We would like to thank the reviewer and the editor for their insightful comments. Please
see below our answers to the questions that were raised. We quote the comments by the
reviewer in italic, and list our answers in normal font.

1. The manuscript by Pauwels and Daly presents an interesting contribution towards the
understanding of the dependence of ground heat flux on wvertical resolution. I think
some of the wording could be improved (see attached commented pdf).

We wish to thank the reviewer for these corrections. We have implemented these
recommendations. Please see the annotated pdf for the details.

2. It would also be good to improve the introduction and clearly state the objectives: the

ground heat flux is resolution dependent because of inaccuracies in the computation
of the gradient (too steep to be resolved in coarse models), this is demonstrated by
finding the optimal diffusivity. Then you say that using an analytical solution offers
an interesting alternative that successfully characterizes the steep gradients near the
surface while maintaining CPU efficiency. I think you should also comment on the
implementation with heterogeneous vertical profiles (typical).
This is a good comment. On page 2, second paragraph (line 7-11) we have explained
the problem with the estimation of the gradient. On page 2, line 20-21, we have also
commented on the vertical homogeneity that is assumed by the available solutions,
which is rarely observed in reality.
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Abstract. It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In
land-surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation.
Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we
calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial
resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly,
the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this
value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical
solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical
of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly
calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is
thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the
case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained.
The main conclusion of this study is that care must be taken when interpreting land surface model results that have been

obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

1 Introduction

An accurate estimate of the surface energy balance is very important for climate modelling and numerical weather prediction
(Orth and Seneviratne, 2014). Of the three components of the net radiation (the latent, sensible and ground heat fluxes), the
latent and sensible heat fluxes provide a direct coupling of the surface energy balance to the atmosphere. For this reason, and
also because typically the amplitude of the ground heat flux is smaller than the turbulent fluxes, it can be argued that climate
and land surface modelers have paid more attention to an accurate estimation of these fluxes than to the ground heat flux.
However, Gentine et al. (2011) showed that the ground heat flux acts as a high-pass filter because of the strong contrast
in the soil and air heat capacities and thermal conductivities. Because numerical solutions of the heat conduction equation
can miss high-frequency fluctuations, errors in the estimation of the surface energy balance may arise. Gentine et al. (2012)
showed that both models and measurements indeed miss these high frequency fluctuations, and suggested a correction method.

Wang and Bou-Zeid (2012) also noted the difficulty of accurately measuring ground heat fluxes, and used an analytical solution
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of the heat diffusion equation to correct ground heat flux measurements. The problem of ground heat flux estimation errors
when using spatially discrete data was also shown by Lunati et al. (2012), who derived an analytical expression for the energy
residual, using a cosine boundary condition at the surface. The impact of the ground heat flux parameterization on the energy
balance was also studied by Russell et al. (2015). They concluded that the methods that allowed for the most variation in inputs
between time steps outperformed the use of diurnal or constant input values. Other studies that intercompared ground heat flux
parameterization schemes can be found in Liebethal and Foken (2007) and Venegas et al. (2013).

The problem with the numerical estimation of the ground heat flux in land-surface models is that their vertical spatial
resolution is too coarse to accurately estimate the soil temperature gradient. This gradient can be very steep near the soil
surface, and errors in its estimation are compensated for by adopting fictituous values for the soil thermal parameters (the
thermal conductivity and heat capacity). The use of analytical solutions of the heat conduction equation can be expected to
partially solve this problem.

A few attempts have been undertaken to derive analytical solutions of the heat conduction equation that can easily be
implemented in land surface models. A number of solutions can be found in Carslaw and Jaeger (1959). Shao et al. (1998)
solved the equation analytically and compared the solution to temperature observations. Gao et al. (2003) derived an analytical
solution as well, in order to determine thermal conductivity values. Cichota et al. (2004) compared analytical and numerical
solutions for specific conditions. In an application for large-scale modelling, Bennett et al. (2008) used an analytical solution
to estimate the global ground heat flux. Another example can be found in Nunez et al. (2010), where an analytical solution to
model the ground heat flux was used. Wang et al. (2012) derived an analytical solution using a sine wave as boundary condition,
and Hu et al. (2016) used the Fourier transform to derive an analytical solution. What these studies have in common is that the
solutions have been derived for specific initial and boundary conditions. These solutions also assume vertical homogeneity in
the soil thermal parameters, which is very rarely the case. This makes it very difficult to apply them in land surface models,
where an analytical expression for the boundary conditions is impossible to determine.

This paper focuses on the estimation of ground heat fluxes and soil thermal properties using a land surface model. It is first
examined whether or not calibrated soil thermal properties are independent of the vertical spatial resolution of the model, if
the heat conduction equation is solved numerically. An analytical solution of the heat conduction equation is then derived,
with temporally varying boundary conditions, which can be applied in the model. Using this analytical solution instead of
the numerical approximation, the dependence of the obtained soil thermal properties on the model spatial resolution is then

investigated.

2 Site and Data Description

The data used in this study have been acquired in the framework of the AgriSAR 2006 campaign (AGRIcultural bio/geophysical
retrieval from frequent repeat pass SAR and optical imaging), for which the test site was located in Mecklenburg-Vorpommern
in North-East Germany, approximately 150 km North of Berlin. More specifically, Time Domain Reflectometry (TDR)-based

soil moisture observations and Bowen Ratio Energy Balance (BREB)-based observations of the energy balance components in
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a large winter wheat field were available from April 20 through July 5, 2006, with the Bowen ratio data containing a number of
gaps. The soil moisture was measured at a depth of 5, 9, 15, and 25 cm. Meteorologic data from the weather station at Gérmin
were available as well and can be used as model forcing from 2005 onwards. All observations were converted to an hourly time
step by averaging the 10-minute observations. For this study, all model simulations were performed from April 1, 2006 through
July 5, 2006, with an hourly time step, unless differently stated. A detailed description of this data set is given in Pauwels et al.
(2008).

3 Model Description

For the purpose of this study, the water and energy balance model developed in Scheerlinck et al. (2009), and applied in
Pauwels and De Lannoy (2011) was used. Only a short description will be provided in this section, and for a full model
description we refer to Scheerlinck et al. (2009).

The model couples three physical equations. The movement of soil water in the unsaturated zone is modeled using a numer-
ical solution of the Richards equation (Richards, 1931), which results in the profile of the pressure head (1/, m). This equation
requires the evapotranspiration as boundary condition, which is calculated through an iteration of the surface energy balance,
resulting in the surface skin temperature (Shuttleworth, 1992). This skin temperature is then used as a boundary condition for
a numerical solution to the heat conduction equation, which results in the soil temperature profile (7', K).

Table 1 lists the eleven parameters that need to be estimated. All parameters are constant in time. The soil parameters
are also assumed to be homogeneous throughout the profile. We acknowledge the fact that the model represents a very strong
simplification of the physical reality. However, Scheerlinck et al. (2009) and Pauwels and De Lannoy (2011) obtained excellent
results for the test site with this model. For this reason, the model is deemed sufficiently realistic.

The model is applied with four different uniform vertical spatial resolutions, namely 0.01, 0.025, 0.05 and 0.1 m.

4 The Parameter Estimation Algorithm: Particle Swarm Optimization

4.1 General Description

The parameter estimation algorithm used in this paper, Particle Swarm Optimization (PSO), is based on the collective behavior
of individuals in decentralized, self-organizing systems. These systems are created through a population of individuals that
interact locally with each other and with the community. These interactions lead to global behavior, which can result in the
achievement of certain objectives. Examples of such systems in nature are abundant: ant colonies, swarms of birds, and schools

of fish (Kennedy and Eberhart, 1995). For a complete description of the algorithm we refer to Scheerlinck et al. (2009).
4.2 Application in this Study

In order to estimate the model parameters, observations of the net radiation (R,,), latent heat flux (L E), sensible heat flux (H),

ground heat flux (G), and soil moisture at 5 (1), 9 (02), 15 (f3), and 25 cm (0,) are used. The energy balance variables are in
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W m~2, and the soil moisture values are dimensionless. A global objective function is calculated:

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE
— R7z+ LE+ H+ G+ ‘91+ 02+ 03+ 04.

OF (H
OR, OLE OH oG 06, 00, o 06,
The RMSE values for each variable are calculated as:
1 &= . N2
RMSE, = A ; (20 (i) — (i), 2)

where x, and x, are the observed and simulated values, respectively, and o, is the standard deviation of the variable. The
global objective function is then minimized through the application of PSO; 36 iterations are performed, ensuring convergence
of the algorithm, and the method is repeated 24 times. In order to ensure an analysis of the most optimal parameter values, the
parameter sets corresponding to the eight lowest objective function values are retained for further analysis. More specificially,

the average parameter and objective function values over these eight repetitions are examined.

5 Model Calibration using the Numerically Calculated Ground Heat Flux

The model simulations resulting in the lowest objective function values for the different spatial resolutions will be analyzed in
this section. Figure 1 shows the comparison between the modelled energy balance components and the observations, for the
spatial resolution of 0.01 m. Table 2 shows the statistics of the linear regressions between the observed and simulated energy
balance components for the four spatial resolutions. Figure 2 shows the comparison between the modeled and the observed soil
moisture values for the four spatial resolutions. From these figures and tables, it can be concluded that the model adequately
simulated the water and energy balance processes, and that the results are very similar for the four different resolutions.

Table 3 shows the parameter values obtained from the model calibration with a spatial resolution of 0.01, 0.025, 0.05 and
0.1 m. In order to determine which parameters are significantly effected by the model spatial resolution, we applied a ¢-test to
the slopes from the linear regressions between the spatial resolution (X -axis) and the parameter values (Y -axis), at the 95%
confidence level. In other words, it is tested whether or not there is a significant linear trend between Az (the model resolution)
and the parameter values. The objective function value has been found to change significantly with the resolution, as well as
A, ¥e, Ky, f, and k. All the other parameters are not significantly dependent on the spatial resolution. Of all the parameters
affected by the resolution, the parameter that shows the largest variation in values is the thermal conductivity «, with the value
at Az=0.1 being more than 4 times the value at /Az=0.01 m. No other parameter shows such a dramatic variation.

This result can be explained by the independence of the albedo («) and the parameters determining the roughness lengths
and zero plane displacement height (f,, f5 and f;) on the model spatial resolution. Since these parameters are similar for the
different resolutions, and the model is calibrated using R,, and the three heat fluxes, the resulting skin temperatures are similar
for the different resolutions. A similar skin temperature leads to similar sensible and ground heat fluxes, as is proven in Table
2. The ground heat flux is defined as the gradient in the soil temperature multiplied by the thermal conductivity. Since the skin
temperatures and the ground heat fluxes (the latter used in the calibration) are equal, but the model spatial resolution is different,

the same ground heat flux can only be obtained with a different thermal conductivity. Because the finest spatial resolution will
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result in the steepest gradient of the soil temperature, it can be expected that this will result in the lowest thermal conductivity
value. Table 3 shows that this is indeed the case. This renders the physical interpretation of the thermal conductivity values

impossible.

6 Analytical Solution of the Heat Conduction Equation
5 6.1 Derivation of the Solution

In order to solve the issue related to the dependence on the grid resolution in the use of a numerical solution of the heat
conduction equation, we propose the use of an analytical solution. First the steady-state temperature profile for a constant
temperature at the bottom (73,0) and top (7,,0) of the profile is calculated. The depths of the top and bottom of the profile
are denoted as z,, and zp, respectively. This solution is then used as initial condition for the same equation, now with different
10 bottom (7} 1) and top (7’,,1) temperatures as boundary conditions. It should be clarified that the time ¢ starts at zero for this
new solution. The temperature profile at time /At is then calculated, and used as initial condition for the same equation, again
with different temperatures (7} 2 and T, 2) as boundary conditions, and time starting at zero. The solution at time At is then
again used as initial condition for the same equation with different boundary conditions (73 3 and T, 3) and time starting at

zero, and so on. Using this recursive methodology, the temperature profile for the M™ time step can be written as:

Z— 2y Z—Zp

T(z,t) = (Tp,mr —Tp0) + (Tu,pr — T 0) +Ty0
Zp — Zuy Zu — %b
(=)™ . Z— 2y
+2(Tb,M — Tb}Mfl)nz::l ( Jﬁn) sin (Zb — xn> eYnt
= (_1)77, . Z—Zp t
2 Tu - Tu _ n Yn
15 + ( M M 1); o sin - be e 3)
M-—1 B o) ( l)n » 5
2 Ty — Tom— _ i — B g ) eunltH (M =m=1)A8)
+ mz::l( b, b, 1);::1 o sm<2b_zua:,>e
— = (=1)" z—z
+2 (Twm — Tum—1) Z sin < b xn) Unlt+(M—m-1)At]
Tn Zu — 2b
m=1 n=1
with T, as and T, 57 the top and bottom temperatures (boundary conditions) for the M th time step, with M > 0, and
T, = nmw
_ Thk )
Yoo = C(zu — 2)?’
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The surface ground heat flux then becomes:

or Tu,mr — Ty m 2K i . oo
=K — = 2 2 T — T v —1)e¥n Tt — T ni— Ynt
G(t)=r 57|, e +zu—zb( b,vr — Ty, m 1)7;( )"e +zu—zb( oM — Ty m 1)7;6
e M—1 0o B
Ty — Tom1) 3 (—1)evn e+ =m—D)]
o=z 2 (T = Tom-1) 3 (1)
gp M-l o
Ty — Toorn— eYnlt+H(M—m-1)At]
Py 7,;1( : , 1)7;1

&)

Appendix A describes the details of the derivation of this solution as well as a methodology to apply these equations in a
computationally efficient manner.

It should be noted that with this analytical solution it is no longer necessary to calculate the soil temperature profile in order to
calculate the ground heat flux. In the original model formulation, the heat conduction equation needed to be solved numerically,
using the surface skin temperature as boundary condition, so the temperature of the first soil layer could be calculated, and
the ground heat flux could be computed. However, Equation 5 shows that this first layer temperature is no longer a variable
in the calculation of the ground heat flux. More complex land surface models may contain parameters that depend on the soil

temperature profile, and thus would require the application of Equation 3. However, in this model, this is not required.
6.2 Comparison to the Numerical Solution

A synthetic test case is used to intercompare the analytical and the numerical solutions. Equation 3 and 5 are applied to a soil
column of one meter depth, with a thermal conductivity of 0.5 W m~'K~!, and a heat capacity of 2.5-10° J m™3K~!.In a
first application, the spatial resolution is 0.01 m, and the temporal resolution is 60 seconds. The numerical solution thus needs
to be applied 60 times per one hour time step in this case. In a second application, a spatial resolution of 0.05 and a temporal
resolution of one hour (3600 s) are used. The air temperature values from the AgriSAR data set are used as boundary conditions
at the top of the profile, and the bottom boundary conditions is assumed to linearly increase from 3 to 13 degrees throughout
the simulation.

Figure 3 shows the comparison of the temperature profiles obtained from the numerical and analytical solutions, for the
test case with the fine spatial and temporal resolutions. An excellent agreement between both methods can be seen. Figure 4
shows the same comparison for the coarse resolutions. In many of these profiles, especially when sharp changes of temperature
occur, a strong deviation of the numerical solution from the analytical solution can be observed. Since these coarse resolutions
correspond to values typically used in land surface models, this leads to the conclusion that care must be taken when interpreting
ground heat flux simulations from these models. This is demonstrated in Figure 5, in which the ground heat fluxes from both
solutions are compared. For the fine resolutions, a very good agreement is obtained, but relatively strong differences between

both methods are found when coarse spatial and temporal resolutions are used.
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7 Model Calibration using the Analytically Calculated Ground Heat Flux

Figure 6 shows the comparison between the modeled energy balance terms and the observations, for the simulations with a
spatial resolution of 0.01 m, and for the parameter set corresponding to the lowest objective function value. A similar model
performance as obtained with the numerical solution of the heat conduction equation is achieved. Table 4 shows the results
of the linear regressions between the modeled energy balance terms and the observations, again obtained using the parameter
values corresponding to the lowest objective function value, for the four different spatial resolutions. Comparing Table 4 to
Table 2 leads to the conclusion that the energy balance terms are simulated practically identically when the model uses the
numerical or the analytical solution of the heat conduction equation.

Figure 7 shows the comparison between the simulated soil moisture values and the observations for the same parameter sets.
The comparison of Figure 7 to Figure 2 shows that the analytical and numerical solutions of the heat conduction equation lead
to very similar simulations of the soil water balance as well.

Table 3 shows the average parameter values from the eight retained PSO results. A slope ¢-test for the linear regressions
between the spatial resolutions (X -axis) and the parameter values (Y -axis), at the 95% confidence level, showed that the
objective function value changes significantly with the resolution, as well as A, ¥., K, and f. The only difference with the
results obtained with the numerical solution of the heat conduction equation is that x is no longer dependent on the spatial
resolution. This could be expected, because the expression for the ground heat flux is not dependent on the temperature of the
first soil layer, and thus on the spatial resolution. Furthermore, the value for the heat capacity (C) is now less variable than
when the ground heat flux was calculated numerically. More specifically, the standard deviation has been reduced from 557943
t0 278984 J m—3K~!.

A pooled variance t-test with 95% confidence was applied to the parameter values obtained with the analytical and numerical
solutions, to investigate which parameters are significantly different. This test showed that the only parameters that are signif-
icantly different are the objective function value and the heat capacity for all spatial resolutions, and the thermal conductivity
for a spatial resolution of 0.01 and 0.1 m. Interestingly, the objective function values obtained with the analytical solution are
slightly higher than with the numerical solution. However, since this objective function is composed of eight rescaled RMSE
values, the resulting model performance is very similar, as is shown in Table 4 and Figure 7. Since the thermal conductiv-
ity values no longer depend on the spatial resolution, on which they depended when the numerical solution was used, it can
be expected that the obtained thermal conductivity values are different. Because of the different manner of solving the heat
conduction equation, it can also be expected that the obtained soil heat capacity values are different as well.

The key conclusion from these simulations is that the overall model performance is independent of the type of calculation of
the ground heat flux (analytically or numerically), but that the results of the model calibration are more robust (i.e. independent

of the spatial resolution) if an analytical solution of the ground heat flux equation is used.
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8 Conclusions

A water and energy balance model, using a numerical solution of the heat conduction equation, has been calibrated against
energy balance and soil moisture observations, for four different vertical spatial resolutions (0.01, 0.025, 0.05 and 0.1 m). It
has been found that a number of parameters are dependent on this resolution, with the soil thermal conductivity values showing
the largest dependence. An analytical solution of the heat conduction equation has then been derived, allowing the bottom and
top boundary conditions (i.e. the bottom and surface skin temperatures) to vary over time. Using this analytical solution has
the advantage that the soil temperature profile no longer needs to be computed. For fine spatial and temporal resolutions the
analytical and numerical solutions cannot be distinguished, but different results are obtained for resolutions typically used in
land surface models. When the ground heat flux is calculated using this analytical solution, and the model is calibrated, the
obtained soil thermal conductivity is no longer dependent on the model spatial resolution. Furthermore, the variability in the
obtained soil heat capacity is also strongly reduced.

The results in this paper indicate that a similar model performance is obtained when the ground heat flux is calculated
analytically or numerically. However, the calibration is more robust, and the parameter values more physically interpretable,
if the analytical solution is used. One must thus be careful when using numerical solutions of the heat conduction equation in
land surface models, and preference should be given to the use of analytical solutions. The solution derived in this paper does
not allow for temporally varying soil thermal properties, and ongoing research is focusing on the derivation of an analytical

solution that is straightforward to apply in land surface models in these conditions.

Appendix A: Analytical Solution
Al The Governing Equation

A solution of the heat conduction-convection equation is first derived, since this equation is analytically more straightforward
to solve than the heat conduction equation, because of the easier inversion from the Laplace domain. Furthermore, this general
solution can be used for purposes outside the scope of this paper. The limit case with zero convection is then calculated. The
governing equation is:

o oz |%as| (AD)

ocT 0 [ aT } oT
where ¢ is time (s), z is the depth positive upwards (m), T is the soil temperature (K), C'is the volumetric heat capacity of the
soil J m™2K~1), x is the soil thermal conductivity (W m~'K~1), and v is the water velocity (m s~!, positive upwards). We

assume the parameters uniform throughout the profile, so the equation becomes:

2
C@_T: o°T CaT

ot o2 oz (A2)
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A2 Steady-State Solution

In order to obtain a realistic initial condition, we will calculate the steady-state solution. For example, the profile at the end of

a very long, hot day. The equation becomes:

2T oT
hoE 0 =0 (A3)

with the boundary conditions:

T = Tyo, z2=2%
b,0 b (A4)
T = Tyo, 2=z,
The solution of this equation is:
vC vC
—z  —z
T="Tyo+ (Tpo—T, )u (A5)
= 15,0 b,0 u,0 vC vC
—2b —2u
e R —e R

A3 Solution for First New Boundary Conditions

We will use constant time steps At. For the first new boundary conditions, we will use the steady-state profile as initial

condition. The boundary conditions are:

T = Ty, z=z
T = T’u,ly 2= Zy-

(A6)

We will solve this equation through a Laplace transform. We will denote the transform of T'(z,¢) as F'(z,y), with y the Laplace

variable. The differential equation becomes:

vC vC
KR PFdF
e —
CyF — C Tb,O + (Tu’o — Tb,O) W = K/W — ’UCE (A7)
—Zu —2b
e K —e KR
In the Laplace domain, the boundary conditions are:
T
F = ﬂ, z=2zp
7, (A8)
F = =, Z=2y
Y
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The solution of this differential equation is:

. Cy . Cy
/1,2 2
o smh( b? + - (z Zu)) r— smh( b? + - (z zb)>
Yy

F = (Tb,l - Tb70) C + (Tu,l - Tu70) y C
sinh ( /0% + —y(zb — Zu) sinh b2+ —y(zu — )
k k (A9)

vC vC
w w2

€ — € b,0

+=(Tu,0 — To,0) o0 o0 BT

—Zu —RZb

e R —e R

where b is defined as:

C
b= =2 (A10)
2K
We will calculate the poles of this equation (the values for y for which the denominator is zero), and calculate the residuals of
each pole. The analytical solution is then simply the sum of the residuals (Brutsaert, 1994). Following this theorem, writing

F(y)as P(y)/T(y), we can write:

. P(y)e?

R, =1 —Y; All
= {(y D (A11)

If the pole cannot be factored out, this becomes:

P(yi)e?*
R, = (A12)

T (y)

ay Y=Yi

Equation A9 has poles for y equal to zero and for the hyperbolic sine equal to zero. For y equal to zero this simply becomes:

__ sinh(b(z — 24,)) 2, Sinh (b(z — 2))
T = (To1—-T b(z Zb)Sln— Tu1—T, bz—zu) 207 T/
1(2’) ( b,1 b,O)e CSIHh(b(g _Zu)) +( )1 :0)6 smh(b(zu _Zb))
v v
—z —2p (A13)
e R —e KR
+ (Tup = Tho) S+ Tig
e R —e KR

For the hyperbolic sine, we define:

S+ %(zu ) =g, (Al4)

where j is the complex variable (1/—1). We can now write:

sinh (1 [b% + %(zu — zb)> = jsin(z). (A15)

This is equal to zero for x = nm, with n=0, 1, 2, etc. This means that y is equal to:

Cy 22K Kb?
b4 2 ) (2y — 2)% = —a2 = — — Al6
( + P ) (Z Zb) xn = Y C(Zu _ Zb)2 C ) ( )

10



where z,, = nm. We can thus write the solution as:

2k 2=z \
To(z,t) = —(To1—Tro)——= Pz Zb)z ( J;n) eynt

C Zu — Zb Zp — 2w
( (A17)
2K [ 2=z
- EL - EL b(z #u) n ynt.
(T ’O)C(z —2p)? Z zu—sz c
The analytical solution is then simply:
T(z,t) =Ti(z) + Ta(z,t). (A18)

5 A4 Solution for Second New Inputs

We will calculate the temperature profile at ¢ equal to /At, and use this as initial condition for the same equation. The boundary

conditions are:

T = Tya, z2=2%
b,2 b (A19)
T = Tua2, 2=2,
In the Laplace domain, the differential equation becomes:
inh (b(z — 2,,)) __y sinh(b(z — zp))
CyF —C(Ty1 — 1T b(z_zb)sm——C Tyt — Ty o)e?G ) —— 22 0
yF = CTo1 =Thole Sinh (b —z0))  C Lt~ Two)e sinh (b(z, — 21))
vC vC
—z —2p
e R e R
_C(Tu,o - Tb,O) C vC - CTb,O
—ZZ — 2
e R —e KR
10 0 _ (A20)
2K x z2—Zz
(T —Th o) ———— b(z—zp) 1) u n yn At
+C(Th1 b’O)C(zu—zb)Qe nz::l( ) S S e
2K _ s Ty . Z— 2
C Tu _Tu e b(z zu) —1 nn —x, Yn At
+ ( ,1 ,O)C(Zu_zb)ze n:1( ) Un sin Zu_sz €
d*F dF
=rh—7g —vC—.
iz T
The boundary conditions are, in the Laplace domain:
J— Tb72 —
= —, Z=2p
7 (A21)
= U2 , 2= 2Zy.
Y
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F’ can then be written as:

,2 7 1o, y c + (Tu,Z - Tu71)
sinh (1 /b2 + —y(zb - zu)>
K
1
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y( : 0)

)
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Through calculating the poles and the residuals, the inverse transform is:

b(z—2zp) sinh (b(z — 2u)) b(z—24) sinh (b(z — 23))

T t - T - T Tu - EL .
(1) (To.2 = Tho)e sinh (b(zp — 24,)) +(Tuz 0)e sinh (b(z,, — 2p))
v, v,
e R —e KR
+ (Tu0 —Tb0) o ot Ty0
—Zu —2Zp
e R —e KR
2K > T Z—z
AT o — T b(z—zp) 1) =n u Yn
( b,2 bl)C(zu _Zb)ze nzz:l( ) yns 2 — 2w €
2K _ > Ty . Z— 2
— (T —Ty) s ebF=20) —1)"~sin (—xn> evnt
( 2 71) C(Zu — Zb)2 7;1( ) Un Zu— 2b
2K > T Z—z
—(Ty1 —Tpo) ——————l(z—20) -1 "—nsin( v xn) e¥n(t+At)
(Ty1 — Ty,0) Clon—m)? nz::l( ) " o
25] —z > nxn . zZ—Z
_(Tu,l - Tu,o)meb(z w) (—1) y—sm (Z—_beﬂ?n> eyn(t+At).
u n:1 n u

A5 Solution for M Sequential Boundary Conditions

. Cy . Cy
2 ZY [p2 o Z9 0,
oy smh( b2+ - (z zu)> oy smh( b2+ - (z zb)>
Y
sinh ( b2+ %(zu - zb)>
K

b(2—2) sinh(b(z—z,)) 1 b(z—22) sinh (b(z — zp)

(A22)

(A23)

Through again calculating the temperature profile at time ¢ equal to At, using this as input for the governing equation with

new boundary conditions, and applyting this methodology recursively, the temperature profile for boundary conditions T, s

12



and Ty, 5 as:

b(2—2,) Sinh (b(z—2p))

inh (b(z — zu))
T(zt) = (Tyar— Tyo)ebc—on ST 2w) (op o
(2:1) (To.r = To0)e sinh (b(zp — 2y)) (T o) sinh (b(2y — 2))
v v
—z  —z
e R —e KR
+ (Tu0 —Tb0) o o0 +Tp0
—Zu —2b
e R —e KR
2K > T Z—z
—(Ty,pmr — Ty, pr—1 eb(z=2) —1)"Lsg ( v )e”"t
( )C(Zu — Zb)2 ngl( ) Yn Zb — Ru (A24)

M-—1 00
2K b( - b) T Z— Zy DS
- = E Ty — T E —1)nin ZTRu ) eunlt(M—m—1)Ad]
C(Zu _Zb)2€ m:l( ’ 8 1)n:1( ) Yn - Zp — Zux c
2% M-—1 ) . L.
_ b(zfzu) T _T _ _1 non s — <b yn[t+(M7WZ71)At]’
C(Zu — 25)2 e m:1( w,m u,m 1) nE:1( ) Un Sin p—— Tn €

vC
G Tt = Toat = T+ Tog)— o 0O (To =T o
t) = u,M — —tu, sinh (b(z, — 23)) R
0= e =Toar=Two +Tho) g =y + ¢ o = Tho) a0
e Kk u—e R ’
22 2k - T
B T _T B Zufzb) n n Ynt Tu _Tu ) “n L ynt
(To,nr — T, 1)0(%_% nz:l w C (T 0 M 1)C(zu—zz>)3z ‘
2 be2) Y (T — Thonoa) g 31
C(z —Zb)3 el n=1
M-—1 0 x2
“n yn[t+(M*m71)At]
Czu_zb3m21 um 1);?;7]’6 .

(A25)
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A6 Computationally Efficient Formulation

For the temperature profile, we define two variables 7 (z,n) and 73,(z,n) for each value of z, which are initially zero. In general,

we write the solution for temperature input M as:

sinh (b(z — z,,)) b(2—2,) Sinh (b(z —2))

T(zt) = (T v—T blz—zp) 27 P T, SV )
(2:1) (To.r = To0)e sinh (b(zp — 2y)) (T o) sinh (b(2y — 2))
vC v
—z —2p
e K —e K
+(Tu0 — Ty 0) ol C +Tp0
—Zu — b
e kR —e
2K zZ—2z (A26)
T Ty af— eb(z— Zb)E © ) evnt
—(To,ns — Ty, 1)C(z —)? Zb—zux e
2K _ e Ty . Z— 2
—(Tyrg — Ty pf—1) = eP(z=2u) —_1)nn . | evnt
(Tu,m M 1)C(zu—zb)2€ E (—1) ynsm - _be e

n=1

_ 2K eb(z—20) Ty ne¥nt — 2’i eb(z—2u) T eunt
E b,n g tn
C(z —2p)? C(zy — 2p)?

5 At the end of the time step we update the variables:

(z,n) —  Tp(z,n)e¥ntt + (Ty,m — Tb,M_l)(—l)"ﬂsin ( cT xn) eynit

2 o
m(z,n) = T(z,n)e?n P+ (Tyn — Tupr—1)(—1)"—sin b xn) e¥ntt,
Yn Zu — %b

For the ground heat flux, we define two variables ¢;(n) and v, (n), again initially zero. We then write the ground heat flux as:

vC
G Tost—Tonr—TootToo) =2 C(Ty T e r

t - u - — L, . w,0 ™

( ) fi( M b,M 0+ b’o)smh(b(zu _Zb)) +v ( ,0 b70) ,UCZ UCZ
e R v —e KR b

2% 2
o o zufz;,) ’ﬂ ’I’L Ynt
(Ty,mr Tb,]\hl)c(z —Zb E : —€ (A28)

t
—(Tu,pr — Tupr—1) Clon—m) E ey”
Zu - Zb
2% 2
_ Zufzb) ynt 'llnt
C( _ E wb n)e — 3 E Pi(n)e’
Zu zb Z Zb

At the end of each time step we then update:

2
xn 1 L
Yy(n) = p(n)e? 4 (Ty ar — Topr—1)(—1)" Le¥n ™
10 2 Yn (A29)
P(n) — wt(n)ey”At'i‘(Tu}M Tuni—1)— eyn Bt

n
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A7 Limit Case for Zero Convection

In this case b becomes zero. We can rewrite Equation A24 as (using de I’Hopitals’s rule):

Z— 2y z—2p
+ (Tu,m —Thy0) +Tp0
Zb — Zu Zu — Rb

o0 1) — 2y
+2(Tp M —Tb,M—l)Z (=) sin ( FE a:n> eynt

Tn Zp — Zuy

n=1
o —1)" _
+2(Tou, s — Tu,pi—1) Z (=D sin ( S a:n> eynt

T(z,t) = (To,m—Tbo)

Tn Zu — Zb
n=1
M-1

+2

(]

Tn Zb — Zu

o0 _1 n — 2.
Ty — Ty 1) S D" ( z—z xﬂ) nlt+(M—m) At]

—_—

n=1

23

o0

—1)" —
+2 (Tu7m _ Tu7m_1) Z ( ) Sln( z Zb Jjn) eyn[t—i-(M—m)At].

—1 ne1 LT Zu — Zb

3

The ground heat flux then becomes:

2K

Zu — Zb

Ty — T 25 o
Glt) = w2 Ty = Thnr1) D (1) +
n=1

Zu — Zb Zu — Zb
M-—1 00

Z (Tb,m o Tb7m71) Z(_l)neyn [t+(M—m)At]

1 n=1
1 00

(Tuym — Tum—1) Z eYnlt+(M—m)At]

m=1 n=1

2K
Zu — Rb

5 +

The computationally efficient algorithm can be applied to these limit cases as well.

(A30)

o0

(ﬂL,M - 7"u,M—l) Z eynt

n=1

(A31)

Author contributions. Edoardo Daly and Valentijn Pauwels developed the idea to use an analytical solution to model the ground heat flux

in land surface models, instead of numerical solutions. Valentijn Pauwels solved the equation, prepared the manuscript, and performed the

model simulations. The results were extensively discussed and analyzed by both authors.
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Table 1. The model parameters that need to be estimated.

Parameter

Description

A

e
K

f

BN

Te
fa
fu
fo

Pore size distribution index

Air entry pressure head

Saturated hydraulic conductivity
TOPMODEL exponential decay

Surface albedo

Thermal conductivity

Volumetric heat capacity

Surface resistance

Zero plane displacement height fraction
Rougness length for heat transfer fraction

Rougness length for vapor transfer fraction

Venegas, P., Grandon, A., Jara, J., and Paredes, J.: Hourly estimation of soil heat flux density at the soil surface with three models and two
field methods, Theoret. Appl. Climatol., 112, 45-59, doi:10.1007/s00704-012-0705-z, 2013.
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Table 2. Results of the linear regressions between the energy balance observations (X -axis) and the simulations (Y -axis) for the simulations

with a numerical solution of the heat conduction equation. Units are W m™ 2.

Az (m) X Y Slope Intercept R RMSE
R,
0.01 93.0131 100.600 0.915466  15.4496  0.960075 51.7281
0.025 98.3913  0.914448  13.3357  0.960305 51.3149
0.05 95.7262  0.885549 133586  0.959990 51.7374
0.1 98.1781  0.902939  14.1929  0.959981 51.5954
LE
0.01 51.1184  69.1110 0.743908  31.0836  0.876901  63.5272
0.025 68.2937 0.713683  31.8114  0.867113  65.5609
0.05 65.2262 0.703889  29.2445  0.875136  63.4643
0.1 68.7922  0.739403  30.9951  0.875059  63.8546
H
0.01 37.5698 26.7574 0.624850  3.28193  0.749120 51.9420
0.025 254533 0.680222  -0.102505 0.757655  52.2046
0.05 26.0201  0.627508  2.44475  0.749720 52.0724
0.1 25.0475 0.617920  1.83234  0.752516  51.9020
G

0.01 432493 474172 0.502091  2.57021  0.701958  11.7627
0.025 4.64757 0.505230  2.46248  0.709196  11.6390
0.05 4.48276  0.483105  2.39337  0.703112  11.7385
0.1 4.34807 0.471090  2.31064  0.702533  11.7558
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Table 3. Averages of the eight lowest objective function values and the corresponding parameter values.

Numerical Analytical
Parameter Units Az=00lm Az=0025m Az=005m Az=01lm | Az=00lm Az=0025m Az=005m Az=0.Im
OF - 3.908 3.894 3.959 4.127 3.981 3.971 4.041 4210
A - 1.068 0.950 0.747 0.499 1.081 0.926 0.740 0.541
Pe m -0.970 -0.893 -0.717 -0.420 -0.964 -0.854 -0.677 -0.453
K mm-h~! 190.164 168.582 167.567 141.790 173.642 169.079 150.140 157.642
f - 17.692 16.738 15.082 9.733 17.353 15.858 13.632 10.302
! - 0.074 0.074 0.105 0.085 0.077 0.066 0.104 0.108
K Wm 'Kt 0.089 0.183 0.269 0.469 0.198 0.189 0.210 0.210
Im™PK™' 2640742750  1660719.125  2967731.000  2315448.750 | 5529063.000  5318158.000  5728717.000  5079298.500
re sm™? 130.684 121.139 110.999 107.160 110.621 114.010 101.966 110.756
fa - 0.594 0.563 0.528 0.568 0.507 0.610 0.641 0.603
fn - 0.152 0.154 0.183 0.175 0.153 0.136 0.184 0.210
fo - 0.368 0.316 0.359 0313 0.241 0.207 0.257 0.347




Table 4. Results of the linear regressions between the energy balance observations (X -axis) and the simulations (Y -axis) for the simulations

with an analytical solution of the heat conduction equation. Units are W m ™2,

Az (m) X Y Slope Intercept R RMSE
R,
0.01 93.0131  96.8658  0.907984  12.4113  0.960480 51.1205
0.025 97.1449  0.898791  13.5455 0.960282  51.3837
0.05 947747  0.889366  12.0521  0.960323  51.4117
0.1 100.133 0922799 143001  0.960243  51.5437
LE
0.01 51.1184  69.4063  0.714640  32.8750 0.866276  66.0089
0.025 68.8670  0.731788  31.4592  0.875547  63.8527
0.05 66.1448  0.694242  30.6563  0.870716  64.6836
0.1 74.1509  0.776766  34.4438  0.873384  65.8182
H
0.01 37.5698  27.1087  0.672448  1.84497  0.755206 51.9761
0.025 27.8972  0.619521  4.62193  0.748911 51.6733
0.05 28.3065  0.654199  3.72834  0.751075 51.8782
0.1 257319  0.611265 2.76678  0.753079  51.6224
G
0.01 432493  0.341580 0.425440 -1.49842 0.680172  12.7680
0.025 0.357694  0.427544 -1.49141 0.674257 12.8336
0.05 0.338068  0.453744  -1.62434  0.673366  12.8353
0.1 0.323368  0.433978  -1.55356 0.671378  12.8747
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Figure 1. Comparison between the modeled and the observed energy balance terms for the simulation with Az equal to 0.0l m and a
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Figure 2. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and a numerical

solution of the heat conduction equation. The model results for all four2 si)atial resolutions are very similar and therefore difficult to distinguish.



t = 0 hours t = 100 hours t = 200 hours t = 300 hours
1.0 1.0 1.0 1.0
0.8 0.8 0.8 9 0.8
€ 06F 0.6 0.6 9 0.6
T o04f 0.4 0.4 1 0.4
0.2 0.2 0.2 9 0.2
0.0 0.0 0.0 0.0
25 3.0 3.5 40 45 5.0 55 1.5 20 25 3.0 35 4.0 35 40 45 50 4 5 6 7 8
t = 400 hours t = 500 hours t = 600 hours t = 700 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 1 0.8
€ 06F 0.6 0.6 9 0.6
T o04f 0.4 0.4 1 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
4 5 6 7 8 9 10 4 5 6 7 8 9 5 6 7 8 9 10 45 50 55 6.0 6.5
t = 800 hours t = 900 hours t = 1000 hours t = 1100 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 1 0.8
€ 06F 0.6 0.6 9 0.6
T o04f 0.4 0.4 1 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
6 8 10 12 14 6 8 10 12 14 16 10 15 20 6 8 00 12
t = 1200 hours t = 1300 hours t = 1400 hours t = 1500 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 1 0.8
€ 06F 0.6 0.6 9 0.6
T o04f 0.4 0.4 1 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
6 7 8 9 10 M 7 8 9 10 7 8 9 10 8 10 12 14 18
t = 1600 hours t = 1700 hours t = 1800 hours t = 1900 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 8 0.8
€ 06F 0.6 0.6 9 0.6
" 04f 0.4 0.4 1 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
8 10 12 14 16 8 10 12 14 16 18 8 10 12 14 16 8 10 12 14
t = 2000 hours t = 2100 hours t = 2200 hours t = 2300 hours
1.0 1.0 1.0
08F 0.8 0.8
T 06} 0.6 0.6
" 04f 0.4 0.4
0.2F 0.2 0.2
0.0 0.0 0.0
8 10 12 14 10 12 14 16 18 10 12 14 16 18 20 22 24 10 15 20
t = 2400 hours t = 2500 hours t = 2600 hours t = 2700 hours
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
10 12 14 16 10 15 20 25
t = 2800 hours t = 2900 hours t = 3000 hours t = 3100 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 1 0.8
€ 06F 0.6 0.6 9 0.6
W04l 0.4 0.4 ] 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
15 20 25 30 12 14 16 18 20 22 24 26 1 12 13 14 15 18 12 14 16 18
t = 3200 hours t = 3300 hours t = 3400 hours t = 3500 hours
1.0 1.0 1.0 1.0
08F 0.8 0.8 1 0.8
€ 06F 0.6 0.6 9 0.6
W04l 0.4 0.4 ] 0.4
0.2F 0.2 0.2 1 0.2
0.0 0.0 0.0 0.0
12 13 14 15 12 14 16 18 20 12 14 16 18 20 22 13 14 15 16 17 18 19
T(©) T(©) T(© T(©)

Figure 3. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for fine spatial

and temporal resolutions. Both solutions are very similar and therefogs difficult to distinguish.
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Figure 4. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for coarse

spatial and temporal resolutions.
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Figure 5. Comparison of the resulting ground heat fluxes from the fine and coarse spatial and temporal resolutions to the analytical solution.
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Figure 6. Comparison between the modeled and the observed energy balance terms for the similation with Az equal to 0.01 m and an

analytical solution of the heat conduction equation (Equation A31).
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Figure 7. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and an analytical

solution of the heat conduction equation.
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