
Advantages of Analytically Computing the Ground Heat Flux in

Land Surface Models

Valentijn R.N. Pauwels1 and Edoardo Daly1

1Monash University, Department of Civil Engineering, Clayton, Victoria, Australia

Correspondence to: Valentijn Pauwels (Valentijn.Pauwels@monash.edu)

Abstract. It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In

land surface models, the ground heat flux is estimated through a numerical solution of the heat conduction equation. Recent

research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a

land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions.

It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal5

conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrel-

evant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions

are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical for land

surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated

without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no10

longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case.

The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The

main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained

using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

1 Introduction15

An accurate estimate of the surface energy balance is very important for climate modelling and numerical weather prediction

(Orth and Seneviratne, 2014). Of the three components of the net radiation (the latent, sensible and ground heat fluxes), the

latent and sensible heat fluxes provide a direct coupling of the surface energy balance to the atmosphere. For this reason, it can

be argued that climate and land surface modelers have paid more attention to an accurate estimation of these fluxes than to the

ground heat flux.20

However, Gentine et al. (2011) showed that the ground heat flux acts as a high-pass filter because of the strong contrast in

the soil and air heat capacities and thermal conductivities. Because numerical solutions of the heat conduction equation can

miss high-frequency fluctuations, errors in the estimation of the surface energy balance may arise. Gentine et al. (2012) then

showed that both models and measurements indeed miss these high frequency fluctuations, and suggested a correction method.

Wang and Bou-Zeid (2012) also noted the difficulty of accurately measuring ground heat fluxes, and used an analytical solution25
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of the heat diffusion equation to correct ground heat flux measurements. The problem of ground heat flux estimation errors

when using spatially discrete data was also shown by Lunati et al. (2012), who derived an analytical expression for the energy

residual, using a cosine boundary condition at the surface. The impact of the ground heat flux parameterization on the energy

balance was also studied by Russell et al. (2015). They concluded that the methods that allowed for the most variation in inputs

between time steps performed better than those that used diurnal or constant input values. Other studies that intercompared5

ground heat flux parameterization schemes can be found in Liebethal and Foken (2007) and Venegas et al. (2013).

A few attempts have already been performed to derive analytical solutions of the heat conduction equation that can easily

be implemented in land surface models. Shao et al. (1998) solved the equation analytically and compared the solution to

temperature observations. Gao et al. (2003) derived an analytical solution as well, in order to determine thermal conductivity

values. Cichota et al. (2004) compared analytical and numerical solutions for specific conditions. In an application for large-10

scale modelling, Bennett et al. (2008) used an analytical solution to estimate the global ground heat flux. Another example

can be found in Nunez et al. (2010), where an analytical solution to model the ground heat flux was used. Wang et al. (2012)

derived an analytical solution using a sine wave as boundary condition, and Hu et al. (2016) used the Fourier transform to

derive an analytical solution. What these studies have in common is that the solutions have been derived for specific initial and

boundary conditions. This makes it very difficult to apply them in land surface models, where an analytical expression for the15

boundary conditions is impossible to determine.

This paper focuses on the estimation of ground heat fluxes and soil thermal properties using a land surface model. It is first

examined whether or not calibrated soil thermal properties are independent of the vertical spatial resolution of the model, if

the heat conduction equation is solved numerically. An analytical solution of the heat conduction equation, with temporally

varying boundary conditions, which can be applied in the model, is then derived. Using this analytical solution instead of20

the numerical approximation, the dependence of the obtained soil thermal properties on the model spatial resolution is then

investigated.

2 Site and Data Description

The data used in this study have been acquired in the framework of the AgriSAR 2006 campaign (AGRIcultural bio/geophysical

retrieval from frequent repeat pass SAR and optical imaging), for which the test site was located in Mecklenburg-Vorpommern25

in North-East Germany, approximately 150 km North of Berlin. More specifically, Time Domain Reflectometry (TDR)-based

soil moisture observations and Bowen Ratio Energy Balance (BREB)-based observations of the energy balance components in

a large winter wheat field were available from April 20 through July 5, 2006, with the Bowen ratio data containing a number of

gaps. The soil moisture was measured at a depth of 5, 9, 15, and 25 cm. Meteorologic data from the weather station at Görmin

were available as well and can be used as model forcing from 2005 onwards. All observations were converted to an hourly time30

step by averaging the 10-minute observations. For this study, all model simulations were performed from April 1, 2006 through

July 5, 2006, with an hourly time step, unless differently stated. A detailed description of this data set is given in Pauwels et al.

(2008).
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3 Model Description

For the purpose of this study, the water and energy balance model developed in Scheerlinck et al. (2009), and applied in

Pauwels and De Lannoy (2011) was used. Only a short description will be provided in this section, and for a full model

description we refer to Scheerlinck et al. (2009).

The model couples three physical equations. The movement of soil water in the unsaturated zone is modeled using a numer-5

ical solution of the Richards equation (Richards, 1931), which results in the profile of the pressure head (ψ, m). This equation

requires the evapotranspiration as boundary condition, which is calculated through an iteration of the surface energy balance,

resulting in the surface skin temperature (Shuttleworth, 1992). This skin temperature is then used as a boundary condition for

a numerical solution to the heat conduction equation, which results in the soil temperature profile (T , K).

Table 1 lists the eleven parameters that need to be estimated. All parameters are constant in time. The soil parameters10

are also assumed to be homogeneous throughout the profile. We acknowledge the fact that the model represents a very strong

simplification of the physical reality. However, Scheerlinck et al. (2009) and Pauwels and De Lannoy (2011) obtained excellent

results for the test site with this model. For this reason, the model is deemed sufficiently realistic.

The model is applied with four different vertical spatial resolutions, namely 0.01, 0.025, 0.05 and 0.1 m.

4 The Parameter Estimation Algorithm: Particle Swarm Optimization15

4.1 General Description

The parameter estimation algorithm used in this paper, Particle Swarm Optimization (PSO), is based on the complex, collective

behavior of individuals in decentralized, self-organizing systems. These systems are created through a population of individuals

that interact locally with each other and with the community. These interactions lead to global behavior, which can result in the

achievement of certain objectives. Examples of such systems in nature are abundant: ant colonies, swarms of birds, and schools20

of fish (Kennedy and Eberhart, 1995). For a complete description of the algorithm we refer to Scheerlinck et al. (2009).

4.2 Application in this Study

In order to estimate the model parameters, observations of the net radiation (Rn), latent heat flux (LE), sensible heat flux (H),

ground heat flux (G), and soil moisture at 5 (θ1), 9 (θ2), 15 (θ3), and 25 cm (θ4) are used. The energy balance variables are in

W m−2, and the soil moisture values are dimensionless. A global objective function is calculated:25

OF =
RMSERn

σRn

+
RMSELE

σLE
+

RMSEH

σH
+

RMSEG

σG
+

RMSEθ1

σθ1
+

RMSEθ2

σθ2
+

RMSEθ3

σθ3
+

RMSEθ4

σθ4
. (1)

The RMSE values for each variable are calculated as:

RMSEx =

√

√

√

√

1

Nx

Nx
∑

i=1

(xo(i)− xs(i))
2, (2)
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where xo and xs are the observed and simulated values, respectively, and σx is the standard deviation of the variable. The

global objective function is then minimized through the application of PSO; 36 iterations are performed, ensuring convergence

of the algorithm, and the method is repeated 24 times. In order to ensure an analysis of the most optimal parameter values, the

parameter sets corresponding to the eight lowest objective function values are retained for further analysis. More specificially,

the average parameter and objective function values over these eight repetitions are examined.5

5 Model Calibration using the Numerically Calculated Ground Heat Flux

The model simulations resulting in the lowest objective function values for the different spatial resolutions will be analyzed in

this section. Figure 1 shows the comparison between the modelled energy balance components and the observations, for the

spatial resolution of 0.01 m. Table 2 shows the statistics of the linear regressions between the observed and simulated energy

balance components for the four spatial resolutions. Figure 2 shows the comparison between the modeled and the observed soil10

moisture values for the four spatial resolutions. From these figures and tables, it can be concluded that the model adequately

simulated the water and energy balance processes, and that the results are very similar for the four different resolutions.

Table 3 shows the parameter values obtained from the model calibration with a spatial resolution of 0.01, 0.025, 0.05 and

0.1 m. In order to determine which parameters are significantly effected by the model spatial resolution, we applied a t-test to

the slopes from the linear regressions between the spatial resolution (X-axis) and the parameter values (Y -axis), at the 95%15

confidence level. In other words, it is tested whether or not there is a significant linear trend between △z (the model resolution)

and the parameter values. The objective function value has been found to change significantly with the resolution, as well as

λ, ψc, Ks, f , and κ. All the other parameters are not significantly dependent on the spatial resolution. Of all the parameters

affected by the resolution, the parameter that shows the largest variation in values is the thermal conductivity κ, with the value

at △z=0.1 m more than 4 times the value at △z=0.01 m. No other parameter shows this variation.20

This can be explained by the independence of the albedo (α) and the parameters determining the roughness lengths and zero

plane displacement height (fv, fh and fd) on the model spatial resolution. Since these parameters are similar for the different

resolutions, and the model is calibrated using Rn and the three heat fluxes, the resulting skin temperatures will be very similar

for the different resolutions. A similar skin temperature will lead to very similar sensible and ground heat fluxes, as is proven

in Table 2. The ground heat flux is defined as the gradient in the soil temperature multiplied by the thermal conductivity.25

Since the skin temperatures and the ground heat fluxes (the latter used in the calibration) are equal, but the model spatial

resolution is different, the same ground heat flux can only be obtained by a different thermal conductivity. Because the finest

spatial resolution will result in the steepest gradient of the soil temperature, it can be expected that this will result in the lowest

thermal conductivity value. Table 3 shows that this is indeed the case. This makes a physical interpretation of the thermal

conductivity values impossible.30
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6 Analytical Solution of the Heat Conduction Equation

6.1 Derivation of the Solution

In order to solve the issues related to the use of a numerical solution of the heat conduction equation, we propose the use of an

analytical solution. First the steady-state temperature profile for a constant temperature at the bottom (Tb,0) and top (Tu,0) of

the profile is calculated. The depths of the top and bottom of the profile are denoted as zu and zb, respectively. This solution is5

then used as initial condition for the same equation, now with different bottom (Tb,1) and top (Tu,1) temperatures as boundary

conditions. It should be clarified that the time t starts at zero for this new solution. The temperature profile at time △t is then

calculated, and used as initial condition for the same equation, again with different temperatures (Tb,2 and Tu,2) as boundary

conditions, and time starting at zero. The solution at time △t is then again used as initial condition for the same equation

with different boundary conditions (Tb,3 and Tu,3) and time starting at zero, and so on. Using this recursive methodology, the10

temperature profile for the M th time step can be written as:

T (z,t) = (Tb,M −Tb,0)
z− zu
zb − zu

+(Tu,M −Tb,0)
z− zb
zu − zb

+Tb,0

+2(Tb,M −Tb,M−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zu
zb − zu

xn

)

eynt

+2(Tu,M −Tu,M−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zb
zu − zb

xn

)

eynt

+2
M−1
∑

m=1

(Tb,m −Tb,m−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zu
zb− zu

xn

)

eyn[t+(M−m−1)△t]

+2
M−1
∑

m=1

(Tu,m −Tu,m−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zb
zu − zb

xn

)

eyn[t+(M−m−1)△t],

(3)

with Tu,M and Tb,M the top and bottom temperatures (boundary conditions) for the M th time step, with M > 0, and
⎧

⎪

⎨

⎪

⎩

xn = nπ

yn = −
x2
nκ

C(zu − zb)2
.

(4)

The ground heat flux then becomes:15

G(t) = κ
∂T

∂z

∣

∣

∣

∣

z=zu

= κ
Tu,M −Tb,M

zu − zb
+

2κ

zu − zb
(Tb,M −Tb,M−1)

∞
∑

n=1

(−1)neynt +
2κ

zu − zb
(Tu,M −Tu,M−1)

∞
∑

n=1

eynt

+
2κ

zu − zb

M−1
∑

m=1

(Tb,m−Tb,m−1)
∞
∑

n=1

(−1)neyn[t+(M−m−1)△t]

+
2κ

zu − zb

M−1
∑

m=1

(Tu,m−Tu,m−1)
∞
∑

n=1

eyn[t+(M−m−1)△t].

(5)

Appendix A describes the details of the derivation of this solution as well as a methodology to apply these equations in a

computationally efficient manner.
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It should be noted that with this analytical solution it is no longer necessary to calculate the soil temperature profile in order to

calculate the ground heat flux. In the original model formulation, the heat conduction equation needed to be solved numerically,

using the surface skin temperature as boundary condition, so the temperature of the first soil layer could be calculated, and

the ground heat flux could be computed. However, Equation 5 shows that this first layer temperature is no longer a variable

in the calculation of the ground heat flux. More complex land surface models may contain parameters that depend on the soil5

temperature profile, and thus would require the application of Equation 3. However, in this model, this is not required.

6.2 Comparison to the Numerical Solution

A synthetic test case is used to intercompare the analytical and the numerical solutions. Equation 3 and 5 are applied to a soil

column of one meter depth, with a thermal conductivity of 0.5 W m−1K−1, and a heat capacity of 2.5·106 J m−3K−1. In a

first application, the spatial resolution is 0.01 m, and the temporal resolution is 60 seconds. The numerical solution thus needs10

to be applied 60 times per one hour time step in this case. In a second application, a spatial resolution of 0.05 and a temporal

resolution of one hour (3600 s) are used. The air temperature values from the AgriSAR data set are used as boundary conditions

at the top of the profile, and the bottom boundary conditions is assumed to linearly increase from 3 to 13 degrees throughout

the simulation.

Figure 3 shows the comparison of the temperature profiles obtained from the numerical and analytical solutions, for the15

test case with the fine spatial and temporal resolutions. An excellent agreement between both methods can be seen. Figure 4

shows the same comparison for the coarse resolutions. In many of these profiles, especially when sharp changes of temperature

occur, a strong deviation of the numerical solution from the analytical solution can be observed. Since these coarse resolutions

correpond to the values typically used in land surface models, this leads to the conclusion that care must be taken when

interpreting ground heat flux simulations from these models. This is demonstrated in Figure 5, in which the ground heat fluxes20

from both solutions are compared. For the fine resolutions, a very good agreement is obtained, but relatively strong differences

between both methods are found when coarse spatial and temporal resolutions are used.

7 Model Calibration using the Analytically Calculated Ground Heat Flux

Figure 6 shows the comparison between the modeled energy balance terms and the observations, for the simulations with a

spatial resolution of 0.01 m, and for the parameter set corresponding to the lowest objective function value. A similar model25

performance as obtained with the numerical solution of the heat conduction equation is achieved. Table 4 shows the results

of the linear regressions between the modeled energy balance terms and the observations, again obtained using the parameter

values corresponding to the lowest objective function value, for the four different spatial resolutions. Comparing Table 4 to

Table 2 leads to the conclusion that the energy balance terms are simulated practically identically when the model uses the

numerical or the analytical solution of the heat conduction equation.30
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Figure 7 shows the comparison between the simulated soil moisture values and the observations for the same parameter sets.

The comparison of Figure 7 to Figure 2 shows that the analytical and numerical solutions of the heat conduction equation lead

to very similar simulations of the soil water balance as well.

Table 3 shows the average parameter values from the eight retained PSO results. A slope t-test for the linear regressions

between the spatial resolutions (X-axis) and the parameter values (Y -axis), at the 95% confidence level, showed that the5

objective function value changes significantly with the resolution, as well as λ, ψc, Ks, and f . The only difference with the

results obtained with the numerical solution of the heat conduction equation is that κ is no longer dependent on the spatial

resolution. This could be expected, because the expression for the ground heat flux is not dependent on the temperature of the

first soil layer, and thus on the spatial resolution. Furthermore, the value for the heat capacity (C) is now less variable than

when the ground heat flux was calculated numerically. More specifically, the standard deviation has been reduced from 55794310

to 278984 J m−3K−1.

A pooled variance t-test with 95% confidence was applied to the parameter values obtained with the analytical and numerical

solutions, to investigate which parameters are significantly different. This test showed that the only parameters that are signifi-

cantly different are the objective function value and the heat capac- ity for all spatial resolutions, and the thermal conductivity

for a spatial resolution of 0.01 and 0.1 m. Interestingly, the objective function values obtained with the analytical solution are15

slightly higher than with the numerical solution. However, since this objective function is composed of eight rescaled RMSE

values, the resulting model performance is very similar, as is shown in Table 4 and Figure 7. Since the thermal conductiv-

ity values no longer depend on the spatial resolution, on which they depended when the numerical solution was used, it can

be expected that the obtained thermal conductivity values are different. Because of the different manner of solving the heat

conduction equation, it can also be expected that the obtained soil heat capacity values are different as well.20

The key conclusion from these simulations is that the overall model performance is independent of the type of calculation of

the ground heat flux (analytically or numerically), but that the results of the model calibration are more robust (i.e. independent

of the spatial resolution) if an analytical solution of the ground heat flux equation is used.

8 Conclusions

A water and energy balance model, using a numerical solution of the heat conduction equation, has been calibrated against25

energy balance and soil moisture observations, for four different vertical spatial resolutions (0.01, 0.025, 0.05 and 0.1 m). It

has been found that a number of parameters are dependent on this resolution, with the soil thermal conductivity values showing

the largest dependence. An analytical solution of the heat conduction equation has then been derived, allowing the bottom and

top boundary conditions (i.e. the bottom and surface skin temperatures) to vary over time. Using this analytical solution has

the advantage that the soil temperature profile no longer needs to be computed. For fine spatial and temporal resolutions the30

analytical and numerical solutions cannot be distinguished, but different results are obtained for resolutions typically used in

land surface models. When the ground heat flux is calculated using this analytical solution, and the model is calibrated, the
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obtained soil thermal conductivity is no longer dependent on the model spatial resolution. Furthermore, the variability in the

obtained soil heat capacity is also strongly reduced.

The results in this paper indicate that a similar model performance is obtained when the ground heat flux is calculated

analytically or numerically. However, the calibration is more robust, and the parameter values more physically interpretable,

if the analytical solution is used. One must thus be careful when using numerical solutions of the heat conduction equation in5

land surface models, and preference should be given to the use of analytical solutions. The solution derived in this paper does

not allow for temporally varying soil thermal properties, and ongoing research is focusing on the derivation of an analytical

solution that is straightforward to apply in land surface models in these conditions.

Appendix A: Analytical Solution

A1 The Governing Equation10

A solution of the heat conduction-convection equation is first derived, since this equation is analytically more straightforward

to solve than the heat conduction equation, because of the easier inversion from the Laplace domain. Furthermore, this general

solution can be used for purposes outside the scope of this paper. The limit case with zero convection is then calculated. The

governing equation is:

∂CT

∂t
=

∂

∂z

[

κ
∂T

∂z

]

− vC
∂T

∂z
, (A1)15

where t is time (s), z is the depth positive upwards (m), T is the soil temperature (K), C is the volumetric heat capacity of the

soil (J m−3K−1), κ is the soil thermal conductivity (W m−1K−1), and v is the water velocity (m s−1, positive upwards). We

assume the parameters uniform throughout the profile, so the equation becomes:

C
∂T

∂t
= κ

∂2T

∂z2
− vC

∂T

∂z
. (A2)

A2 Steady-State Solution20

In order to obtain a realistic initial condition, we will calculate the steady-state solution. For example, the profile at the end of

a very long, hot day. The equation becomes:

κ
d2T

dz2
− vC

∂T

∂z
= 0, (A3)

with the boundary conditions:

⎧

⎨

⎩

T = Tb,0, z = zb

T = Tu,0, z = zu.
(A4)25
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The solution of this equation is:

T = Tb,0+(Tb,0 −Tu,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zb

− e

vC

κ
zu

. (A5)

A3 Solution for First New Boundary Conditions

We will use constant time steps △t. For the first new boundary conditions, we will use the steady-state profile as initial

condition. The boundary conditions are:5

⎧

⎨

⎩

T = Tb,1, z = zb

T = Tu,1, z = zu.
(A6)

We will solve this equation through a Laplace transform. We will denote the transform of T (z,t) as F (z,y), with y the Laplace

variable. The differential equation becomes:

CyF −C

⎛

⎜

⎜

⎝

Tb,0+(Tu,0−Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

⎞

⎟

⎟

⎠

= κ
d2F

dz2
− vC

dF

dz
. (A7)

In the Laplace domain, the boundary conditions are:10

⎧

⎪

⎨

⎪

⎩

F =
Tb,1

y
, z = zb

F =
Tu,1

y
, z = zu.

(A8)

The solution of this differential equation is:

F = (Tb,1 −Tb,0)
eb(z−zb)

y

sinh

(

√

b2+
Cy

κ
(z− zu)

)

sinh

(

√

b2+
Cy

κ
(zb − zu)

) +(Tu,1−Tu,0)
eb(z−zu)

y

sinh

(

√

b2 +
Cy

κ
(z− zb)

)

sinh

(

√

b2 +
Cy

κ
(zu − zb)

)

+
1

y
(Tu,0 −Tb,0)

e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+
Tb,0

y
,

(A9)

where b is defined as:

b=
Cv

2κ
. (A10)15

We will calculate the poles of this equation (the values for y for which the denominator is zero), and calculate the residuals of

each pole. The analytical solution is then simply the sum of the residuals (Brutsaert, 1994). Following this theorem, writing

F (y) as P (y)/T (y), we can write:

Ri = lim
y→yi

[

(y− yi)
P (y)eyt

T (y)

]

. (A11)

9



If the pole cannot be factored out, this becomes:

Ri =
P (yi)eyit

∂T (y)

∂y

∣

∣

∣

∣

y=yi

. (A12)

Equation A9 has poles for y equal to zero and for the hyperbolic sine equal to zero. For y equal to zero this simply becomes:

T1(z) = (Tb,1 −Tb,0)eb(z−zb)
sinh(b(z− zu))

sinh(b(zb − zu))
+ (Tu,1−Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu − zb))

+(Tu,0 −Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+Tb,0.
(A13)

For the hyperbolic sine, we define:5

√

b2 +
Cy

κ
(zu − zb) = jx, (A14)

where j is the complex variable (
√
−1). We can now write:

sinh

(

√

b2+
Cy

κ
(zu − zb)

)

= jsin(x). (A15)

This is equal to zero for x= nπ, with n=0, 1, 2, etc. This means that y is equal to:

(

b2 +
Cyn
κ

)

(zu − zb)
2 =−x2

n ⇒ yn =−
x2
nκ

C(zu − zb)2
−
κb2

C
, (A16)10

where xn = nπ. We can thus write the solution as:

T2(z,t) = −(Tb,1 −Tb,0)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eynt

−(Tu,1 −Tu,0)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eynt.

(A17)

The analytical solution is then simply:

T (z,t) = T1(z)+T2(z,t). (A18)

A4 Solution for Second New Inputs15

We will calculate the temperature profile at t equal to △t, and use this as initial condition for the same equation. The boundary

conditions are:
⎧

⎨

⎩

T = Tb,2, z = zb

T = Tu,2, z = zu.
(A19)

10



In the Laplace domain, the differential equation becomes:

CyF −C(Tb,1 −Tb,0)eb(z−zb)
sinh(b(z− zu))

sinh(b(zb − zu))
−C(Tu,1−Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu − zb))

−C (Tu,0 −Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

−CTb,0

+C(Tb,1−Tb,0)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eyn△t

+C(Tu,1−Tu,0)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eyn△t

= κ
d2F

dz2
− vC

dF

dz
.

(A20)

The boundary conditions are, in the Laplace domain:

⎧

⎪

⎨

⎪

⎩

F =
Tb,2

y
, z = zb

F =
Tu,2

y
, z = zu.

(A21)

F can then be written as:5

F = (Tb,2 −Tb,1)
eb(z−zb)

y

sinh

(

√

b2+
Cy

κ
(z− zu)

)

sinh

(

√

b2+
Cy

κ
(zb − zu)

) +(Tu,2−Tu,1)
eb(z−zu)

y

sinh

(

√

b2 +
Cy

κ
(z− zb)

)

sinh

(

√

b2 +
Cy

κ
(zu − zb)

)

+
1

y
(Tb,1 −Tb,0)e

b(z−zb)
sinh(b(z− zu))

sinh(b(zb− zu))
+

1

y
(Tu,1 −Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu − zb))

+
1

y
(Tu,0 −Tb,0)

e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+
Tb,0

y

−(Tb,1 −Tb,0)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn(y− yn)
sin

(

z− zu
zb − zu

xn

)

eyn△t

−(Tu,1 −Tu,0)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn(y− yn)
sin

(

z− zb
zu − zb

xn

)

eyn△t.

(A22)
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Through calculating the poles and the residuals, the inverse transform is:

T (z,t) = (Tb,2−Tb,0)eb(z−zb)
sinh(b(z− zu))

sinh(b(zb− zu))
+ (Tu,2−Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu− zb))

+(Tu,0−Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+Tb,0

−(Tb,2−Tb,1)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eynt

−(Tu,2−Tu,1)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eynt

−(Tb,1−Tb,0)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eyn(t+△t)

−(Tu,1−Tu,0)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eyn(t+△t).

(A23)

A5 Solution for M Sequential Boundary Conditions

Through again calculating the temperature profile at time t equal to △t, using this as input for the governing equation with

new boundary conditions, and applyting this methodology recursively, the temperature profile for boundary conditions Tu,M5

and Tb,M as:

T (z,t) = (Tb,M −Tb,0)eb(z−zb)
sinh(b(z− zu))

sinh(b(zb − zu))
+ (Tu,M −Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu − zb))

+(Tu,0−Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+Tb,0

−(Tb,M −Tb,M−1)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eynt

−(Tu,M −Tu,M−1)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eynt

−
2κ

C(zu− zb)2
eb(z−zb)

M−1
∑

m=1

(Tb,m −Tb,m−1)
∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eyn[t+(M−m−1)△t]

−
2κ

C(zu− zb)2
eb(z−zu)

M−1
∑

m=1

(Tu,m −Tu,m−1)
∞
∑

n=1

(−1)n
xn
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sin

(

z− zb
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xn

)

eyn[t+(M−m−1)△t].

(A24)
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Calculating the first derivative with respect to z at zu and multiplying by the thermal conductivity leads to the ground heat flux:

G(t) = κ(Tu,M −Tb,M −Tu,0+Tb,0)
beb(zu−zb)

sinh(b(zu − zb))
+ vC (Tu,0−Tb,0)

e

vC

κ
zu

e

vC

κ
zu

− e

vC

κ
zb

−(Tb,M −Tb,M−1)
2κ2

C(zu − zb)3
eb(zu−zb)

∞
∑

n=1

(−1)n
x2
n

yn
eynt − (Tu,M −Tu,M−1)

2κ2

C(zu − zb)3

∞
∑

n=1

x2
n

yn
eynt

−
2κ2

C(zu − zb)3
eb(zu−zb)

M−1
∑

m=1

(Tb,m−Tb,m−1)
∞
∑

n=1

(−1)n
x2
n

yn
eyn[t+(M−m−1)△t]

−
2κ2

C(zu − zb)3

M−1
∑

m=1

(Tu,m−Tu,m−1)
∞
∑

n=1

x2
n

yn
eyn[t+(M−m−1)△t].

(A25)

A6 Computationally Efficient Formulation

For the temperature profile, we define two variables τt(z,n) and τb(z,n) for each value of z, which are initially zero. In general,

we write the solution for temperature input M as:5

T (z,t) = (Tb,M −Tb,0)eb(z−zb)
sinh(b(z− zu))

sinh(b(zb − zu))
+ (Tu,M −Tu,0)e

b(z−zu) sinh(b(z− zb))

sinh(b(zu − zb))

+(Tu,0−Tb,0)
e

vC

κ
z
− e

vC

κ
zb

e

vC

κ
zu

− e

vC

κ
zb

+Tb,0

−(Tb,M −Tb,M−1)
2κ

C(zu − zb)2
eb(z−zb)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eynt

−(Tu,M −Tu,M−1)
2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eynt

−
2κ

C(zu− zb)2
eb(z−zb)

∞
∑

n=1

τb,ne
ynt −

2κ

C(zu − zb)2
eb(z−zu)

∞
∑

n=1

τt,ne
ynt.

(A26)

At the end of the time step we update the variables:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τb(z,n) → τb(z,n)eyn△t +(Tb,M −Tb,M−1)(−1)n
xn

yn
sin

(

z− zu
zb − zu

xn

)

eyn△t

τt(z,n) → τt(z,n)eyn△t +(Tu,M −Tu,M−1)(−1)n
xn

yn
sin

(

z− zb
zu − zb

xn

)

eyn△t.
(A27)
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For the ground heat flux, we define two variables ψt(n) and ψb(n), again initially zero. We then write the ground heat flux as:

G(t) = κ(Tu,M −Tb,M −Tu,0+Tb,0)
beb(zu−zb)

sinh(b(zu − zb))
+ vC (Tu,0−Tb,0)

e

vC

κ
zu

e

vC

κ
zu

− e

vC

κ
zb

−(Tb,M −Tb,M−1)
2κ2

C(zu − zb)3
eb(zu−zb)

∞
∑

n=1

(−1)n
x2
n

yn
eynt

−(Tu,M −Tu,M−1)
2κ2

C(zu − zb)3

∞
∑

n=1

x2
n

yn
eynt

−
2κ2

C(zu − zb)3
eb(zu−zb)

∞
∑

n=1

ψb(n)e
ynt −

2κ2

C(zu − zb)3

∞
∑

n=1

ψt(n)e
ynt.

(A28)

At the end of each time step we then update:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ψb(n) → ψb(n)eyn△t +(Tb,M −Tb,M−1)(−1)n
x2
n

yn
eyn△t

ψt(n) → ψt(n)eyn△t +(Tu,M −Tu,M−1)
x2
n

yn
eyn△t.

(A29)

A7 Limit Case for Zero Convection5

In this case b becomes zero. We can rewrite Equation A24 as (using de l’Hôpitals’s rule):

T (z,t) = (Tb,M −Tb,0)
z− zu
zb − zu

+(Tu,M −Tb,0)
z− zb
zu − zb

+Tb,0

+2(Tb,M −Tb,M−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zu
zb − zu

xn

)

eynt

+2(Tu,M −Tu,M−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zb
zu − zb

xn

)

eynt

+2
M−1
∑

m=1

(Tb,m −Tb,m−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zu
zb− zu

xn

)

eyn[t+(M−m)△t]

+2
M−1
∑

m=1

(Tu,m −Tu,m−1)
∞
∑

n=1

(−1)n

xn
sin

(

z− zb
zu − zb

xn

)

eyn[t+(M−m)△t].

(A30)

The ground heat flux then becomes:

G(t) = κ
Tu,M −Tb,M

zu − zb
+

2κ

zu − zb
(Tb,M −Tb,M−1)

∞
∑

n=1

(−1)neynt +
2κ

zu− zb
(Tu,M −Tu,M−1)

∞
∑

n=1

eynt

+
2κ

zu − zb

M−1
∑

m=1

(Tb,m−Tb,m−1)
∞
∑

n=1

(−1)neyn[t+(M−m)△t]

+
2κ

zu − zb

M−1
∑

m=1

(Tu,m−Tu,m−1)
∞
∑

n=1

eyn[t+(M−m)△t].

(A31)

The computationally efficient algorithm can be applied to these limit cases as well.10
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Table 1. The model parameters that need to be estimated.

Parameter Description Units

λ Pore size distribution index -

ψc Air entry pressure head m

Ks Saturated hydraulic conductivity mm· h−1

f TOPMODEL exponential decay -

α Surface albedo -

κ Thermal conductivity W m−1K−1

C Volumetric heat capacity J m−3K−1

rc Surface resistance s m−1

fd Zero plane displacement height fraction -

fh Rougness length for heat transfer fraction -

fv Rougness length for vapor transfer fraction -

Wang, L., Gao, Z., Horton, R., Lenschow, D. H., Meng, K., and Jaynes, D. B.: An Analytical Solution to the One-Dimensional Heat Con-

duction–Convection Equation in Soil, Soil Sc. Am. J., 76, 1978–1986, doi:10.2136/sssaj2012.0023N, 2012.

Wang, Z. H. and Bou-Zeid, E.: A novel approach for the estimation of soil ground heat flux, Agric. Forest Met., pp. 214–221,

doi:10.1016/j.agrformet.2011.12.001, 2012.
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Table 2. Results of the linear regressions between the energy balance observations (X-axis) and the simulations (Y -axis) for the simulations

with a numerical solution of the heat conduction equation. Units are W m−2.

△z (m) X Y Slope Intercept R RMSE

Rn

0.01 93.0131 100.600 0.915466 15.4496 0.960075 51.7281

0.025 98.3913 0.914448 13.3357 0.960305 51.3149

0.05 95.7262 0.885549 13.3586 0.959990 51.7374

0.1 98.1781 0.902939 14.1929 0.959981 51.5954

LE

0.01 51.1184 69.1110 0.743908 31.0836 0.876901 63.5272

0.025 68.2937 0.713683 31.8114 0.867113 65.5609

0.05 65.2262 0.703889 29.2445 0.875136 63.4643

0.1 68.7922 0.739403 30.9951 0.875059 63.8546

H

0.01 37.5698 26.7574 0.624850 3.28193 0.749120 51.9420

0.025 25.4533 0.680222 -0.102505 0.757655 52.2046

0.05 26.0201 0.627508 2.44475 0.749720 52.0724

0.1 25.0475 0.617920 1.83234 0.752516 51.9020

G

0.01 4.32493 4.74172 0.502091 2.57021 0.701958 11.7627

0.025 4.64757 0.505230 2.46248 0.709196 11.6390

0.05 4.48276 0.483105 2.39337 0.703112 11.7385

0.1 4.34807 0.471090 2.31064 0.702533 11.7558
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Table 3. Averages of the eight lowest objective function values and the corresponding parameter values.

Numerical Analytical

Parameter Units △z = 0.01 m △z = 0.025 m △z = 0.05 m △z = 0.1 m △z = 0.01 m △z = 0.025 m △z = 0.05 m △z = 0.1 m

OF - 3.908 3.894 3.959 4.127 3.981 3.971 4.041 4.210

λ - 1.068 0.950 0.747 0.499 1.081 0.926 0.740 0.541

ψc m -0.970 -0.893 -0.717 -0.420 -0.964 -0.854 -0.677 -0.453

Ks mm· h−1 190.164 168.582 167.567 141.790 173.642 169.079 150.140 157.642

f - 17.692 16.738 15.082 9.733 17.353 15.858 13.632 10.302

α - 0.074 0.074 0.105 0.085 0.077 0.066 0.104 0.108

κ W m−1K−1 0.089 0.183 0.269 0.469 0.198 0.189 0.210 0.210

C J m−3K−1 2640742.750 1660719.125 2967731.000 2315448.750 5529063.000 5318158.000 5728717.000 5079298.500

rc s m−1 130.684 121.139 110.999 107.160 110.621 114.010 101.966 110.756

fd - 0.594 0.563 0.528 0.568 0.507 0.610 0.641 0.603

fh - 0.152 0.154 0.183 0.175 0.153 0.136 0.184 0.210

fv - 0.368 0.316 0.359 0.313 0.241 0.207 0.257 0.347

1
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Table 4. Results of the linear regressions between the energy balance observations (X-axis) and the simulations (Y -axis) for the simulations

with an analytical solution of the heat conduction equation. Units are W m−2.

△z (m) X Y Slope Intercept R RMSE

Rn

0.01 93.0131 96.8658 0.907984 12.4113 0.960480 51.1205

0.025 97.1449 0.898791 13.5455 0.960282 51.3837

0.05 94.7747 0.889366 12.0521 0.960323 51.4117

0.1 100.133 0.922799 14.3001 0.960243 51.5437

LE

0.01 51.1184 69.4063 0.714640 32.8750 0.866276 66.0089

0.025 68.8670 0.731788 31.4592 0.875547 63.8527

0.05 66.1448 0.694242 30.6563 0.870716 64.6836

0.1 74.1509 0.776766 34.4438 0.873384 65.8182

H

0.01 37.5698 27.1087 0.672448 1.84497 0.755206 51.9761

0.025 27.8972 0.619521 4.62193 0.748911 51.6733

0.05 28.3065 0.654199 3.72834 0.751075 51.8782

0.1 25.7319 0.611265 2.76678 0.753079 51.6224

G

0.01 4.32493 0.341580 0.425440 -1.49842 0.680172 12.7680

0.025 0.357694 0.427544 -1.49141 0.674257 12.8336

0.05 0.338068 0.453744 -1.62434 0.673366 12.8353

0.1 0.323368 0.433978 -1.55356 0.671378 12.8747
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Figure 1. Comparison between the modeled and the observed energy balance terms for the simulation with △z equal to 0.01 m and a

numerical solution of the heat conduction equation.
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Figure 2. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and a numerical

solution of the heat conduction equation. The model results for all four spatial resolutions are very similar and therefore difficult to distinguish.
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Figure 3. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for fine spatial

and temporal resolutions. Both solutions are very similar and therefore difficult to distinguish.
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Figure 4. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for coarse

spatial and temporal resolutions.
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Figure 5. Comparison of the resulting ground heat fluxes from the fine and coarse spatial and temporal resolutions to the analytical solution.
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Figure 6. Comparison between the modeled and the observed energy balance terms for the similation with △z equal to 0.01 m and an

analytical solution of the heat conduction equation (Equation A31).
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Figure 7. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and an analytical

solution of the heat conduction equation.
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