
We thank the reviewer for his time and comments, but we would like to rectify a number
of arguments before the discussion gets out of hand.

1. The term with v in the governing equation does not imply that the soil moves in the
z-direction, it implies that heat is advected through the movement of the fluid in the
soil, in a direction opposite the z-direction. This is logical because the z-axis is pos-
itive upwards (stated immediately after equation A1), so if v is positive flow will be
downwards.
Stating that in this equation the soil is moving, is similar to stating that the gravity
term in the Richards equation is making the soil move (which is not the case, it makes
the fluid move), or that in the continuity equation the v (or Q) term makes the control
volume move (again, the fluid is moving).
But then again, this discussion is not very important, because immediately before
equation A1 we clearly state that we use this term with v because it makes the ana-
lytical solution easier. We then calculate the limit case for v equal to zero and use this
solution. This, even if the argument that in this equation the soil column is moving
were true (which it is not), it is irrelevant, because we use the limit case for v equal to
zero.

2. The mathematical solution is correct. One simply needs to look at any book on Laplace
transforms to see that this is a correct way to perform an inverse transform. Further-
more, this strategy has been used in numerous studies in hydrology, for example in
Verhoest and Troch (2000) or Brutsaert (1994), to name just a few (there are many
more papers that use this method).
We clearly show in section 6.2 that the analytical solution is identical to the numerical
simulation if the spatial and temporal resolutions are fine enough. There are deviations
in the case of coarse resolutions, but that can be expected with any numerical solution.
One can simply plug equation A5 back into equation A3 to see that the solution is
correct. We did not do this in the paper (as it would not add value to the paper), but
the first derivative of equation A5 is:
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The second derivative is:
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Plugging this back into equation A1 we obtain:
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So the governing equation is fulfilled. Furthermore, if z is equal to zb then:

T = Tb,0 (4)

If z is equal to zt then:
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= Tb,0 − Tb,0 + Tt,0 = Tt,0 (5)

So here we prove analytically that the solution is correct, and in the paper we prove
it numerically. To show that the methodology is completely correct, we will do the
same for equation A24. We will first plug the fifth and sixth terms into the governing
equation. The first derivative becomes:
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The second derivative is:
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The transient part of the PDE is:
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Following the definition of b the cosine terms become zero. We can further simplify:
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This is equal to the temporal derivative. A similar reasoning can be made for the last
two terms in A24. If we set z equal to zb in the fifth term, we obtain the sine of xn,
which is by definition zero. z equal to zt leads to the sine of zero, which is again zero.
A similar reasing can be made for the sixth term. So, if the steady-state terms satisfy
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the boundary conditions, the entire solution satisfies them.
We will now analyse the first four terms (the steady-state terms). For zb this becomes:

T (zb, t) = Tb,M − Tb,0 + Tb,0 = Tb,M (10)

For zt this becomes:

T (zt, t) = Tt,M − Tt,0 + (Tt,0 − Tb,0) + Tb,0 = Tt,M (11)

So the boundary conditions are fulfilled. We calculate the first derivative:
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The second derivative is:
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The steady-state part of the PDE is:
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Application of the definition of b shows that this is equal to zero, so the equation is
solved correctly.
So we have analytically shown that the solution satisfies the boundary conditions and
the governing equation. Furthermore, in the paper we also show this numerically. The
solution methodology is very well known in literature. We really do not see what else
we can do to show that our solution is correct.
References:

• Brutsaert, W. (1994), The unit response of groundwater outflow from a hillslope,
Water Resour. Res., 30(10), 27592763.

• Verhoest, N. E. C., and P. A. Troch (2000), Some analytical solutions of the
linearized Boussinesq equation with recharge for a sloping aquifer, Water Resour.
Res., 36(3), 793800.

3. Wang et al (2011) use different boundary conditions, more specifically a flux at the
bottom and top of the soil profile. We use a temperature boundary condition, not a
flux. We do not see how we can compare the two solutions.

4. We devote five lines to the calibration algorithm, which cannot be considered excessive.
We then explain the objective function that is minimized, which is very important for
the remainder and the objectives of the paper.
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We appreciate the effort that the reviewer undertook to review the paper, but there are
clearly some misunderstandings that need to be rectified in order to continue the review of
the paper in a correct manner.
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