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Abstract: 28 

Analyzing the effects of the inputs on the correlated multivariate output is important to assess 29 

risk and make decisions in Hydrological processes. However, the existing methods, such as output 30 

decomposition approach and covariance decomposition approach, can’t provide sufficient 31 

information of the effects of the inputs on the multivariate output, since these methods only 32 

measure the influence of input variables on the magnitudes of variances of the dimensionalities in 33 

the multiple output space and ignore the effects on the dimensionality directions of output 34 

variances. In this paper, a new kind of sensitivity indices based on vector projection for the 35 

multivariate output is proposed. By the projection of the conditional vectors on the unconditional 36 

vector in the dimensionless multiple output space, the new sensitivity indices measure the 37 

influence of the input variables on the magnitudes of variances and directions of the 38 

dimensionalities simultaneously. The mathematical properties of the proposed index are discussed, 39 

and its link with the Sobol indices is derived. And Polynomial Chaos Expansion (PCE) is used to 40 

estimate the proposed sensitivity indices. The results for two numerical examples and a 41 

hydrological model indicate the validity and potential benefits of the vector projection index and 42 

the efficiency of estimation approach.  43 

 44 

Keywords:  45 

Sensitivity analysis; Multivariate output; Vector projection; Dimension; HBV; 46 

1. Introduction  47 

Models with multivariate output are widely used in the field of engineer and science, and the 48 

multivariate output is correlated in some degree. For example, output of multiple elicitation 49 

surveys are applied to the cost of key low-carbon energy technology (Bosetti, Marangoni et al. 50 

2015), and many dynamic models used to study risk assessment and decision support in ecology 51 

and crop science generate time-dependent model predictions, with time being either discretized 52 

in a finite number of time steps or considered as continuous(Lamboni, Monod et al. 2011). 53 

Traditional methods for Global Sensitivity Analysis (GSA), including the elementary effect method 54 

(Campolongo, Cariboni et al. 2007, Campolongo, Saltelli et al. 2011), variance based method 55 

(Homma and Saltelli 1996, Sobol' 2001), derivative based method (Sobol’ and Kucherenko 2009, 56 

Sobol' and Kucherenko 2010) and moment dependent method (Borgonovo 2007, Cui, Lü et al. 2010, 57 

Luyi, Zhenzhou et al. 2012), were designed for scalar output. And the direct way to perform 58 

sensitivity analysis for models with multivariate output is to perform sensitivity analysis for each 59 
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output separately. However, this way is just a repetition of the traditional GSA and it ignores the 60 

correlations among the multivariate output. Thus, it may be insufficient to perform sensitivity 61 

analysis on each output separately or on a few context specific scalar functions of the output 62 

(Lamboni, Monod et al. 2011). A high degree of redundant sensitivity indices can be obtained when 63 

the correlation in the outputs is strong. In such a case, it is difficult to interpret the result (Garcia-64 

Cabrejo and Valocchi 2014). Saltelli and Tarantola proposed to define a scalar index of interest to 65 

apply the GSA to simplify the original problem(Saltelli, Tarantola et al. 2000). It is recommended to 66 

apply sensitivity analysis to the multivariate output as a whole, and criteria and methods need to 67 

be developed for the sensitivity analysis of multivariate output. 68 

Campbell (Campbell, McKay et al. 2006) proposed the output decomposition method for 69 

sensitivity analysis, which consists in (i) performing an orthogonal decomposition of the 70 

multivariate output, and (ii) applying sensitivity analysis on most informative components 71 

separately. This method gives more attention to a few components rather than the whole output. 72 

To summarize the sensitivity over the whole output, Lamboni (Lamboni, Monod et al. 2011) 73 

proposed a new synthetic sensitivity criterion and extended the criterion to the continuous case. 74 

Generalized Sobol’ sensitivity indices for multivariate output based on the decomposition of 75 

covariance matrix of model outputs was defined by Gamboa et al (Gamboa, Janon et al. 2013), and 76 

it is more computational efficient since it doesn’t need spectral decomposition compared to the 77 

output decomposition method (Lamboni, Monod et al. 2011).  78 

These sensitivity analysis methods for multivariate output only considered the sum of variance of 79 

each output, which implicitly assumes that the relationship between outputs is simple and additive. 80 

However, there are different dimensions of measurement and orders of magnitude among outputs, 81 

which make them not be directly used for the comprehensive analysis. Therefore, it is necessary to have 82 

a dimensionless process for the outputs before the comprehensive analysis. Besides, for multivariate 83 

output space, each output represents one dimensionality of the multivariate output space. The 84 

variance of each output can represent the uncertainty of each dimensionality, which can be 85 

regarded as the magnitude of each variance dimensionality. The covariance decomposition 86 

method compares the importance of the model inputs by the influence of the inputs on the 87 

variance of each output. For the output decomposition method, the original outputs are 88 

transformed into a new set of outputs, which form a transformed space. Then, the influence of the 89 

model inputs on the variance of the new outputs tells the importance of each input. The sensitivity 90 

methods above can tell the influence of the model inputs on the variance of model outputs, which 91 

can be regarded as an influence on the magnitude of all the variance dimensionalities. However, 92 

they can’t tell the influence of the model inputs on the directions of all the variance 93 

dimensionalities, i.e., the direction of the variance vector of the output space, which can reflect 94 

another character of the multivariate output uncertainty space. Thus, these methods are not 95 
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sufficient to tell the importance of model inputs.   96 

In this work, we introduce a new sensitivity index based on vector projection which contains the 97 

influence of the input uncertainties on the magnitudes and directions simultaneously of all the 98 

multivariate output variance vector. Through dimensionless process, the influence of dimension of 99 

outputs can be eliminated. Then the conditional variances and unconditional variances of each output 100 

are set as vectors, the influence of the input uncertainties can be reflected by the similarity between 101 

the conditional variances vector and the unconditional variances vector, which can be measured by the 102 

vector projection. 103 

The rest of this paper is organized as follows. The next section briefly reviews the global sensitivity 104 

indices based on the variance for scalar output and multiple outputs, then the definition and properties 105 

of the vector projection method. In Section 3, Polynomial Chaos Expansion (PCE) is applied to estimate 106 

the new sensitivity index. In Section 4, the new sensitivity index is illustrated by two numerical examples 107 

and HBV model, which gives the hydrological forecasts and predicts the potential climate changes or 108 

floods. Conclusions come at the end of paper. 109 

2. Methodology 110 

2.1 The traditional importance measures  111 

2.1.1 Variance based method 112 

The importance measure (IM) is defined as “the study of how uncertainty in the output of a model 113 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the model input” 114 

(Saltelli, Tarantola et al. 2004), and Sobol decomposition is one of the main methodologies for IM.  115 

Let 
(1) ( )( ,..., )mY YY  denote the m-dimensional model output vector, where 116 

( ) ( ) ( ) ( 1,..., ),r rY g r m X and 1 2( , ,..., )T

nX X XX is the vector of n-dimensional independent input 117 

variables. In the case of scalar output 1r  , the Sobol decomposition of the function 118 

(1) (1)

1 2( , ,... )nY g X X X  is given by  119 

 
1 2 1 2

2 1

(1) (1) (1) (1) (1)

0 , 1,2, , 1

1 1 1

( , ) ( , , )
i

n n n

i i i i i n n

i i i i

Y g g g X X g X X
   

         (1)  120 

where 
(1) (1)

0 ( )g E Y ,
(1) (1) (1)

0( | )i ig E Y X g  and 
1 2 1 2 1 2

1 1 (1) (1) (1)

, 0( | , )i i i i i ig E Y X X g g g   （ ） （ ）
. It is 121 

shown by Sobol [2] that 
(1)

ig
 

is the variation of 
(1)Y  due to change of iX  only when the mean 

(1)

0g  122 

has been considered, and similarly 
1 2

(1)

,i ig  is the variation of 
(1)Y  when 

1i
X  and 

2i
X  are interacting. 123 

All the terms in Eq.(1) are orthogonal. Taking variances to both sides of Eq.(1),the following Eq.(2) can 124 

be obtained: 125 

 
(1) (1) (1) (1)

1 21 2

1 2 1

...

1 1 1
i i i n

n n n
Y Y Y Y

X X X X X X

i i i i

V V V V
   

        (2) 126 

where
(1) (1) (1) 2 (1) 2

0var( ) ( ( )) ( ) ( )YV Y g f d g   x
x x x ,

(1) (1) (1)( ) ( ( | ))
i

Y

X i iV V g V E Y X 
 

and
 

127 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-259, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 

 

(1) (1) (1)

1 2 1 21 2 1 2

(1) (1)

,( ) ( ( | , ))
i i i i

Y Y Y

X X i i i i X XV V g V E Y X X V V   
 

. The first order partial variance 
(1)

i

Y

XV  can be 128 

explained as the average reduction of model output variance resulting from fixing iX  , which measures 129 

the individual contribution of iX  to the total variance
(1)YV . The second order partial variance 

(1)

1 2i i

Y

X XV130 

represents the interaction effect between 
1i

X  and 
2i

X . In the same way explanation can be given to 131 

the higher order partial variances. And the total partial variance 
(1)

i

Y

TV  contributed by iX  is defined as 132 

the summation of all terms in Eq. (2) with subscripts including i  : 133 

 
(1) (1) (1) (1)

11

1

... ...i i i i i n

n
Y Y Y Y

T X X X X X X

i i

V V V V


      (3) 134 

So 
(1)

i

Y

TV consists of the individual effect of iX and its interaction effects with all the other 1n   input 135 

variables ~ 1 1 1( ,..., , ,..., )i i i nX X X X X . The measure
(1) (1) (1)

~= ( ( | ))
i

Y Y

T iV V V E Y X  is the average 136 

residual variance of the model output when all the inputs but iX  are fixed over their full ranges. 137 

Dividing 
(1)

i

Y

XV and
(1)

i

Y

TV by the total variance 
(1)YV , the main effect index 

iS and total effect index 
TiS  138 

for iX on the first output can be obtained as follows. 139 

 

(1)

(1)

(1)

i

Y
XY

i Y

V
S

V
   (4) 140 

and 141 

 

(1) (1)

(1)

(1) (1)

(1)
~( ( | ))

i

i

Y Y
TY i

T Y Y

V V V E Y
S

V V


 

X
  (5) 142 

2.1.2 Covariance decomposition approach 143 

In the case of multivariate output r m ( 1)m  , taking the covariance matrices for both sides 144 

of Y , Gamboa (Garcia-Cabrejo and Valocchi 2014) obtained 145 

 

(1) ( ) (1) ( ) (1) ( ) (1) ( )
, , ,

1 1 1

(1) ( )
1,2,...,

( , , ) ( , , ) ( , , ) ( , , )

( , , )

n
m m m m

i i j i j k

i i j n i j k n

m
n

Y Y Y Y Y Y Y Y

Y Y

       

  

 

  C C C C

C

 (6) 146 

The expression implies that the covariance matrix C of the multivariate output can be partitioned 147 

into the sum of covariance matrices that comes from changes in single iC , pairs ,i jC , triples , ,i j kC  148 

and so on of input variables. 149 

When 1m  , Eq.(6) regresses to Eq.(2) the decomposition of the variance for the scalar output 150 

Take the trace about the both sides of Eq.(6), Eq.(7) can be obtained, 151 

 

(1) ( ) (1) ( ) (1) ( )

,

1 1

(1) ( ) (1) ( )

, , 1,2,...,

1

[ ( , , )] [ ( , , )] [ ( , , )]

[ ( , , )] [ ( , , )]

n
m m m

i i j

i i j n

m m

i j k n

i j k n

Tr Y Y Tr Y Y Tr Y Y

Tr Y Y Tr Y Y

   

   

  

 

 



C C C

C C

 (7) 152 
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According to Eq.(7), the multivariate single effect index 1M

iS of the input variable iX  is given by 153 

 (1) ( ) [ ]
1 ( , , )

[ ]

M m i

i

Tr
S Y Y

Tr


C

C
 (8) 154 

While the multivariate total effect index M

iST can be defined as 155 

 
, , , 1,2,...,1 1(1) ( )

[ ] [ ] [ ] [ ]
( , , )

[ ]

i i j i j k ni j n i j k nM m

i

Tr Tr Tr Tr
ST Y Y

Tr

      
   


 C C C C

C  (9) 156 

The trace [ ]Tr C is the sum of the variances of all outputs ( ) ( 1,..., )rY r m . The 1M

iS or M

iST157 

can be interpreted as the sum of the variances associated with input variable 
iX  and 

~iX  of all 158 

the outputs Y . Garcia-Cabrejo et al. (Garcia-Cabrejo and Valocchi 2014) pointed out that the 159 

output decomposition method and the covariance decomposition method are equivalent if the 160 

first K eigenvectors in the principle component decomposition preserve the original variance of 161 

outputs. The output and covariance decomposition methods mainly focus on the sum of the 162 

variances of the multivariate output. However, the comprehensive effect for the input variable on 163 

the multiple output may not be equal to the sum of each input contribution to the scalar output. 164 

If the correlation is in the output, the traditional sensitivity measure for the multivariate output is 165 

difficult to be interpreted. Furthermore, these methods ignore the influence of the dimension of 166 

the output variable. If some outputs have higher order of magnitude than others, they will make 167 

larger contribution improperly over the whole outputs (Szirtes and Rózsa 2007). To solve these 168 

problems, an alternative measure has been proposed for the importance measure of the 169 

multivariate output. It is called the vector projection approach. 170 

2.2 The Definitions and properties of the new importance measure for multivariate 171 

output based on the vector projection  172 

2.2.1 Preliminaries 173 

Assume random input variables 1( , , )nX XX be independent defined on some probability 174 

space ,（ P）, and ( ) ( ) ( )( 1,..., )r rY g r m X . 175 

2.2.2 Definition of Vector Projection approach 176 

Transformed by Eq.(10), the output ( )rY  can be dimensionless 177 

 
( )

( )

( )
ˆ

(| |)

r
r

r

Y
Y

E Y
   (10) 178 

where ( )E  is the expectation operator and | |  is the absolute operator.  179 

From Eq.(2), the variance decomposition of (1) ( )ˆ ˆ ˆ( ,..., )mY YY  can be obtained: 180 

 
1 21 2

1 2 1

ˆ ˆ ˆ ˆ

...

1 1 1
i i i n

n n n

X X X X X X

i i i i   

     Y Y Y YV V V V   (11) 181 
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where m -dimension vectors
,

(1) (2) ( )

1 2 , ,..., , ,..., , ,...,1 2 1 2 1 2

ˆ ˆ ˆ

, ,..., [ , ,..., ] , (1 ( 1,..., ) )
m

r i i i i i i i i ir r r

Y Y Y T

i i i X X X rV V V i r n n   V  and182 

(1) (2) ( )ˆ ˆ ˆ ˆ
[ , ,..., ]

mY Y Y TV V VY
V  are the th,( (1, 2,..., ))r r n  conditional variances and the unconditional 183 

variances of the multivariate output respectively. The above equation can be simplified as following by 184 

ignoring the superscript Ŷ . 185 

 
1 2

1 2 1

, 1,2,....,

1 1 1

n n n

i i i n

i i i i   

     V V V V   (12) 186 

The vector projection can be used to generalize the important measure. According to the definition of 187 

inner product (Durier 1994), the vector projection iQ  of the vector iV  on the vector V  can be given 188 

by 189 

 

( ) ( )

( )

ˆ ˆ

1

ˆ 2

1

,
cos

( )

k k

i

k

m
Y Y

X

i k

i i i
m

Y

k

V V

Q

V





 
  





V V
V θ

V
  (13) 190 

where iθ is the angle from the vector V to the vector iV ,  represents the inner product of two 191 

vectors, and
 

represents the magnitude of a vector. Then, normalize the projection by dividing the 192 

norm of vector V and the new main effect index iP  is defined as following: 193 

 

( ) ( )

( )

ˆ ˆ

1

ˆ 2

1

( )

k k

i

k

m
Y Y

X

i k
i m

Y

k

V V
Q

P

V





 



V

  (14) 194 

Similarly, the vector projection 
1 2, ,..., (( 1,..., ),1 )

ri i i rQ r n i n   of the interaction effect is given by: 195 

 

( ) ( )

1 2
1 2

1 2 1 2 1 2
( )

ˆ ˆ

...
, ,..., 1

, ,..., , ,..., , ,...,

ˆ 2

1

,
cos

( )

k k

i i ir
r

r r r
k

m
Y Y

X X X
i i i k

i i i i i i i i i
m

Y

k

V V

Q

V





 
  





V V
V θ

V
  (15) 196 

where 
1 2, ,..., ri i iθ  is the angle from vector V  to vector

 1 2, ,..., ri i iV . And the interaction effect index is: 197 

 

( ) ( )

1 2
1 2

1 2
( )

ˆ ˆ

...
, ,..., 1

, ,...,
ˆ 2

1

( )

k k

i i ir
r

r
k

m
Y Y

X X X
i i i k

i i i m
Y

k

V V
Q

P

V





 



V

  (16) 198 

Like Eq.(3) the total effect can be expressed as Eq.(17): 199 

 
1

1

, 1,.., ,...i

n

T i i i i n

i i

   V V V V   (17) 200 

iTV includes the individual effect of iX and its interaction effects with all the other 1n   input 201 

variables ~iX . Let 
(1) (2) ( )

~ ~ ~~ [ , ,..., ]
m

i i i

Y Y Y T

i V V V X X XV and the vector ~iT i V V V  contains the average 202 

, 


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remaining variances of all model outputs when all the inputs but iX  are fixed over their full ranges. 203 

The vector projection of the total effect 
iTQ  can be expressed as: 204 

 

( ) ( )

~
( )

( )

ˆ ˆ

ˆ 2~ 1

1 ˆ 2

1

,
( )

( )

k k

i
k

i

i
k

m
Y Y

T m
T Yi k

T
m

k Y

k

V V

Q V

V







  
    






XV V V V
V

V V
  (18) 205 

  206 

And the total effect index is: 207 

 

( ) ( )

~

( )

ˆ ˆ

1

ˆ 2

1

1

( )

k k

i

i

i
k

m
Y Y

T k
T m

Yn

k

V V
Q

P

V





  




X

V
  (19) 208 

Lemma 2.2.1 The vector projection measures sum up to 1, i.e, 209 

  210 

 
1 2

1 2 1

, 1,2,...,

1 1 1

1
n n n

i i i n

i i i i

P P P
   

        (20) 211 

Proof. 212 

1 2

1 2 1

1 2

1 2 1

1 2 1 2

1 2 1

( ) ( ) ( ) (

1 2

, 1,2,...,

1 1 1

, 1,2,...,

1 1 1

, , 1,2,..., 1,2,...,

1 1 1

ˆ ˆ ˆ ˆ

1 1

cos cos cos

k k k k

i i i

n n n

i i i nn n n
i i i i

i i i n

i i i i

n n n

i i i i i i n n

i i i i

n m
Y Y Y Y

X X X

i k

Q Q Q

P P P

V V V V

   

   

   

 

  

   

  







  
  

  



V

V θ V θ V θ

V

) ( ) ( )

1 2

1 2 1

( )

( ) ( ) ( ) ( )

1 21 2

1 2 1

( )

( ) ( )

( )

ˆ ˆ

...

1 1 1 1

ˆ 2

1

ˆ ˆ ˆ ˆ

...

1 1 1 1

ˆ 2

1

ˆ ˆ

1

ˆ 2

1

( )

( )

=

( )

1

k k

n

k

k k k k

i i i n

k

k k

k

n n m m
Y Y

X X X

i i i k k

m
Y

k

m n n n
Y Y Y Y

X X X X X X

k i i i i

m
Y

k

m
Y Y

k

m
Y

k

V V

V

V V V V

V

V V

V

    



    







 

  





   



   







（ ）

  (21) 213 

 214 

Proportion 2.2.1 For all input terms i  the vector projection indices satisfy: 215 

(i) 0 2 ,0 1i iP   θ  216 
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(ii) If  has no effect on , then 0iP   217 

(iii) If  has no effect on but has effect on , then ,i j jP P   218 

(iv) 

( )

( )

( )

ˆ 2

ˆ 21

1

( )
,

( )

k

k

k

Ym
Y

i k i k m
Yk

k

V
P w S w

V



 


 219 

(v) ( ) ( )

1

ˆ ˆ( , ( | ))
m

k k

i k i

k

P w corr Y E Y X


  220 

where ( )corr  ，is the correlation coefficient between two random variables. 221 

Proof. Point(i):positivity is clear, as 
( )ˆ k

i

Y

XV and
( )ˆ kYV are positive; 1iP   follows from Eq.(19).Point(ii)and 222 

point(iii)are easy to be proved by the definition. For (iv) and (v), more details are given in section 2.3. 223 

2.3 The link between the vector projection index and the Sobol index 224 

A comparable definition of iS  proposed by Sobol’ (Sobol 1996) is based on the correlation 225 

between the thk  output ( )ˆ kY  and the conditional expectation
( )ˆ( | )k

iE Y X of the thk  output. 226 

 
( )ˆ ( ) ( )ˆ ˆ( , ( | ))
kY k k

i iS corr Y E Y X   (21) 227 

 228 

  229 

And iP  is given by 230 

 

( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

ˆ

ˆ ˆ ˆ ˆ ˆ2 2

ˆ
1 1 1

ˆ ˆ ˆ2 2 2

1 1 1

( ) ( )

,

1 1

( ) ( )

( ) ( ) ( )

ˆ ˆ( , ( | ))

k

k k k k k
i

k
i

k k k

Ym m m
XY Y Y Y Y

X iY
k k k

i m m m
Y Y Y

k k k

m m
k k

k k i k i

k k

V
V V V S V

VP

V V V

w S w corr Y E Y X

  

  

 

  

 

  

  

 

  (22) 231 

where 

( )

( )

ˆ 2

ˆ 2

1

( )

( )

k

k

Y

k m
Y

k

V
w

V





 is the weight of the thk  correlation coefficient of the output 

( )kY  and the 232 

conditional expectation 
( )ˆ( | )k

iE Y X .When 1m  , the weight 1kw  and the index iP  degrades into 233 

the main effect index iS of the scalar output. Similarly TiP is given by 234 

 

( ) ( )

i
( )

i i
( )

ˆ 2

( ) ( )1
~

ˆ 2 1 1

1

( )

( , ( | ))

( )

k k

k

k

m
Y Y

T m m
Y k kk

T k T k im
Y k k

k

S V

P w S w corr Y E Y

V



 



  


 


X   (23) 235 

And when 1m  , the index TiP  degrades into the total effect index TiS of the scalar output. 236 

 237 

iX Y

iX Y jX Y
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Ŷ
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( 2)

1

Ŷ

XV
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2

Ŷ

XV
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n

Y

XV
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Ŷ
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( 2)

1 2

ˆ

... n

Y

X X XV

(1)

1 2

ˆ

... n

Y

X X XV

( 2)ŶV

 238 

Fig 1.The relationship among 
1 2, 1,.., ,..., , , ,i i i i nV V V V  for two outputs. 239 

 240 

For the scalar output, the Sobol index measures the ratio of magnitude of the conditional variance 241 

to the magnitude of the unconditional variance. For the multivariate output case, multiple parameters 242 

can be expressed as a vector and the inner product can measure the similarity between the vectors. 243 

The degree of the coincidence, between the vector iV  included all conditional variances and the vector244 

V  included all unconditional variances implies the main effect contribution of each input factor to the 245 

multivariate variance of all the outputs. Fig.1 shows the geometric interpretation of the vector 246 

projection measure for multivariate output ( 2m  ). In Fig.1, we can see that the vector angle iθ  247 

reflects the difference of the direction between two vectors, the smaller is, the closer the overlapping 248 

between vectors is. Except for vector angle, the magnitude of vector iV  also influences the 249 

coincidence degree. The new sensitivity index is the ratio of the vector projection that from the vectors250 

iV  to the vector V to the norm of the unconditional variance vector. 
 

251 

 252 
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3. Estimation of the new sensitivity indices 253 

3.1 Polynomial Chaos Expansion 254 

The Polynomial Chaos expansion (PCE) of 2-nd order random variable is a decomposition of 255 

the form (Wiener 1938, Ghanem and Spanos 1991) 256 

 
0

( )j j

j

Y 




  x  (24) 257 

where 
j is the jth ( 1,..., )j    coefficient, 

j ( 1,..., )j   are orthogonal to each other with 258 

respect the corresponding PDF (Xiu and Karniadakis 2002, Xiu 2010) and 1 2( , ,..., )nx x xx  are 259 

independent standard normal random variables. To be used in engineering models, Eq.(24) needs 260 

to be truncated. The order of the polynomials is M  and the number of input variables is n , then 261 

the total number of terms 1P   with order less than or equal to M  is given by  262 

 
( )!

1
! !

M n
P

M n


    (25) 263 

There are two approaches for the estimation of the coefficients: projection and regression. The 264 

projection can take advantage of the orthogonal nature of the polynomial  and the coefficients 265 

are estimated using multidimensional numerical integration (Ghanem and Spanos 1991), but it 266 

requires a large number of the model evaluations to compute integration (Xiu 2010). In the 267 

regression approach (Berveiller, Sudret et al. 2006, Sudret 2008), the coefficients are estimated by 268 

minimizing the sum of squares of the difference between a set of model evaluations ＮY . Assume 269 

a set of realizations to be 0( )(1) (2){ , ,..., }
N

ξ ξ ξ  for X , where 0N  is the base number of model 270 

realizations. Then 0 0( ) ( )(1) (1) (2) (2){ ( ), ( ),..., ( )},
N N

y y yY ξ ξ ξＮ  ( ) ( ) ( )

1 0( ,..., ), ( 1,..., )k k k

n k N  ξ and 271 

we define Ψ  the matrix whose coefficients are given by ( )

0( ), 1,..., ; 0,..., 1k

kj j k N j P   Ψ ξ  272 

with evaluation of the orthogonal polynomials at the collocation points ( )k
ξ , from these we can 273 

obtain the coefficients j as 274 

 T 1 T( ) Ｎα Ψ Ψ Ψ Y   (26) 275 

Due to the orthogonality of the basis, it is easy to show that the statistical moments of the random 276 

variable Y such as the mean and variance respectively read: 277 

 
0

2 2 2

1

[ ]

[ ] [ ]
P

Y j j

j

Y E Y

Var Y E



 


 

  
  (27) 278 

  279 

3.2 Estimating the new sensitivity indices for multivariate output by the PCE  280 

The Sobol decomposition of multivariate output ( )ˆ kY ( 1,..., )k m (see Eq.(2)) can be 281 
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expressed from a reorganization of its PCE (Sudret 2008) as 282 

 283 

 
1 2

1 2 ,1 2

1

1 , ,1

( ) ( ) ( ) ( )

0 ,

1 1

( ) ( )

1

( ) ( ) ( , )

)

ˆ

( , ,

i i i

s

s i is

d
k k k k

j k j i j j i i

i j I i i d j I

k k

j j i i

i i d j I

k x x

x

Y x

x

  



     

    

    

  

  

 
  (28) 284 

where 
1 , , si iI is the set of multiple tuples and indices 1( , , )si i are nonzero: 285 

 
1

( )

, , (

1

)

1{ , , }

{ ,

0  

, }0  
s

k

i

i i

s

s

k

i

a i
I

a

i i

i ii

   
  

  



  

  (29) 286 

where ( ) 0k

ia  and ( )

1

M k

ii
a P


  is an integer set used to correspond each term in Eq.(24) to the 287 

orthogonal polynomials (Sudret 2008). The variance of ( )ˆ kY  can be obtained using Eq.(27), and 288 

therefore the main effect of the new sensitivity index for an input variable 
iX  can be given by: 289 

 

( ) 2 ( ) 2 ( ) 2 ( ) 2

1

( ) 2 ( )

1

2

1 1

2

( ) (( ) ) ( ) (( ) ))

( ( ) ((

(

) ))

ˆ
i

P
k k k k

j j i iI
i

k k

i i

m

j
k

i m P

k i

E E

E

P

 











 











  (30) 290 

And the interaction effect of any group of input variables
1 ,..., ri iX  can be estimated as follows by PCE 291 

 
, ,1

1

( ) 2 ( ) 2 ( ) 2 ( ) 2

1

( ) 2 (

1

, ,
2

1 1

) 2

( ) (( ) ) ( ) (( ) ))

(

(

( ) (( ) ))

ˆ
i is

s

m

j
k

i i m P

P
k k k k

j j i iI
i

k k

i i

k i

E E

P

E

 





 




 




 

 


  (31) 292 

Similarly, the total effect index of iX  can be compactly expressed as 293 

 

( ) 2 ( ) 2 ( ) 2 ( ) 2

11

( ) 2 ( ) 2 2

1 1

( ) (( ) ) ( ) (( ) ))

( ( ) ((

ˆ

)

(

))

i

Pm

j
k

T m P

k i

k k k k

j j i iI
i

k k

i i
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


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






 












ｉ

  (32) 294 

where 
1

1

, 1,.., ,...

n

i i i i i n

i i

I I I I



   . 295 

Therefore, the proposed new sensitivity indices for the multivariate output have analytical 296 

expressions which are estimated from the coefficients of the PCE of the output variables. There is 297 

no additional cost for obtaining the new sensitivity indices once the coefficients of the PCE are 298 

available.  299 

4．Example 300 

In this section the new sensitivity index is applied to two numerical examples and a 301 

hydrological model to analyze the influence of the input variables on the multivariate output. And 302 

the results of the new sensitivity index based on the vector projection index will be compared with 303 
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the sensitivity index based on the covariance decomposition method. To ensure the convergence 304 

of the computational results, the sample size of Monte Carlo Simulation (MCS) for all the sensitivity 305 

indices is taken as 100000N  . The results of the PCE in different orders ( M ) to estimate the new 306 

sensitivity indices are compared with the results of the MCS to verify the effectiveness of the PCE 307 

based method. 308 

 309 

 310 

4.1 Numerical examples  311 

Example 4.1 Consider a linear model with multivariate output 312 

 

(1)

1 2 3 4

(2)

1 2 3 4

1 2 3 4

9

100 ( 5 )

(0,1), (0,1), (0,1), (0,1)

y x x x x

y x x x x

x N x N x N x N




    

        (33) 313 

The sensitivity results obtained by the Sobol index iS for each output, the covariance 314 

decomposition method 1M

iS and the proposed index iP  are listed in Table 1. For the above 315 

equations, we magnify the second function 2y 100 times to simulate the influence of dimension. 316 

Since the input variables are standardized normal random variables, it is straightforward to find 317 

the important measure ranking is 2 3 1 4X X X X    through qualitative analysis. 318 

 319 

Table 1 Sensitivity indices for Example 1 320 

Indices 

Function 

evaluation 

number 

    Time 

(1)- -MCSi yS  6(4 2) 10   
0.0134 

(3)            

0.9643 

(2) 

0.0132 

(1) 

0.0129 

(4) 
2.2158s 

( )- -MCSiS y２  6(4 2) 10   0.0355(3)            0.0357(2) 0.8930(1) 0.0354(4) 2.2158s 

1 -MCSM

iS  6(4 2) 10   0.0360(3) 0.0365(2) 0.8925(1) 0.0359(4) 2.2158s 

i -P MCS  6(4 2) 10   0.0231(3) 
0.4999 

(2) 

0.4517 

(1) 

0.0229 

(4) 
2.1460s 

i -PCEP  45(M=2) 0.0239(4) 
0.5221 

(1) 

0.4314 

(2) 

0.0241 

(3) 
0.0632s 

i -PCEP  105(M=3) 0.0238(4) 
0.4997 

(1) 

0.4526 

(2) 

0.0238 

(3) 
0.0662s 

i -PCEP  210(M=4) 0.0233(4) 
0.5001 

(1) 

0.4519 

(2) 

0.0228 

(3) 
0.0731s 

1X 2X 3X 4X
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 321 

Since there are no interaction term in this example, just the main sensitivity index of the 322 

original sensitivity indices is calculated. From Table 1, it can be observed the following aspects. 323 

Firstly, the importance rankings and the sensitivity values obtained by iS  for 
(2)y  and 1M

iS  324 

are the same. This is easy to explain by the fact that 1M

iS is influenced by the high order of 325 

magnitude of dimension of the second function 
(2)y .Therefore, 1M

iS  can’t describe output 326 

variability comprehensively during the dimensions of outputs are different, and the  magnitude 327 

orders of the 
(1)y and

(2)y  have too big discrepancy. Secondly, the ranking result of the vector 328 

projection index from the quantitative analysis is equal to the ranking of qualitative analysis, which 329 

denotes that the importance measure based on the new sensitivity index is more applicable than 330 

the traditional indices for the multivariate output. Thirdly, there is less computational cost for PCE 331 

to obtain the convergent values. So the accuracy and efficiency for estimating the new sensitivity 332 

index can be improved by PCE based method. 333 

 334 

Example 4.2 Consider the following nonlinear model used in (Luyi, Zhenzhou et al. 2016)  335 

   336 

 

2 2

1 2 1 2

3 7 4 8

5 3 1 2

6 4 1 2

(1)

(2)

(3)

1.905 0.565
( ) 0.03

( ) 1.185

( ) 0.75

X X X X
g

X X X X

g X X X X

g X X X X

  

 

 

X

X

X

  (34) 337 

The input variables follow normal distribution, and their distribution parameters are shown in  338 

Table 2. The sensitivity results are listed in Table 3. Since this example has interaction terms, the 339 

main effect indexes and the total effect indexes based on the covariance decomposition and the 340 

vector projection are both presented in Table 3. To compare other differency between the new 341 

indices with the traditional method for multivariate output expect dimension, we calculate the 342 

results of ˆ1M

iS  and ˆ M

iST which the influence of the dimension of the outputs is eliminated. 343 

 344 

Table 2 the distribution parameters of Example 2 345 

Variables          

Mean 20000 12 0.04 9.82×10-4 1.34×107 3.35×108 2×1010 1×1011 

Standard 

deviation 
1400 0.12 0.0048 

5.892×10-

5 
2.412×106 4.02×107 1.2×109 6×109 

Table 3 Sensitivity indices for Example 2 346 

indices Function          

1X 2X 3X 4X 5X 6X 7X 8X
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evaluation 

number 

 
       

Time 

1 -MCSM

iS  6(8 2) 10    
0.0333 

(4) 

0.0003 

(6) 

0.2558 

(2) 

0.0230 

(5) 

0.5788 

(1) 

0.0959 

(3) 

0 

(7) 

0 

(8) 
5.4545s 

-MCSM

iST  6(8 2) 10   
0.0338 

(4) 

0.0003 

(6) 

0.2653 

(2) 

0.0241 

(5) 

0.5874 

(1) 

0.0963 

(3) 

0 

(7) 

0 

(8) 
5.4545s 

ˆ1 -MCSM

iS  6(8 2) 10   
0.1758                            

(3) 

0.0122 

(7) 

0.1807 

(2) 

0.0920 

(5) 

0.3147 

(1) 

0.1506 

(4) 

0.0092 

(8) 

0.0547 

(6) 
5.5632s 

ˆ -MCSM

iST  6(8 2) 10   
0.1775                            

(3) 

0.0130 

(7) 

0.1870 

(2) 

0.0940 

(5) 

0.3193 

(1) 

0.1521 

(4) 

0.0100 

(8) 

0.0553 

(6) 
5.5632s 

i -P MCS  6(8 2) 10   
0.1535 

(3) 

0.0105 

(7) 

0.2149 

(2) 

0.0690 

(5) 

0.4034 

(1) 

0.0836 

(4) 

0.0079 

(8) 

0.0474 

(6) 
5.4323s 

Ti -P MCS  6(8 2) 10   
0.1535 

(3) 

0.0105 

(7) 

0.2149 

(2) 

0.0696 

(5) 

0.4034 

(1) 

0.0836 

(4) 

0.0079 

(8) 

0.0474 

(6) 
5.4323s 

i -P PCE  
315 

M=2 

0.1531                                                                                   

(3) 

0.0109 

(7) 

0.2148 

(2) 

0.0687 

(5) 

0.4043 

(1) 

0.0852 

(4) 

0.0083 

(8) 

0.0485  

(6) 
0.0694s 

Ti -P PCE  
315 

M=2 

0.1537                                                                                   

(3) 

0.0111 

(7) 

0.2209 

(2) 

0.0695 

(5) 

0.4101 

(1) 

0.0855 

(4) 

0.0085 

(8) 

0.0479  

(6) 
0.0694s 

i -P PCE  
1155 

M=3 

0.1542                                                       

(3) 

0.0111 

(7) 

0.2151 

(2) 

0.0691 

(5) 

0.4026 

(1) 

0.0845 

(4) 

0.0084 

(8) 

0.0479  

(6) 
0.1458s 

Ti -P PCE  
1155 

M=3 

0.1550                                                       

(3) 

0.0112 

(7) 

0.2212 

(2) 

0.0698 

(5) 

0.4084 

(1) 

0.0848 

(4) 

0.0085 

(8) 

0.0483  

(6) 
0.1458s 

i -P PCE  
3465 

M=4 

0.1539                             

(3) 

0.0110 

(7) 

0.2153 

(2) 

0.0688 

(5) 

0.4035 

(1) 

0.0841 

(4) 

0.0084 

(8) 

0.0478 

(6) 
0.7412s 

Ti -P PCE  
3465 

M=4 

0.1546                            

(3) 

0.0111 

(7) 

0.2215 

(2) 

0.0696 

(5) 

0.4093 

(1) 

0.0844 

(4) 

0.0086 

(8) 

0.0473 

(6) 
0.7412s 

We note from Table 3 that the importance rankings of the nonlinear model of the input variables 347 

obtained by iP and TiP are same with the rankings obtained by ˆ1M

iS  and ˆ M

iST , but the values of 348 

the importance measure of them are different. That is because that ˆ1M

iS  and ˆ M

iST  only contain 349 

the magnitudes of the variances in the multiple output space, whereas iP and TiP  include the 350 

magnitudes of variances and the directions in the multiple output space. This indicates that the 351 

importance measures based on the vector projection are more comprehensive than the 352 

generalized Sobol indexes. In addition, although the results of iP and TiP  estimated by MCS and 353 

PCE are approximately equal, the computation cost of PCE is much less than that of MCS. Once the 354 

coefficients of the PCE are estimated, the multivariate sensitivity indices can be obtained without 355 

additional computational cost shown in Eqs.(30)-(32). Therefore, the proposed measure iP  356 

1X 2X 3X 4X 5X 6X 7X 8X

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-259, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 

 

provides an efficient alternative for the sensitivity analysis for multivariate output space by taking 357 

both of its dimension, magnitudes and directions of the multivariate variances into account 358 

simultaneously. 359 

 360 

4.2 The hydrological model: HBV model 361 

The HBV model is a conceptual model for rainfall-runoff simulation and takes the precipitation, 362 

temperature and potential evaporation as the inputs. The model consists of a degree-day snow 363 

model, soil-moisture accounting model and a runoff response model (Kollat, Reed et al. 2012). A 364 

sketch map of the HBV model is shown in Fig 2.  365 
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Fig.2 Sketch map of the HBV model 367 

There are 13 parameters that should be calibrated for the HBV model. The parameters and 368 

the corresponding ranges are shown in Table 1 (the first four parameters are related to degree-day 369 

snow module, next three parameters are related to soil-moisture accounting model, and the last 370 

six ones are related to the runoff response model). The ranges of the parameters are based on 371 

prior studies (Kollat, Reed et al. 2012).  372 

 373 
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Parameters Meaning Units Ranges 

Ts   Threshold temperature  oC   [-3.0,3.0] 

CFMAX   Degree day factor  1o 1mm C d    [0.0,20.0] 

CFR   Refreezing factor  - [0.0,1.0] 

CWH   Water holding capacity factor of snow - [0.0,0.8] 

BETA  Shape parameter - [0.0,7.0] 

LP   
limiting soil moisture at which potential 

evaporation occurs 
- [0.3,1.0] 

FC  Maximum soil moisture content mm   [0.0,2000.0] 

PERC   percolation rate into deep layer 1mm d   [0.0,100.0] 

0K   near-surface flow recession coefficient 1d  [0.05,2] 

1K   interflow recession coefficient 1d  [0.01,1] 

2K   base flow recession coefficient 1d  [0.05,0.1] 

UZL   Near surface flow threshold mm   [0.0,100.0] 

MAXBAS   Base length for transformation d  [1,6] 

There are a variety of criterions for the calibration of HBV model (Diskin and Simon 1977, van 375 

Werkhoven, Wagener et al. 2009). Here we consider three metrics, which are Nash-Sutcliffe 376 

efficiency (NSE) (Nash and Sutcliffe 1970, Kollat, Reed et al. 2012), Transformed Root-Mean Square 377 

Error (TRMSE) (Kollat, Reed et al. 2012) and Slope of the Flow Duration Curve (SDFCE). Jan 378 

suggested that the combination of different functions is suitable to judge different parameter sets 379 

which may perform more or less similarly well (Seibert 1997). 380 

Nash Sutcliffe Efficiency(NSE ) 381 

The first objective emphasizes peak flow errors using the Nash-Sutcliffe Efficiency as shown in 382 

Eq.(34),  383 

 

 

384 
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  (34) 385 

where ,s tQ  is the simulated runoff at time t  , ,o tQ  is the observed runoff at time t  ,and oQ  is the 386 

mean observed flow over the calibration period. N  is the summation, which performs over 1t   387 

through the number of time steps on the calibration period.NSE is most often used as a hydrologic model 388 

calibration objective,which ranges from 1 to    389 

Transformed Root-mean-square-error (RMSE) 390 

The second objective emphasizes low flow errors using the Box-Cox transformed root-mean-391 

374 Table 4 The parameters of HBV model and the corresponding ranges  
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square-error as shown in Eq.(35) 392 

 393 
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N

s t o t

t

RMSE Q Q
N 

    (35) 394 

 395 

Slope of the Flow Duration Curve(SDFCE) 396 

The third objective emphasizes the flashiness of a watershed’s response by minimizing in 
397 

simulating the slope of the flow duration curve(SFDCE) as shown in Eq.(35)  
398 

 
,67% ,33%

,67% ,33%

1 100%
s s

o o

Q Q
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Q Q


  


  (35) 399 

About the three response outputs, they have different dimensions and the third function’s 400 

dimension has the largest orders of magnitude. 401 

 402 

Fig.3.the main effect of Sobol index of three outputs 403 
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 404 

Figure 4.the total effect of Sobol index of three outputs 405 

 406 

Fig.5.The main effect indices of multivariate output of the HBV model 407 
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 408 

Fig.6.The total effect indices of multivariate output of the HBV model 409 

In Figs.3 and 4, the results of the Sobol index iS  and iST  of three outputs are presented 410 

respectively. And the sensitivity analysis results of the multivariate output of the HBV model, which 411 

are obtained by the vector projection indices iP and TiP  and the covariance decomposition 412 

method 1M

iS  and M

iST , are shown in Figs.5 and 6. The MCS with 5(13 2) 10  model evaluations 413 

and the PCE with 6720  model evaluations ( 3M  )are used to get the convergent results, which 414 

verifies the efficiency of the PCE. 415 

As for this hydrological model, we can find For SFDCE, it can be found that the ranking 416 

obtained by iS  shown in Fig.3 is same as that by M

iS  shown in Fig.5, and the ranking obtained by 417 

iTS shown in Fig.4 is also same as that by 
i

M

TS  shown in Fig.6,which is caused by the influence of 418 

dimension of SFDCE. This suggests that in multivariate output case, the magnitude orders of the 419 

dimension has great impact on ranking results. For the main effect, Fig.5 shows that although both 420 

iP
 and 1M

iS  identify the same important variables BATE and FC, the rankings they are obtained 421 

are not same. iP
 indicates that FC is more important than BATE based on the vector projection, 422 

while 1M

iS indicates BATE has the largest importance for the multivariate output, followed by FC. 423 

For the total effect, Fig6 shows that the rankings obtained by iPT
 and M

iST  are totally different, 424 

and iPT considers more interaction effect between the input variables, since iPT  which includes 425 

magnitudes of the variances and the directions in the dimensionless multiple output space, but 426 

the traditional sensitivity index just includes magnitudes of variances in the multiple output space. 427 

In addition, Fig.5 and 6 show that results of PCE are similar to those of MSC. The PCE is able to 428 

evaluate the proposed index, with 6720 model evaluations ( 3M  ) which is much lower than 429 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-259, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



21 

 

MCS with 5(13 2) 10  model evaluations.  430 

Based on the above results, it can be concluded that the parameters BETA and FC have much 431 

more importance for 3 outputs represented by NSE, TRMSE and SFDCE among 13 inputs, the 432 

following importance inputs are the parameters CFMAX, TS,CWH,K1,UZL,MAXBAS since they have 433 

large interaction effects. For the rest parameters CFR, LP, PERC, K0 and K2, they have less 434 

contribution to the multivariate output.  435 

5. Conclusions  436 

The vector projection importance measure is proposed in this paper to evaluate the 437 

comprehensive effect of the inputs on the magnitudes of variances and directions of the multiple 438 

output space. The mathematical properties of the new sensitivity index are derived and its 439 

geometric significance is discussed. Two numerical examples and a hydrological model are 440 

employed to verify the effectiveness of the proposed method. Comparison with the covariance 441 

decomposition method shows that the new sensitivity index based on the vector projection can 442 

measure the effect of the inputs on the whole uncertainty of the multivariate output synthetically. 443 

The rankings of the input variables obtained by the generalized sensitivity indices are not 444 

necessarily the same with the proposed index. This is easy to understand by the fact that the vector 445 

projection based method additionally considers the effects on the dimension and directions which 446 

are ignored by traditional indices. Thus, only measuring the effects of the input variables on the 447 

magnitudes of variances is not enough to reflect the relative importance of the input variables 448 

comprehensively. In addition, the Polynomial Chaos Expansion method is used to estimate the new 449 

sensitivity indices for the multivariate output, and the main computational cost of the PCE based 450 

method is the estimation of the coefficients of the expansions. Thus the PCE based method for 451 

estimating the new sensitivity index is efficient compared with the Monte Carlo Simulation.  452 
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