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Abstract. Accurate spatially distributed estimates of actual evapotranspiration (ET) derived from remotely sensed data are 

critical to a broad range of practical and operational applications. However, due to lengthy return intervals and cloud cover, 

data acquisition is not continuous over time, particularly for satellite sensors operating at medium (~100 m) or finer 

resolutions. To fill the data gaps between clear-sky data acquisitions, interpolation methods that take advantage of the 

relationship between ET and other environmental properties that can be continuously monitored are often used. This study 5 

sought to evaluate the accuracy of this approach, which is commonly referred to as temporal upscaling, as a function of 

satellite revisit interval. Using data collected at 20 Ameriflux sites distributed throughout the contiguous United States and 

representing 4 distinct land cover types (cropland, grassland, forest, and open-canopy) as a proxy for perfect retrievals on 

satellite overpass dates, this study assesses daily ET estimates derived using 5 different reference quantities (incident solar 

radiation, net radiation, available energy, reference ET, and equilibrium latent heat flux) and 3 different interpolation 10 

methods (linear, cubic spline, and hermite spline). Not only did the analyses find that the temporal autocorrelation, i.e. 

persistence, of all of the reference quantities was short, it also found that those land cover types with the greatest ET 

exhibited the least persistence. This carries over to the error associated with both the various scaled quantities and flux 

estimates. In terms of both the root mean square error (RMSE) and mean absolute error (MAE), the errors increased rapidly 

with increasing return interval following a logarithmic relationship. Again, those land cover types with the greatest ET 15 

showed the largest errors. Moreover, using a threshold of 20% relative error, this study indicates that a return interval of no 

more than 5 days is necessary for accurate daily ET estimates. It also found that the spline interpolation methods performed 

erratically for long return intervals and should be avoided. 
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1 Introduction 

 As one component of a complex network of interconnected processes, evapotranspiration (ET) is influenced by 

numerous factors such as available energy, soil moisture, vegetation density, and humidity (Farquhar and Sharkey 1982; van 

de Griend and Owe 1994; Alves and Pereira 2003; Alfieri et al. 2007). For example, the amount energy available to drive ET 

depends on atmospheric properties, such as humidity and aerosol content, which influence atmospheric transmissivity 5 

(Brutseart 1975; Bird and Riordan 1986). The available energy is also controlled by surface properties, such as the type and 

density of vegetation cover and soil moisture, which influence not only the surface albedo and emissivity (Wittich 1997; 

Asner etal. 1998; Myneni et al.1989; Song et al. 1999; Lobell and Asner 2002), but also impact the amount of energy 

conducted into the ground (Friedl and Davis 1994; Kustas et al. 2000; Abu-Hamadeh 2003; Santanell and Friedl 2003). 

Moreover, the magnitude of the moisture flux can vary over a range of timescales in response to changes in the 10 

environmental conditions influencing ET. One example of this, which has been pointed out by Williams et al. (1998), Scott 

et al. (2014), and others, is the rapid and often persistent change in ET in response to a rain event. 

 Because it is a fundamental linkage between numerous biogephysical and biogeochemical processes, accurate 

information regarding evapotranspiration (ET) is critical for a broad range of scientific and practical applications with 

significant social, economic, and environmental impacts. For example, reliable information about ET is essential for 15 

accurately forecasting weather and assessing the impacts of changing climate (Katul et al., 2012; Wang and Dickinson, 

2012); monitoring and mitigating the adverse effects of extreme weather events such as drought (Anderson et al., 2007, 

2011, 2016; Otkin et al. 2016); and, identifying and predicting the changes in both the biogeographical characteristics of 

ecosystems  and the services they provide in response to changing environmental conditions (Hawkins and Porter, 2003; 

Kreft and Jetz, 2007; Midgley et al. 2002). However, as pointed out by Seguin and Itier (1983), Abdelghabi et al. (2008), and 20 

Anderson et al. (2012), among others, perhaps the most important application of ET data is providing information critical to 

satisfying the competing demands for scare water resources. 

 Already, the competing demands for fresh water by agricultural, industrial, and urban consumers exceed the 

available supply for nearly one-third of the world’s population (Qadir et al. 2003) and it is predicted that number will 

increase to more than two-thirds of the global population in the coming decades (Wallace, 2008; Vörösmarty et al., 2010). 25 

To meet the current and future demand for water, resource managers and other policymakers must make informed decisions 

regarding the needs of competing stakeholders when allocating limited water resources in order to maximize their effective 

use. In the case of irrigated agriculture, which is the largest consumer of fresh water and accounts for 1200 km3 or 

approximately 85% of annual current water use (Drooger et al., 2010; Thenkabail et al., 2010), the need for water is largely 

driven by evaporative loss. Thus, ET measurements are needed not only to monitor evaporative water loss and determine 30 

crop irrigation needs, it is also needed to develop the irrigation techniques and management practices necessary to ensure the 

efficient use of water in agricultural environments (Howell, 2001; Schultz and Wrachien, 2002; Gordon et al., 2010; de 

Fraiture and Wichelns, 2010). 
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 While in situ observations are invaluable for some of these applications, many of them require spatially distributed 

measures of ET at field to continental scales that cannot be supplied by the existing flux measurement infrastructure. Remote 

sensing-based approaches are the only viable mean for monitoring ET over this continuum of scales (McCabe et al., 2008; 

Kalma et al., 2008; Gonzalez-Dugo et al., 2009). As discussed by Anderson et al. (2012), any comprehensive program for 

monitoring water resources will by necessity use remote sensing data collected by multiple platforms at a range of spatial 5 

and temporal scales.  

 Nonetheless, remote sensing is not without limitations. Chief among these is the infrequent acquisition of the 

medium to high-resolution imagery needed as input for remote sensing-based models  to determine ET. This infrequent 

acquisition of imagery is due to both lengthy return intervals and the presence of cloud cover (Ryu et al., 2012; van Niel et 

al., 2012; Cammalleri et al., 2013). To provide temporally continuous ET estimates, the moisture flux during the period 10 

between data acquisitions is often estimated using an interpolation technique commonly referred to as temporal upscaling. 

This well-established approach, which can be applied at either sub-daily or daily time steps, estimates the moisture flux as 

the product of some reference quantity (χ) and its associate scaled metric (f) according to: 

 ET�𝑡 = 𝜒𝑡𝑓𝑡                  (1) 

where ET�  is the estimated ET and t indicates the time period of the estimate. While it is typically related to the moisture flux, 15 

χ is a quantity that can be measured or estimated more readily than the moisture flux itself. The scaled metric is the ratio 

between χ and the moisture flux. For example, it is quite common to estimate ET expressed in terms of the latent heat flux 

(λE) using the available energy (A), here defined as the net radiation less the soil heat flux, as the reference quantity and 

evaporative fraction (fA) as the scaled metric (e.g. Crago and Brutsaert , 1996; Bastiaanssen et al., 1998; Suleiman and 

Crago, 2004; Colaizzi et al., 2006; Hoedjes et al. 2008; van Niel et al., 2011; Delogu et al., 2012). 20 

 For the periods between data retrievals, f is estimated via interpolation. As a result, this approach is predicated on 

the assumption that f is self-preserving, i.e. it is constant or nearly constant, and thus varies only slowly over time (Brutsaert 

and Sugita, 1992; Nichols and Cuenca, 1993; Crago, 1996).  In order to conform to this assumption, the components of the 

radiation or energy budget are often selected as χ such that f is an analogue of evaporative fraction. Examples of these 

quantities include the incident solar radiation (K↓; Jackson et al. 1983; Zhang and Lemeur, 1995), or extraterrestrial solar 25 

radiation (K↓TOA; Ryu et al. 2012). However, a number of recent studies indicate the assumption of self-preservation is only 

approximate for these quantities. For example, both Gentine et al. (2007) and Hoedjes et al. (2008) showed that the self-

preservation of evaporative faction is sensitive to soil moisture conditions and fractional vegetation cover. Similarly, 

Lhomme and Elguero (1999) and later Van Niel et al. (2012) showed that the degree of self-preservation can be influenced 

by cloud cover. As such, the assumption of clear-sky conditions is a significant potential source of error in the ET estimates 30 

that must be considered when utilizing or evaluating temporally upscaled moisture flux data (van Niel et al., 2012; Peng et 

al., 2013; Cammalleri et al., 2014). Other studies have focused on using a quantity derived from the local meteorological 

conditions as χ because it would consider many of the meteorological factors that influence the moisture flux. For example, 

Tasumi et al. (2005) proposed using the reference ET for alfalfa (ETr) as χ; later, Allen et al. (2007) proposed using the 
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standardized reference evapotranspiration (ET0) as χ. In both cases, the resulting f is equivalent to a crop coefficient and 

would share its characteristics. As a result, f derived from ETr or ET0 can be treated in much the same fashion as a crop 

coefficient and assumed to be nearly constant changing only slowly with time (Colaizzi et al., 2006; Chavez et al., 2009). 

 By assessing the error introduced into ET estimates by temporal upscaling under realistic conditions, this study 

sought to achieve two goals: i. to provide insights into the relative strengths of the differing temporal upscaling approaches, 5 

and ii. to determine the maximum return interval threshold for obtaining acceptable estimates of daily ET. Specifically, this 

study uses in situ measurements collected over a variety of land cover types as a proxy for remotely-sensed data to evaluate 

the impact of multiple reference quantities, interpolation techniques, and revisit intervals on the estimated daily moisture 

flux. The study focuses on daytime mean data to evaluate temporal upscaling at a daily time step. It also assumes perfect 

retrieval of the flux; in other terms, no error was introduced into ET data to approximate the error or uncertainty in the 10 

estimates of ET from the remote sensing-based models. Since any errors in the remote sensing-based ET estimates propagate 

into the calculation of f and the subsequent temporal upscaling, this analysis represents the best-case scenario. The following 

section provides an overview of the field measurements along with the reference quantities, interpolation techniques, and 

evaluation methods used in this study. Section 3 provides a discussion of the results of this study while the final section 

encapsulates the conclusions that can be drawn from those results.  15 

2. Methods 

2.1. Datasets 

Data, including local meteorological conditions (wind speed and direction, air temperature, humidity, atmospheric 

pressure, and precipitation), radiation budget (incident and reflected solar radiation, incident and terrestrial longwave 

radiation, and net radiation), surface fluxes (sensible, latent, and soil heat fluxes), and surface conditions, collected at 20 

numerous sites within the Ameriflux network (Baldocchi et al., 2001) were used for this study. Specifically, the data were 

collected at 20 Ameriflux sites (Fig. 1 and 2; Table 1) distributed across the contiguous United States and representing four 

distinct land cover types. These are i. croplands (maize (Zea mays)/soy (Glycine max) rotation); ii. grasslands; iii. forests 

(evergreen needleleaf and broadleaf deciduous); and, iv. open-canopy (shrubland and woody savanna). Measurements were 

collected for a minimum of five years at each of the sites selected. Further information regarding the field sites, measurement 25 

procedures, and post-processing protocols for Ameriflux is presented in Baldocchi et al., 2001; the data are archived at the 

Oak Ridge National laboratory and available at http://ameriflux.ornl.gov/. 

After forcing closure of the energy balance while maintaining a constant Bowen ratio (Twine et al. 2000) in order to 

more closely match the characteristics of the output from the models, the 30-minute measurements were used to calculate the 

various χ and f. Finally, the daytime mean of the fluxes and other necessary quantities were calculated for use in the 30 

subsequent analyses. Although it can be taken as nominally as the period between 0800 and 1800 LST, daytime is defined 
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herein as the period between the first and last measurements during a given day when the incident solar radiation exceeded 

100 W m-2.  

2.2. Reference Quantities and Scaled Metrics  

 The first of the χ derived from meteorological data, λE0, is derived from ET0 which is described by Allen et al. 

(1998) as the hypothetical ET (or λE) from a well-watered grass surface with an assumed height of 0.12 m and albedo of 5 

0.23. It is calculated using a simplified form of the Penman-Monteith equation. For this study, the updated relationship given 

by Walter et al. (2005) was used: 

 𝐸𝑇0 =
0.408Δ(Rn−G)+𝛾 𝐶𝑛

(𝑇+273)𝑈(𝑒𝑠−𝑒𝑎)

Δ+𝛾(1+𝑈𝐶𝑑)
         (2) 

where Δ is the slope of the saturation vapor pressure-temperature curve (kPa K-1), Rn is the net radiation (W m-2), G is the 

soil heat flux (W m-2), γ is the psychrometric constant (kPa K-1), Cn is a constant (37 °C s2 m-2), T is the air temperature (°C), 10 

U is the wind speed (m s-1), es is the saturation water vapor pressure (kPa), ea is the actual water vapor pressure (kPa), and Cd 

is a constant (0.24 s m-1). This relationship is nearly identical to the one given in Allen et al. (1998); the two formulae differ 

only with regard to the assumed surface resistance. While the surface resistance is assumed to be 70 s m-1 by Allen et al. 

(1998), it is assumed to be 50 s m-1 in the later work. While modest, this modification yields improved results when the 

daytime moisture flux is calculated on an hourly basis (Walter et al. 2005). The result is converted to λE0 by multiplying by 15 

the product of the density of water and the latent heat of vaporization. Similarly, λEeq, which can be thought of as the energy-

driven moisture flux that is independent of surface resistance, can be expressed according to: 

  𝜆𝐸𝑒𝑞 = 𝐴 Δ
Δ+𝛾

           (3) 

with the variables defined as above (McNaughton, 1976; Raupach, 2001). 

2.3. Interpolation Techniques 20 

 In addition to piecewise linear interpolation, two piecewise spline interpolation methods were evaluated as a part of 

this study, namely cubic and hermite spline interpolation. In contrast to linear interpolation, which tends to yield accurate 

results only when the underlying data vary smoothly over time, the splining methods are less prone to error when the 

observed data change abruptly (Trefethen 2013). Similarly, the more computational complex hermite spline method typically 

yields more accurate results when the gaps between observed data points are large (DeBoor, 1994).  25 

As the name implies, the piecewise linear interpolation estimates f using a family of n – 1 linear relationships 

defined such that the linearly-interpolated f (𝑓𝐿) at time t is determined according to: 

  𝑓𝐿𝑖(𝑡) = 𝑓𝑖 + (𝑡𝑖+1 − 𝑡𝑖)𝑚𝑖ℎ 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1       (4) 
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where n is the number of observed data points, fi is the known f at time ti, mi is the slope of straight line relationship for the 

period between ti and ti+1 defined as 𝑚𝑖 = (𝑓𝑖+1 − 𝑓𝑖) (𝑡𝑖+1 − 𝑡𝑖)⁄ , and h is the time normalized between 0 and 1 and is 

defined as  ℎ = (𝑡 − 𝑡𝑖) (𝑡𝑖+1 − 𝑡𝑖)⁄ . The piecewise cubic spline interpolation function is family of n - 1 cubic polynomials 

defined such that the interpolated f (𝑓𝑆) at time t is determined according to: 

  𝑓𝑆𝑖(𝑡) = 𝑓𝑖 + 𝑎𝑖[(𝑡𝑖+1 − 𝑡𝑖)ℎ]3+𝑏𝑖[(𝑡𝑖+1 − 𝑡𝑖)ℎ]2 + 𝑐𝑖[(𝑡𝑖+1 − 𝑡𝑖)ℎ] 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1   (5) 5 

where the coefficients ai, bi, and ci are determined by simultaneously solving the series of n – 1 equations with the 

constraints that the interpolation function, as well as its first and second derivatives, must be continuous and pass exactly 

through the known values of f.  Similarly, the final interpolation technique, piecewise hermite cubic spline, defines the 

 
𝑓𝐻𝑖(𝑡) = (2ℎ3 − 3ℎ2 + 1)𝑓𝑖 + (−2ℎ3 − 3ℎ2)𝑓𝑖+1 + ⋯
                 ℎ(ℎ2 − 2ℎ + 1)(𝑡𝑖+1 − 𝑡𝑖)𝑠𝑖 + ℎ(ℎ2 − ℎ)(𝑡𝑖+1 − 𝑡𝑖)𝑠𝑖+1

𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1    (6) 

where si is the slope of the curve at time ti (De Boor, 1994). For this study, it is calculated according to: 10 

  𝑠𝑖 = 1
2
�𝑓𝑖+1−𝑓𝑖
𝑡𝑖+1−𝑡𝑖

+ 𝑓𝑖−𝑓𝑖−1
𝑡𝑖−𝑡𝑖−1

�          (7)  

and the variables are defined as above (Moler, 2004). 

 For this analysis, temporal upscaling was conducted at each of the Ameriflux sites using all possible combinations 

of f and interpolation methods. Specifically, it was conducted with data representing return intervals of up to 32 day 

generated from the daytime mean data at each site. In order to maximize the robustness of the statistical analysis, all possible 15 

realizations - the unique yet equivalent time series that can be generated from the data collected at a particular site while 

maintaining constant return interval – were considered in the analysis. The total number of possible realizations for a given 

return interval is equal to the length of the return interval. The individual realizations were generated by beginning the time 

series on consecutive days. 

 Again, to emulate the temporal upscaling of flux data derived from remotely sensed-data as closely as possible, 20 

efforts were made to ensure that the observations used for the interpolation were collected on clear-sky days. Clear-sky days 

were identified as those where the daytime mean of the measured K↓ was within 25% of the predicted value from a simple 

radiation model; this threshold was selected based on a preliminary analyses comparing the model results with observations 

on known clear-sky days. The incident solar radiation was estimated as the product of K↓TOA calculated following Meeus et 

al. (1991) and atmospheric transmissivity calculated according to Brutsaert (1975). In order to ensure a constant return 25 

interval for a given interpolation, if a day was judged to be cloudy, both the observed flux on that day and the estimated flux 

for those subsequent days derived from it were omitted from the statistical analysis. Although the number of days flagged 

due to cloudy conditions and omitted from subsequent analyses varied depending on the site and the return interval being 

modelled, at least 1200 days were considered for each of the analyses at each site. 
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2.4. Statistical Metrics 

 As discussed by Wilks (2006), persistence, i.e. the degree of self-preservation, can be assessed via auto-correlation 

(ρ). For a given lag (h), i.e. the offset between measurements pairs, the auto-correlation is defined according to: 

  𝜌 = ∑ [(𝑥𝑖−�̅�−)(𝑥𝑖+ℎ−�̅�+)]𝑛−ℎ
𝑖=1

�∑ (𝑥𝑖−�̅�−)2𝑛−ℎ
𝑖=1 ∑ (𝑥𝑖+ℎ−�̅�+)2𝑛−ℎ

𝑖=1

         (8) 

where n is the number of data points, �̅�− is the mean of the first m data points and �̅�+ is the mean of the final m data points; 5 

m is defined as the total number of data points less the length of the lag, i.e. 𝑚 = 𝑛 − ℎ. 

 A pair of statistics are used to evaluate the accuracy of the temporal upscaling. The first of these is the root mean 

square error (RMSE): 

 RMSE = �1
𝑛
∑ (𝑥𝑖 − 𝑥�𝑖)2𝑛
𝑖=1          (9) 

where n is the number of data points, x is the observed flux, and 𝑥� is the flux predicted by temporal upscaling. However, 10 

because the squared difference term in RMSE tends to overemphasize the effects of large errors (Legates and McCabe, 1999; 

Willmott and Matsuura, 2005; Willmott et al., 2012), the mean absolute error (MAE) was also calculated as follows: 

  MAE = 1
𝑛
∑ |𝑥𝑖 − 𝑥�𝑖|𝑛
𝑖=1           (10) 

with the variables defined as above.  

 Once calculated for the individual the sites, the statistics were aggregated to represent the typical results for a given 15 

land cover type. The aggregation was accomplished by calculating the arithmetic means after conducting any necessary 

transform. For example, both the auto-correlation and RMSE are non-additive quantities that cannot be averaged directly; 

instead, they must first be transformed into an additive quantity. In the case of the former, the auto-correlation was 

aggregated by averaging the results for the individual analysis periods at each of the sites after applying a Fisher z-

transformation (Burt and Barber, 1996). Similarly, the RMSE data was averaged after first transforming it to the mean 20 

square error. 

3. Results and Discussion 

3.1 Persistence of Scaled Quantities 

 Due to its importance in determining the accuracy of the estimates, the persistence or degree of self-preservation 

exhibited by the various f used in this study was evaluated by determining its autocorrelation function. For each site, the 25 

autocorrelation was calculated for each contiguous segment of daytime mean data that was at least 48 days in length (1.5 

times the maximum return interval considered herein).  

 As can be seen in Fig. 3, which shows the mean auto-correlation function for each f and land cover type, all f 

performed similarly. In all cases, ρ decreased in inverse proportion to h, dropping to less than 0.50 within three to ten days. 
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Also, for any given land cover, the mean auto-correlation functions for the analogues of evaporative fraction, namely fK↓, fRn, 

and fA, were statistically indistinguishable from one another based on t-tests conducted at the 95% confidence level. 

Similarly, no statistically significant difference between the mean auto-correlation functions of fλE0 and fλEeq was found. 

Nonetheless, there were statistically significant, albeit modest, differences between the auto-correlation functions associated 

with f derived from evaporative fraction analogues and those derived from meteorological data. Regardless of land cover, ρ 5 

associated with fK↓, fRn, and fA, tended to be greater than ρ associated with either fλE0 or fλEeq. On average, the difference was 

approximately 0.03. 

 The results of this analysis, which are consistent with results of other studies (Farah et al. 2004; Lu et al., 2013) that 

found significant day-to-day and seasonal variations in evaporative fraction, indicates the long-term persistence of f is very 

limited. This result also suggests that interpolated values of f may not accurately reflect the actual values and, as a result, 10 

may be a key source of error when using temporal upscaling to estimate the moisture flux between image retrievals.  

 The figure also shows there was significant variability from site-to-site within a given land cover type, particularly 

for longer lags. Although the specific causes of these differences are not fully understood, there are number of factors that 

likely contribute. For example, there are difference in both species composition and climate at the various sites. Consider, as 

an example, the forest class which includes both coniferous and broadleaf deciduous forest. Moreover, the species 15 

composition varies even among sites of the same forest type; for example dominant species at the Niwot ridge site are 

Subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii) while, as the name implies, the dominant species 

at the Loblolly Pine is loblolly pine (Pinus taeda). At the same time, the mean annual temperature at the forested sites ranged 

from 1.5 °C to 14.4 °C while the mean annual precipitation varied from 800 mm to 1372 mm. Similarly the mean annual 

temperature and precipitation at the cropland sites, which are all planted on a rotation of maize and soy, range between  20 

6.4 °C and 11.0 °C and 789 mm and 991 mm, respectively.  

 Further analysis shows differences in the mean autocorrelation functions exist between land cover types. Regardless 

of the scaled quantity considered, the mean autocorrelation function decreases most rapidly over forested sites and the most 

slowly over the open sites. Indeed, if the lag where the mean autocorrelation function reaches some threshold value, e.g. 

0.50, is plotted as a function of the mean daytime latent heat flux (Fig. 4), it can be seen that persistence decreases 25 

exponentially with the increasing moisture flux. While the underlying cause of this relationship is unclear, it suggests the 

return interval necessary to achieve accurate estimates of ET via temporal upscaling will be longer over relatively dry 

regions with a low moisture flux than over regions where ET is high.  

3.2 Accuracy of the Interpolated Scaled Quantities  

 Both RMSE and MAE of the interpolated estimates of each f were calculated for all land cover types and return 30 

intervals up to 32 days. As can be seen in Fig. 5 and Fig. 6, both metrics behaved similarly; regardless of the land cover type, 

scaled quantity, or interpolation method considered, the error increased rapidly with increasing return interval until a plateau 

was reached. In all cases, the RMSE, which increased according to a logarithmic function of return interval, reached 75% of 
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its peak value within five days. For comparison, the mean maximum RMSE for each land cover type was 0.26, 0.28, and 

0.17 for croplands, grasslands, forest, and open canopies, respectively. Although it also increased logarithmically, the 

amount of time needed for MAE to reach 75% of the peak value was more variable, ranging between 5 to 10 days. Again, for 

purposes of comparison, the mean maximum MAE was 0.22, 0.14, 0.16, and 0.10, respectively, for croplands, grasslands, 

forest, and open canopies. Further, MAE increased most rapidly for those land cover types that exhibited the highest 5 

moisture flux. The largest error, whether measured in terms of RMSE or MAE, also tended to be associated with the forest 

and cropland sites where the mean ET was largest.  

 The results also show that all of the interpolation methods yielded similar results for short return intervals of less 

than eight days. In contrast, for longer return intervals, both RMSE and MAE of the estimates using the spline interpolation 

methods were greater than when linear interpolation is used (Fig.5 and 6). Moreover, the error of the estimates tended to 10 

much noisier for the spline techniques, particularly the cubic spline method which exhibited periods of very large errors. 

These large noisy errors, which are most evident in RMSE – perhaps because it is more sensitive to outliers than MAE – are 

indicative of “overshoot” errors by the spline interpolation. The large errors are also most pronounced for those land cover 

types that also demonstrated the highest average ET and the lowest autocorrelation 

3.3 Accuracy of the Latent Heat Flux Estimates  15 

Not unexpectedly, the accuracy of the moisture fluxes estimated via temporal upscaling closely mirrors the 

accuracy of the interpolated f. As was the case with f, both the RMSE and MAE of the flux estimates increase rapidly with 

return interval to a maximum value following a logarithmic function (Fig. 7 and Fig. 8). In the case of RMSE, the maximum 

error ranged between 31 W m-2 and 66 W m-2. In the case of MAE, it ranged between 22 W m-2 and 54 W m-2. Again, the 

greatest error is associated with the land cover with the highest ET, i.e. forest and cropland. 20 

These plots, like those for f, show little difference among the interpolation techniques when the return interval is 

short. For return intervals longer than about 8 days, however, the spline interpolation techniques, and especially the cubic 

spline method, can introduce large errors into the flux estimates due to the “overshoot” errors in the interpolation of f. These 

large noisy errors are most evident in the RMSE of forested sites (Fig. 8), but may also be seen to a lesser extent at the 

cropland sites. Overall, this suggests there is no substantive advantage of using the more computational complex spline 25 

techniques over linear regression; rather, the propensity of spline methods to introduce large errors due to interpolation 

“overshoot” indicates these techniques should be avoided. 

The accuracy, and thus utility, of the various f was evaluated while focusing specifically on the results when linear 

interpolation was used. Regardless of f, an intercomparison of the estimated fluxes using t-tests conducted at the 95% 

confidence level indicated there was no statistically significant difference in either the flux estimates or the error due to 30 

temporal upscaling when the return interval was less than eight days. For longer return intervals, analyses using RMSE (Fig. 

9) and MAE (not shown), which yielded similar results, indicated the error due temporal upscaling was very similar when 

fRn, fA, or fλEeq was used. Indeed, the error introduced using any of these three quantities was statistically identical based on t-
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tests conducted at the 95% confidence level. Moreover, with the exception of the forest sites, where the error due to temporal 

upscaling using fK↓ was the same as the error introduced by using fRn, fA, or fλEeq, temporal upscaling using fRn, fA, and fλEeq 

consistently introduced the least error. For a 10-day return interval, as an example, the percent error introduced by these 

quantities ranges between 21% and 23% depending on land cover.  In contrast, temporal upscaling using fλE0 introduced the 

greatest error. Again, for a 10-day return interval, the percent error associated with fλE0 ranges between 24% and 30% 5 

depending on land cover. 

3.4 Estimating Optimal Return Interval Thresholds 

Again focusing on the flux estimates when linear interpolation was used, the return interval threshold yielding 

errors of less than 20% in the daily ET estimates was identified (Table 2). The 20% threshold was selected because it is the 

nominal uncertainty commonly associated with in situ observations such as those collected via eddy covariance. While the 10 

return interval associated with the 20% threshold varied depending on land cover type and f, the longest return intervals are 

associated with fλEeq followed by fRn, and fA, which yield statistically identical results, and finally fK↓ and fλE0, which also yield 

statistically indistinguishable results based on t-tests at the 95% confidence level. The range of values among the various f 

was 2 days, on average. This again indicates that the accuracy of temporal upscaling is greatest for fRn, fA, and fλEeq. 

By plotting the average threshold return interval for each land cover class against its corresponding mean latent heat 15 

flux for that class (Fig. 10), it can be seen that length of the return interval that will result in no more than 20% error 

decreases with the increasing moisture flux. Like ρ, the relationship follows an exponential decay function. In this case, 

however, the curve has a lower bound of five days. Based on this, the maximum return interval that can be expected to 

introduce less than 20% error to the flux estimates via temporal upscaling for all land cover classes is 5 days. If a threshold 

of 10% relative error is used, the threshold falls to only 3 days. Importantly, since the determination of the maximum return 20 

interval was made assuming there is no error in the moisture flux used to calculate f, they represent the best-case scenario. In 

practice, any error in the flux retrieval will propagate into the interpolated flux. As a result the maximum return interval 

would be somewhat shorter. 

4. Conclusions 

 The results of this study indicate that the day-to-day persistence of χ typically used in the temporal upscaling of 25 

satellite-based ET retrievals is quite limited. The autocorrelation of daytime means of these quantities decreases to less than 

0.5 within 10 day and to less than 0.25 in 7 to 24 days depending on land cover class. More generally, it was found that the 

number of days for ρ to reach to a given threshold decreases with increasing λE following a well-defined exponential decay 

function. This suggests that the utility of temporal upscaling is limited to short return intervals, especially for land covers 

such as forest and croplands, which are characterized by large moisture fluxes. The analyses of RMSE and MAE confirm 30 

this inference; in both cases the magnitude of the error increases rapidly with increasing return interval and typically reaches 
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75% of the maximum error within 3 to 7 days. Again, the magnitude of the error due to temporal upscaling was greatest over 

those land cover types with the highest ET. Using 20% relative error as the threshold, the maximum return interval ranged 

between five and eight days, on average, depending on land cover type. However, since the maximum return interval 

decreases to a minimum of five days following an exponential decay function of the mean moisture flux, five days is the 

longest return interval that would allow for accurate ET estimates over all land cover types assuming perfect retrieval. While 5 

the study found that using λEeq, Rn, or A as χ tended to produce the most accurate estimates of  λE for longer return intervals, 

for return intervals of five days or less, there was no statistically significant difference in the flux estimates. Finally, the 

comparison of interpolation methods indicated there is no advantage to using the more computationally complex spline 

interpolation methods. 
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Figures 

 
 
Figure 1 Map showing the location of the Ameriflux sites used in this study.  
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Figure 2 The mean daytime latent heat flux is shown for each of the land cover types. The mean flux was calculated using the 
daytime mean flux data for all of years considered at each site. The shaded area represents one standard deviation about the mean.   5 
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Figure 3 The representative autocorrelation function derived for each land cover type and scaled metric used in this study is 
shown. The shaded area represents one standard deviation about the mean.   



22 
 

 

Figure 4 The maximum lag where the autocorrelation function exceeds 0.50 plotted as a function of the mean daytime latent heat 
flux is shown. 
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Figure 5The root mean square error (RMSE) of the estimates of the scaled quantities is shown for each land cover type and 
interpolation scheme. 

 

  5 
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Figure 6 The mean absolute error (MAE) of the estimates of the scaled quantities is shown for each land cover type and 
interpolation scheme.  
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Figure 7 The root mean square error (RMSE) of the latent heat flux derived from each of the scaled quantities is shown for each 
land cover type and interpolation scheme.  
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Figure 8 The mean absolute error (MAE) of the latent heat flux derived from each of the scaled quantities is shown for each land 
cover type and interpolation scheme. 

 

 5 
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Figure 9 The root mean square error (RMSE) of the latent heat flux derived from each of the scaled quantities is shown for each 
land cover type when linear interpolation is used. 

 

 5 
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Figure 10 The maximum return interval where the relative error is less than 20% plotted as a function of the mean daytime latent 5 
heat flux. 
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Tables: 

Table 1 Summary of Ameriflux sites used in this study. 

Site Location Land 
Cover 

Mean 
Annual 
Temp. 

Mean 
Annual 
Rainfall 

Study 
Period Site Location Land 

Cover 

Mean 
Annual 
Temp. 

Mean 
Annual 
Rainfall 

Study 
Period 

Bondville 40.006 °N 
88.290 °W 

Cropland 
(maize/soy) 11.0°C 991 mm 2000- 

2008 
Lucky  
Hills 

31.744 °N 
110.052 °W Shrubland 17.6°C 320 mm 2007- 

2012 

Brookings 44.345 °N 
96.836 °W 

Woody 
Savanna 6.0°C 586 mm 2004- 

2010 Mead 41.165 °N 
96.477 °W 

Cropland 
(maize/soy) 10.1°C 789 mm 2001- 

2012 

Brooks 
Field 

41.692 °N 
93.691 °W Cropland 8.9°C 847 mm 2005- 

2011 
Morgan 
Monroe 

39.323 °N 
86.413 °W 

Broadleaf 
Deciduous 

Forest 
10.9°C 1032 mm 2004- 

2014 

Chestnut 
Ridge 

35.931 °N 
84.332 °W 

Broadleaf 
Deciduous 

Forest 
13.9°C 1359 mm 2005- 

2010 
Niwot 
Ridge 

40.033 °N 
105.546 °W 

Evergreen 
Needleleaf 

Forest 
1.5°C 800 mm 2001- 

2012 

Fermi 
Cropland 

41.859 °N 
88.223 °W 

Cropland 
(maize/soy) 9.2°C 929 mm 2005- 

2011 
Missouri 
Ozarks 

38.744 °N 
-92.200 °W 

Broadleaf 
Deciduous 

Forest 
12.1°C 986 mm 2004- 

2013 

Fermi 
Grassland 

41.841 °N 
88.241 °W Grassland 9.2°C 929 mm 2005- 

2011 Rosemount 44.714 °N 
93.090 °W 

Cropland 
(maize/soy) 6.4°C 879 mm 2004- 

2012 

Freeman 
Ranch 

29.940 °N 
-97.990 °W 

Woody 
Savanna 19.5°C 864 mm 2005- 

2009 
Santa Rita 
Mesquite 

31.821 °N 
110.866 °W 

Woody 
Savanna 17.9°C 380 mm 2004- 

2012 

Kendall 
Grassland 

31.737 °N 
109.942 °W Grassland 15.6°C 407 mm 2004- 

2012 
Tonzi 
Ranch 

38.432 °N 
120.966 °W 

Woody 
Savanna 15.8°C 559 mm 2001- 

2012 

Konza 
Prairie 

39.082 °N 
96.560 °W Grassland 12.8°C 867 nn 2006- 

2012 
Vaira  
Ranch 

38.407 °N 
120.910 °W Grassland 15.8°C 559 mm 2001- 

2012 

Loblolly 
Pine 

35.978 °N 
79.094 °W 

Evergreen 
Needleleaf 

Forest 
14.4°C 1170 mm 2001- 

2008 
Walker 
Branch 

35.959 °N 
84.787 °W 

Broadleaf 
Deciduous 

Forest 
13.7°C 1372 mm 2001- 

2007 
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Table 2 The maximum return interval with a relative error of less than 20% is given for each reference quantity and LULC when 
linear interpolation was used. 

 Reference Quantity 

Incident Solar 

Radiation 

Net 

Radiation 

Available 

Energy 

Reference 

Latent Heat Flux 

Equilibrium 

Latent Heat Flux 

L
an

d 
C

ov
er

 

Cropland 4 6 7 4 7 

Grassland 5 7 6 5 8 

Forest 5 6 5 5 6 

Open 

Canopy 
6 8 8 7 8 
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