool” 

in the first sentence of “Introduction”. The following were added and/or modified: 
Page 1, line 1: 

"Hydrological process modelling is an important tool for research on water resources 10 
management …" 

 
15. Following “Referee #2 Specific comment #4” comments, we have modify it as it is suggested. The 

following were added and/or modified: 
Page 4, line 30: 15 

"A Genetic Algorithm (GA) was selected …" 
 

16. Following “Referee #2 Specific comment #5” comments, we have modify the sentence to make it 
easy to read. The following were added and/or modified: 
Page 9, line 6: 20 

"It is obvious from Table 4 that …" 
 

17. Following “Referee #2 Specific comment #6” comments, we have removed the colon as it is 
suggested. The following were added and/or modified: 
Page 10, line 7: 25 

"… findings are presented as follows:">>"… findings are presented as follows." 
 

18. Following “Referee #2 Specific comment #8” comments, we have the label “schema” in Figs. 6a, 
6b, 6c, 7a, 7b, 7c, 8a, 8b, 8c and 8d. The following were added and/or modified: 
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Fig. 8. Results of range selection of parameter CI  

Probability distribution of parameter values for schema initial range (a), CI-MINR (b) and CI-MAXR (c); 

(d) Box-plot chart of ENS for three schemas 
 5 
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Fig. 9. Results of range selection of parameter KI 

Probability distribution of parameter values for schema initial range (a), KI-MINR (b) and KI-MAXR (c);  

(d) Box-plot chart of ENS for three schemas 

 5 
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Fig. 10. Results of range selection of parameter B 

Probability distribution for schema initial range (a), B–Extension (b), B–MINR (c) and B–Extension–MINR (d); 

(e) Box–plot chart of ENS for four schemas 
 5 

19. Following “Referee #2 Specific comment #9” comments, we have modify the note on Table 1 to 
make it easy to read. The following were added and/or modified: 
Page 22, note on Table 1: 
"QMax, QMin and QAvg mean the maximum, minimum and average value of daily streamflow, 
respectively, and PMax means the maximum value of daily precipitation." 10 
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Abstract. The parameters of hydrological models are usually calibrated to achieve a good performance of hydrological the 10 

models, owing to the highly non-linear problem of hydrology process modelling. However, parameter calibration efficiency 

has a direct relation with parameter range. Furthermore, parameter range selection is affected by probability distribution of 

parameter values, parameter sensitivity and correlation. A newly proposed method is employed introduced to determine select 

the optimal combination of multi-parameter and coordinate parameter ranges for improving the calibration of hydrological 

models with multiple parameters. At first, single-parameter probability distributions werethe probability distribution 15 

characteristics of single parameter value was analysed based on 100 samples obtained from independent Genetic Algorithms 

(GA) calibration performed on a Xinganjiang model with initiala corresponding initial parameter range and, the distribution 

type (i.e. normal, exponential and uniform distributions) was specified for each parameter of the modeldetermined for single 

parameter. Then, the optimal range for each parameter was determined by comparing ENS values calculated separately with 

the initial range, the minimum and maximum ranges of a given cumulative frequency of 50% (i.e. MINR and MAXR) and the 20 

extended range.the way to select the optimal range for single parameter was demonstrated by comparing different reduced and 

extended ranges corresponding to the distribution. Next, parameter correlation and sensibility were evaluated by quantifying 

two indexes ܴେ	ଢ଼,ଡ଼ and ܵா  which can be used to coordinate with the negatively correlated parameters to specify the optimal 

combination of ranges of all parameters for calibrating models.parameter correlation and sensibility were estimated to 

coordinate range selection of single parameter and the optimal combination of ranges for all parameters obtained. The results 25 

show that the probability of calibrated parameter values of Xinanjiang model takes on the normal or exponential distributions. 

For normal distribution, selecting the range of high probability density from the initial range is much more efficient for 

calibration. For exponential distribution, if the initial range can not be extended, selecting the range of high probability density 

contributes to high objective function. If the initial range can be extended, it is better to make the exponential distribution 

convert into normal distribution by doubling the range along X-axis direction and subsequently select the range according to 30 

normal distribution. Moreover, the coordination of range selection of single parameters makes the calibration of models with 

multiple parameters more efficient and effective. It is shown from the investigation that the probability distribution of 
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2 
 

calibrated values of any particular parameter in a Xinanjiang model is closely approximated by a normal or exponential 

distribution. The multi-parameter optimal range selection method is superior to the single-parameter one for calibrating 

hydrological models with multiple parameters. The combination of optimal ranges of all parameters is not the optimum 

inasmuch as some parameters like Im have negative effects on other parameters. The application of the proposed methodology 

gives a rise to an increase of 0.01 in minimum ENS compared with that of the pure GA method. The rising of minimum ENS 5 

with little change of the maximum may shrink the range of the possible solutions, which can effectively reduce uncertainty of 

the model performance. 

 

Key words: hydrological model, calibration, parameter ranges, probability distribution 

1. Introduction 10 

Hydrological process modelling is an important method tool for research on water resources management, flood control and 

disaster mitigation, water conservancy project planning and design, hydrological response to climate change and so on (Zanon 

et al., 2010;Papathanasiou et al., 2015). The initial hydrological model is was a kind of black-box model in 1932 originally 

(Sherman, 1932), and conceptual models and& distributed models are subsequently put forward in 1960s (Freeze and Harlan, 

1969). The three kinds of hydrological models have been significantly improved in recent years and their structures become 15 

more and more mature. Theoretically, distributed models have definite physical mechanism of the water cycle and all 

parameters can be measured in-situ (Abbott et al., 1986;Huang et al., 2014). Conceptual models express hydrological processes 

in form of some abstract models which come from some physical phenomenon and experience. For example, the interflow and 

the base flow are simplified as the flow from linear reservoirs (Caviedes-Voullième et al., 2012;Lü et al., 2013). As a result, 

some parameters of conceptual models need calibrating. In general, conceptual models have better performance of modelling 20 

the streamflow at the catchment outlet than distributed models do, especially for catchments lacking sufficient data (Bao et al., 

2010;Cullmann et al., 2011). Thus, many conceptual models such as HBV model, TOPMODEL, Tank model and Xinanjiang 

model are of strong vitality (Abebe et al., 2010;Vincendon et al., 2010;Hao et al., 2015; Xie et al., 2015). Additionally, the 

performance of distributed models can be improved after calibration of some parameters. Therefore, all of the hydrological 

models should be calibrated before engineering applications. 25 

There are two kinds of calibration methods for hydrological models, the trial-error method and auto-calibration method. The 

trial-error method depends on plenty of trials for reducing the error of the objective. However, it is difficult to obtain an exact 

optimal solution due to limited enumeration (Boyle et al., 2000). The auto-calibration method is based on stochastic or 

mathematical methodscalculations, having a wide application in the non-linear parameter optimization. Compared with the 

trial-error method, it is more efficient and effective, avoiding the interference of anthropogenic factors (Madsen, 2000;Getirana, 30 

2010). The initial automatic optimization methods, such as the Rosenbrock Method (Rosenbrock, 1960) and the Simplex 

Method (Nelder and Mead, 1965), are classical and useful methods, but has its limitation of initial value ranges of parameters. 
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Therefore, it can only be regarded as local optimization algorithms (Gupta and Sorooshian, 1985). Different from classical 

methods above, the Genetic Algorithm (GA) is of random search strategy that avoids problem of local search, being a global 

optimization algorithm in a real sense (Wang, 1991, 1997;Sedki et al., 2009;Chandwani et al., 2015). After that, many global 

optimization algorithms have been proposed inheriting the random search strategy. The Shuffled Complex Evolution (SCE-

UA) method combines many advantages of Genetic Algorithm and Simplex Method, having a powerful capability of 5 

calibrating the rainfall-runoff model (Duan et al., 1994;Zhang and Shi, 2011). The Particle Swarm Optimization (PSO) based 

on random solution can directly obtain the identification parameters through the iterative search for anthe optimal solution 

(Kennedy, 1997;Zambrano-Bigiarini and Rojas, 2013). Though the auto-calibration method has been intensively employed to 

calibrate parameters in the field of hydrology, the most advanced algorithm inevitably falls into local solution because of the 

strong non-linear problem of the a hydrological model and parameter correlation (Chu et al., 2010;Jiang et al., 2010;Jiang et 10 

al., 2015).  

In general, parameter variables obey some types ofspecial probability distributions withinin the given range after multiple 

independent repeat calibrations by an auto-calibration method (Viola et al., 2009;Jin et al., 2010;Li et al., 2010). Graziani et 

al. (2008) stated that the shapes of the a parameter value probability distributions can be significantly affected by their a 

parameter ranges. Ben et al. (2013) studied the effects of different probability distributions (e.g., Normal distribution and 15 

uniform distribution) of parameters values on parameter sensitivity, and found that the probability distribution can be provide 

a clue to realize parameter sensitivity. Although Normal normal and uniform distributions are greatly studied in practice, other 

types of probability distributions seldom were investigated in previous researches (Kucherenko et al., 2012;Esmaeili et al., 

2014). 

Most hydrological models contain many parameters of different sensitive characteristics and correlation behaviour. Some 20 

researchers believe that the sensitive parameter should be calibrated, but the insensitive parameter can be set as a fixed value 

by experience (Beck, 1987;Cheng et al., 2006). Inappropriate parameter ranges or fixed values may result in the instability of 

calibrated results. Furthermore, the range setting of one parameter may influence the calibration of other related other 

parameters correlated with it (Song et al., 2015). The model parameter sensitivity analysis has been a growing concern in 

recent years. Parameters sensitivity varies with catchment characteristics, objective functions and parameter ranges (van 25 

Griensven et al., 2006). Wang et al. (2013) noted the different parameter ranges could lead to changes  in parameter sensitivity. 

Shin et al. (2013) reported that reducing or extending the ranges would might makeaffect the parameters sensitivity, making 

insensitive parameters become sensitive ones or vice versa. Thus, parameter ranges and correlation should be taken into 

considered when the calibration of multi-parameters models is performed. 

Parameter ranges are generally given roughly due to lack of knowledge concerning physical settings of a local catchment 30 

(Song et al., 2013;Hao et al., 2015). The more deviation between an true optimal ranges and a given range, the more instability 

uncertainty of the calculatedcalibration results. The selection of Aappropriate parameter ranges selection is critical for 

calibrating the model efficiently. However, few literature reported covers information on how to select the appropriate 

parameter range for improving the calibration of hydrological models. Furthermore, the calibration of multiple parameters is 
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more complex due to the parameter sensitivity and correlation. Hence, it is necessary to find a way to coordinate the range 

settings of all parameters. 

Considering the effect of parameter ranges on calibration efficiency of hydrological models, an approach of parameter 

ranges selection (PRS) is put forward to improve the calibration of hydrological models with multiple parameters. At first, 

probability distribution characteristics of each parameter values were was analysed based on a lot of the parameter value 5 

samples that calibrated independent calibrations by using a GA method. Then the optimal range of a single parameter wasis 

selected specified for calibration according to its probability distribution. Finally, parameter correlation and sensitivity were 

estimated to determine the optimal combination of multiple parameters ranges. The proposed method is expected to be helpful 

for an effective and efficient calibration of hydrological models with multiple parameters. 

2. Study area and data collection 10 

The Chaotianhe River catchment is located in the northeast of Guangxi Zhuang Autonomous Region in Southwest China (Fig. 

1). The Chaotianhe River is the major tributary of the Lijiang River of well-known karst landscape. The total catchment area 

is 476.24 km2. The annual precipitation is approximately 1704 mm and 78% precipitation concentrates in flood sreasons 

(March to August).The thickness of soil varies spatially in most karst areas. tremendously different with space: l Limestone is 

exposed to air in some peak-cluster region., 2-10 m thickness cClay soil with thickness ranging from 2 to 10m is 15 

distributedcovered in the depressions and valleyies bottom. In clastic rock mountain areas, the thickness of the soil is usually 

less than 0.5 m. Thus, the soil moisture storage capacity varies significantly with space. Moreover, the underground rivers are 

very well developed in the karst area, which makes the flood gather rapidly and recess slowly due to higher underground flow 

rate. 

The daily data concerning precipitation, evaporation and streamflow were collected from national gauging stations for the 20 

5-year period of 1996–2000. Four precipitation stations, one streamflow gauging station and one evaporation station are 

selected for the investigation. Areal precipitation was calculated using data from the four precipitation stations by using a 

Thiessen polygon method under GIS environment (Cai et al., 2014). The streamflow gauging station is at the catchment outlet. 

Some metro-hydrological statistical data of the studied catchment are summarized in Table 1. From 1996–2000, the maximum 

of daily streamflow is about 719 m3/sd, the minimum 0.53 m3/ds and the average is 13.31 m3/sd at the outlet. The maximum 25 

areal daily precipitation of the studied catchment varies  varied with years in the studied catchment and reached the value of , 

the value is 235 mm/d inof 1996. while 107 mm/d of 2000. The average streamflow decreases from 14.38 to 11.37 m3/s during 

the studied period. 
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3. Methodology 

3.1 Hydrological model selection 

The method of parameters ranges selections (PRS) is designed for most of hydrological models. At present, there have been 

many hydrological models for hydrological processes simulation. Considering the climate characteristics of the study area, the 

Xinanjiang model which is suitable for humid regions was chosen to serve as the a hydrological model for the investigation. 5 

The Xinanjiang model mainly includes three evapotranspiration layers and three runoff components (i.e. surface-, subsurface 

runoff and groundwater) (Zhao et al., 1980;Zhao, 1992). The surface runoff is routed by the Unit Hydrograph (UH) which is 

derived from the observed streamflow and other runoff components are simplified as linear reservoirs (Ju et al., 2009). With 

regard to the Xinanjiang model, there are 10 parameters that should be calibrated. The meaning definitions and the common 

range of the parameters are given in Table 2 (Lin et al., 2014;Hao et al., 2015). The proposed PRS method is introduced as 10 

follows, taking when a Xinanjiang model is taken as anfor example. 

3.2 Probability distribution analysis of calibrated parameter value 

3.2.1 Sample collection of calibrated parameter value 

In theory, the parameter values calibrated results of calibration by using a stochastic-based auto-calibration method are not 

completely same to each other but obey a certain probability distribution similar under in a reasonable convergence condition., 15 

which obey some probability distributions (Jiang et al., 2015). In order to analyse the probability distribution of  calibrated 

parameter values, a stochastic-based auto-calibration is used to calibrate the model, and samples of calibrated parameters 

values are obtained. As far as the sample size is concerned, 100 samples are enough to estimate the probability distribution of 

calibrated parameter values in the investigation, which is deduced from plenty the results of trial tests as shown in by comparing 

the similitude of distributions and computing efficiency. Fig. 2. It can be seen that both maximum and minimum ENS keep 20 

stable when sampling size is greater than 100. 

A Genetic Algorithm (GA) was selected as the auto-calibration method in the investigation, because GAs are is a common 

and widespread used global optimization algorithm based on stochastic and evolutionary optimization technique. Many studies 

showed that the evolutionary algorithms could provide equal or better performance of a model than other algorithms do 

(Cooper et al., 1997;Jha et al., 2006;Zhang et al., 2009). The Nash–Sutcliffe efficiency (ENS) was chosen as the an objective 25 

function (Eq. (1)) for GA, which representing represents the agreement between observed and simulated data.  

ேௌܧ = 1−
∑ (ܳobs,i−ܳsim,i)

2݊
݅=1

∑ (ܳobs,i−ܳmean)
2݊

݅=1
 (1) 

where ENS is Nash–Sutcliffe efficiency, i serial number of the step; n total number of the observed streamflow data, ܳ୭ୠୱ,୧ the 

observed streamflow at step i, ܳୱ୧୫,୧ the simulated streamflow at step i, and ܳ୫ୣୟ୬ is the mean value of observed streamflow. 
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3.2.2 Determination of probability distribution types 

The probability distributions of calibrated parameters values can be determined estimated roughly by using box-plot charts, 

cumulative frequency curves and frequency histograms. Figure 2 shows the three types of probability distribution based on 

100 samples of parameter values of the Xinanjiang model. The symmetry of the box-plot chart (including one box and two 

whiskers) and the length ratio of the whisker to the box, the shapes of the cumulative frequency curve and the frequency 5 

histogram are important indicators to determinefor the identification of the distribution types. Based on these indicators, three 

types of probability distributions are listed as follows: (1) Normal distributions, the box and whiskers are approximately 

symmetrical along the Y-axis direction, the length of either whiskers is longer than the half height of the box in a box-plot 

chart (Fig. 2a3a), the cumulative frequency curve is S shaped and the histogram is bell shaped (Fig. 2b3b); (2) Exponential 

distributions, the whole chart is distinctly asymmetrical in the Y-axis direction which means that the average value (marked 10 

with a small hollow square) deviates from the median value (marked with a centre line in box), the box closeis inclined to one 

side with the extreme shorterwhere the whisker is extreme shorter than that on the opposite side (Fig. 2a3a), the cumulative 

frequency curve is parabola shaped, and the histogram tends to increase or decline gradually (Fig. 2c3c); (3) Uniform 

distribution, the box and whiskers are approximately symmetrical along the Y-axis direction, the length of two whiskers is 

approximates close to that of the box (Fig. 2a3a), the cumulative frequency curve tends to a straight line and the histogram 15 

varies little along the xX-axis (Fig. 2d3d).  

A Kolmogorov-Simirnov test (K-S test) tries to examine whether a data set fit a reference probability distribution or not 

(Haktanir, 1991). In a K-S test, for any variable xi in a data set, the empirical distribution function value (Fi) is calculated by 

using a plotting position formula, and the cumulative distribution function value (Fi*) is computed by using the reference 

probability distribution. The maximum deviation between the two values, ∆ெ௔௫, is expressed in Eq. (2). 20 

∆ெ௔௫= ∗௜ܨ| −  ௜| (2)ܨ

According to the acceptable level of significance (0.2=ߙ) ߙ and the total number of values in a data set n, ∆௧௔௕௟௘  can be 

obtained from the K-S table. If ∆ெ௔௫< ∆௧௔௕௟௘ , the reference probability distribution is identified to fit to the data set.  

3.3 Parameters ranges selections 

3.3.1 Single parameter range selection (S-PRS) 25 

In order to improve ENS, the initial range of a parameter is required requires adjusting properly. In consideration of the three 

probability distribution types mentioned above, the different ways to adjust specify the optimal ranges for a single parameters 

are presented in the investigation. For the parameter of a uniform distribution, it is better to keep the initial range due to little 

influence of the ranges on calibration results. For the parameter of a normal distribution, the cumulative frequency curve is 

employed to seek several ofsome reduced ranges with a given cumulative frequency (e.g. 50%), and the minimum and 30 

maximum ranges (namely MINR and MAXR) are obtained as depicted in Fig. 34. The MINR and MAXR represents the ranges 

of maximum and minimum probability density of parameter values withunder a given cumulative frequency, respectively. As 
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for the parameter of an exponential distribution, the initial range can be extended appropriately towards one side of high 

probability density, if the parameter has reasonable meaning in the extended range. Then, the optimal range of the parameter 

can be specified by comparing different ENS calculated separately by using the initial range, the MINR or MAXR of the initial 

range, the MINR or MAXR of the extended range. As for exponential distribution, the initial range can be doubled from the 

boundary of high probability density to the outside, if the parameter has reasonable meaning in the new range. Thus, the 5 

exponential distribution can be converted into normal distribution and then the optimal range can be selected by using the 

method for normal distribution. If the initial range cannot be extended, the MINR and MAXR are sought out according to the 

cumulative frequency curve. Through plenty of tests, a cumulative frequency value of 50% was adopted to search the MINR 

and MAXR, which reduces sampling errors in case of smaller percentage, and increases difference between MINR and MAXR 

in case of larger percentage. Figure 5 gives the variation curves of maximum and minimum ENS of a single parameter with 10 

cumulative frequency values. It is found that the maximum ENS keeps constant despite a cumulative frequency value varying, 

while the minimum ENS approaches the peak value of 0.881 when the cumulative frequency value is equal to 50%. Considering 

that higher minimum ENS contributes to more efficient calibration, the fixed cumulative frequency value of 50% was selected 

to determine the ranges of maximum and minimum probability density (i.e. MINR and MAXR) for each parameter. In short, 

the optimal range of a single parameter can be determined by properly extending or reducing the initial range to make calibrated 15 

parameter values distributed quite closely to a uniform distribution.Through extending or reducing the ranges, the probability 

distribution of calibrated parameter values can transform and finally convert into approximate uniform distribution.  

3.3.2 Multiple parameters ranges selections (M-PRS) 

In general, there is more or less correlation between parameters for most hydrological models. As far as the a Xinanjiang model 

is concerned, both parameters WM and B refer to the water storage volume – area curve that representing represents the spatial 20 

variability of soil moisture storage. If the curve is fixed, the a larger WM results in the a smaller B (Zhao et al., 1980). As a 

result, Tthe range change of a parameter WM range may more or less effectaffect the range setting and calibration of other 

parameters B. The correlations among parameters, therefore, should be taken into account, if theseveral parameters ranges of 

the related parameters require adjusting. If the range change of one parameter range has positive influence on calibration of 

other parameters, using the selected optimal ranges forof the parameter instead of the initial one can will contributes to better 25 

calibration results. On the contrary, the negative influenceimpact may result in a worse model calibration, although the optimal 

ranges of the parameters are used. make the contribution of the selected ranges against model calibration. Thus, some 

coordination measures should be taken to deal with such a contradiction. The index RC (Eq. (32)) were was quantified to 

analyse the influenceing degree of one -parameter range change onto the calibration of other parameters. When The more close 

value of ܴେ	ଢ଼,ଡ଼ is closer to 1, the greater positive influence ofthe range change of parameter X has a greater positive influence 30 

on the calibration of parameter Y. If ܴେ	ଢ଼,ଡ଼ is minusless than 0, it means the a negative influence. 

ܴେ	ଢ଼,ଡ଼ = 1− ௅ౕ,౔ି௅ౕ,ౕ
௅ౕ,౅౤౟౪౟౗ౢି௅ౕ,ౕ

 (23) 
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Where ܴେ	ଢ଼,ଡ଼ is the influenceing degree of the range change of parameter X on the calibration of parameter Y; ܮଢ଼,ଡ଼ the range 

of parameter Y calibrated with selected the optimal range of parameter X and initial ranges of other parameters, ܮଢ଼,ଢ଼ the range 

of parameter Y calibrated with the selected optimal range of parameter Y and initial ranges of other parameters, and ܮଢ଼,୍୬୧୲୧ୟ୪ 

is the range of parameter Y calibrated with initial ranges of all parameters. The calibrated range of the any parameter is 

calculated except extreme outliers. 5 

If there is a negative influence between two parameters, the optimal range of the parameter of higher sensitivity is used and 

ranked as primary one and its selected ranges can be kept in the range combination for all parameters, while the initial range 

of the other parameter kept for calibration generally is used in place of the selected range to mitigate the negative 

impactminimize the negative effect for the other parameter of low sensitivity. It is due to the fact  that sensitive parameters 

play more important roles than insensitive parameters do during in a multi-parameter calibration. In order to assess the 10 

sensitivity of parameter range change to ENS, index SE as expressed in Eq. (34) is computed by performing an S-PRS method 

on each parameter. The larger value of RE, the more concentrated ENS distribution of ENS, which means more efficient parameter 

calibration is stable and efficient. Thus, the parameter of higher SE is given priority to use the selected optimal range when the 

RC of two parameters is minus.  

ܵா = 1− ாొ౏	౉౗౮
ᇲ ିாొ౏	౉౟౤

ᇲ

ாొ౏	౉౗౮ିாొ౏	౉౟౤
 (34) 15 

where SE is sensitivity of parameter range change to ENS, ܧ୒ୗ	୑ୟ୶ and ܧ୒ୗ	୑୧୬ maximum and minimum ENS calibrated with an 

initial range, and ܧ୒ୗ	୑ୟ୶ᇱ  and ܧ୒ୗ	୑୧୬ᇱ  are maximum and minimum ENS calibrated with an selected optimal range. The statistical 

analysis of ENS excludes extreme outliers. 

Considering there are more than two parameters in most hydrological models, the accumulative influence and the 

coordination of range selection are were investigated in the study. Parameters of positive influence on other parameters can be 20 

taken into account, while the selected ranges is substituted for the initial ranges for the parameters of negative influence. The 

mean value of RC (RC mean) is the index to judge the accumulative influence of one- parameter range change on the calibration 

of the other parameters. Thus, for parameters of a negative RC mean, the initial ranges instead of the selected optimal ones is are 

adopted for the multi-parameters calibration of multiple parameters. 

The flow chart of the parameter range selection method is shown in Fig. 46. In stage 1, a set of initial parameter ranges of 25 

parameters is given for a hydrological model and the probability distribution for each parameter analysed based on the 100 

independent parameters values calibrated by an auto-calibration method. In stage 2, there are three range adjustment methods 

with response to a parameter value probability distribution of parameter values: for a normal distribution, the optimal range 

for of a single parameter is obtained by reducing the initial range; for an exponential distribution, the initial range of a single 

parameter is extended to convert to the normal distribution and specify the optimal range determined according to normal 30 

distribution, or the initial range is reduced to seek the optimal range for calibration in the case of when the extension of the 

parameter range is limitedthe limitation on range extension; for a uniform distribution, the initial range is kept. In stage 3, the 
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method of single -parameter range selection (S-PRS) is performed on each parameter. Based on the indexes SE and RC estimated, 

the optimal combination of ranges is determined by coordinating the ranges selection for of all parameters.  

4. Results and discussion 

4.1 Probability distribution characteristics of calibrated parameter values of the Xinanjiang model 

A series of calibrated parameters values were obtained through 100 times independent calibration runs by using a GA method. 5 

Trial tests were employed to determine the optimal GA control parameters: crossover probability of 0.5, mutation probability 

of 0.7 for the individual, mutation probability of 0.5 for each gene, population size of 21, maximum generation number of 500 

and maximum iteration number of 50. These parameters were kept constant for GA calibrations in the investigation. The initial 

and calibrated ranges of parameters are presented in Table 3. The ratio of the calibrated parameter range length range to the 

initial one in Table 3 is less than 60% for most parameters (i.e. parameter CI, Kc, KI, SM, B, and WM), which implies that 10 

reducing the ranges can help calibrate most parameters the parameter efficiently. For any particular parameter, The 100 

calibrated values for single parameters were normalized by dividing a deviation between a calibrated value and the lower limit 

of the initial range them by the correspondingthe length of the initial range., andBased on the box-plot chart of the results 100 

calibrated values after normalization, a box-plot for a parameter is shown depicted.in Fig. 5. It is obvious from Fig. 7 that the 

box and whiskers are approximately symmetrical and the length of whiskers is longer than that of the half box along the 15 

direction of the Y axis for parameters CI, SM and Kc. But for other parameters, it is shown from the box-plot charts that the 

mean value deviates from the median one, which means an considerably asymmetric chart. According to these characteristics 

of the box-plots chart, it is indicated shown that the probability distributions of the calibrated values is are normal distribution 

for parameters CI, SM, and Kc, while that those areis exponential distribution for other parameters. Furthermore, K-S tests 

were employed to determine the probability distributions of parameters and the corresponding results are listed in Table 3. It 20 

is shown that only a normal distribution is accepted for parameters CI & SM. Despite the fact that both normal and uniform 

distributions are accepted for parameter KC, the probability distribution of parameter KC is regarded as a normal distribution. 

It is because that the ∆ெ௔௫ will become smaller if a normal distribution serves as a reference distribution instead of a uniform 

distribution. In addition, just an exponential distribution is accepted for the rest of the parameters. Thus, the three parameters 

follow normal distributions and the others exponential distributions in the Xinanjiang model. The ratio of the calibrated 25 

parameter range length to the initial range lengthone is less than 30% for parameters CI, SM, and Kc, while the ratio varies 

from 23% to 100%exceeds 30% for parameters such as KI, B, WM, C, EX, CG, and Im. It suggest implies that reducing the 

initial ranges is suitable tocan improve the calibration for parameters whose values obey normal distributions., whereas that is 

not enough for parameters whose values obey exponential distributions. 
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4.2 Effect of range adjustment pattern on calibration results 

Since the probability distribution of a single parameter value has a direct relation with the parameter range selection, the range 

adjustment pattern of a single parameters for calibration is was discussed on the basis of the parameter probability distribution 

type of parameters in the investigation. 

To For a normal distribution, reducing the range is generallywas used to select find the appropriate optimal range. Figure 6 5 

8 shows the calibration results of parameter CI when the different parameter ranges are selected. The MINR (0.679–0.713) 

and the MAXR (0.623–0.694) were picked out based on the cumulative frequency curve derived from calibrations with the 

initial range (0–0.900). From the cumulative curves and the histograms in Fig. 6a8a, 6b 8b and 6c8c, it is found that the 

probability distribution of parameter CI values is converted from a normal distribution to a uniform distribution when the 

initial range is reduced to the MINR, whereas the normal probability distribution is changedapproximates to thean exponential 10 

one when the range is cut to MAXR is used. Figure 6d 8d reveals that the contribution of the parameter ranges selection to 

ENS. It is found that the minimum ENS except extreme outliers rises from 0.881 to 0.884 and the ENS concentrates at a higher 

value range when the MINR is used instead of the initial range.It is found that the minimum ENS except extreme outliers rises 

convincingly and ENS concentrates at larger value zone when MINR is used instead of the initial range. It is indicated thatUsing 

the reduced range of high probability density is, therefore, helpful to make calibration more steady stable and moreand efficient. 15 

To an exponential distribution, both reduced ranges and the extended ranges of reasonable meaning can bewere used to 

select the appropriate optimal range for parameter calibration. Figure 97 shows the calibration results of parameter KI under 

three different input ranges of parameter KI. Since the initial range of parameter KI cannot be extended, the two reduced ranges 

(i.e. the MINR (0.660-0.700) and the MAXR (0.522-0.660)) were picked out was searched by using the cumulative frequency 

curve., the MINR (0.660–0.700) and MAXR (0.522–0.660) were picked out. From the cumulative curves and the histograms 20 

in Fig. 7a9a, 7b 9b and 7c9c, it is found that the probability distribution of parameter KI values is converted from exponential 

distribution similar to a uniform distribution when the initial range is reduced to in the case of the MINR, whereas the that is 

still exponential distribution is still kept when the range is cut toin the case of the MAXR. The contributions of the three 

parameter ranges to ENS is are shown in Fig. 7d9d. Thus, the Similar to the results of parameter CI, MINR is best for calibration 

of parameter KI when compared with the MAXR or the initial range, which is similar to the calibration result of parameter CI. 25 

In general,  It is demonstrated that the MINR is better than the MAXR to improvefor parameter calibration  for parameters 

whose value obeys normal or exponential distribution.  because the parameter values that may achieve a higher ENS can be 

easily picked out from the MINR of higher probability density.Because the parameter values in MINR indicate high probability 

to be pick out to achieve high ENS, vice versa. 

Figure 8 10 shows the calibration results of parameter B whose initial range can be extended. The initial range (B=0.1–0.4) 30 

of pParameter B generally ranges from 0.1 to 0.4 is common for most areas, but it is quite different for karst areas where the 

soil moisture storage varies remarkably with space, and. Aas a result, the value of parameter B could can be larger greater than 

0.4. From Fig. 8a 10a and 8b10b, it is shown that the probability distribution of parameter B is converted from an exponential 
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distribution to a normal distribution when the initial range is extended to new one (B=0.1–0.6). After the MINR selection is 

was performed on the initial range and the extended range respectively, the two ranges, i.e. the MINR (B=0.36–0.40) and the 

extension-MINR (B=0.379–0.488) are were obtained and then used to calibrate parameter B. From Fig. 8c 10c and 8d10d, it 

is found that the probability distribution of parameter B values is converted into approximates a uniform distribution when the 

range is reduced from initial range to MINR or the from the extended range to extension-MINR is used. The box-plots chart 5 

of ENS for different ranges are shown in Fig. 108e. It is shown that there is little improvement in maximum ENS when MINR 

is used for calibration instead of the initial range. There is an increase of 0.0003 in maximum ENS if the initial range is replaced 

with the extension range or the extension-MINR. As for minimum ENS (except outliers), an increase of 0.001 in the case of the 

MINR, a decrease of 0.003 in the case of the extension range and an increase of 0.003 in the case of the extension-MINR are 

found when the initial range is substituted with the three ranges respectively.It is indicated that there is a considerable 10 

improvement of both maximum and minimum ENS when extension-MINR is used for calibration. It suggests that an appropriate 

range extension followed by a MINR selection is helpful to improve calibration for the parameters whose probability 

distribution is exponential and initial ranges can be extended.  

4.3 Effect of multiple parameters ranges combination on calibration results 

The S-PRS method was employed to select determine the one-parameter optimal range for each parameter., According to and 15 

the optimal ranges and the corresponding initial ranges, indexed RC and SE values are listed in Table 4were quantified to 

understand parameter correlation and sensitivity. It is obvious from Table 4 that RC values in the columns of parameters CI 

and WM are positive, but most RC values in the column of parameter Im are negative. The negative RC value betweenrelated 

to two parameters indicates means that using the optimal range of one parameter is adverse to calibration ofcalibrate the other. 

parameter. Specially, b Both RC EX,Im and RC Im,EX are negative in spite of small values,. It meanswhich implies that using the 20 

optimal ranges of parameters EX and Im simultaneously is not conductive to calibrate these twomulti parameters combined 

calibration. The mean of RC (RC mean) varies with parameters. Parameter CI has the maximum RC mean of 0.465, while and 

parameter Im the minimum RC mean of –0.026. Furthermore, RC mean values for all parameters arehave positive RC mean values 

except for that for parameter Im,. It is dueowing to the accumulative negative influence ofcorrelation between parameter Im 

and the on others.  25 

To coordinate the contradiction betweenwith negatively related parameters, the index SE is was used to pick out parameters 

of higher sensitivity to ENS. From Table 4, it is found that parameter CI has the maximum SE of 54.7%, and parameter Im the 

minimum SE of 0.3%. Most SE values are more than 20% except those of parameters C, EX and Im. It suggests that parameters 

CI, B, SM, KI, Kc, WM and CGC, EX and Im are of low sensitivity to ENS and the others highly sensitive to ENS.are of high 

sensitive to ENS, and parameters C, EX and Im of low sensitivity for ENS. Parameter CI is the most sensitive parameter while 30 

Im the most insensitive parameter, which agrees with the work of Lü et al. (2013) and Song et al. (2013). For the well-developed 

karst areas, the thin layer of soil and strong permeability of limestone make rainfall easy to penetrate into the ground. Moreover, 
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the existence of karst caves and subsurface streams contribute to great interflow storage which accounts for a large proportion 

of streamflow. As a result, the calibration of parameters KI (representing penetrate abilitythe penetrability of free water to 

interflow), and parameter CI (representing recession capacity of interflow storage) has ahave significant influence on rainfall-

runoff simulation results. Hence, parameters KI and CI are very highly sensitive in the investigation. Thus, It can be deduced 

that the optimal ranges of insensitive parameters Imof higher sensitivity should be used to cannot be taken into account when 5 

there is contradiction owing to it, in order to improve calibration. 

In order to determine the optimal range combination of multiple parameters, seven cases are were investigated with different 

range combinations pof parameters (Table 5). Case 1 was defined as the initial case using all initial ranges. Cases 2–4 were 

defined as the single parameter range selection (S-SPR) cases. Cases 5–7 were set as the multiple parameters ranges selections 

(M-SPR) cases. The results box-plots of ENS for seven different cases are compared given in Fig. 911. There is a little decrease 10 

in ENS when Case 4 is separately compared with Case 1, Case 2 and Case 3. It can be explained that both RC EX,Im and RC Im,EX 

are negative and the combination of the optimal ranges corresponding to the two parameters leads to a worse calibration result. 

As the SE value of parameter Im is less than that of parameter EX, parameter EX is given priority to select use the optimal 

range,. that It is the reason why the calibration result of Case 3 is better than that of Case 2. As for the cases with the multi-

parameter range selection (i.e. Cases 5–7), the ENS values are much greater than those of cases 1-4. There is approximately an 15 

increase of 0.001 in maximum ENS and an increase of 0.01 in minimum ENS when the multi-parameter range selection is 

performed.As for the cases of multi-parameter range selection (i.e. Case 5, Case 6 and Case 7), the results are much better than 

that of Case 1–4. There are some differences in ENS between with the comparison between Cases 5–, Case 6 and Case 7 when 

in a magnifiedtheir box-plot charts are magnified. Case 6 has the most concentrated values of ENS and the largest mean value 

of ENS among the three cases. It means that the combination of optimal ranges of all parameters (see Case 7) is not the optimum 20 

to calibrate a multi-parameter model inasmuch as some parameters like Im have negative correlation on other parameters. 

Hence, the initial ranges of parameters having negative mean values of RC and low values of SE are supposed to be used to 

calibrate parameters instead of the corresponding optimal ranges. The box and whisker of ENS for Case 6 rise, which means 

Case 6 has a better performance of calibration than Case 5 does, when the optimal range of parameter CG is included. But the 

box and whisker of ENS for Case 7 decline when the optimal range of parameter Im is included. Because the mean RC value of 25 

parameter Im is negative and its SE much less than that of others, using the optimal range of Im is adverse to multi-parameter 

combined calibration. 

Through a calibration run, a set of calibrated values of all parameters and the corresponding ENS are obtained. Figure 12 

shows the variation curves of maximum and minimum values of ENS with number of runs by using a GA method and a proposed 

PRS method, respectively. It is indicated from Figure 12 that no mater it is maximum or minimum ENS, the value calculated 30 

by using a proposed method is almost the same as that by using a GA method when the number of runs does not exceed 100. 

If a proposed method is used for calibration instead of a GA method, there are approximately an increase of 0.001 in maximum 

ENS and an increase of 0.01 in minimum ENS when the number of runs is greater than 100. Thus, for any particular run number, 
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the value of ENS calculated by using a PRS method is not less than that by using a GA method. The application of a proposed 

method, therefore, contributes to a relatively efficient calibration. 

5. Conclusions 

Considering that there is the a relation between the parameter selection of multi-parameter ranges and the probability 

distributions of parameter valuecalibration effect of a hydrological model, an approach to determine the an optimal range 5 

combination of for multi parameters ranges for the multi-parameter calibrationof hydrological models is was put forward by 

analysing the parameter value probability distribution, parameter sensitivity and parameter correlation between parameters. A 

case of The newly proposed method was applied for the improving the calibration of the GA-baseda Xinanjiang model for 

karst areas is studied, and some findings are presented as follows.: 

The proposed parameter range selection (PRS) method improves the minimum ENS and the maximum ENS, which makes the 10 

results concentrate at high ENS. The PRS-based calibration is, therefore, more efficient and effective. In the Xinanjiang model 

for karst areas, the parameters CI, Kc, SM and B approximately obey normal probability distributions, and parameters WM, 

C, EX, KI, CG and Im obey exponential probability distributions after 100 independent calibration runs. For the parameters of 

a normal distribution, the minimum ranges (MINR) defined by using a cumulative frequency curve of calibrated values with 

a given cumulative frequency of the parameter is preferred to be selected as the optimal parameter range for calibration. For 15 

the parameters of an exponential distribution, if the parameter range can be extended outside the boundary of high probability, 

the extension extension-MINR range followed by MINR is recommended to be selectedused for calibration if the initial range 

can be extended towards the high-probability side, otherwise the MINR of the initial range is selected as the optimal range for 

calibration.  

The proposed parameter range selection (PRS) method improves the minimum and mean values of ENS. The application of 20 

the proposed methodology results in an increase of 0.01 in minimum ENS, compared with that of the pure GA method. The 

rising of minimum ENS with little change of the maximum may shrink the range of the possible solutions. As a result, the 

uncertainty of the model performance can be effectively controlled.  

The M-SPR method is superior to the S-SPR one for calibrating hydrologic models with multiple parameters. The RC and 

SE are two important indexes that can help to analyse the sensitivity and correlation between parameters and consequently to 25 

coordinate with the negatively related parameters. The initial ranges of parameters of relatively low SE and negative RC mean 

and the optimal ranges of parameters of positive RC mean should be preferred to be chosen for the multi-parameter model 

calibration. 
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Fig. 1. Location of the study area 
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Fig. 2. Variation curves of maximum and minimum ENS with sample sizes 
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Fig. 23. Different probability distribution types of calibrated parameter values 

(a) Box-plot charts of normal, exponential and uniform distribution;  

Cumulative frequency curve and histogram for normal (b), exponential (c) and uniform (d) distributions 5 
(a) Box-plot charts of normal, exponential and uniform distribution (b) Cumulative frequency cure and histogram of normal distribution 

(c) Cumulative frequency cure and histogram of exponential distribution (d) Cumulative frequency cure and histogram of uniform 

distribution 
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Fig. 34. Selection of minimum and maximum range (MINR and MAXR) with a cumulative frequency of 50% 

 

 
Fig. 5. Variation curves of maximum and minimum ENS of a single parameter with cumulative frequency values 5 
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Fig. 46. The Fflow chart of multiple parameters ranges selections 
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Fig. 57. The box-plot chart of normalized calibrated values for parameters of Xinanjiang model 
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Fig. 6. Results of range selection of parameter CI  

(a) probability distribution of parameter values for schema initial range (b) probability distribution of parameter value for schema CI-MINR 

(c) probability distribution of parameter values for schema CI-MAXR (d) box-plot chart of ENS for three schemas  
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Fig. 8. Results of range selection of parameter CI  

Probability distribution of parameter values for schema initial range (a), CI-MINR (b) and CI-MAXR (c); 

(d) Box-plot chart of ENS for three schemas 
 5 
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Fig. 7. Results of range selection of parameter KI 

(a) probability distribution of parameter values for schema initial range (b) probability distribution of parameter values for schema KI-MINR  

(c) probability distribution of parameter values for schema KI-MAXR (d) box-plot chart of ENS for three schemas 
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Fig. 9. Results of range selection of parameter KI 

Probability distribution of parameter values for schema initial range (a), KI-MINR (b) and KI-MAXR (c);  

(d) Box-plot chart of ENS for three schemas 
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Fig. 8. Results of range selection of parameter B 

(a) probability distribution for schema initial range (b) probability distribution for schema B–Extension (c) probability distribution for 

schema B–MINR (d) probability distribution for schema B–Extension–MINR (e) box–plot chart of ENS for four schemas  
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Fig. 10. Results of range selection of parameter B 

Probability distribution for schema initial range (a), B–Extension (b), B–MINR (c) and B–Extension–MINR (d); 

(e) Box–plot chart of ENS for four schemas 
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Fig. 911. The Bbox–plot chart of ENS for different cases 

 

 

 5 

Figure 12. The variation curves of maximum and minimum ENS with number of runs by using a GA method and a proposed PRS method 
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Table 1. Metro-hydrological statistical data of the study area   

QMax, QMin and QAvg mean the maximum, minimum and average value of daily streamflow, respectively, and PMax means the maximum value 

of daily precipitation.Q means streamflow and P means average precipitation. 

  

Year QMax （m3/s） QMin（m3/s） QAvg（m3/s） PMax（mm/d） 

1996 719 0.76 14.38 235 

1997 308 0.76 14.32 155 

1998 369 0.66 13.67 157 

1999 282 0.53 12.81 144 

2000 339 1.14 11.37 107 
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Table 2. Parameters of Xinanjiang model 

Parameter Definition Range 

Kc Ratio of potential evapotranspiration to pan evaporation 0–1.1 

C 
Coefficient of the deep layer, that depends on the proportion of the basin area covered by 

vegetation with deep roots 
0.1–0.2 

WM  Averaged soil moisture storage capacity of the whole layer 120–200 (mm) 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity of 

the spatial 
0.1–0.4 

Im Percentage of impervious and saturated areas in the catchment 0.01–0.04 

SM  
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
10–50 (mm) 

EX Exponent of the free water capacity curve influencing the development of the saturated area 1.0–1.5 

KI Outflow coefficients of the free water storage to interflow 0–0.7 

KG relationships Outflow coefficients of the free water storage to groundwater relationships KG+KI=0.7 

CG Recession constants of the groundwater storage 0.950–0.998 

CI Recession constants of the lower interflow storage 0–0.9 

 

Table 2. Parameters of Xinanjiang model 

Parameter Definition Units 

CI Recession constants of the lower interflow storage dimensionless 

Kc Ratio of potential evapotranspiration to pan evaporation dimensionless 

KI Outflow coefficients of the free water storage to interflow dimensionless 

SM 
Areal mean free water capacity of the surface soil layer, which represents the maximum 

possible deficit of free water storage 
mm 

B 
Exponential parameter with a single parabolic curve, which represents the non-uniformity of 

the spatial 
dimensionless 

WM  Averaged soil moisture storage capacity of the whole layer mm 

C 
Coefficient of the deep layer, that depends on the proportion of the basin area covered by 

vegetation with deep roots 
dimensionless 

EX Exponent of the free water capacity curve influencing the development of the saturated area dimensionless 

CG Recession constants of the groundwater storage relationships dimensionless 

KG* Outflow coefficients of the free water storage to groundwater relationships dimensionless 

Im Percentage of impervious and saturated areas in the catchment dimensionless 

* the value of KG is calculated by the function 0.7-KI 5 
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Table 3. Range changes of parameters in schema Initial 

Parameter Initial parameter range Calibrated parameter range* Ratio** (%) 

CI 0–0.9 0.630–0.745 12.78 

Kc 0–1.1 0.81–1.09 25.45 

KI 0–0.7 0.534–0.7 23.71 

SM 10–50 31–39.4 21.00 

B 0.1–0.4 0.238–0.4 54.00 

WM 120–200 120–150 37.50 

C 0.1–0.2 0.1–0.2 100.00 

EX 1.0–1.5 1.0–1.5 100.00 

CG 0.950–0.998 0.950–0.994 91.67 

Im 0.01–0.04 0.01–0.04 100.00 

* the calibrated parameter range except the extreme outlier 

** the ratio is the ratio of calibrated parameter range to initial parametere range 

 

Table 3. Range changes and K-S tests (0.2=ߙ) of parameters in schema Initial 5 

Parameter Initial range Calibrated range* Ratio** (%) 

∆ெ௔௫*** 

Normal 

distribution 

Expoential 

distribution 

Uniform 

distribution 

CI 0–0.9 0.630–0.745 12.78 0.062 (pass) 0.328 (fail) 0.115 (fail) 

Kc 0–1.1 0.81–1.09 25.45 0.076 (pass) 0.305 (fail) 0.089 (pass) 

KI 0–0.7 0.534–0.7 23.71 0.128 (fail) 0.076 (pass) 0.173 (fail) 

SM 10–50 31–39.4 21.00 0.060 (pass) 0.304 (fail) 0.110 (fail) 

B 0.1–0.4 0.238–0.4 54.00 0.180 (fail) 0.062 (pass) 0.203 (fail) 

WM 120–200 120–150 37.50 0.181 (fail) 0.072 (pass) 0.231 (fail) 

C 0.1–0.2 0.1–0.2 100.00 0.163 (fail) 0.082 (pass) 0.217 (fail) 

EX 1.0–1.5 1.0–1.5 100.00 0.118 (fail) 0.079 (pass) 0.135 (fail) 

CG 0.950–0.998 0.950–0.994 91.67 0.123 (fail) 0.102 (pass) 0.139 (fail) 

Im 0.01–0.04 0.01–0.04 100.00 0.134 (fail) 0.076 (pass) 0.148 (fail) 

* the calibrated parameter range except the extreme outlier 

** the ratio is calculated by dividing the length of the range derived from 100 GA calibration runs by the initial range length 
*** the ∆ெ௔௫ is calculated by using the normalnized parameter values  
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Table 4. The indexed RC and SE of parameters when the optimal range for of single each parameter is performed used for calibration 

Parameter* CI Kc KI SM B WM C EX CG Im 

Optimal range of 

a single parameter 
0.679–
0.713 

0.95–
1.05 

0.66–
0.7 

35–39 
0.379–
0.488 

105–
110 

0.175 

–0.2 
1–1.118 

0.95–
0.966 

0.01–
0.0245 

RC 

CI 1.000  0.334  0.371  0.462  0.322  0.113  0.105  0.115  –0.128  0.272  

Kc 0.689  1.000  0.467  0.429  0.504  0.503  0.389  0.102  0.284  0.150  

KI 0.778  0.315  1.000  0.445  0.574  0.268  0.456  0.328  0.060  0.258  

SM 0.508  –0.199  0.422  1.000  –0.089  0.009  –0.063  0.383  0.218  –0.032  

B 0.914  0.560  0.698  –0.017  1.000  0.972  –0.175  0.007  –0.319  –0.722  

WM 0.575  0.311  0.439  0.553  0.325  1.000  0.229  0.360  –0.069  –0.235  

C 0.208  0.273  0.083  0.151  0.277  0.335  1.000  0.077  0.200  0.210  

EX 0.054  0.047  –0.011  0.018  0.371  0.045  0.009  1.000  –0.021  –0.025  

CG 0.221  0.246  –0.135  0.022  0.010  0.198  –0.034  –0.009  1.000  –0.112  

Im 0.238  0.073  –0.025  0.045  0.031  0.030  –0.026  –0.020  0.001  1.000  

Mean of RC 0.465  0.218  0.257  0.234  0.258  0.275  0.099  0.149  0.025  –0.026  

SE (%) 54.7 47.9 36.6 41.7 48.1 39.9 10.8 14.7 21.9 0.3 

* The parameter represents the parameter X in Eq. 2. 
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Table 5. Parameter ranges setting for different cases 

The symbol ‘I’ represents the initial range of the parameter in Table 3, and ‘O’ the optimal range of the parameter in Table 4. 

 

Table 5. Parameter ranges setting for different cases 

The symbol ‘I’ represents the initial range of the parameter in Table 3, and ‘O’ the optimal range of the parameter in Table 4. 5 

Case 
Range setting of parameter 

WM C B SM EX KI CI CG Kc Im 

1 I I I I I I I I I I 
2 I I I I I I I I I O 
3 I I I I O I I I I I 
4 I I I I O I I I I O 
5 O O O O O O O I O I 
6 O O O O O O O O O I 
7 O O O O O O O O O O 

Case 
Range setting of parameter 

CI Kc KI SM B WM C EX CG Im 

1 I I I I I I I I I I 
2 I I I I I I I I I O 
3 I I I I I I I O I I 
4 I I I I I I I O I O 
5 O O O O O O O O I I 
6 O O O O O O O O O I 
7 O O O O O O O O O O 
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