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Abstract. Load estimates are more informative than constituent concentrations alone, as they allow quantifying on- and off-

site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir 

sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been 15 

developed considerably over the last years, measures of uncertainty on constituent loads are rarely reported. Loads are the 

product of two predictions, constituent concentration and discharge, integrated over a time period, which makes it not 

straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate 

sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and 

discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are 20 

required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed 

that confidence intervals were asymmetric, with the highest uncertainty on the upper limit, and that a load of 6262 Mg/year 

had a 95% confidence interval of [4331, 12267] in 2010 and a load of 5543 Mg had an interval of [3593, 8975] in 2011. 

Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap 

median estimates. These results imply that constituent loads predicted from regression-type water quality models could 25 

frequently be underestimating sediment yields and their environmental impact.  

Key words: constituent load, concentration prediction, discharge rating curve, sediment yield, resampling methods, Monte 

Carlo-method 

1 Introduction 

The environmental impact of processes such as erosion, sedimentation, eutrophication or degradation of aquatic ecosystems 30 

can only be quantified through reliable estimates of sediment, nutrient or pollutant loads (Walling and Webb, 1996). 

Monitoring constituent concentrations alone does not suffice as these provide information on in-stream quality, but offer no 

means to evaluate outcomes such as reservoir siltation, erosion, soil fertility loss and pollution at the watershed scale - both 

on- and off-site. Despite abundant literature developing appropriate procedures for load estimates, most studies do not report 

a measure of uncertainty on the load (Kulasova et al., 2012). 35 

In this paper, we will use the example of one of the most commonly measured constituents, suspended sediment, but the 

methodology developed is applicable to any constituent load. For suspended sediment, the most frequently used method to 

estimate loads is the so-called rating curve method (Gao, 2008; Horowitz, 2008). In this approach, the suspended sediment 

concentration (SSC) is predicted by some form of least squares regression with (often log-transformed) discharge as the 

explanatory variable. This approach introduces two sources of uncertainty in the load equation: the uncertainty on the 40 

sediment concentration equation (the so-called sediment rating curve), and the uncertainty in the discharge, as discharge is 

usually not measured directly, but rather predicted from a regression with water level as predictor variable, the stage-
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discharge rating curve. Any measure of uncertainty on the constituent load must take into account the uncertainty on both the 

constituent concentration, and the discharge. 

Uncertainty of the sediment concentration prediction has been extensively discussed and, depending on the catchment 

characteristics, generally good concentration predictions are obtained with errors smaller than 15% (Horowitz, 2008). In 

some studies, however, the uncertainty is stated to be considerable. Smith and Croke (2005) for example reported that 

discharge only explained a quarter of the variability in the concentration data. Walling and Webb (1988) suggested that 

seasonal differences of the relationship between discharge (Q) and constituent concentration, non-simultaneity of Q and 

concentration peaks during storms, hysteresis and exhaustion effects are the most important causes of inaccuracy in 

concentration predictions.Few studies to date have taken this error on the discharge rating curve into account explicitly when 

calculating uncertainty on load estimates (Vigiak and Bende-Michl, 2013; Rustomji and Wilkinson, 2008). Uncertainties of 

discharge, however, depend on several factors: the method chosen to estimate the discharge, site conditions and the time 

interval over which water levels are measured (Harmel et al., 2009; Hamilton and Moore, 2012; McMillan et al., 2012; 

Tomkins, 2014). In general, discharge is estimated more accurately than constituent concentration. Discharge, however, 

enters the load equation twice – once as predictor variable for the concentration, and once multiplied with the concentration 

to get the instantaneous load. Therefore, it deserves further investigation whether or not the error on the discharge estimate 

can safely be ignored, and in which circumstances. Finally, as discharge is frequently used as a predictor for constituent 

concentration, the two variables are correlated and their errors cannot be assumed to be independent. As a result, there is no 

textbook formula to estimate the variance of a constituent load. 

Therefore, authors that do report a measure of uncertainty often select a method that is specifically geared towards the 

application of load estimation at hand, and not necessarily applicable to other sites, making it hard to compare results 

throughout literature. Harmel et al. (2009), for example, developed a software tool to assess the errors introduced from 

estimating discharge, sample collection, preservation and storage, and lab analysis. In this tool, each of these sources is 

considered to be the result of random variability following a normal distribution. The sources of error are assumed to be 

independent from each other and it is assumed that the errors follow an additive law, but these assumptions will not apply in 

all situations.  

Moatar and Meybeck (2005) assessed uncertainty on nutrient loads by comparing loads based on a random subsample of 

measurement times, with a high-resolution load that is considered the “true” load. This approach is suitable for testing 

different methods and different temporal measurement resolutions of load estimation, but it does not assess the uncertainty of 

the “true” load, as it is assumed that with sufficiently high sampling frequency (in their case, daily), the measured load is 

equivalent to the actual load. More recently, two new candidate approaches have emerged to calculate confidence intervals 

on loads, that have the potential to be generally applicable, regardless of the method used to calculate the load and the 

distributional assumptions made: bootstrap methods (Mailhot et al., 2008; Rustomji and Wilkinson, 2008; Vigiak and Bende-
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Michl, 2013) and Bayesian methods that result in credibility intervals (Pagendam et al., 2014; Vigiak and Bende-Michl, 75 

2013).  

The bootstrap is a Monte Carlo-type method, where a large number (B) of datasets are simulated – either by sampling with 

replacement from the original data in the case of the non-parametric bootstrap, or by sampling from a fitted distribution in 

the case of the parametric bootstrap (Efron and Tibshirani, 1993). Bootstrap methods, however, were originally developed 

for independent, identically distributed random variables. In the context of sediment monitoring the assumption is that the 80 

observations used to build the regression model are independent in time. This can be realistic in fixed-interval sampling 

schemes where the sampling time interval is large, or in the case of discharge where measurements to build the stage-

discharge relationship are typically taken far apart in time. For sediment concentration, however, flow-proportional sampling 

is often performed to obtain samples at the highest concentrations. Those observations are usually taken closely together 

during storms and thus most likely are not independent in time (Slaets et al., 2014). Linear mixed models that model the 85 

serial correlation provide an alternative to least squares regression to establish a sediment rating curve for this type of data. 

Lessels and Bishop (2013) similarly found that the inclusion of a temporal autocorrelation component improved the accuracy 

and decreased the bias in predictions of total phosphorus and nitrogen river loads.  If there is serial correlation in the 

sediment data, it is necessary to use an adjusted version of the bootstrap that retains the serial correlation in the data intact 

(Lahiri, 2003). Such methods have already been explored in hydrology in relation to the discharge rating curve: Ebtehaj et al. 90 

(2010) and Selle and Hannah (2010) uses block bootstrap methods to assess uncertainty on and improve robustness of model 

parameter estimates for discharge prediction.  

To assess uncertainty on constituent loads estimated from continuous concentration and discharge predictions where serial 

correlation is present, we propose a bootstrap-based method to assess uncertainty on constituent loads that can be used with 

transformed data, that accounts for the uncertainty in both the sediment rating curve and the stage-discharge rating curve, 95 

and that allows for serial correlation in the times series data. We checked if any of these requirements can safely be 

neglected in certain circumstances, and how they affect the resulting confidence intervals. Corresponding code in SAS was 

created and is available online to accommodate for these different scenarios (https://www.uni-

hohenheim.de/bioinformatik/beratung/index.htm). 

Our specific aims were: (i) to establish a generally applicable method to calculate confidence intervals on constituent loads, 100 

using bootstrap methods, (ii) to account for serial correlation in the data, (iii) to assess whether or not the effect of the 

uncertainty on discharge is negligible, (iv) to evaluate how data transformations affect the calculations, and (v) to determine 

the number of bootstrap replicates required to obtain reliable confidence intervals. Combining these aspects, the proposed 

method provides a means to assess uncertainty on any type of constituent load which was calculated from continuous 

constituent concentration and discharge predictions estimated with regression-type methods. The approach thus allows load 105 

estimates to be reported with an uncertainty assessment, rather than as a point estimate alone, making them informative to 

end users and decision makers. 
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2 Material and methods 

2.1  Discharge and sediment concentration 

Discharge and suspended sediment concentrations were continuously monitored for a period of two years (1/1/2010 – 110 

31/12/3011) in a small agricultural catchment in mountainous Northwest Vietnam. The catchment is located in the Chieng 

Khoi commune (21°7’60’’N, 105°40’0’’E, 350 m a.s.l), Yen Chau district, in the tropical monsoon belt where the rainy 

season begins in April and ends in October. Average annual precipitation is around 1200 mm, average annual temperature is 

21 °C. The occurrence of typhoons is not uncommon especially at the end of the rainy season, and daily rainfall amounts can 

rise to 200 mm. The largest storm during the two years of this study was on the 12
th

 of July 2011 and consisted of 73 mm of 115 

rainfall in three hours. The dominant soils are Alisols and Luvisols (Clemens et al., 2010). The landscape has an altitudinal 

range between 320 and 1600 m above sea level with slopes ranging from 0.05 to 65%. The measurement location is in a river 

at the outlet of a small watershed with a contributing area of 2 km
2
, of which 0.6 km

2
 consist of paddy fields. A 26.3 ha 

surface reservoir with a buffering capacity of 10
6
 m

3
 provides irrigation water for rice production via concrete irrigation 

channels, and the paddies drain into the monitored river. As the reservoir fills up with the progression of the rainy season, 120 

excess water is removed via a spillover which drains into the river, typically from July till October. During this period, 

discharge in the river is an order of magnitude larger than during times when the spillover is not active: mean daily discharge 

in the dry season equaled 0.08 m
3
 s

-1
(with a standard deviation of 0.13 m

3
 s

-1
), while mean daily discharge with the spillover 

active amounted to 1.22 m
3
 s

-1
 (with a standard deviation of 0.66 m

3
 s

-1
). 

For the discharge monitoring, water levels were measured every two minutes for the river station using pressure sensors 125 

(EcoTech, Germany). The stage-discharge relationship was established with the velocity-area method (Herschy, 1995), 

where the velocity is measured with a propeller-type current meter (OTT, Germany) at one or more points in each vertical, 

depending on the water depth. The discharge is subsequently derived from the sum of the product of mean velocity, depth 

and width between verticals. Discharge measurements were never taken on the same day, and the closest time interval 

between two measurements was one week. The estimated discharge �̂� in m
3
 s

-1
 at time i was then predicted from 130 

𝑙𝑜𝑔�̂�𝑖 = 𝑙𝑜𝑔�̂� + 𝛾 log(ℎ𝑖 − 𝛽), (1) 

where ℎ𝑖 is the water level (in m) at time i, �̂� and 𝛾 the estimated rating curve constants and 𝛽 the measured sensor offset, 

with �̂� and 𝛾 estimated using the method of least squares on the log-transformed scale. This transformation was done to 

stabilize the variance. 

As the irrigation management disturbed the natural relationship between Q and SSC, a turbidity-based method was used to 135 

monitor SSC. Turbidity was measured every two minutes with NEP395 sensors (McVan, Australia). 228 water samples were 

collected using a storm-based approach, by taking around twenty grab samples per sampled rainfall event in order to 

accomplish the best possible coverage of all concentration ranges. 188 storm flow samples were collected during 24 rainfall 
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events over the two year duration of the study. Additionally, every two weeks a base-flow sample was taken. The sediment 

concentration was determined gravimetrically on a sample of 500 ml by letting it settle overnight in refrigerated conditions, 140 

prior to siphoning off the supernatant and drying the remaining sediment at 35 °C, as is recommended for samples with very 

high sediment concentrations (ASTM, 2013).  

Rainfall was quantified with a tipping-bucket rain gauge on a weather station (Campbell Scientific, USA). Events were 

defined based on rainfall data (no pause in precipitation for longer than 30 minutes) and lag times were added based on cross 

correlation analysis as described in Schmitter et al. (2012). A total of 420 rainfall events took place and were monitored 145 

during the two year study period. 

Continuous sediment concentrations were then obtained from a mixed model described in Slaets et al. (2014). The response 

variable, sediment concentration, was Box-Cox transformed to stabilize the variance using the SAS macro described in 

Piepho (2009). The optimal value of the transformation parameter was estimated by the maximum likelihood method, and 

the selected value was the log-transformation. Other transformations, such as the square root, were inspected using residual 150 

plots and were found to be unsuitable for meeting the assumptions of normality and homoscedasticity. Predictor variables 

were chosen with forward selection based on Akaike Information Criterion (AIC). The model uses turbidity and discharge as 

quantitative predictor variables, and accounts for serial correlation. As surface reservoir irrigation management was present 

in the watershed, classic variables related to catchment characteristics such as hysteresis patterns and exhaustion effects were 

not suitable predictors of sediment concentration. The predictor variables turbidity and discharge were also log-transformed. 155 

All samples from the two year study period were used to build the concentration prediction model, and load estimates from 

both years are thus predicted from the same model with the same parameter estimates. All statistical analyses were 

performed using the MIXED procedure of SAS 9.4, which can fit linear models with more than one random effect. The 

covariance structure used to model serial correlation in the present study was a first-order autoregressive (AR(1)) model, 

which was selected based on AIC. Assumptions of normality and homogeneity of variance were checked visually using 160 

diagnostic plots. 

Conceptually, this concentration prediction error can also be separated into an underlying latent autoregressive process 

generating the true concentrations, and an independently distributed measurement error corresponding to white noise in time 

series data. The white noise is equal to the error that would remain if two measurements were conducted at almost coinciding 

time points. This variability is typically attributable to measurement error and in spatial statistics, this is what is known as a 165 

nugget effect. In the MIXED procedure, this effect was fitted by using the local option in the repeated statement. 

Validation was performed using five-fold cross validation, in which the dataset is split randomly into five parts, and each 

part is used four times to calibrate the model, and one time for validation, so that each observation in the dataset is used for 

validation once. Pearson’s correlation coefficient (r) was calculated between the observed and predicted values resulting 

from the validation. The SAS macro that performs k-fold cross validation for linear mixed models using the MIXED 170 
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procedure is described in Slaets et al. (2014). Additionally, event-based five-fold cross validation was performed, where all 

samples belonging to single events were resampled jointly, rather than individual observations.  

2.2  Bootstrap resampling procedure 

In the non-parametric bootstrap, a large number (B) of random samples, of the same size as the original dataset, is drawn by 

sampling observations with replacement from that original dataset. For each of the B bootstrap samples, the sample statistic 175 

of interest (in this case, the sediment load) is calculated and from the resulting empirical distribution, measures of 

uncertainty can be obtained. As this empirical distribution is only a good approximation of the true distribution when the 

bootstrap resampling mechanism is able to recreate the original sampling process (Efron and Tibshirani, 1993), we need to 

understand the sampling processes resulting in the annual sediment load. Since neither discharge nor constituent 

concentration are measured continuously, annual loads are normally estimated by calculating the sum of instantaneous loads, 180 

measured at equally spaced discrete points in time. The load at a time i is then generated from 

�̂�𝑖 = �̂�𝑖 × �̂�𝑖,                     (2) 

where �̂�𝑖 is the estimated instantaneous load at time i in g/s, �̂�𝑖 is the estimated discharge at time i in m
3
/s and �̂�𝑖 is the 

estimated concentration at time i in g/m
3
. These instantaneous loads are multiplied by a time factor accounting for the 

monitoring interval. In the present study, for example, the factor was 120 s, as measurements were done every 2 minutes. 185 

Monthly or annual loads in Mg can then be calculated by simply summing up the instantaneous loads for the whole time 

interval and multiplying by a factor 10
-6

 to convert from mg to Mg: 

�̂�1 𝑡𝑜 𝑡 = ∑ (�̂�𝑖 × 120 × 10−6)𝑡
𝑖=1     (3) 

Looking at Eq. (2) for the load estimate at a time i, there are really two separate sampling processes from two distinct 

populations at work in the load estimation: firstly the sampling for the discharge rating curve (pairs of Q and h from the full 190 

time series of Q and h pairs), and secondly, the samples used to build the sediment rating curve (observations of C and 

hydrological predictor variables from the full time series of C, Q and turbidity). In order to assess the uncertainty of the 

discharge equation, the bootstrap replicates can be created by simply sampling (Q, h)-pairs at random with replacement from 

the original dataset. Simple random resampling assumes independence, which is dependent on the monitoring scheme: in the 

case of our dataset, discharge measurements were never taken on the same day, and the smallest interval between two 195 

measurements was one week. In order to test this assumption, an AR(1) variance-covariance structure was fitted to the 

discharge data. As the AIC showed an increase of only two points compared to an independent structure, no serial 

correlation was present in the (Q, h)-pairs. Using Eq. (1), bootstrap discharges 
*ˆ
iQ  can be generated according to 

𝑙𝑜𝑔�̂�𝑖
∗ = 𝑙𝑜𝑔�̂�∗ + 𝛾∗log (ℎ𝑖 − 𝛽),       (4) 
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where ℎ𝑖 is the water level at time i, 𝛽 is the measured sensor offset, and �̂�∗ and 𝛾∗ are the bootstrap estimates of the 200 

discharge rating curve parameters. These B predictions of Q, B being the number of bootstrap repetitions, must subsequently 

be fed into the bootstrapped sediment rating curve, as discharge typically is one of the predictor variables for SSC. But the 

previously described resampling mechanism cannot be applied to the observations used to build the sediment rating curve, as 

the simple random sampling assumes that the observations are independent. Water samples are often collected in a storm-

based approach, as was done in this study, where they were collected sometimes only minutes apart during rainfall events. 205 

For this type of hydrological datasets where temporal autocorrelation is present, Ebtehaj et al. (2010) recommended the use 

of specialized sampling procedures that keep the serial correlation intact, such as the moving block bootstrap, the circular 

block bootstrap or the stationary block bootstrap, described in detail by Lahiri (2003) and applied to constituent 

concentrations by Hirsch et al. (2015).  

Among these specialized methods, no preferred method has emerged from literature. Furthermore, many of these methods 210 

require a vast set of decisions with regards to for example the block size for which no general recommendation exists. As a 

consequence, results from different methods are not straightforward to compare. As the goal of the bootstrap is to mimic the 

original sampling process, however, there is an intuitive choice in the case of event-based sampling: the rainfall events form 

natural “blocks” or sampling unit, which is why water quality models used to predict continuous time series and thus new 

events should be validated on an event basis, rather than on a sample basis (Lessels and Bishop, 2013). So rather than 215 

sampling with replacement from the individual observations (water samples representing a single time point), all samples 

belonging to one event can be resampled with replacement, thus keeping all observations within one event together and 

maintaining the serial correlation intact.  

On the other hand, base-flow samples are typically taken at fixed time intervals far apart in time (here every two weeks). 

They can therefore be considered to be independent and can be resampled by simple random sampling with replacement, 220 

thus bootstrapping individual water samples from single time points. In a previous model published in Slaets et al. (2014), 

we explored the use of several alternative variance-covariance structures to model the serial correlation. The selected spatial 

power model unfortunately caused non-convergence for a large number of the bootstrap replicates when using it for 

bootstrap load estimates, and therefore the AR(1) structure was implemented as it did not have convergence issues. The 

difference in AIC between the AR(1) and spatial power model was 4 points. Therefore the spatial power model is most likely 225 

the best performing model, but there is still considerable support for the AR(1) model (Burnham and Anderson, 2002). The 

spatial power structure with time as the coordinate showed that the autocorrelation becomes nearly zero for samples taken 

more than 80 min apart– which coincides with the average duration of rainfall events. Therefore the base-flow samples were 

considered to be independent. An increase in AIC of only one point when fitting a first-order autoregressive covariance 

structure confirmed the lack of serial correlation in the base-flow samples. By resampling events with replacement for the 230 

storm flow samples and observations with replacement for the base flow samples, B time series of predicted sediment 

concentration �̂�𝑖
∗ are generated from  
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�̂�𝑖
∗ = �̂�∗ + (�̂�∗)𝑇𝑋𝑖 ,     (5) 

with �̂�∗ and �̂�∗ the bootstrap estimates of the intercept and the regression coefficients, respectively, (�̂�∗)𝑇 the transpose of 

vector �̂�∗ and 𝑋𝑖 the design vector of the fixed effects. This is a generalized equation applicable to any linear model, 235 

regardless of the number of predictor variables. If the sediment concentration was predicted using turbidity and discharge, 

for example, the bootstrap time series of predicted sediment concentration would be generated from 

�̂�𝑖
∗ = �̂�∗ + �̂�∗�̂�𝑖

∗ + �̂�∗𝑇𝑖  ,     (6) 

where �̂�∗ is the bootstrap parameter estimate of the regression coefficient for �̂�𝑖
∗, the bootstrap discharge at time i generated 

from Eq. (4), and �̂�∗ the bootstrap parameter estimate of the regression coefficient for 𝑇𝑖 , the turbidity at time i, respectively.  240 

This resampling process accounts for the uncertainty that arises from estimating the parameters of the sediment rating curve 

from a dataset with a limited number of observations. If there were an unlimited number of water samples available, the 

uncertainty of these parameter estimates would reduce to zero. But it is more realistic to assume that, even if there were a 

very large number of samples available, there would still remain scatter in the real constituent concentrations around the 

equation, as the equation simply does not fully explain all the variation in sediment concentration. Sediment loads vary not 245 

only with discharge, but also with upstream sediment supply, which in turn depends additionally on geology, soil types, land 

cover and land use change or management, all influencing sediment quantity and quality (Walling, 1977). Therefore, there is 

a fundamental reason for the scatter in the data: sediment loads are inherently non-capacity loads. Even if there were an 

unlimited number of samples available, this would not result in a perfect equation to predict sediment concentration. 

Therefore this additional uncertainty needs to be taken into account. For the discharge rating curve, if the river bed is stable 250 

and the stream bank vegetation does not change, the stage-discharge equation has a high accuracy and it is reasonable to 

assume the only error on the equation is measurement error, therefore this additional uncertainty is not a concern. 

To introduce this second source of error on the sediment rating curve, Rustomji and Wilkinson (2008) and Vigiak and 

Bende-Michl (2013) added an additional step to the bootstrap process: a randomly drawn residual from the original 

regression equation was added to the expected value of the constituent concentration, so that the predicted concentration 255 

included both the uncertainty of the parameters of the rating curve due to having a finite sample, and the uncertainty that 

arises from the fact that sediment concentrations simply cannot be perfectly predicted by any equation, regardless of how 

large the observed dataset would be. However, by randomly resampling from the residuals, it is assumed that these residuals 

are independent.  

When this assumption does not hold because samples are taken very closely together in time, as was the case for our dataset, 260 

the method can be modified so that the added errors reflect the temporal autocorrelation. To this end, the covariance 

parameter estimates from the original sample can be used as plug-in estimates. In the present dataset, an AR(1) structure was 

fitted to the data (Verbeke and Molenberghs, 2009), resulting in two covariance parameter estimates:  one for the 

autocorrelation parameter (�̂�) and one for the residual error variance (�̂�𝑒
2). The Restricted Maximum Likelihood algorithm 
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was used to simultaneously estimate the fixed effects and the covariance structure (Patterson and Thompson, 1971). The use 265 

of the covariance parameter estimates obtained assuming a normal distribution of errors implies that the method is partly 

parametric. This is necessary in order to take the serial correlation in the data into account. The bootstrap error term e
*
 at 

time i was then generated according to the following equation: 

�̂�𝑖
∗ = �̂�∗�̂�𝑖−1

∗ + √(1 − (�̂�∗)2) × 𝑓𝑖
∗ ,    (7) 

where �̂�∗ is the bootstrap estimate of the autocorrelation parameter, and the error 𝑓𝑖
∗ was randomly drawn from a normal 270 

distribution with mean zero and a bootstrap variance (�̂�𝑒
∗)2. The bootstrap prediction of a sediment concentration at time i, 

including the error expected due to residual scatter in the data, is then given by 

�̂�𝑖
∗ + �̂�𝑖

∗ = �̂�∗ + (�̂�∗)𝑇𝑋𝑖 + �̂�∗�̂�𝑖−1
∗ + √(1 − (�̂�∗)2) × 𝑓𝑖

∗.   (8) 

In summary, the complete bootstrap process that accounts for uncertainty in the parameter estimates of both the discharge 

and sediment rating curves, and uncertainty due to residual scatter in the sediment concentrations consists of three steps 275 

(Figure 1): 

(1) Resampling with replacement from the (Q, h)-pairs B times, in order to get B bootstrap stage-discharge equations; 

applying these equations to the continuous water level data to obtain B bootstrap time series (Q
*
) for discharge;  

(2) Block-bootstrapping the (C, turbidity, Q
*
, rainfall) dataset by drawing whole events and base-flow samples with 

replacement, in each i
th

 replicate plugging in the corresponding bootstrap Q
*
 from Step 1, in order to get B bootstrap 280 

sediment rating curves; then applying these bootstrap sediment rating curves to the continuous turbidity, Q
*
, and 

rainfall data to obtain B time series for the continuous suspended sediment concentration; 

(3) Adding an error term to the concentration predictions to account for the residual scatter that is inherent to the 

sediment concentration. 

In order to obtain a bootstrap estimate of the instantaneous load L at time i, the equation is: 285 

�̂�𝑖
∗ = �̂�𝑖

∗ × (�̂�𝑖
∗ + �̂�𝑖

∗)       (9) 

The residual scatter on the discharge is not added, as the stage-discharge rating curve has a much higher accuracy on the one 

hand, and on the other hand, velocity measurements are typically taken quite far apart in time, which would not allow 

modeling the serial correlation of the time series for discharge, but this would be needed because of the shortness of the time 

intervals considered here (2 minutes).  290 

Finally, these bootstrap instantaneous load estimates can be summed up for the whole time interval, resulting in B estimates 

of monthly or annual loads: 

�̂�1 𝑡𝑜 𝑡
∗ = ∑ (�̂�𝑖

∗ × 120 × 10−6)𝑡
𝑖=1       (10) 

2.3  Data transformations 
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If the data are not normally distributed, it can be necessary to transform variables, as was done for this dataset with a Box-295 

Cox transformation. In this case, the variables in question can simply be transformed before starting the bootstrap, and all the 

bootstrap estimates are obtained on the transformed scale. The back-transformation is then performed in Eq. (9) to obtain 

load estimates on the original scale. For example, in a typical case where both discharge and sediment concentration need to 

be log-transformed, the bootstrap predictions of discharge in Eq. (4) and of concentration in Eq. (8) will be on the log-scale. 

These predictors then need to be back-transformed to the original scale using the inverse of the logarithm.  300 

This approach is applicable to any type of data transformation, and thus offers a flexible framework that can accommodate 

different methods of estimating the constituent concentration. However, if a modeled residual error term �̂�𝑖
∗ is not included, 

care must be taken with the back-transformation. With nonlinear data transformations (the log-transformation and the Box-

Cox transformation being prime examples), predicted means cannot be naively back-transformed and interpreted as means 

on the original scale. Correction factors can be applied that compensate for the underestimation of SSC that arises from 305 

doing the predictions on the transformed scale. A commonly used non-parametric correction factor is Duan’s smearing 

estimator (Duan, 1983), where the sample average of the exponentiated residuals from the model is used as the correction 

factor. Duan's smearing estimator assumes independent and identically distributed errors, however, and is therefore also not 

a suitable alternative when serial correlation in the data is present. Alternatively, as pointed out by Rustomji and Wilkinson 

(2008), adding the modeled residual error removes the need to apply a correction factor and is therefore the recommended 310 

approach. Regardless of the chosen correction factor, it is important that homoscedasticity after the transformation is 

confirmed by visually inspecting the diagnostic plots, as was done in the case of this dataset. While discharge is also 

typically predicted on the log-transformed scale, in our dataset the variance was much smaller than that of the concentration 

data. With a small variance, the log-normal distribution is nearly normal and therefore, the naïve back-transformation of 

log (�̂�𝑖) should approximate the mean well.  315 

2.4  Alternative option to simulate errors 

If a data transformation is required and one does not want to explicitly simulate the residual scatter, then a correction factor 

must be applied to the back-transformed concentration. This correction is needed because the naïve back-transformation (for 

example, taking the exponent of the predictions if the predictions are on the log-scale) does not yield a predicted mean, but 

rather a predicted median. While medians can be informative measures of central tendency for skewed datasets, they are not 320 

appropriate when the objective is to calculate a constituent load: loads are sums over equally-spaced time points, and in order 

to obtain an unbiased estimate of this sum over time intervals, we need to sum up estimates of the expected values, rather 

than the medians, for each interval. 

The required correction factor is specific to the type of data transformation. For a logarithmic transformation, the expected 

value can be obtained by adding on half of the residual error variance to the predicted concentration on the log-scale before 325 



 

12 

 

back-transforming. For other cases of the Box-Cox transformation, the correction depends on the selected transformation 

parameter. Solutions for specific examples of the transformation parameter can be found in Freeman and Modarres (2006). 

As the selected transformation in this dataset was the logarithm, the correction of adding half the residual error variance 

before back-transforming was compared to the approach where the error is simulated, in order to see how this affects 

sediment load estimates and resulting confidence intervals.  330 

2.5  Bootstrap confidence intervals 

A straightforward way to calculate a confidence interval (CI) on a parameter after bootstrapping is the bootstrap percentile 

method (Efron and Tibshirani, 1993). If a 95% CI is required, the confidence interval would simply be calculated by 

ordering the bootstrap load estimates from small to large, and taking the 2.5
th

 and the 97.5
th

 percentile as the lower and the 

upper limit.  335 

This method was used by Rustomji and Wilkinson (2008) on sediment loads and is transformation-respecting, also when the 

sample statistic is not normally distributed (Efron and Tibshirani, 1993). This property is important in the case of loads, 

because data are typically log-transformed. As a confidence interval depends on the tail of the empirical bootstrap 

distribution where fewer samples occur, a relatively large number of bootstrap replicates (upward of 500) are usually 

required to achieve acceptable accuracy (Efron and Tibshirani, 1993). How many exactly, depends on the statistic in 340 

question, and should be empirically tested for each case: when the process is repeated, the resulting CI should not greatly 

differ, otherwise the number is too small. In the present dataset, a choice of 2000 bootstrap replicates yielded replicable 

results. 

Improving upon the bootstrap percentile method, Efron and Tibshirani (1993) proposed bias-corrected and accelerated 

intervals, used by Vigiak and Bende-Michl (2013). Unfortunately, this approach requires an even larger number of bootstrap 345 

replicates than the percentile method to sufficiently reduce the Monte Carlo sampling error. This is a disadvantage when 

working with hydrological time series, as the datasets typically contain a large number of records already. This method then 

quickly becomes time consuming, and therefore in this paper, preference was given to the more intuitive and less 

computationally intensive bootstrap percentile method. 

2.6  Identifying hydrological drivers of uncertainty 350 

The proposed three-step bootstrap process offers an opportunity to assess the importance of different aspects of the load 

calculation on the accuracy of the estimate. By leaving out step 1 (bootstrapping the Q-h pairs) and just using Q as predicted 

by the discharge rating curve from all observed data points, confidence intervals can be obtained that only take into account 

the uncertainty on the sediment rating curve. If the resulting confidence intervals closely resemble the confidence intervals 

calculated with the full approach, this would mean that the uncertainty on the sediment concentration is what drives the 355 
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uncertainty on the loads, thus supporting that the error on the discharge is negligible compared with other sources of 

uncertainty (eg. Némery et al., 2013, Vigiak and Bende-Michl, 2013).  

As the accuracy of the stage-discharge relationship depends on the type of streambed, the method chosen and the amount of 

measurements taken, this assumption might also hold true for some watersheds such as the one in this study, where the 

relationship had a high R
2
, but not for others. To determine at which point the uncertainty on Q must be taken into account 360 

for the load confidence interval, data sets of (Q, h)-pairs were simulated with decreasing R
2
 (0.95, 0.90, 0.85 and 0.80), and 

were each used as input dataset for bootstrapping the stage-discharge relationship (Step 1 in Figure 1) in order to test the 

sensitivity of the confidence intervals to the accuracy of the discharge rating curve. The datasets with a fixed realized R
2
 

were simulated by a rescaling of errors which is described in Appendix A, and SAS code to perform the simulation can be 

found in the supplementary materials. 365 

3 Results 

3.1  Rating curves and load estimates 

The coefficient of determination of the stage-discharge relationship was 0.98 (n=15, Figure 3). Homoscedasticity was 

observed on the log-transformed scale (Figure 3). For the sediment rating curve, Pearson’s r between observed and predicted 

values on the log-transformed scale was r=0.75 after five-fold cross validation (n=228, Figure 4). Event-based cross 370 

validation yielded very similar results, demonstrating the robustness of the model (r=0.77). The sediment rating curve tends 

to over predict low concentrations and under predict high concentrations for new data, as is visible in Figure 4. This 

tendency of regression towards the mean is typically seen when models are fitted to very noisy data, and is also well 

documented in erosion studies (Nearing, 1998). Thus in the case of our dataset, the discharge rating curve explained a higher 

proportion of the variance than the sediment rating curve, as is typical. Again, homoscedasticity was observed on the log-375 

transformed scale (Figure 5). The bootstrap parameter estimates for 𝜌 of the AR(1) process varied from 0.56 to 0.93 with a 

mean of 0.77, showing the block bootstrap kept the serial correlation intact as required. 

The size of the estimated load depended on the method chosen for estimation. First, the load was calculated directly from the 

model estimates based on the full datasets, without bootstrapping (Direct estimate in Table 1). The sediment concentrations 

in this case were back-transformed by applying the correction appropriate for log-transformed data, which is to add half the 380 

residual error variance before back-transformation. Second, the median of the bootstrap estimates of the sediment load was 

taken, where, identically to the first case, the concentrations were corrected by adding half the residual error variance before 

back-transforming (Bootstrap without modeled error in Table 1). Third, the median of the bootstrap estimates was taken for 

the bootstrap process that included a modeled, autoregressive error term (Full bootstrap method in Table 1).  

For this last estimation method, the annual sediment load was estimated to be 6262 Mg in 2010 and 5543 Mg in 2011 (Table 385 

1). When the median from the bootstrap sediment load estimates was taken without modeled error, but rather applying the 
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back-transformation correction, the load was approximately 5% higher for both annual and monthly load estimates (Table 1 

and Figure 6). The annual loads thus amounted to 6575 Mg in 2010 and 5839 Mg in 2011. Finally, if sediment loads were 

estimated not by bootstrapping, but directly from the data, then the results were around 10% lower compared to the first 

estimates, at 5607 Mg and 4997 Mg, respectively, in 2010 and 2011.  390 

In all three approaches the difference between the two years remained consistent and all estimates were within the bounds of 

the confidence intervals, both for those calculated by modeling error and those calculated by adding half the variance before 

back-transformation.  

In this particular 2 km
2
 catchment, the annual sediment export of 6262 and 5543 Mg cannot be interpreted as resulting in 

average erosion rates of approximately 30 Mg ha
-1

 due to the irrigation management in the catchment. A large part of the 395 

sediments are not eroded within the watershed but released from the irrigation reservoir, which has a contributing area of 

490ha, either via the irrigation channels or through a spillover mechanism which releases excess water when the reservoirs 

maximum capacity is reached. In 2011, the former mechanism introduced around 800 Mg of sediments to the catchment, and 

the latter resulted in a load of 1556 Mg (Slaets et al., 2015). True upland area erosion rates were estimated at 7.5 Mg ha
-1

 a
-1

 

(Slaets et al., 2015). 400 

3.2  Width of confidence intervals for sediment loads 

Before looking at the bootstrap confidence intervals, the histograms of the bootstrap load estimates were evaluated (Figure 

7). The histogram of the 2000 bootstrap estimates looked reasonably smooth, so we concluded that sample size was adequate 

for the percentile bootstrap. The histogram of the 2000 bootstrap estimates looked reasonably smooth, so we concluded that 

sample size was adequate for the percentile bootstrap. When reducing the number of bootstrap replicates (Figure 8), the 405 

change in smoothness, especially in the right tail, becomes visible. Tail smoothness of the empirical distribution is a 

requirement when using the percentile method to obtain confidence intervals (Efron and Tibshirani, 1993). At 500 bootstrap 

replicates, the centre of the distribution displays lack of smoothness as well, thus not only affecting the confidence interval 

estimates, but the load estimates as well. For both years and both for the full method and the method without modeled error, 

the histograms were found to be skewed to the right, even when the loads were log-transformed. This skewedness means 410 

that, in the case of our dataset, the assumption of normality would not hold for estimated annual loads.   

As a result of the distribution of the loads, the confidence intervals were always asymmetric, with the difference between the 

upper limit and the estimate around 80% larger than the difference between the estimate and the lower limit. The width of 

the intervals – the difference between the upper and lower limit of the interval – , varied between years and between 

methods, while remaining in the same order of magnitude (Table 1). In 2010, the interval was always wider, regardless of 415 

which method was chosen, for the annual as well as for the monthly loads (Table 1 and Figure 6). The year 2010 did contain 

a smaller proportion of the samples (73 out of 228) and this could be a cause for the difference. For the monthly loads 
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(Figure 6), confidence intervals were widest during months with the highest sediment loads (July till October), when excess 

reservoir water gets exported via the river. 

The bootstrap method affected the width of the confidence interval as well. The monthly and annual intervals resulting from 420 

applying a back-transformation correction were consistently wider than those resulting from the bootstrap process that 

modeled the autocorrelated error: not modeling the error changed the interval (limits in Mg) from [4331, 12267] to [4372, 

14586] in 2010 and from [3593, 8975] to [3713, 10410] in 2011 – in both cases an increase in width of about 20%. The 

change was due to an increase in the upper bound of the interval, while the lower limits remained very similar. These results 

show that performing the back-transformation correction is only a very rough method of adjusting the predicted 425 

concentrations on the original scale, as this approach does not take the serial correlation in the data into account. For the 

monthly load estimates, the largest differences in confidence interval width between the full method and the back-

transformation without simulated error were in July and August 2010, the months with the highest estimated loads (Figure 

6).  

3.3  Hydrological drivers of uncertainty  430 

When, rather than applying the full bootstrap method, we did not bootstrap the discharge rating curve (meaning, we left out 

Step 1 of the process in Figure 1), the width of the confidence interval decreased, as one less source of error is taken into 

account. In 2010, this changed the CI from [4203, 11649] without accounting for uncertainty in the discharge rating curve to 

[4331, 12267] when accounting for this uncertainty on discharge; and from [3521, 8397] to [3593, 8975] in 2011 – including 

discharge therefore resulted in a respective increase in width of 6 and 9%. Similarly, in the monthly load estimates, not 435 

bootstrapping the discharge resulted in confidence interval widths up to 37% smaller than those calculated with the full 

method (Figure 6). Months with low flow showed equally compressed confidence intervals as months with high discharge, 

during which the reservoir spillover was feeding the river (July till October). 

The accuracy on the (Q, h)-relationship in this particular dataset was very high with an R
2
 of 0.98. As not all monitoring 

programs can establish accurate discharge rating curves, the (Q, h)-dataset was replaced by a simulated dataset with 440 

increasingly lower coefficient of determination to test how this further affects the uncertainty on the load estimate (Figure 9). 

While the width of the confidence interval keeps increasing with decreasing R
2
, including the discharge also affects the 

confidence interval for a high R
2
. In fact, changing from not bootstrapping the discharge (R

2
=100% in Figure 9) to 

bootstrapping the real discharge dataset, which has an R
2
 of 0.98, resulted in a 7% increase in width. On the other hand, the 

confidence intervals show little differences at an R
2
 of 0.95, where the width was 9003 Mg, and at 0.90, when it reached up 445 

to 8795 Mg, equivalent to an 11% increase in width. At a coefficient of determination of 0.85, the CI was 17% wider than 

the original CI and at 0.80 finally, the width increase reached 20%. As can be seen from Figure 9, the change in width was 

mainly due to an increase in the upper limit of the confidence interval. Hence, the lower limit decreased only slightly.  
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The bootstrap approach where the concentration prediction error was separated into an underlying latent autoregressive 

process generating the true concentrations, and an independently distributed measurement error corresponding to white noise 450 

in time series data, did not converge for 906 out of 2000 runs. Convergence problems are very common when trying to fit 

nugget models as these models tend to be difficult to fit. Particularly AR(1) type error structures are prone to these issues, as 

there is an inherent confounding between parameters of the independent white noise component and the autocorrelated 

component (Piepho et al., 2015). In a bootstrap setting where convergence was already an issue, adding such an effect was 

not feasible in the case of our dataset. For exploratory purposes, the nugget can be fitted to the original dataset without 455 

bootstrapping, in order to examine the contributions of the respective error components. Results of this exercise showed that 

indeed, the measurement error (0.67) was large compared to the latent process variance (0.09), the former being due to 

sensor error, both from the turbidity sensors and the pressure sensors for discharge, the manual grab sample process which 

may not accurately represent the mean concentration across the cross section, and laboratory error in determining the 

sediment concentrations. The error separation thus indicates that focusing on these factors could yield substantial 460 

improvement in the sediment rating curve. 

4 Discussion 

4.1  Load estimates, data transformations and bias 

As was shown in Table 1, the annual sediment load estimates differ depending on the method selected. While it is 

encouraging that all estimates are within the 95% confidence interval limits, choosing a different method can lead to 465 

anything from an underestimation of 10% to an overestimation of 20% compared to the median of the full bootstrap process. 

Two issues play a role in these differences: the back-transformation of the sediment concentrations, and bias in the estimate 

of the annual load. 

The effect of back-transforming the concentration predictions is visible when comparing the medians of the bootstrap 

estimates with and without modeled autocorrelated error. When the error was not modeled, the estimate itself increased by 470 

around 5% in both years, corresponding to an absolute increase of around 300 Mg of sediment, and the CI became wider. 

Essentially, adding half the variance before back-transformation is a very rough way of estimating expected values of 

concentrations at original time points – as shown by the larger CI - because it does not take the serial correlation in the data 

into account. If the naïve back-transformation would be applied, without any variance correction, the resulting estimates 

would be even lower than those where we add half the variance before back-transformation: around 4200 Mg in 2010 and 475 

3700 Mg in 2011, or an underestimation of approximately 2000 Mg. 

While the latter is a relatively common approach to implement the back-transformation of constituent concentration 

predictions which are typically predicted on the log-scale, it may not be the most appropriate solution when the 

concentrations are used to calculate loads. The crucial issue with load calculations is that a load is a sum over time points, 
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which is essentially the same as computing an arithmetic average, and for that we need to estimate the expected values for 480 

the individual time intervals. If the predicted value on the log-scale is simply back-transformed, we are estimating medians 

of the concentrations, and while this may be appropriate if one is only interested in the concentrations, these medians cannot 

be multiplied with discharge and summed up to accurately predict a load. 

When the bootstrap process includes a simulated, autocorrelated error, the result of that process is not a mean or a median 

concentration, but rather a simulated realization of an observed process. When it is not desired to simulate the error in the 485 

bootstrap process, then applying a back-transformation correction is an alternative, but the confidence intervals should be 

expected to be wider, as adding on half the residual error variance before back-transformation ignores the serial correlation. 

An alternative back-transformation correction often used in literature, Duan’s smearing correction, similarly assumes 

independent and identically distributed errors and is therefore not suitable for datasets where serial correlation is present 

(Duan, 1983). Duan’s is a non-parametric correction, in contrast with the two parametric approaches we used.  490 

The back-transformation method of the concentration predictions, however, is not the only force at work: the direct estimate 

from the data and the bootstrap median without modeled error are quite far apart, even though they both use the same back-

transformation correction. Statistics, unless they are very simple (for example a sample mean), will typically have some bias. 

Bootstrapping can in fact be used to identify and correct bias even when the true underlying distribution is unknown; 

therefore in most cases the bootstrap estimate will typically be different as it removes this bias (Efron and Tibshirani, 1993). 495 

There are alternative methods in literature intended to remove the bias on load estimates (Ferguson, 1986), but as the 

correction will depend on the variance of the data, numerical corrections are not generally applicable. However, as one 

would need to bootstrap in any case in order to produce a CI of the load, taking the median of the bootstrap estimates is a 

straightforward way to obtain constituent load estimates. 

The most commonly data transformations in load estimation are typically other variations of the Box Cox power family, 500 

such as 1/Y, square root, cube root, and fourth root. Transformations in this family are usually required where the original 

data exhibit pronounced skewness and heteroscedasticity, which is generally the case in load studies. Therefore for all 

transformations in the Box Cox family, naïve back-transformation of estimates would similarly result in biased estimates of 

means on the original scale, as was illustrated with the log-transformation in our dataset. 

 505 

Regarding the data transformation, while the sediment concentration was log-normally distributed, the log-transformed load 

estimates were not normally distributed (Figure 7, right panel). This non-log-normality of our loads does not affect the 

viability of the bootstrap approach, as regression type methods do not require the concentration or load data but rather 

normality of the residuals. It does, however, limit the applicability of methods that use the log-normality assumption of the 

load to estimate a variance for the load, as was done for example by Wang et al. (2011) in an approach that used the delta-510 

method as an alternative way to assess uncertainty on annual sediment load estimates.” 
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4.2  Confidence interval width and model selection 

The results showed that the CI’s are relatively wide and asymmetrical with a much larger uncertainty on the upper limit. And 

comparing the two years, when the estimated load was higher, the uncertainty on it was larger as well (i.e. in 2010). This is a 

trend consistent with other studies (Kuhnert et al., 2012; Rustomji and Wilkinson, 2008). Although it is difficult to compare 515 

uncertainty calculated with other methods in different catchments, our confidence intervals are of the same order of 

magnitude as the CI’s in those two studies. For example, Kuhnert et al. (2012) calculated 80% confidence intervals on an 

annual load of 5232 Mg (n=122), and the resulting limits were [3512, 7775]. In comparison, 80% confidence intervals for 

our dataset were [4186, 7403] for a load of 5543 Mg in 2011.  

The factors governing the width of a confidence interval are essentially the sample size and the accuracy of the two rating 520 

curve estimates. The accuracy of the sediment rating curve in this study (Pearson’s r
2
=0.56 after cross validation) is 

reasonable for catchments with large heterogeneity in relief, land use, soil types and rainfall event characteristics. In more 

homogeneous settings, however, much more accurate sediment rating curves have been obtained, which can be expected to 

result in morenarrow confidence intervals on their resulting load estimates. Furthermore, if the sample size is large and the 

variation explained by the rating curves large, but the confidence intervals are very wide, one possible cause is that the 525 

concentration prediction model was over-fitted, resulting in a very high apparent percentage of variance explained by the 

model but a poor predictive power when the model is interpolated to the whole time series. This can be shown by just adding 

additional predictor variables to our selected model. If we add the variables ‘water height in the reservoir’, ‘discharge 

irrigated to the paddy fields’ and ‘Julian day-of-year’ (the last one both linear and quadratic) to the model, the percentage of 

variance explained increases from 58% to 71%. When this extended model was used to estimate the annual sediment load, 530 

however, the confidence interval was inflated by two orders of magnitude, resulting in a width of 5 564 076 Mg.  

These effects on the CI indicate that indeed, overfitting is a concern even when interpolating within the time series. The risk 

of overfitting is particularly high with more complex models (Burnham and Anderson, 2002), as was demonstrated as well 

with the example above, and it is not uncommon in load estimations to fit models that are very flexible (eg. spline functions, 

sigmoid functions) and / or have used a large number of predictor variables to a relatively small dataset. In such cases, 535 

bootstrap uncertainty assessment can be an additional tool both for model selection, and for evaluating model fit. The change 

in percentage variance explained is less pronounced after cross validation, and ranges from 56 to 64%, implying that the 

cross validation penalizes at least partially for any overfitting. Water quality models, however, are often not validated and 

only the R
2
 resulting from calibration is reported, leaving readers no means of assessing over-parameterization of the model. 

Studies with smaller datasets where more variables are included in the model should be particularly encouraged to report 540 

measures of uncertainty on load estimates. In the case of large datasets where a simple model, such as linear regression with 

one or two predictor variables is used, the variability in the data explained by the model resulting from calibration only is 

less likely to deviate strongly from the result of a validation.  
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4.3 Bootstrapping discharge and error propagation 

One would expect that, as the sediment rating curve has much more uncertainty than the discharge rating curve, excluding 545 

the latter would not affect the confidence intervals much, but for our dataset, this assumption did not hold: even having a 

discharge rating curve with high accuracy (R
2
 of 0.98), its uncertainty had a considerable effect on the load estimate, which 

increased from 6389 Mg when not bootstrapping the discharge, to 6781 Mg when bootstrapping the discharge.  

This result underscores the importance of error propagation in uncertainty assessments. Even though the discharge rating 

curve has a high accuracy, an estimate of Q is used as a predictor variable for concentration, and the concentration then gets 550 

multiplied with the estimate of Q, and so the effect is not as small as one would expect based on the R
2
 of both rating curves. 

It is possible that the sample size of the discharge rating curve, which is relatively small (n=15) plays a role here, as a 

bootstrap iteration that does not contain the largest discharge values would result in a wider confidence interval for the 

estimated load. Krueger et al. (2009) similarly found discharge to contribute to uncertainty of sediment transfer. If we 

assume that most discharge rating curves have around 95% of explained variance, this could imply that most measures of 555 

uncertainty in literature are too conservative by about 10% in terms of width of the CI and that this increase would be mostly 

on the upper limit of the interval – implying that minimum impact estimates would not be affected much, but that literature 

to date would underestimate worst case scenarios of sediment yield, nutrient loss or erosion with about 10%.  

5 Conclusions 

The approach developed in this paper provides a means to assess uncertainty on any type of constituent load, which was 560 

calculated from continuous constituent concentration and discharge predictions estimated with regression-type methods. 

Compared to Ordinary Least Squares regression methods to obtain load estimates, bootstrap estimates resulted in bias-

corrected estimates that can take serial correlation into account when present, as well as providing a measure of uncertainty 

on the load estimate.  

 The results show that, even when the uncertainty of the discharge rating curve is small, it is important to take into account 565 

that the errors propagate by using discharge both as a predictor variable for constituent concentration and in the 

instantaneous load equation. Application of the method in different watersheds, at different spatial and temporal scales could 

elucidate whether discharge is an important driver of uncertainty in those settings as well.  

The confidence intervals resulting from our proposed method showed that the uncertainty on the loads is quite large and is 

mostly on the upper limit of the estimate, as the intervals were strongly right-skewed. This asymmetry implies that, wherever 570 

load estimates are used to assess environmental impact, without reporting an uncertainty assessment, the maximum impact 

could be severely underestimated.   

Additionally, the bootstrap process demonstrated that load estimates are biased downwards if calculated directly from data 

with increasing variance that has been transformed. While some alternative bias corrections are available, these are not 
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consistently used, and this is another factor contributing to the underestimation of constituent loads thus far reported in 575 

literature. Taking the median of the bootstrap estimates is an easy and generally applicable way to obtain unbiased estimates.  

Reporting uncertainty is especially important when water quality models are complex. There has been a great increase in the 

use of more complex predictive methods for water quality, for example the use of Artificial Neural Networks, Random 

Forests or Generalized Additive Models (Berk, 2008). The advent of these methods makes the consistent reporting of 

measures of uncertainty even more essential: the more complex a model is, the more prone it is to overfitting (Burnham and 580 

Anderson, 2002), as was demonstrated by the inflated confidence intervals when adding predictor variables to the sediment 

concentration model. Some measure of uncertainty should systematically be shown for any load estimate, and the method 

developed in this paper provides a flexible framework to do so.  

6 Data availability 

The source code for the bootstrap analysis with the SAS software that was used for the load estimates and corresponding 585 

confidence intervals is freely available at https://www.uni-hohenheim.de/bioinformatik/beratung/index.htm together with 

necessary input files for testing. The full dataset is available from the authors upon request (hanna.slaets@gmail.com). 
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Appendix A 680 

In order to obtain (log(Q), log(h))-pairs with a certain R
2
 (eg. 0.95), we started by simulating a dataset of the same number of 

observations of the original dataset. We thus obtained pairs of log(Qi) and log(hi) using the original discharge rating curve, 

which is a regression model 𝑦𝑖 = 𝜂𝑖 + 𝑒𝑖, where 𝜂𝑖 = 𝛼 + 𝛽𝑥𝑖  and the errors were randomly drawn from a normal 

distribution which can have any variance, as the errors will be rescaled later.  

Next, we computed the total sum of squares, 𝑆𝑆𝑦, and the residual sum of squares, 𝑆𝑆𝑒, for this simulated dataset. We 685 

subsequently replaced the simulated errors 𝑒𝑖 by re-scaled errors 𝑒𝑖
∗ = 𝑐𝑒𝑖 and used these to compute re-scaled simulated 

data 𝑦𝑖
∗ = 𝜂𝑖 + 𝑒𝑖

∗. A scaling constant 𝑐 was chosen in such a way that the desired coefficient of determination results: 

(A1) 𝑅2 = 1 − 𝑆𝑆𝑒/𝑆𝑆𝑦 and 𝑅2∗ = 1 − 𝑆𝑆𝑒
∗/𝑆𝑆𝑦

∗, 

(A2) The residual error sum of squares is a quadratic form of errors only. It follows that  

𝑆𝑆𝑒
∗ = 𝑐2𝑆𝑆𝑒  

(A3)  690 

𝑆𝑆𝑦
∗ = ∑(𝑦𝑖

∗ − �̅�⋅
∗)2

𝑛

𝑖=1

= ∑(𝜂𝑖 + 𝑐𝑒𝑖 − �̅�⋅ − 𝑐�̅�⋅)
2

𝑛

𝑖=1

= ∑[(𝜂𝑖 − �̅�⋅) + 𝑐(𝑒𝑖 − �̅�⋅)]2

𝑛

𝑖=1

 

=  ∑(𝜂𝑖 − �̅�⋅)
2 + 2𝑐 ∑(𝜂𝑖 − �̅�⋅)(𝑒𝑖 − �̅�⋅)

𝑛

𝑖=1

+ 𝑐2

𝑛

𝑖=1

∑(𝑒𝑖 − �̅�⋅)
2

𝑛

𝑖=1

= 𝑧1 + 𝑧2𝑐 + 𝑧3𝑐2 

where 𝑧1, 𝑧2 and 𝑧3 are computable constants for given simulated (𝜂𝑖 , 𝑒𝑖). 

(A4) 
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𝑅2∗ = 1 − 𝑆𝑆𝑒
∗/𝑆𝑆𝑦

∗ ⇔ 

0 = 𝑆𝑆𝑒
∗/𝑆𝑆𝑦

∗ − 1 + 𝑅2∗ ⟺ 

0 = 𝑆𝑆𝑒
∗ + (𝑅2∗ − 1)𝑆𝑆𝑦

∗ = 𝑐2𝑆𝑆𝑒 + (𝑅2∗ − 1)(𝑧1 + 𝑧2𝑐 + 𝑧3𝑐2) = 𝐴𝑐2 + 𝐵𝑐 + 𝐶 

This is a quadratic equation in c, which can be solved for c by standard procedures. There are two distinct solutions but they 

result in errors that only differ in the sign, and so either solution can be chosen. 

 695 

SAS-code to perform this simulation can be found in the supplementary materials of this paper. 
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Tables 

 

Table 1: Annual sediment load estimates (in Mg per year) for the two years of the study directly estimated without bootstrapping, and load estimates with 95% confidence 700 

interval limits and interval widths (difference between upper and lower limit) for the three different bootstrap methods: the full method shown in Figure 1, the method without 

modelled error (i.e. leaving out Step 3 in Figure 1) and the method without bootstrapping discharge (i.e. leaving out Step 1 in Figure 1). (n.a. = not applicable) 

 

 Error source  2010  2011 

Method Autocorrelation Q-equation  Estimate Lower Upper Width  Estimate Lower Upper Width 

    Mg a
-1

  Mg a
-1

 

Direct estimate    5607 n.a. n.a. n.a.  4997 n.a. n.a. n.a. 

Full bootstrap method    6262 4331 12267 7936  5543 3593 8975 5383 

Bootstrap without modeled error    6575 4372 14586 10214  5839 3713 10410 6697 

Bootstrap without discharge    5944 4203 11649 7446  5413 3521 8394 4876 

 

 705 
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 Figures 

 

Figure 1: Flow chart showing the three-step bootstrap mechanism 
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 710 

 

Figure 2: Discharge rating curve plotted on the log-transformed scale showing 95% confidence interval for the 

regression line (dark grey) and for new predictions (light grey). Stage-discharge rating curve: log(discharge) = 

(9.0819*log(water level)) - 2.6423 (n=15, R2=0.98) 

 715 
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Figure 3: Residual plot for the discharge rating curve, showing studentized residuals versus the predicted discharge 

(on the log-transformed scale). 
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 720 

Figure 4: Observed versus predicted values of the sediment rating curve. Predictions are from the linear mixed model 

with turbidity and discharge as quantitative predictor variables, and after five-fold cross validation (n=228, r2=0.56). 

Axes are on the log-transformed scale while tick labels show values on the original scale. 
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 725 

Figure 5: Residual plot of the sediment concentration prediction model, studentized residuals versus the predicted 

sediment concentration (on the log-transformed scale). 
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Figure 6: Monthly sediment load estimates (in Mg per year) for the two years of the study with 95% confidence 

interval limits for the three different bootstrap methods: (a) the full method shown in Figure 1, (b) the method 730 

without modelled error (i.e. leaving out Step 3 in Figure 1) and (c) the method without bootstrapping discharge (i.e. 

leaving out Step 1 in Figure 1). In January 2011, discharge was zero; therefore no sediment load was transported 

during this month.  
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Figure 7: Histograms of bootstrap load estimates on the original scale (left) and the log-scale (right) for two study 735 

years and for two bootstrap methods: the full method with modeling the autocorrelated error (“Full method”, top), 

and without modeling the error (“No md. err.”, bottom) 
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Figure 8: Effect of number of bootstrap replicates (1500, 1000 and 500) on the smoothness of the resulting empirical 740 

distribution for the estimated annual sediment load in 2011. 
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Figure 9: Change in median and 95% confidence intervals for the sediment load estimate of 2010 (in Mg) when 

decreasing the coefficient of determination of the discharge rating curve. The bold line indicates the CI width of the 745 

real (Q,h) dataset. The letter “a” corresponds to not bootstrapping the (Q,h) pairs. 

 


