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Overall, this is a very well written paper on an important topic. The modelling approach 
using bootstrap estimates is an important approach and the authors nicely show the 
strength of the bootstrap.  
 
We thank reviewer 1 for his positive evaluation of our paper. Specific comments are addressed 
below: 
 
Here are some minor comments for consideration: (i) Introduction: the introduction seems to be quite 
exhaustive, for example there is a verylong introduction on uncertainties, this could be surely 
reduced. On the other hand, serialcorrelation is an important aspect of the modelling approach, this 
has been hardlymentioned. Although, specific aims of the paper were introduced, I would strongly 
recommendthat the authors state why their approach is very important for the estimationof loads.  
 
The introduction section on sources of uncertainty for sediment and discharge rating curves has 
been shortened.  
Furthermore, the aspect of serial correlation in sediment rating curves in literature has been given 
more emphasis in the introduction: “… For sediment concentration, however, flow-proportional 
sampling is often performed to obtain samples at the highest concentrations. Those observations 
are usually taken closely together during storms and thus most likely are not independent in time 
(Slaets et al., 2014). Linear mixed models that account for serial correlation provide an alternative to 
least squares regression to establish a sediment rating curve for this type of data. Lessels and Bishop 
(2013) similarly found that the inclusion of a temporal autocorrelation component improved the 
accuracy and decreased the bias in predictions of total phosphorus and nitrogen river loads.  If there 
is serial correlation in the sediment data, it is necessary to use an adjusted version of the bootstrap 
that retains the serial correlation in the data intact (Lahiri, 2003). Such methods have already been 
explored in hydrology in relation to the discharge rating curve: Ebtehajet al. (2010) and Selle and 
Hannah (2010) uses block bootstrap methods to assess uncertainty on and improve robustness of 
model parameter estimates for discharge prediction.” 
Additionally to the specific aims, we have added a section on the importance of our approach for 
load estimation: “Combining these aspects, the proposed method provides a means to assess 
uncertainty on any type of constituent load which was calculated from continuous constituent 
concentration and discharge predictions estimated with regression-type methods. The approach 
thus allows load estimates to be reported with an uncertainty assessment, rather than as a point 
estimate alone, making them informative to end users and decision makers.” 
 
 
(ii) Bootstrap: I feel that the methodological aspects on the bootstrap couldbe reduced in length. I am 
sure that most readers are familiar with the basic principles. 
 



We have shortened the methodological section on the bootstrap and refer the reader to Efron and 
Tibshirani (1993) for further details. 
 
I have a few issues with some of the used language, for example l. 215: no clear winner? I am not 
sure whether there are winners or losers in a scientific context. Perhaps rephrasing helps here, eg, it 
remains unclear which of those specialized methods...... 
 
The sentence has been rephrased to: “Among these specialized methods, no preferred method has 
emerged from literature. Furthermore, many of these methods require a vast set of decisions with 
regards to for example the block size for which no general recommendation exists. As a 
consequence, results from different methods are not straightforward to compare.” 
 
(iii) Results: The results of the modelling are nicely summarized. However, a couple ofquestions 
remains open. The effect of transformations should be evaluated accordingto the introduction, 
however, only the log-transformation (and back-transformation) was analyzed. What is the impact of 
other transformations on the CIs (ie, transformations with simple backtransforms)?  
 
The choice for a specific data transformation is driven by the need to stabilize the residual error 
variance. In our case, the log transformation was the one that was successful in doing so. The log 
transformation is very commonly used in load studies, and the most frequently used alternative data 
transformations in load estimation are typically other power transformations such as 1/Y, log(Y), 
square root, cube root, and fourth root, all of which are Box Cox transformations. These were tested 
but were not successful in obtaining normality and homoscedasticity of residuals, as is shown here in 
the diagnostic plots for the square root transformation: 
 
 

 



 
As the diagnostic plots show that other commonly used transformations in the Box-Cox family are 
less appropriate for our dataset, we would rather not to present results for another transformation 
in the Box-Cox family. The exploration of alternative transformations has now been added to the 
Material and Methods section of the paper: "Other transformations, such as the square root, were 
inspected using residual plots and were found to be unsuitable for meeting the assumptions of 
normality and homoscedasticity."  
Alternatives to Box Cox transformations such as the exponential family of Manly (for non-positive 
data) are also available, but far less frequently seen in load estimation: the main reason for data 
transformation in load studies is heterogeneity of variance, and depending on the strength of this 
heteroscedasticity, some form of the power Box-Cox family is usually successful in stabilizing the 
variance.   
In order to make our discussion of the implications of the log transformation more generally 
applicable in the case of other transformations, we have added the following statements to show 
the similarities for the whole Box-Cox power family of transformations to the discussion section:  
“The most commonly used data transformations in load estimation are typically other members of 
the Box Cox power family, such as 1/Y, square root, cube root, and fourth root. Transformations in 
this family are usually required where the original data exhibit pronounced skewness and 
heteroscedasticity, which is generally the case in load studies. Therefore for all transformations in 
the Box Cox family, naïve back-transformation of estimates would similarly result in biased estimates 
of means on the original scale, as was illustrated with the log-transformation in our dataset.” To 
further emphasize the importance of the choice of the transformation, which needs to be 
appropriate to the data at hand, the following text has been added after explaining the various 
correction options: “Regardless of the chosen correction factor, it is important that homoscedasticity 
after the transformation is confirmed by visually inspecting the diagnostic plots, as was done in the 
case of this dataset.” 
 
2000 bootstrap cycles were selected, however, it might be of interest, especially for readers not so 
familiar with the bootstrap, to explore the effect of the number of cycles on the estimates and CIs.  
 
We thank the reviewer for this interesting suggestion. In order to assess the effect of the number of 
bootstrap replicates, we have re-run the load estimation for one year with 500, 1000 and 1500 
bootstrap cycles. The resulting histograms are shown in Figure 8 and their implications discussed in 
the results section on the required number of bootstrap replicates. As the crucial point is the 
smoothness of the histograms in order to have reliable bootstrap estimates, especially in the tails as 
we are looking at confidence intervals via the percentile method, there is no straightforward 
relationship with number of bootstrap iterations and wider (or narrower) CI’s, or lower or higher 
estimates. Rather, the lack of smoothness especially in the tails makes the estimates unreliable, 
which we have clarified by adding the following text: “Before looking at the bootstrap confidence 
intervals, the histograms of the bootstrap load estimates were evaluated (Figure 7). The histogram 
of the 2000 bootstrap estimates looked reasonably smooth, so we concluded that sample size was 
adequate for the percentile bootstrap. When reducing the number of bootstrap replicates (Figure 8), 
the change in smoothness, especially in the right tail, becomes visible. Tail smoothness of the 
empirical distribution is a requirement when using the percentile method to obtain confidence 
intervals (Efron and Tibshirani, 1993). At 500 bootstrap replicates, the centre of the distribution 
displays lack of smoothness as well, thus not only affecting the confidence interval estimates, but 
the load estimates as well.” 
 
The authors nicely explainedthe importance of including serial correlation, but in fact, it was only 
considered a firstorder autocorrelation. Did the authors explore at least a second order 
autocorrelation? 



 
In Slaets et al. (2014), where the same dataset was used, we explored the use of several alternative 
variance-covariance structures to model the serial correlation. The Akaike Information Criterion 
(AIC) was used to compare various candidate models and a spatial power structure with time as the 
coordinate showed the best fit based on this criterion. In the bootstrap iterations, however, the 
spatial power structure caused convergence issues in a large number of the bootstrap replicates 
which would result in biased bootstrap estimates, and therefore we switched back to the AR(1) 
structure. The power model is an extension of the AR(1) model to accommodate for unequally 
spaced observations, and both structures are essentially different parameterizations of the same 
model (Piepho et al., 2015). In the spatial power model, the autocorrelation decays as a function of 
the distance between observations (in this case, the distance in time). The difference in AIC between 
the AR(1) and spatial power model was 4 points, indicating that while the spatial power model is 
most likely the best performing model, there is still considerable support for the AR(1) model 
(Burnham and Anderson, 2002). Unfortunately the AR(2) structure is not available in the Mixed 
procedure of SAS, and if it were available, we would expect to encounter convergence issues in 
running the bootstrap iterations. As the AIC of the AR(1) was comparatively close to that of the 
spatial power model, however,  the AR(1) structure was an adequate approximation of the serial 
correlation structure in the data. 
We have added the discussion of the spatial power model to the methods section: “In a previous 
model published in Slaets et al. (2014), we explored the use of several alternative variance-
covariance structures to model the serial correlation. The selected spatial power model 
unfortunately caused non-convergence for a large number of the bootstrap replicates when using it 
for bootstrap load estimates, and therefore the AR(1) structure was implemented as it did not have 
convergence issues. The difference in AIC between the AR(1) and spatial power model was 4 points. 
Therefore the spatial power model is most likely the best performing model, but there is still 
considerable support for the AR(1) model (Burnham and Anderson, 2002).” 
 
Finally, did the authors consider to compare the bootstrap results with results of 
different complex models, eg GAM? 
 
The most common GAMS can be estimated using maximum likelihood methods. For more complex 
GAMS, we are not aware of any procedures in SAS that implement ML algorithms that can also fit 
random effects and serial correlation. An alternative is computing a profile likelihood but we believe 
that least squares and maximum likelihood methods are by far the most commonly used methods to 
establish sediment rating curves. One possible alternative would be to use the Glimmix procedure to 
fit B-splines, which are very similar to GAMs, to explore nonlinearities as the Glimmix procedure can 
model random effects. With the level of noise in the sediment rating curve, however, there is a 
danger of overfitting unless very clear irregular nonlinear shapes are seen in the data. Therefore we 
consider comparison to generalized additive models to be outside the scope of our paper, though 
we refer to their potential for further exploration of load estimation uncertainty in the conclusions: 
“Reporting uncertainty is especially important when water quality models are complex. There has 
been a great increase in the use of more complex predictive methods for water quality, for example 
the use of Artificial Neural Networks, Random Forests or Generalized Additive Models (Berk, 2008). 
The advent of these methods makes the consistent reporting of measures of uncertainty even more 
essential: the more complex a model is, the more prone it is to overfitting (Burnham and Anderson, 
2002), as was demonstrated by the inflated confidence intervals when adding predictor variables to 
the sediment concentration model.” 


