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Abstract. Catchment flood response consists of multiple components of flow originating from different surface 

and sub-surface layers. This study proposes an extension of Viglione et al. (2010a) analytical framework to 

represent the dependence of catchment flood response to the different runoff generation processes. The analytical 

framework is compared to simulations from a distributed hydrologic model. A large number of rainfall-runoff 5 
events from three catchments of Tar River basin in North Carolina are used to illustrate the analytical framework. 

Specifically, the framework is used to estimate three flood events characteristics (cumulative runoff volume, 

centroid and spreadness of hydrograph) through three corresponding framework parameters: the rainfall excess and 

the mean and variance of catchment response time. Results show that under the smooth topographic setups of the 

study area, the spatial and/or temporal correlation between rainfall and runoff generation are insignificant to flood 10 
response; delay in flood response due to runoff generation and routing are of equal importance; the shape of flood 

is mainly controlled by the variability in runoff generation stage but with non-negligible contribution from the 

runoff routing stage. Sensitivity tests show that the framework’s main error source is the systematic underestimation 

of flood event’s centroid and spreadness, while the random error is relatively low. 

1. Introduction 15 

Catchment flood response or, in a more general sense, the water balance at basin scale, is controlled by a range of 

hydrological processes with each of them contributing a different level of spatiotemporal variability (e.g. 

precipitation, surface runoff, infiltration, routing, etc.) (Skøien, et al., 2003; Skøien & Blöschl, 2006; Merz & 

Blöschl, 2009; Rodríguez-Blanco, et al., 2012; Palleiro, et al., 2014; Zoccatelli, et al., 2015). Many of these studies 

have investigated how these processes are linked with the catchment flood response and what the relative 20 
importance of each of these processes is in controlling the properties of flood being generated. For example, it has 

been argued that only a portion of space-time characteristics of the flood response process will emerge to control 

the dynamics of a flood hydrograph due to the catchment dampening effect (Skøien, et al., 2003; Smith, et al., 2004; 

Skøien & Blöschl, 2006), and this dampening effect varies dynamically according to the hydrogeological properties 

of the catchment and features of the triggering storm, implying a shift of relative importance of processes in 25 
catchment flood response under different flood regimes (Sivapalan, et al., 2004; Smith, et al., 2002; 2005; Sangati, 

et al., 2009; Mejía & Moglen, 2010; Volpi, et al., 2012; Mei, et al., 2014). The answers to these questions are 

intimately related to the development of a comprehensive framework that can generalize the estimation of 

streamflow spatiotemporal variability by a synthesis of various catchment processes under different hydro-

meteorological and geomorphological controls (Blöschl, 2006). 30 

Describing catchment flood response based on a set of spatiotemporal variables in storm response (i.e. rainfall, 

runoff generation, and routing) has been established and utilized since the late 90s  (Woods & Sivapalan, 1999; 

Smith, et al., 2005; Viglione, et al., 2010a; Mejía & Moglen, 2010; Mei, et al., 2014; Zoccatelli, et al., 2011; 2015). 

The essence of such an analytical framework is to diagnose the relative importance of rainfall space-time processes 
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that influence the runoff generation (i.e. cumulative flow volume, hydrograph timing and shape). The first work 

that synthesized the space-time variables into a holistic analytical framework is that of Woods & Sivapalan (1999). 

That framework used the “stationary rainfall” assumption, which can be interpreted as no movement of rainfall 

over the catchment. This assumption is strong, but it is considered reasonable only for short-duration or orographic-

enhanced storms, which have relatively fixed spatial patterns over time. This framework assumption was applied 5 
in subsequent studies by Mejía & Moglen (2010) and Zoccatelli et al. (2010). Specifically, Zoccatelli et al. (2010) 

investigated the influence introduced by neglecting the spatial information of rainfall distribution in flow generation. 

Their study showed a larger delay in the arrival of a hydrograph mass center as rainfall mass center tends to be 

located closer to the headwater of the basin. Mejía & Moglen (2010) investigated the flood response to the 

distribution of impervious surface by partitioning rainfall excess generation to pervious and impervous areas of a 10 
catchment. The study concluded that the impervousness pattern is important when it is collocated with the mass 

center of rainfall. 

Viglione et al. (2010a) generalized the Woods & Sivapalan (1999) framework by relaxing the “stationary rainfall” 

assumption. Their framework has terms to describe the relative movement of rainfall to the other variables. Viglione 

et al. (2010b) utilized their generalized framework to study the relative importance among rainfall space-time 15 
processes in controlling runoff generation for different types of flood. The study pointed out that the space and time 

covariance are important in runoff generation for short-duration rainfall events due to their highly localized feature; 

the spatial covariance is irrelevant for long-duration rainfall events since the rainfall field tends to be uniformly 

distributed over the catchment. Zoccatelli et al. (2011) derived the spatial moment of catchment rainfall and 

catchment scale storm velocity under the constant runoff coefficient assumption. The results indicate that the closer 20 
the rainfall mass center is to the catchment outlet the earlier the arrival of the hydrograph mass center is. This aspect 

was also revealed in Mei et al. (2014) that examined 164 (mostly moderate) flood events. The study further 

concluded that the shape of rainfall and its movement are relatively insensitive in shaping the event hydrograph 

mainly because of the unsaturated rainfall excess. Nikolopoulos et al. (2014) paid particular attention to the 

catchment scale storm velocity and were able to demonstrate the scale dependency and rainfall intensity 25 
dependency to storm magnitude. 

The Viglione et al. (2010a) analytical framework (hereafter referred to as V2010) is relevant to only one rainfall 

excess (event flow) component. In this sense, the different runoff generation processes associated with vertical 

heterogeneous catchment layers are lumped together into a single flood response (Woods & Sivapalan, 1999; 

Viglione, et al., 2010b). Numerous experimental studies, though, have demonstrated that catchment flood response 30 
can be identified as multiple components originating from different catchment layers and associated with different 

flow paths (Weiler, et al., 2003; Liu, et al., 2004; Gonzales, et al., 2009). This is also prescribed in distributed 

hydrologic model where rainfall excess is often partitioned into different linear reservoirs representing different 

routing mechanisms (Koren, et al., 2004; Blöschl, et al., 2008; Wang, et al., 2011). Thus, we see the necessity of 

further generalizing V2010 to represent multi-component flood responses. The analytical framework presented in 35 
this paper is visualized in Figure 1. Catchment rainfall forcing is converted to more than one rainfall excess 

component associated with various surface and subsurface layers. These rainfall excess components are subjected 

to different flow paths and routing schemes. The output hydrograph is a combination of hydrographs from the 

different components. A point to note is that our discretization of streamflow is still within the context of event 

flow and is not extended to the very slow response (e.g. baseflow). To sum up, our expanded framework introduces 40 
parallel channels to represent the different components of catchment flood response. This new capability relative 

to V2010 and other previous frameworks can support studies to help us understand which space-time process is the 
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most dominant for a component of catchment response and how the contributions of different rainfall excess 

components are changing across disparate hydrologic regimes (e.g. basin scales, rainfall duration, and space-time 

distribution, etc.). 

We illustrate the multi-component flood response framework based on a two-component assumption consistent 

with a distributed hydrologic model structure. The illustration is built based on a relatively large number of rainfall-5 
runoff events from three catchments in the Tar River basin in North Carolina. The paper is organized as follows. 

In Section 2, the study basin and data used in the study are described. Section 3 illustrates the experimental design 

with the hydrologic model. The analytical framework equations together with the demonstrations are presented in 

Section 4. Tests to understand the framework sensitivity to flood characteristics are provided in section 5. 

Conclusions (including limitation and future works) are discussed in section 6. 10 

2. Study Area and Dataset 

2.1. Tar River Basin and Hydrometeorology Data 

We conducted our analysis over three nested catchments (namely Swift, Fishing and Tar) in the Tar River basin, a 

low elevation basin located in North Carolina (maximum elevation is 220 m above sea level). The study catchment 

areas are 426 km2, 1374 km2, and 2406 km2, characterized by mild-slopes (mean slope at 0.90%, 0.81%, and 0.83%, 15 
respectively). Prevailing climate of the area is humid subtropical causing annual precipitation and runoff around 

1100 mm and 250 mm, respectively. The reader is referred to Mei & Anagnostou (2015) and Mei et al. (2014) for 

details on the hydrology of the study area. 

The Stage IV radar-based multi-sensor precipitation estimates from the National Center for Environmental 

Prediction is used as our reference rainfall (STIV hereafter). The product is mosaicked from the Regional Multi-20 
sensor Precipitation Analysis (RMPA) produced by the National Weather Service River Forecast Centers and 

benefits from some manual quality control process (Lin & Mitchell, 2005). The RMPA includes rain rates from 

merged operational radar estimates (150 Doppler Next Generation Weather Radar) and 5500 hourly rain gauge 

measurements. The STIV data is hourly and available at approximately 4 km spatial resolution. The data used in 

this study has been spatially interpolated to 1 km by the bilinear method. Another atmospheric forcing dataset used 25 
in this study is the potential evapotranspiration (PET) available from the North American Regional Reanalysis 

(NARR) at 3-hourly and 32 km resolution (Mesinger, et al., 2006). The NARR PET product accounts for 

evaporation from the soil, transpiration from the vegetation canopy, evaporation of dew and frost or canopy-

intercepted precipitation, and snow sublimation. We also used hourly flow rates that were aggregated from the 15-

min flow rate records available from the United States Geology Survey (USGS) for the three study catchments. 30 

2.2. Rainfall-runoff Event Selection 

The study rainfall-runoff events are extracted from the observation datasets using the Characteristic Point Method 

(CPM) introduced in Mei & Anagnostou (2015). The advantages of CPM are its parsimonious data requirement 

(basin area and time series of rainfall and flow) and automatic extraction of events based on time series features. 

Event runoff and rainfall periods are identified from the long-term continuous time series of observed flow and 35 
rainfall records. Rainfall periods satisfying the following conditions are associated with each of the flood periods: 

 rainfall period(s) occurring before the flood period but within the time of concentration of the basin; 
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 rainfall period(s) located on the rising lib of the flood period; 

 rainfall period(s) occurring prior to the end of the flood period by a time length equal to the time of 

concentration. 

All of the rainfall periods associated with the same flood period are integrated as one rainfall event and are 

considered as the inducing rainfall of the flood. Each of the rainfall and flood pairs forms a rainfall-runoff event. 5 
The CPM is applied on the USGS streamflow observations and catchment-average STIV rainfall data for the three 

study catchments. The method identified nearly 300 flood events from the study period and these events were 

further filtered according to the hydrologic model performance as described in section 3.2. 

3. Hydrologic Model and Experiment 

3.1. Distributed Hydrologic Model 10 

The Coupled Routing and Excess STorage (CREST) model version 2.1 is used for the hydrologic simulations in 

our study (Shen & Hong, 2015). CREST is a fully distributed rainfall-runoff model designed to simulate flow 

discharges over watersheds at global scale. CREST integrates a water balance model for the vertical fluxes with a 

horizontal routing model for the surface and subsurface runoff (Wang, et al., 2011; Shen, et al., 2016). The water 

balance model considers four processes—canopy interception, infiltration, evapotranspiration (ET), and runoff 15 
generation. The infiltration rate is calculated based on the variable infiltration curve developed in the Xinanjiang 

Model (Zhao, 1992). For each grid-cell, the actual ET (AET) is determined in terms of water and energy budget 

using precipitation, soil water availability and PET. In the runoff generation process, CREST separates rainfall 

excess into two components, the surface and subsurface runoff modeled by two linear reservoirs—the overland and 

interflow reservoirs. In the routing process, the sub-grid routing inhomogeneity is accounted for by employing 20 
these two runoff components. The model version used in this study implements the fully distributed linear reservoir 

routing method that overcomes the severe underestimation of flow in previous versions (Shen, et al., 2016). The 

parameter optimization algorithm adapted in CREST is the shuffled complex evolution (SCE-UA) developed by 

Duan et al. (1992). 

3.2. Experimental Design 25 

As a first step, the model is set up over the three study catchments with 1 km spatial resolution. The geomorphologic 

and hydrologic variables (i.e. flow direction, flow accumulation, slope, and stream channel) of the catchment areas 

are generated from the Digital Elevation Model data; the STIV precipitation and NARR PET product force the 

model to compute the through precipitation, actual evapotranspiration, infiltration capacity, soil water content, and 

rainfall excess. We keep the model setting relatively simple by “turning off” the canopy interception, meaning that 30 
the process is conceptualized by a multiplier of the precipitation data, which is optimized by a calibration process. 

In addition, the fraction of impervious surface in this study is represented by an imperviousness parameter that was 

optimized through model calibration.  The model was calibrated in the three catchments with respect to the observed 

hourly flow rate from 2004 to 2006 (year 2002 to 2003 is used as the spinning period). The Nash-Sutcliff coefficient 

(NSCE) of the flow simulations in the Swift, Fishing, and Tar catchments determined at hourly scale are 0.69, 0.62, 35 
and 0.66, respectively, indicating reasonable performance of the model over the study catchments (Moriasi, et al., 

2007).  
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Rainfall-runoff events from the 2003 to 2012 period with duration shorter than 500 hours are identified from the 

continuous flow simulations during the time periods provided by the CPM. The mean error (ME), correlation 

coefficient (CC), and NSCE are calculated with respect to the observed flow rate for each event and these error 

metrics are ranked in ascending order (consider only the magnitude when ranking ME). Flood events of ME higher 

than the 95th percentile and CC and NSCE lower than their respective 5th percentile were discarded from the analysis 5 
to keep our results representative in the context of hydrologic simulation. These selection criteria resulted in 180 

events (62, 57, and 61 events, respectively, for the smallest to largest catchments) with overall relative centered 

root mean square error equaling to 42.0%, 43.0% and 34.4%, respectively. Two pilot events used in the framework 

demonstrations are exhibited in Figure 2. They are characterized by high CC and low relative CRMS values with 

respect to the observed flow time series. The CC for the two events are above 0.94 and 0.82 with relative CRMS at 10 
about 50% (Swift catchment for event 2 is an exception with CRMS at about 100%). The first is an intermittent 

event that lasted for 93 hours in June 2006; the second one is a 66-hour long event in November 2009. Mean rain 

rates (in mm/h) for the three catchments are 1.33, 0.87, 1.31 for the first event and 1.34, 1.22, 1.59 for the second 

event. It is noted that the concentration time increases as function of drainage area. The rainfall mass that triggered 

the June 2006 event is distributed around the outlet while the November 2009 event is spatially bimodal. 15 

Our last step is to remove the influences of non-zero initial condition of each event in the continuous simulations. 

For each event period, we run CREST by setting both rainfall and PET data to zero so as to output the “baseflow 

hydrograph”. This “baseflow hydrograph” gives or mimics the recession of flow with the initial condition over the 

event time period. The event flow hydrographs are subtracted by the baseflow hydrographs and the new event flow 

hydrographs are obtained for the subsequent analysis. 20 

4. Analytical Framework of Catchment Response 

The V2010 analytical framework quantifies the effects of spatiotemporal variability of rainfall, runoff generation, 

and routing on a basin’s flood response. The follow-up application by Viglione et al. (2010b) isolated the event 

flow component from baseflow, simulated using the Kamp model, and demonstrated the magnitudes of terms of 

catchment space-time processes represented in V2010. In our study, we extend the V2010 framework with the 25 
consideration that event flow consists of multiple components from the vertical layers of catchment (Figure 1). We 

illustrate the new framework using a two-component (surface and subsurface) flow generation process, consistent 

with the overland and interflow reservoir of CREST. Similar to V2010, our analytical framework estimates 

catchment response by three quantities: a) the amount of rainfall excess, b) the mean catchment response time, and 

c) the variance of catchment response time. These three quantities are proxies of the corresponding flood 30 
characteristics, namely, a) the cumulative event flow volume, b) the hydrograph centroid, and c) the spreadness of 

hydrograph. A two-stage framework structure that decomposes the catchment response to rainfall excess generation 

and runoff routing is adopted (Mejía & Moglen, 2010; Zoccatelli, et al., 2011; Mei, et al., 2014). Although a more 

detailed multi-stage framework could increase the rational of modeling (Zoccatelli, et al., 2015) in this study we 

considered the hillslope and channel routing processes as part of the runoff routing (described later in Eq.(3)). 35 
Specifically, we focus on deriving the analytical framework equations under the multi-component scenario 

described in sections 4.2 and 4.3. The variables used in the framework (rainfall, runoff coefficient, and runoff 

routing time) are attained from the CREST model parameters and are described in section 4.1. 

4.1. Analytical Framework Variables 
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The analytical framework has three input variables—the rainfall, the runoff coefficient, and the runoff routing time. 

The rainfall variable for the framework refers to the net amount of precipitation that reaches the catchment surface 

after actual evaporation loss and vegetation intercepted rainfall is subtracted and its partition in surface and 

subsurface runoff. The rainfall variable, P(a,t), is determined in this study as: 

 𝑃(𝑎, 𝑡) = 𝐶𝐼𝑃
′(𝑎, 𝑡) − 𝐸𝑎(𝑎, 𝑡) (1) 

where P’(a,t) and Ea(a,t) are actual precipitation (STIV precipitation) and evaporation rates (calculated by CREST 5 
in this study). Indexes a and t stand for the location and time dimensions. CI is the multiplier that conceptualizes 

the canopy. 

Most distributed hydrologic models separate the rainfall excess into two components—the surface and the 

subsurface rainfall excess—and route them by two parallel flow paths with different speeds and outflow rates. 

Namely, the flood response for catchment surface and subsurface are associated with different generations and 10 
routing mechanisms characterized by different runoff coefficients and runoff routing time. The surface process is 

intimately related to the fraction of impervious surface over the basin where the through-rainfall is converted to 

rainfall excess, which can be represented as a uniform parameter, IM, optimized through the hydrologic model 

calibration. Thus, the surface runoff coefficient, W2(a,t), is represented in the proposed framework by the 

imperviousness parameter, IM. Values of IM for the three catchments (from small to large) are 13.1%, 10.9%, and 15 
11.3%. On the other hand, the amount of runoff generated from the subsurface is positively correlated to the soil 

wetness based on the variable infiltration curve adopted by CREST. Thus, the subsurface runoff coefficient, W1(a,t), 

is estimated as: 

 𝑊1(𝑎, 𝑡) =
𝑆𝑀(𝑎, 𝑡)

𝑊𝑀
 (2) 

where SM(a,t) is the volumetric soil moisture (one of the model outputs), and WM is the maximum water capacity 

calibrated from the model. Overall, WM increases from the smallest to the largest basin (values are 106, 198 and 20 
249 mm). 

For runoff routing, CREST modeled the basin surface as hillslope and channel grids with different concentration 

times. The concept of concentration time is a measurement of the required time for the rainfall excess to drain from 

its originating grid to the next downstream grid. Travelling time of water from a given grid-cell is calculated as the 

summation of all the concentration time along its flow path to the basin outlet. Therefore, the runoff routing time 25 
is written as: 

 𝛩(𝑎) = 𝛼

[
 
 
 

∑
𝑙(𝑎)

𝑠(𝑎)𝛽𝐿ℎ(𝑎)⏟        
𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒

+
1

𝐾
∑

𝑙(𝑎)

𝑠(𝑎)𝛽𝐿𝑛(𝑎)⏟          
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ]

 
 
 

 (3) 

where l(a) and s(a) are the length of flow path from a grid to its adjacent downstream grid and the slope at that grid, 

respectively; Lh(a) and Ln(a) represents the space of hillslope and channel flow path from a grid-cell to the 

catchment outlet; K is the overland runoff velocity coefficient used to distinguish hillslope routing to channel 

routing; β is the flow speed exponent. Although hillslope and channel routing times are modeled by the same 30 
method they differ by the length of the respective flow paths and velocity; the sum of these two routing times yields 

the runoff routing time. The term α is a velocity coefficient that is used to distinguish the surface and subsurface 

routing. In our study, α is unity in Eq.(3) for the subsurface runoff routing time, Θ1(a); it takes values smaller than 

one to represent Θ2(a), the surface runoff routing time since surface routing should be faster than subsurface routing. 
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Values of α are 0.31, 0.63 and 0.67 for the study catchments. Therefore, routing times for the surface and subsurface 

processes are proportional to each other: 

 
𝛩2(𝑎)

𝛩1(𝑎)
= 𝛼 (4) 

Magnitudes of the spatially variable runoff routing time for the surface and subsurface processes are illustrated in 

Figure 3. The figure shows that runoff routing time increases going upstream. The Tar catchment (the largest one) 

is characterized by the widest value range compared to the other two sub-basins. The Swift catchment shows 5 
distinctively lower overall values for the surface runoff routing time (Θ2) due to its low α value (0.3 compared to 

above 0.6 for the other two). This is expected given that model parameters of the three catchments are independently 

calibrated. 

4.2. Generation of Rainfall Excess 

The generation of rainfall excess at location and time (a,t) is calculated as: 10 

 𝑅𝑖 = 𝑃𝑊𝑖 (5) 

where Ri, P and Wi are the space-time variable rainfall excess, precipitation, and runoff coefficient field. Index i 

indicates different rainfall excess components generated from the different vertical layers of surface and subsurface. 

In this study we used two layers (i = 1 & 2) to denote the subsurface and surface rainfall excess, respectively. The 

total rainfall excess is the summation of all the rainfall excess components: 

 𝑅 = 𝑃∑ 𝑊𝑖
𝑁

𝑖=1
 (6) 

Note that the sum of all Wi is the total runoff coefficient W. To calculate the instantaneous basin-average rainfall 15 
excess, we take the spatial expectation of Eq.(6): 

 [𝑅]𝑎 = [𝑃]𝑎∑ [𝑊𝑖]𝑎
𝑁

𝑖=1
+ {𝑃,∑ 𝑊𝑖

𝑁

𝑖=1
}
𝑎

 (7) 

where [ ]a and { }a stand for the expectation and covariance (variance if the variables are the same) operator applied 

over the catchment area. The distributed storm-average rainfall excess is given by taking the temporal expectation 

of Eq.(6): 

 [𝑅]𝑡 = [𝑃]𝑡∑ [𝑊𝑖]𝑡
𝑁

𝑖=1
+ {𝑃,∑ 𝑊𝑖

𝑁

𝑖=1
}
𝑡

 (8) 

The first term in Eq.(7)/(8) is the product between spatial or temporal average rainfall and runoff coefficient, while 20 
the second term quantifies the spatial or temporal variability between rainfall and runoff coefficient at every time 

step/catchment grid. 

Figure 4 and Figure 5 show the magnitudes of the different terms of Eq.(7) and (8), respectively. Note that since 

the surface runoff coefficient W2 is estimated as a space-time constant, the space and time covariance term between 

W2 and P (i.e. {P,W2}a and {P,W2}t) are 0 and are not shown. It is noted from Figure 4 that the catchment-average 25 
rainfall excess [R]a is strongly correlated to the catchment-average rainfall ([P]a shown in Figure 2) mainly because 

of the spatial covariance term {P,W1}a that is irrelevant to [R]a. This low magnitude of {P,W1}a indicates that rainfall 

and runoff coefficients are not collocated in space for the two pilot events. Meanwhile, the relative importance 

between [P]a[W1]a and [P]a[W2]a changes dynamically throughout the event where [P]a[W1]a and [P]a[W2]a are 

comparable during the early phase but [P]a[W1]a overwhelms in the mature and decaying phase of the event. This 30 
is attributed to the dynamics of [W1]a and [W2]a during the event as shown by the differences between [W1]a and 
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[W2]a on the top two panels of Figure 6. During the evolution of the event [W1]a-[W2]a start negative and change 

to positive, reflecting the increase in subsurface runoff coefficient [W1]a due to the increase in wetness condition 

of the catchment. This dynamic change in [W1]a and [W2]a also demonstrates why the surface rainfall excess 

component is the quick response from the model. In addition, the differences between [W1]a and [W2]a of the Swift 

catchment are noticeably larger than the other two catchments in Figure 6; this could be attributed to the lower 5 
maximum water capacity of the Swift catchment  compared to the other two. 

Figure 5 illustrates the temporal aggregated maps for terms in Eq.(8). The products between temporal average 

rainfall and runoff coefficient (i.e. [P]t[W1]t & [P]t[W2]t) account for the major contribution of the storm-average 

rainfall excess. The product term [P]t[W1]t is generally larger than [P]t[W2]t because [W1]t is larger than [W2]t as 

shown in the bottom two panels of Figure 6. This is exemplified for the Swift catchment due to its lower maximum 10 
water capacity. The temporal covariance between rainfall and subsurface runoff coefficient, {P,W1}t, is higher for 

the June 2006 event that exhibits more distinct rainfall bursts; and for the Swift catchment where W1 is more 

sensitive to rainfall dynamics. 

The temporal or spatial integration of Eq.(7)/(8) yields the catchment-average storm rainfall excess, [R]at (see 

Appendix I for details): 15 

 

[𝑅]𝑎𝑡 = [𝑃]𝑎𝑡∑ [𝑊𝑖]𝑎𝑡
𝑁

𝑖=1⏟            
𝑅1

+ {[𝑃]𝑎 ,∑ [𝑊𝑖]𝑎
𝑁

𝑖=1
}
𝑡⏟            

𝑅2

+ {[𝑃]𝑡,∑ [𝑊𝑖]𝑡
𝑁

𝑖=1
}
𝑎⏟            

𝑅3

+ [{(𝑃 − [𝑃]𝑡),∑ (𝑊𝑖 − [𝑊𝑖]𝑡)
𝑁

𝑖=1
}
𝑎

]
𝑡⏟                        

𝑅4

 

(9) 

where [ ]at is the space-time aggregation on the catchment area and event period. This equation indicates that the 

amount of total catchment-average storm rainfall excess is the sum of catchment-average storm rainfall excess from 

all components. Term R1 represents the sum of product between the catchment-average storm rainfall and runoff 

coefficient for all components. Term R2/R3 is the sum of temporal/spatial covariance between the catchment-

/storm-average rainfall and runoff coefficient. R4 is the sum of temporal covariance between spatial variation of 20 
precipitation and runoff coefficient. Moreover, V2010 has shown that the effect of storm movement can be isolated 

as R4-R2·R3/R1. This movement effect is also studied later. 

The magnitudes of terms in Eq.(9) along with the movement effect, MV, for the study events are illustrated in 

Figure 7 with statistics summarized in Table 1 (the two sample events are highlighted in the figure). Note that the 

R2, R3, R4, and MV for the surface component are zero due to the space-time constant surface runoff coefficient 25 
and thus are not shown. A term-wised comparison shows clearly that R1 is the most dominant contributor to [R]at. 

The figure and table reveal that the spatial and temporal correlation between rainfall and runoff coefficients is 

almost negligible. This is consistent with the previous studies which show generally low magnitudes of the R2, R3, 

and R4 but high R1 (Viglione, et al., 2010b; Mejía & Moglen, 2010). The relatively low magnitudes of term {P,W1}a 

and {P,W1}t in Figure 4 and Figure 5 also agree with this observation. The fairly low magnitudes of space and time 30 
covariance lead to insignificant movement effect (mean at 10-3 mm/h from Table 1). Investigation on R1 (the most 

significant term) shows a decrease in magnitude with basin scale. This dampening effect has different reasons for 

the two rainfall excess components. For the surface component, the diminishing in magnitude with increase in scale 

is a result of the decrease in catchment-average rainfall given that W2 is constant among catchments. For the 

subsurface process, this is due to both the decrease in runoff coefficient and catchment-average rainfall. Moreover, 35 
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Table 1 reveals that the subsurface component generally outperforms the surface one in contribution to R1. Yet this 

magnitude differences are diminishing from the smallest to the largest catchment since the gap between W1 and W2 

is narrowing. 

4.3. Catchment Response Time 

The catchment response is conceptualized by two stages—rainfall on the catchment and a portion of it turning into 5 
rainfall excess; then the rainfall excess is routed to the catchment outlet (Zoccatelli, et al., 2011; Mei, et al., 2014). 

These two stages are associated with their own “holding times” which are treated as random variables (Rodríguez-

Iturbe & Valdés, 1979). The catchment response time is the sum of these two holding times and thus is also a 

random variable. It measures the time needed from the beginning of a storm to a drop of rainwater exiting the 

catchment outlet, whose probability distribution function (PDF) for the i-th rainfall excess component, fRi, is 10 

 𝑓𝑅𝑖 =
𝑅𝑖

[𝑅𝑖]𝑎𝑡
 (10) 

Note that fRi is a space-time variable. Thus, the PDF for total rainfall excess, fR, can be written as: 

 𝑓𝑅 =∑ 𝜓𝑖𝑓𝑅𝑖

𝑁

𝑖
 (11) 

where ψi is the rainfall excess ratio defined as the ratio of catchment-average storm rainfall excess for a component 

to that for the total rainfall excess: 

 𝜓𝑖 =
[𝑅𝑖]𝑎𝑡
[𝑅]𝑎𝑡

 (12) 

Sum of ψi goes up to 1 by definition. Eq.(11) shows that the PDF of catchment response time is a convex 

combination for each PDF of the rainfall excess component. 15 

4.3.1. Expectation of Catchment Response Time 

For the two-stage analytical framework in this study, the expectation of catchment response time E(Tq) can be 

decomposed to the expectation of holding time of the two stages: 

 
𝐸(𝑇𝑞) = 𝐸(𝑇𝑟)⏟  

𝑆𝑡𝑎𝑔𝑒1

+ 𝐸(𝑇𝑛)⏟  
𝑆𝑡𝑎𝑔𝑒2

 
(13) 

where Tr and Tn correspond to the rainfall excess generation time and runoff routing time. The rainfall excess 

generation time is represented by the instantaneous time, T. Thus, the expected rainfall excess generation time, 20 
Ei(Tr,i), for any component is provided as (see Appendix II): 

 𝐸𝑖(𝑇𝑟,𝑖) =
|𝑇𝑃|

2
+
{𝑇, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

 (14) 

where |TP| is the duration of the rainfall event. Ei(Tr,i) is a measurement of the temporal mass center of rainfall 

excess. If the rainfall mass is symmetric with respect to its mid-point, the half-duration is sufficient to describe the 

expectation of rainfall excess generation. Following the distribution function of Eq.(11), we derived the expected 

rainfall generation time for total rainfall excess E(Tr) as (see Appendix II for the derivation): 25 

 𝐸(𝑇𝑟) =∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖)
𝑁

𝑖
 (15) 

Eq.(15) indicates that the temporal mass center of total rainfall excess is a linear combination (or the expectation) 

of the mass centers of all the other rainfall excess components with respect to the rainfall excess ratio. The equation 
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also implies that the larger the magnitude of a component, the greater impact it has on the timing of the total rainfall 

excess. Substituting Eqs.(12) and (14) into Eq.(15), we have,  

 𝐸(𝑇𝑟) =
|𝑇𝑃|

2⏟
𝐸1

+
{𝑇,∑ [𝑅𝑖]𝑎

𝑁
𝑖 }

𝑡

[𝑅]𝑎𝑡⏟        
𝐸2

 (16) 

E1 refers to the event half-duration and E2 is the expectation of time distance from the event midpoint to the 

temporal mass center of catchment-average rainfall excess. 

The magnitudes of terms in Eq.(16) are illustrated in Figure 8 (left panel) and summarized in Table 2 (first three 5 

rows). At a first glance, the expectation of catchment response time is increasing with the basin area due to the 

increase in event duration. The magnitude of the half-duration is of more relevance to E(Tr), while the temporal 

covariance term can be an important contributor for a portion of events. This means that rainfall excess is not 

symmetric with respect to the event’s mid-point. E2 of the surface component is higher than the subsurface 

counterpart in magnitude. This is interpreted to mean that the surface rainfall excess preserves the temporal 10 

dynamics of catchment-average rainfall due to the constant runoff coefficient. On the other hand, for the subsurface 

component, the temporal characteristics of rainfall have been dampened through its interaction with runoff 

coefficients. This leads to a more symmetrically distributed time series based on the mid-point. Besides, Table 2 

implies that the temporal locations of rainfall excess mass center appear earlier than the event’s mid-point by 

rendering negative mean values of E2. Lastly, we observe that the E2 term of the June 2006 event is characterized 15 

by a larger value (20 hours) than the other events (mean of E2 are all within 7 hours in Table 2). This can be 

interpreted by its increasing trend in rain rate with time exhibited in the time series of Figure 2. 

Holding time for the runoff routing stage is modeled by the spatial variable runoff routing time (Θi) detailed in 

section 4.1. The expectation of the runoff routing time, Tn,i, for the rainfall excess component is derived as 

(Appendix III): 20 

 𝐸𝑖(𝑇𝑛,𝑖) = [𝛩𝑖]𝑎 +
{𝛩𝑖, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

 (17) 

The first term stands for the catchment-average runoff routing time and the second term quantifies the delay in 

response due to spatial covariance between runoff routing time and storm-average rainfall excess. Analogously, we 

describe the relationship between Ei(Tn,i) and E(Tn). As a first step, an analytical relationship linking Θi and Θ 

together is required. Knowing that runoff routing time for the total rainfall excess should be between those for the 

slowest and fastest components, we assume Θ is a linear combination of all Θi with respect to the rainfall excess 25 
ratio ψi: 

 𝛩 =∑ 𝜓𝑖𝛩𝑖
𝑁

𝑖
 (18) 

Under such an assumption, Θ neither goes beyond nor below the slowest and quickest responses. Also, we simply 

assume that the ratio between each two Θi is a space-time constant: 

 𝛼𝑖 =
𝛩𝑖
𝛩1

 (19) 

This is consistent with the CREST model as shown in Eq.(4). Based on Eq.(19), α1 is always 1 and α2 is the α 

parameter of Eq.(4). From Eqs.(18) & (19), we may further write: 30 
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 𝛩 = 𝜉𝑖𝛩𝑖 (20) 

where 

 𝜉𝑖 =
1

𝛼𝑖
∑ 𝜓𝑖𝛼𝑖

𝑁

𝑖
 (21) 

ξi is the ratio between the weighted average of αi (with respect to ψi) and αi. It is a measure of disparity in routing 

time from a rainfall excess component to the total one. It accounts for the hydrologic and geomorphologic effects 

as the inclusion of ψi and αi. With Eq.(20), the expectation of Tn is derived as (see Appendix III): 

 𝐸(𝑇𝑛) =∑ 𝜓𝑖𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖)
𝑁

𝑖
 (22) 

Mathematically, Eq.(22) indicates that E(Tn) is the expectation of ξiEi(Tn,i), but not Ei(Tn,i), with respect to ψi. Eq.(22) 5 
implies that both the hydrologic and geomorphologic effects are accounted for by combining all the Ei(Tn,i) 

components in E(Tn). Substituting Eqs.(12) and (17) into Eq.(22), E(Tn) can be written as: 

  𝐸(𝑇𝑛) = 𝜉𝑖[𝛩𝑖]𝑎⏟    
𝐸3

+
𝜉𝑖{𝛩𝑖, ∑ [𝑅𝑖]𝑡

𝑁
𝑖 }

𝑎

[𝑅]𝑎𝑡⏟          
𝐸4

 (23) 

E3 stands for the spatial mean of runoff routing time in the hillslope and channel network. E4 is the expected 

distance from the geomorphologic center of catchment to the centroid of storm-average rainfall excess. 

The right panel of Figure 8 shows the magnitude of terms from Eq.(23) for all events with the mean magnitude 10 

reported in the middle three rows of Table 2. As expected, E(Tn) increases according to catchment drainage area, 

which is mainly attributed to the elongation in flow path (i.e. increases in E3). The spatial covariance term (E4) is 

low, indicating that the contours of rainfall excess are not followed by the contours of isochrones for runoff routing 

(Woods & Sivapalan, 1999; Sangati, et al., 2009; Viglione, et al., 2010b; Volpi, et al., 2012). This is anticipated 

given the low elevation and mild slope topographic setups of the study region causing no orographic pattern in 15 

rainfall excess. Component-wisely speaking, the subsurface routing is taking longer time than the surface one as 

shown in Figure 3. Under the relationship specified by Eq.(22), values of the total E(Tn) is in between the subsurface 

and surface E(Tn). We also observe from the figure that E(Tn) of the two components are getting closer to the total 

E(Tn) with the increase of the drainage area. This reflects the trend of change in mean ξ where mean ξ for the two 

components are getting closer from Swift to Tar given that the two ψ values remain relatively unchanged. The June 20 

2006 event is an example showing that the subsurface process is characterized by negative spatial covariance (E4 

is about -4 hours for all catchments). This is explained by its outlet concentrated cumulative rainfall (Figure 2). 

Moreover, comparing E(Tr), E(Tn), and E(Tq) in Table 2, we note that the delay in catchment response is increasing 

with drainage area; contribution to E(Tq) from the two stages are comparable in magnitude, with E(Tr) been mostly 

larger than E(Tq). 25 

4.3.2. Variance of Catchment Response Time 

In the two-stage analytical framework, the variance of catchment response time is contributed by the variances 

introduced from the holding time of each of the stages and the covariance between holding time of the two stages. 

We write: 
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𝑣𝑎𝑟(𝑇𝑞) = 𝑣𝑎𝑟(𝑇𝑟)⏟    
𝑆𝑡𝑎𝑔𝑒1

+ 𝑣𝑎𝑟(𝑇𝑛)⏟    
𝑆𝑡𝑎𝑔𝑒2

+ 2𝑐𝑜𝑣(𝑇𝑟 , 𝑇𝑛)⏟        
𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡

 
(24) 

For stage 1, the variance of delay in rainfall excess generation for a rainfall excess component is provided as (see 

Appendix IV): 

𝑣𝑎𝑟𝑖(𝑇𝑟,𝑖) =
|𝑇𝑃|

2

12
+

{𝑇2, [𝑅𝑖]𝑎}𝑡 − |𝑇𝑃|{𝑇, [𝑅𝑖]𝑎}𝑡 −
({𝑇, [𝑅𝑖]𝑎}𝑡)

2

[𝑅𝑖]𝑎𝑡
[𝑅𝑖]𝑎𝑡

 
(25) 

vari(Tr,i) represents the variance of instantaneous time with respect to the temporal distribution of rainfall excess; 

the second term takes null for temporal uniform rainfall excess or rainfall excess concentrated purely on the event 

mid-point.  5 

For total rainfall excess, the variance of delay in rainfall excess generation, var(Tr), is correlated with vari(Tr,i) as 

(see Appendix IV for derivations): 

𝑣𝑎𝑟(𝑇𝑟) =∑ 𝜓𝑖𝑣𝑎𝑟𝑖(𝑇𝑟,𝑖)
𝑁

𝑖
+∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖) − 𝐸(𝑇𝑟)]

2𝑁

𝑖
 (26) 

The first term is clearly the expectation of variance from all the other components. It signifies that the larger the 

rainfall excess component, the stronger the control in dispersion of the total rainfall excess. The second term is the 

variability of Ei(Tr,i) that arises since variance is not a linear operator. It measures the mean difference in the 10 
temporal mass center between each of the component to the total rainfall excess. The first and the second term 

account for the intra- and inter-component variability. Substituting in Eqs.(14), (16), & (25) to Eq.(26), a complete 

form is given as:  

𝑣𝑎𝑟(𝑇𝑟) =
|𝑇𝑃|

2

12⏟
𝑣1

+
{𝑇2, ∑ [𝑅𝑖]𝑎

𝑁
𝑖 }

𝑡
− |𝑇𝑃|{𝑇, ∑ [𝑅𝑖]𝑎

𝑁
𝑖 }

𝑡
−
∑ ({𝑇, [𝑅𝑖]𝑎}𝑡)

2𝑁
𝑖

[𝑅𝑖]𝑎𝑡
[𝑅]𝑎𝑡⏟                                  
𝑣2

 

+∑ 𝜓𝑖 (
{𝑇, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

−
{𝑇,∑ [𝑅𝑖]𝑎

𝑁
𝑖 }

𝑡

[𝑅]𝑎𝑡
)

2
𝑁

𝑖⏟                        
𝐿𝑇𝑟

 

(27) 

Term v1 stands for the variance in time generated by a temporal invariant catchment-average rainfall excess. Term 

v2 represents component-wised mean of additional variance caused by the temporal variation in catchment-average 15 
rainfall excess. The last term is named LTr and represents the mean square of “time lag” (between each component 

to the total) in rainfall excess generation. 

Results for Eq.(27) are illustrated in the left panel of Figure 9 and the first four rows of Table 3. The major source 

of var(Tr) is the variance of event duration (v1). However, the additional variance caused by the temporal interaction 

between rainfall excess and time (v2) is not negligible. This states that the distributions of rainfall excess of the 20 
events are not uniform in time (Woods & Sivapalan, 1999; Viglione, et al., 2010b). Additionally, event time series 

of the two rainfall excess components are equally dispersed during the event period given the fairly close var(Tr) 

values (only the Swift case shows medium difference). This is exemplified by Figure 4 where the shapes of time 

series for the two components are quite close in the Fishing and Tar case but a bit more deviated in the Swift. 

Besides, by comparing the time series of the two test events we can see that the June 2006 event is characterized 25 
by multiple peak rainfall values, while the November 2009 is closer to a single-peak event. This general differences 

in shapes are well described by the positive and negative sign of term v2 for the first and second event. Results 
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from the figure and table also suggest that the magnitude of “time lag” term (LTr) is irrelevant. A better visualization 

of reason is provided by the sample events time series in Figure 4. Most of the temporal variability of rainfall is 

preserved in the time series as we can see from the shapes of [P]a[W1]a and [P]a[W2]a. Inspection on var(Tr) reveals 

that although the magnitudes of v1, v2 and LTr show no scale-dependency, their combination, var(Tr), is increasing 

with drainage area. 5 

For the runoff routing stage, we derive the variance of runoff routing time for any rainfall excess component, 

vari(Tn,i), as (refer to Appendix V): 

𝑣𝑎𝑟𝑖(𝑇𝑛,𝑖) = {𝛩𝑖}𝑎 +
{𝛩𝑖

2, [𝑅𝑖]𝑡}𝑎 − 2
[𝛩𝑖]𝑎{𝛩𝑖, [𝑅𝑖]𝑡}𝑎 −

({𝛩𝑖, [𝑅𝑖]𝑡}𝑎)
2

[𝑅𝑖]𝑎𝑡
[𝑅𝑖]𝑎𝑡

 
(28) 

The first term is the spatial variance of the runoff routing time. The second one accounts for the additional variance 

introduced by the interaction between time average rainfall excess and the runoff routing time. If the rainfall excess 

is spatially uniform or concentrated on the isochrones representing the mean runoff routing time (i.e. [Θ]a), the 10 
second term vanishes. 

We may derive the variance of delay in runoff routing, var(Tn), as (see Appendix V): 

𝑣𝑎𝑟(𝑇𝑛) =∑ 𝜓𝑖𝜉𝑖
2𝑣𝑎𝑟𝑖(𝑇𝑛,𝑖)

𝑁

𝑖
+∑ 𝜓𝑖[𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖) − 𝐸(𝑇𝑛)]

2𝑁

𝑖
 (29) 

Similarly, var(Tn) has two terms accounting for the intra- and inter-component variability of runoff routing. The 

first term is a linear combination of ξi
2vari(Tn,i); it highlights the combined effect from hydrology and 

geomorphology in the intra-component variability. The second term is the variance of ξiEi(Tn,i); it quantifies the 15 
squared mean distance in spatial mass center between all components to the total. Hence, var(Tn) may be rewritten 

as: 

𝑣𝑎𝑟(𝑇𝑛) = 𝜉𝑖
2{𝛩𝑖}𝑎⏟    
𝑣3

+
𝜉𝑖
2{𝛩𝑖

2, ∑ [𝑅𝑖]𝑡
𝑁
𝑖 }

𝑎
− 2𝜉𝑖

2[𝛩𝑖]𝑎{𝛩𝑖, ∑ [𝑅𝑖]𝑡
𝑁
𝑖 }

𝑎
−
∑ 𝜉𝑖

2({𝛩𝑖, [𝑅𝑖]𝑡}𝑎)
2𝑁

𝑖

[𝑅𝑖]𝑎𝑡
[𝑅]𝑎𝑡⏟                                          
𝑣4

 

+∑ 𝜓𝑖
𝑁

𝑖
𝜉𝑖
2 (
{𝛩𝑖, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

−
{𝛩𝑖, ∑ [𝑅𝑖]𝑡

𝑁
𝑖 }

𝑎

[𝑅]𝑎𝑡
)

2

⏟                            
𝐿𝑇𝑛

 

(30) 

Term v3 represents the variance in time generated by a spatial invariant storm-average rainfall excess. Term v4 is 

the mean of additional variance caused by the spatial variation in storm-average rainfall excess. The term LTn 

represents the mean of “time lag” in runoff routing between rainfall excess components to the total. 20 

The magnitudes of terms in Eq.(30) are plotted in the middle panel of Figure 9 with mean statistics listed in Table 

3 (the middle four rows). Results suggest that v3 is the main contributor of var(Tn) compared to the additional 

spatial variance (v4). v4 is positively skewed as shown in the figure with negative mean, indicating that the event 

rainfall excess tends to be concentrated by the catchment (i.e. spatially unimodal pattern) (Zoccatelli, et al., 2011; 

Mei, et al., 2014). v4 is low in magnitude because, again, there is little spatial correlation between the location of 25 
isochrones for runoff routing and the rainfall excess under the study area’s topographic setups. Component-wised 

comparison reveals that the variance of delay in runoff routing of the surface rainfall excess are smaller than the 

subsurface one. This is ascribed to the larger magnitude of Θ1 and [R1]at than Θ2 and [R2]at. Besides, results suggest 
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negligible “time lag” term (LTn) in contribution to the total variance of runoff routing, meaning that the spatial mass 

center of rainfall excess for the two rainfall excess components are fairly close to the total one. This is an expected 

result because of the highly similar spatial pattern of rainfall excess and runoff routing for the two components. 

Observations of the two sample events demonstrate that v4 for the November 2009 event is closer to null (for 

instance v4 of the Tar catchment is 4 h2 compared to 50 h2 of the June 2006 event). This is substantiated by the 5 
generally more uniformly distributed rainfall excess pattern of the November event ([R]t in Figure 5). Moreover, 

we compare the values of var(Tn) and var(Tr) from the results. Obviously var(Tr) dominates var(Tq) where the mean 

of var(Tr) are at least more than 3 times of the mean of var(Tn). 

The covariance term in Eq.(17) is often interpreted as an indicator of “movement of storm”, resulting from the 

relaxation of “stationary rainfall” assumption. The so-called “movement of storm” is not just the geographic 10 
movement, it also accounts for the change in space-time dynamic of rainfall excess with respect to the runoff 

routing during the storm period (Viglione, et al., 2010a; Zoccatelli, et al., 2011; Nikolopoulos, et al., 2014; Mei, et 

al., 2014). The form of covi(Tr,Tn) is written as (refer to Appendix VI for details): 

 𝑐𝑜𝑣𝑖(𝑇𝑟,𝑖, 𝑇𝑛,𝑖) =
{𝑇, {𝛩𝑖, 𝑅𝑖}𝑎}𝑡

[𝑅𝑖]𝑎𝑡
−
{𝑇, [𝑅𝑖]𝑎}𝑡{𝛩𝑖, [𝑅𝑖]𝑡}𝑎

[𝑅𝑖]𝑎𝑡
2  (31) 

This term is the additional variance generated from the correlation in runoff generation and routing. Positive and 

negative covariance are interpreted as the centroid of rainfall excess moving towards the catchment portion with 15 
longer or shorter runoff routing time (near periphery or outlet) as the event evolves.  

The covariance term in our multi-component assumption may be written as (see Appendix VI): 

𝑐𝑜𝑣(𝑇𝑟, 𝑇𝑛) =∑ 𝜓𝑖𝜉𝑖𝑐𝑜𝑣𝑖(𝑇𝑟,𝑖 , 𝑇𝑛,𝑖)
𝑁

𝑖
+∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖)𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖) − 𝐸(𝑇𝑟)𝐸(𝑇𝑛)]

𝑁

𝑖
 (32) 

The covariance operator also results in two terms where the first one is the component-wise expectation of 

covariance between Tr,i and ξiTn,i with respect to ψi; it measures the coevolution of all rainfall excess components 

over catchment and event period. The second term is the covariance between Ei(Tr,i) and ξiEi(Tn,i); positive or 20 
negative value of the second term implies that rainfall excess components with temporal mass centers distance from 

the early phase of event are located closer to the catchment portion with larger or smaller routing time (catchment 

periphery or outlet). Based on this interpretation, the inter-component covariance should be very small in most of 

the cases happening in the nature; this is because there is no restriction that a rainfall excess component with time 

center further away from the event mid-point should be centered over isochrones with longer routing time or vice 25 
versa. ξi is not subjected to the covariance operator and can be moved out. Combining Eqs.(31) & (32), cov(Tr,Tn) 

may be further written as: 

𝑐𝑜𝑣(𝑇𝑟, 𝑇𝑛) =
∑ 𝜉𝑖 ({𝑇, {𝛩𝑖, 𝑅𝑖}𝑎}𝑡 −

{𝑇, [𝑅𝑖]𝑎}𝑡{𝛩𝑖, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

)𝑁
𝑖

[𝑅]𝑎𝑡⏟                              
𝑐

 

+∑ 𝜓𝑖𝜉𝑖 (
{𝑇, [𝑅𝑖]𝑎}𝑡{𝛩, [𝑅𝑖]𝑡}𝑎

[𝑅𝑖]𝑎𝑡
2 −

{𝑇,∑ [𝑅𝑖]𝑎
𝑁
𝑖 }

𝑡
{𝛩𝑖, ∑ [𝑅𝑖]𝑡

𝑁
𝑖 }

𝑎

[𝑅]𝑎𝑡
2 )

𝑁

𝑖⏟                                          
𝐿𝑇𝑟𝑇𝑛

 

(33) 

Magnitudes of terms in Eq.(33) for the surface and subsurface component and the total are rendered in the right 

panel of Figure 9 with mean of terms reported in Table 3. Note that the magnitudes of terms have been multiplied 
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by 2 given the mass conservation in Eq.(24). Values of the covariance terms are almost symmetrically distributed 

at 0 and slightly positively skewed. This observation indicates that there is no clear tendency for the storm 

movement. This is again explained by the fact that there is no preferred spatial pattern of rainfall over the study 

region with negligible orographic enhancement. The LTrTn term reveals an insignificant effect from the inter-

component covariance between the temporal and spatial mass center of rainfall excess. This result supports our 5 
first guess on the magnitude of LTrTn. Due to the low LTrTn, cov(Tr,Tn) is mainly manipulated by c. Inspection on 

magnitudes of the two rainfall excess components demonstrates that the correlation between Tr and Tn for the 

subsurface one is higher. Meanwhile, we observe an increase of cov(Tr,Tn) magnitude from the Swift to the Tar 

catchment, consisting of the positive scale dependency in magnitude of storm movement concluded in Mei et al. 

(2014) over the same area. In all, the movement effect of rainfall excess in variance of catchment response is 10 
relatively insignificant in the study region. 

5. Role of the Analytical Framework on Flood Characteristics 

The rainfall and catchment surface properties are intimately related with the generation of flood. Specifically, the 

analytical framework quantities, [R]at, E(Tq), and var(Tq), are correlated with the cumulative volume (V), centroid 

(C), and spreadness (S) of event flow time series, respectively (Sangati, et al., 2009; Viglione, et al., 2010a; 2010b; 15 
Mejía & Moglen, 2010; Volpi, et al., 2012). To address the question of how sensitive the framework quantities are 

to the flood characteristics, we conducted sensitivity tests with respect to the flow simulations and observations in 

this section. The V, C, and S, which quantify the catchment flood response are defined as: 

 𝑉 = ∫ 𝑄(𝑡) 𝑑𝑡
𝑇𝐹

 (34) 

 𝐶 =
∫ 𝑡 ∙ 𝑄(𝑡) 𝑑𝑡
𝑇𝐹

∫ 𝑄(𝑡) 𝑑𝑡
𝑇𝐹

 (35) 

 𝑆 = √
∫ (𝑡 − 𝐶)2𝑄(𝑡) 𝑑𝑡
𝑇𝐹

∫ 𝑄(𝑡) 𝑑𝑡
𝑇𝐹

 (36) 

where Q(t) is either the simulated or observed event flow time series; TF correspond to the flood event period. V 

reflects the magnitude of cumulative flow of a flood event while C and S are related to the shape of flood event 20 
hydrograph. Specifically, C is the temporal location of mass center of the hydrograph which can be used to 

surrogate the time to peak (for single peak hydrographs); S represents the temporal degree of dispersion with respect 

to C; typically for a unimodal event the larger S indicates less concentrated peak for the hydrograph. 

Results of the sensitivity tests with respect to simulations and observations are illustrated in Figure 10 and Table 4. 

Overall, the catchment-average cumulative rainfall excess ([R]at|TP|) shows relatively high consistency with the 25 
cumulative flow volume derived by the model simulations (upper left panel), especially for the Fishing and Tar 

catchments where the mean of mean error (ME) are within 1 mm for the events. For the Swift cases, a fairly slight 

overestimation of V by merely 3 mm (in terms of mean ME) is observed. Table 4 also provides the centered root 

mean square (CRMS) as an indicator of the random error in estimating V. Magnitudes of CRMS are fairly small at 

around 1.5 mm, considering that these are produced based on cumulative volume. A comparison between ME and 30 
CRMS gives more insights on the performance of the analytical framework. Random error is the main error source 
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for the Fishing and Tar cases, while in the Swift, systematic overestimation is more dominated. On the other hand, 

comparisons between the framework [R]at|TP| and V derived from the observed flow shows significant reduction 

in linearity of the relationship (upper right panel of Figure 10). This is also reflected by the higher CRMS values in 

Table 4 (CRMS of V compared to the observations are at least 3 mm larger than those compared with the model 

simulations). ME with respect to the observed V for the Fishing and Tar catchments are still relatively low (lower 5 
than the CRMS of V) while the Swift case is characterized by 5.4 mm of ME. In all, the analytical framework 

provides reliable estimation on the cumulative volume, especially when compared to the model simulations, given 

the low magnitudes of ME and CRMS. The sensitivity of framework predicted cumulative volume shows noticeable 

drop from comparing with the model simulations to the observed flow. 

The middle panel of Figure 10 demonstrates the correlation between expectation of catchment response time and 10 
centroid of flood event. Both of the sensitivity tests against the flow simulations and observations show that E(Tq) 

are positively correlated with C but with apparent underestimations. For the simulation-based sensitivity test, the 

systematic underestimation on event centroid is about 35 hours for events from the smallest basin and increases to 

40 hours for events from the largest basin. The random components of error are within 20% of the systematic one 

in magnitude. Results of the observation-based sensitivity test indicates lower systematic error by the analytical 15 
framework but, as expected, higher degree of random error (ME are about 80% of the simulated-based tests but 

CRMS are twice as those). This signifies that the main issue in estimation of C is the systematic underestimation 

from the analytical framework. This underestimation lies in the simplified structure of the analytical framework 

compared to a distributed hydrologic model in both land surface and routing processes. In the land surface process 

during the early phase of the event, precipitation is principally used to fill the water capacity of catchment under 20 
the infiltration excess; after a certain time period, flow rate rises rapidly with the existence of precipitation because 

of the saturation excess process. This can be visualized by the sample events time series in Figure 2. Consequently, 

the inclusion of precipitations before the functioning of saturation excess advances the temporal mass center of 

rainfall, leading to underestimation of the mass center location. Furthermore, in the analytical framework a water 

parcel is approximated traveling at a constant speed once it enters the basin while the linear reservoir routing 25 
scheme of CREST only discharges a portion of the water amount from the total storage in a given grid cell, which 

in turn, increases the equivalent travelling time. Given that the hydrologic simulations provide reasonable 

performance with respect to the observed flow, systematic underestimation by E(Tq) to the observations-derived C 

is also seen. 

The spreadness is compared to the standard deviation of the catchment response time (square root of variance of 30 
the catchment response time) in the last panel of Figure 10. Systematic underestimation is still the major source of 

error in the estimation for the simulation-based tests. Its magnitudes are about -12 hours and the magnitudes 

decrease with increasing spreadness. ME of the observed-based sensitivity tests also reveal systematic 

underestimation but to lesser significance against the simulation-based ones. The random error reaches similar 

magnitudes of systematic error (about 9 hours) due to the increase in nonlinearity of the √var(Tq)-to-S relationship. 35 
The underestimation in S is also originated from the differences in structure of a distributed hydrologic model and 

the framework. During the early phase of event, the infiltration excess is the dominant mechanism for runoff 

generation. Under such a condition, the flow rate rises gradually and the hydrograph tends to be smooth, implying 

high spreadness. One can take the November 2009 event as an example; instead of having one rapid rising, the 

Swift catchment hydrograph has two rising limbs due to the switch in rainfall excess generation mechanism. This 40 
bi-modal shape introduces larger spreadness compared to a unimodal rising shape. A similar argument regarding 

the influence of infiltration excess on runoff generation has been reviewed in Mei et al. (2014). Their study argues 
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that the low sensitivity between shape error of rainfall and simulated runoff shown for the events is because most 

of the events from the Tar region do not have a bank-full condition. On the other hand, the equivalent travel time 

in the runoff routing is underestimated, and this underestimation is increasing with the length of water path given 

that Θ represents a cumulative sum along water path (Eq.(3)). This leads to underestimation in the variability of 

travelling time by the framework. To sum up, the analytical framework works better in predicting the spreadness 5 
of hydrograph compared to the centroid. Mean values of ME for S are approximately 38% of the C case for the 

comparisons with simulated and observed flow, respectively. 

6. Conclusions 

We presented an expansion of V2010 hydrologic analytical framework under the consideration of multiple 

components in catchment flood response. To demonstrate the framework in this study we fixed the flow generation 10 
components to two (surface and subsurface), and used a distributed hydrological model (CREST) to provide the 

necessary framework parameters and event flow hydrographs. We demonstrated the framework based on a large 

number of flood events that occurred between 2003 and 2012 over three sub-catchments of the Tar River basin. 

Two of the flood events were used for a detailed demonstration of the framework. Sensitivity tests were rendered 

to investigate the correlation between framework and flood characteristics. The findings from this study are 15 
summarized below. 

For the aspect of rainfall excess generation, we showed that the amount of rainfall excess generation is inverse 

proportional to catchment size. The most significant contribution came from the product term between space-time 

aggregated rainfall and runoff coefficients, while spatial and temporal correlation and movement effects were not 

significant. In addition, it was shown that the subsurface component outperformed the surface component of runoff 20 
in the contribution to rainfall excess generation, but this difference diminished in larger catchments. 

The expectation of catchment response time was also investigated. We found that the total rainfall excess generation 

time is a linear combination of the expected generation times of all rainfall excess components weighted by their 

rainfall excess ratio. The total runoff routing time is also a combination of routing times of all rainfall excess 

components weighted according to their rainfall excess ratio. Results show that both rainfall excess generation and 25 
runoff routing stages are important to the timing of the catchment response. The length of the rainfall event and the 

magnitude of the runoff routing time play a significant role in controlling the timing of the hydrograph. Delay in 

response due to the spatial and temporal correlation term is low. The total catchment response time was shown to 

be closer to the subsurface rainfall excess one, indicating a higher degree of influence, which agrees with the higher 

rainfall excess ratio for the subsurface component. However, the value gap between components is narrowing from 30 
small to large catchment area. 

For the variance of catchment response time, our findings showed that the total variance in rainfall excess 

generation comes from two parts—the linear combination of all components variance and the variance of expected 

rainfall excess generation time for components. These two parts account for the intra- and inter-component 

variability, respectively. The total variance in delay due to the runoff routing stage is consisted of two parts—a 35 
combination of variances from all the other components and the variance of expected runoff routing time with the 

participation of the hydrologic and geomorphologic related coefficients. Analogously, the covariance between 

holding time of the two stages also consists of two parts—the expectation of component covariance and the 

covariance between expectations of rainfall excess generation and runoff routing. Results revealed that variance of 
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the rainfall excess generation stage is of higher importance than that of the runoff routing stage. For stage 1, the 

variance from rainfall duration was more important than the additional variance from temporal interactions between 

rainfall excess and time. For stage 2, the spatial variance of runoff routing time outperformed the additional 

variance that rose from the spatial interaction between rainfall excess and runoff routing. Additionally, variance of 

the surface component was closer to the total variance, indicating a higher degree of influence. Furthermore, the 5 
inter-component variability was negligible compared to the intra-component variability. 

Results from the sensitivity analysis revealed that the framework is characterized by relatively low random errors 

in estimating the flood characteristics. The random errors were larger in the observations-based sensitivity tests 

compared to the simulation-based ones. A slight overestimation was found in the Swift catchment on the estimation 

of cumulative flow volume. Systematic underestimation in event centroid and spreadness were notable, especially 10 
for the timing issue, which demonstrates an increasing trend with catchment scale. Moreover, for the simulation-

based sensitivity tests, the underestimation of spreadness was reduced with the increase in magnitude of spreadness. 

From the herein analytical framework results, we showed that magnitudes of the new “time lag” terms are low. We 

believe this is not a general finding because the surface runoff coefficient was represented by a constant 

imperviousness ratio (IM) for this study and the runoff routing times for the two components had the same spatial 15 
pattern (differed merely in magnitude by the constant α). Future studies will need to replace the constant 

imperviousness ratio by a spatially distributed variable to mimic the spatial variability of the very fast flood 

response of a catchment. Also, we suggest using spatially varied αi to better represent the differences in routing 

among excess rainfall components. This is particularly useful in analyzing the flood response of urbanized 

catchments where the distribution of excess rainfall into different vertical soil layers is quite different between the 20 
highly impervious urban areas (e.g. roads, rooftops, parking lots, etc.) and the more pervious suburban or rural 

areas of the basin  (Smith, et al., 2002; Mejía & Moglen, 2010; Mejía, et al., 2015). We believe the “time lag” terms 

could be important for flood response of the urbanized catchment and our new framework can serve as a diagnostic 

tool to verify the significance of these terms. 

We acknowledge certain limitations of our analytical framework study. The framework variables and flow 25 
simulation are dependent on the distributed hydrologic model devised in this study (e.g. vegetation interception, 

imperviousness areas, coefficient α, etc.). Since the retrievals of framework variables are based on the model 

structure and parameterization, the way a variable is calculated could vary across models, while in certain models 

such an explicit parameter may not be available. An alternative path to circumventing this issue is to apply directly 

observed data for the calculation of the analytical framework variables. For instance, the vegetation interception 30 
can be estimated from the leaf area index data (Xiao, et al., 2014); database of the impervious area are provided in 

certain data rich locations (Homer, et al., 2015); and the spatial patterns of runoff coefficients could be retrieved in 

highly gauged catchments or from satellite-derived soil moisture fields at global scale (Merz & Blöschl, 2009; 

Penna, et al., 2011; Dhakal, et al., 2012; Massari, et al., 2014); and the parameters related to runoff routing could 

be estimated based on the geomorphologic properties of catchments (Shen, et al., 2017). 35 
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Appendix 

I. Catchment-average storm rainfall excess 

The catchment-average storm rainfall excess is calculated by integrating either [R]a over the storm period or [R]t 

over the catchment area. This means 

[𝑅]𝑎𝑡 =

{
 
 

 
 
1

|𝑇𝑃|
∫ [𝑅]𝑎 𝑑𝑡
𝑇𝑃

= [𝑃]𝑎𝑡∑ [𝑊𝑖]𝑎𝑡
𝑁

𝑖=1
+ {[𝑃]𝑎 ,∑ [𝑊𝑖]𝑎

𝑁

𝑖=1
}
𝑡

+ [{𝑃,∑ 𝑊𝑖
𝑁

𝑖=1
}
𝑎

]
𝑡

1

|𝐴|
∫ [𝑅]𝑡 𝑑𝑎
𝐴

= [𝑃]𝑎𝑡∑ [𝑊𝑖]𝑎𝑡
𝑁

𝑖=1
+ {[𝑃]𝑡,∑ [𝑊𝑖]𝑡

𝑁

𝑖=1
}
𝑎

+ [{𝑃,∑ 𝑊𝑖
𝑁

𝑖=1
}
𝑡

]
𝑎

 5 

The last term of the second equation can be rewritten as 

[{𝑃,∑ 𝑊𝑖
𝑁

𝑖=1
}
𝑡

]
𝑎

=
1

|𝐴|
∫

1

|𝑇𝑃|
∫ (𝑃 − [𝑃]𝑡) (∑ 𝑊𝑖

𝑁

𝑖=1
−∑ [𝑊𝑖]𝑡

𝑁

𝑖=1
)𝑑𝑡

𝑇𝑃

𝑑𝑎
𝐴

 

where 

𝑃∗ = 𝑃 − [𝑃]𝑡 & 𝑊∗ =∑ 𝑊𝑖
𝑁

𝑖=1
−∑ [𝑊𝑖]𝑡

𝑁

𝑖=1
 

the equation becomes 10 

1

|𝐴|
∫

1

|𝑇𝑃|
∫ 𝑃∗𝑊∗ 𝑑𝑡
𝑇𝑃

𝑑𝑎
𝐴

=
1

|𝑇𝑃|
∫

1

|𝐴|
∫ 𝑃∗𝑊∗ 𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

= [[𝑃∗𝑊∗]𝑎]𝑡 

The second term of the first [R]at equation can be rewritten as 

{[𝑃]𝑎 ,∑ [𝑊𝑖]𝑎
𝑁

𝑖=1
}
𝑡

=
1

|𝑇𝑃|
∫ [

1

|𝐴|
∫ (𝑃 − [𝑃]𝑡) 𝑑𝑎
𝐴

] [
1

|𝐴|
∫ (∑ 𝑊𝑖

𝑁

𝑖=1
−∑ [𝑊𝑖]𝑡

𝑁

𝑖=1
)𝑑𝑎

𝐴

] 𝑑𝑡
𝑇𝑃

 

=
1

|𝑇𝑃|
∫ (

1

|𝐴|
∫ 𝑃∗ 𝑑𝑡
𝐴

)(
1

|𝐴|
∫ 𝑊∗ 𝑑𝑡
𝐴

)𝑑𝑎
𝑇𝑃

= [[𝑃∗]𝑎[𝑊
∗]𝑎]𝑡 

Note that 15 
[[𝑃∗𝑊∗]𝑎]𝑡 − [[𝑃

∗]𝑎[𝑊
∗]𝑎]𝑡 = [[𝑃

∗𝑊∗]𝑎 − [𝑃
∗]𝑎[𝑊

∗]𝑎]𝑡 = [{𝑃
∗,𝑊∗}𝑎]𝑡 

Therefore 

[{𝑃,∑ 𝑊𝑖
𝑁

𝑖=1
}
𝑎

]
𝑡

− {[𝑃]𝑡 ,∑ [𝑊𝑖]𝑡
𝑁

𝑖=1
}
𝑎

= [{(𝑃 − [𝑃]𝑡),∑ (𝑊𝑖 − [𝑊𝑖]𝑡)
𝑁

𝑖=1
}
𝑎

]
𝑡

 

Replacing [{𝑃, ∑ 𝑊𝑖
𝑁
𝑖=1 }

𝑎
]
𝑡
 in the first equation of [R]at, Eq.(9) is attained. 

II. Expectation of rainfall excess generation time 20 

The rainfall excess generation time is modeled by the instantaneous time, T. T is a variable in time and follows a 

uniform distribution over the event period TP. Therefore, 

𝐸𝑖(𝑇𝑟,𝑖) =
1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝑇 ∙ 𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

=
1

|𝑇𝑃|
∫

𝑇 ∙ [𝑅𝑖]𝑎
[𝑅𝑖]𝑎𝑡

𝑑𝑡
𝑇𝑃

= [𝑇]𝑡 +
{𝑇, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

 

Since T follows a uniform distribution on TP, the solution of [T]t is: 
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[𝑇]𝑡 = ∫
𝑇

|𝑇𝑃|
𝑑𝑇

𝑇𝑃

=
|𝑇𝑃|

2
 

For the case of total rainfall excess generation time, write 

𝐸(𝑇𝑟) =
1

|𝑇𝑃|
∫

1

|𝐴|
∫ (𝑇 ∙∑ 𝜓𝑖

𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑁

𝑖
)𝑑𝑎

𝐴

𝑑𝑡
𝑇𝑃

=∑ 𝜓𝑖
1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝑇 ∙ 𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

𝑁

𝑖
=∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖)

𝑁

𝑖
 

III. Expectation of runoff routing time 

The runoff routing time is modeled by a spatial variable routing time, Θi, write 5 

𝐸𝑖(𝑇𝑛,𝑖) =
1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝛩𝑖𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

=
1

|𝐴|
∫

𝛩𝑖[𝑅𝑖]𝑡
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

= [𝛩𝑖]𝑎 +
{𝛩𝑖, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

 

The channel routing time for the total flow is modeled by Θ which is a function of Θi (Eq.(20)). Write 

𝐸(𝑇𝑛) =
1

|𝑇𝑃|
∫

1

|𝐴|
∫ (𝛩∑ 𝜓𝑖

𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑁

𝑖
)𝑑𝑎

𝐴

𝑑𝑡
𝑇𝑃

=
1

|𝑇𝑃|
∫

1

|𝐴|
∫ (∑ 𝜉ℎ,𝑖𝛩𝑖𝜓𝑖

𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑁

𝑖
)𝑑𝑎

𝐴

𝑑𝑡
𝑇𝑃

 

=∑ 𝜓𝑖𝜉ℎ,𝑖
1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝛩𝑖𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

𝑁

𝑖
=∑ 𝜓𝑖𝜉ℎ,𝑖𝐸𝑖(𝑇ℎ,𝑖)

𝑁

𝑖
 

IV. Variance of rainfall excess generation time 10 

For the variance of rainfall excess generation time, we first define Ei(Tr,i
2) as 

𝐸𝑖(𝑇𝑟,𝑖
2 ) =

1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝑇2𝑅𝑖
[𝑅𝑖]𝑎𝑡

𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

= [𝑇2]𝑡 +
{𝑇2, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

 

The variance of rainfall excess generation time for component i is then calculated as 

𝑣𝑎𝑟𝑖(𝑇) = 𝐸𝑖(𝑇
2) − [𝐸𝑖(𝑇)]

2 = {𝑇2}𝑡 +
{𝑇2, [𝑅𝑖]𝑎}𝑡 − |𝑇𝑃|{𝑇, [𝑅𝑖]𝑎}𝑡

[𝑅𝑖]𝑎𝑡
− (

{𝑇, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

)

2

 

=
|𝑇𝑃|

2

12
+
{𝑇2, [𝑅𝑖]𝑎}𝑡 − |𝑇𝑃|{𝑇, [𝑅𝑖]𝑎}𝑡

[𝑅𝑖]𝑎𝑡
− (

{𝑇, [𝑅𝑖]𝑎}𝑡
[𝑅𝑖]𝑎𝑡

)

2

 15 

The solution for {T2}t is provided as: 

{𝑇2}𝑡 = [𝑇
2]𝑡 − [𝑇]𝑡

2 =
|𝑇𝑃|

2

3
 

 

For the case of var(Tr), it is trivia to show 

𝐸(𝑇𝑟
2) =∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖

2 )
𝑁

𝑖
 20 

Thus 

𝑣𝑎𝑟(𝑇𝑟) = 𝐸(𝑇𝑟
2) − [𝐸(𝑇𝑟)]

2 =∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖
2 )

𝑁

𝑖
− [𝐸(𝑇𝑟)]

2 

=∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖
2 )

𝑁

𝑖
−∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖)]

2𝑁

𝑖
+∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖)]

2𝑁

𝑖
− 2[𝐸(𝑇𝑟)]

2 + [𝐸(𝑇𝑟)]
2 
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=∑ 𝜓𝑖 {𝐸𝑖(𝑇𝑟,𝑖
2 ) − [𝐸𝑖(𝑇𝑟,𝑖)]

2
}

𝑁

𝑖
+∑ 𝜓𝑖 {[𝐸𝑖(𝑇𝑟,𝑖)]

2
− 2𝐸𝑖(𝑇𝑟,𝑖)𝐸(𝑇𝑟) + [𝐸(𝑇𝑟)]

2}
𝑁

𝑖
 

=∑ 𝜓𝑖𝑣𝑎𝑟𝑖(𝑇𝑟,𝑖)
𝑁

𝑖
+∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖) − 𝐸(𝑇𝑟)]

2𝑁

𝑖
 

V. Variance of runoff routing time 

Similarly, for the variance of runoff routing time, as the first step we find Ei(Tn,i
2) as, 

𝐸𝑖(𝑇𝑛,𝑖
2 ) =

1

|𝑇𝑃|
∫

1

|𝐴|
∫

𝛩𝑖
2𝑅𝑖

[𝑅𝑖]𝑎𝑡
𝑑𝑎

𝐴

𝑑𝑡
𝑇𝑃

= [𝛩𝑖
2]
𝑎
+
{𝛩𝑖

2, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

 5 

The variance of runoff routing time for one component is then calculated as 

𝑣𝑎𝑟𝑖(𝑇𝑛,𝑖) = 𝐸𝑖(𝑇𝑛,𝑖
2 ) − [𝐸𝑖(𝑇𝑛,𝑖)]

2
= {𝛩𝑖}𝑎 +

{𝛩𝑖
2, [𝑅𝑖]𝑡}𝑎 − 2

[𝛩𝑖]𝑎{𝛩𝑖, [𝑅𝑖]𝑡}𝑎

[𝑅𝑖]𝑎𝑡
− (

{𝛩𝑖, [𝑅𝑖]𝑡}𝑎
[𝑅𝑖]𝑎𝑡

)

2

 

For the var(Tn), we know the following  

𝐸(𝑇𝑛
2) =∑ 𝜓𝑖𝜉𝑖

2𝐸𝑖(𝑇𝑛,𝑖
2 )

𝑁

𝑖
 

Use the property of variance, write 10 

𝑣𝑎𝑟(𝑇𝑛) = 𝐸(𝑇𝑛
2) − [𝐸(𝑇𝑛)]

2 =∑ 𝜓𝑖𝜉𝑖
2𝐸𝑖(𝑇𝑛,𝑖

2 )
𝑁

𝑖
− [𝐸(𝑇𝑛)]

2 

=∑ 𝜓𝑖𝜉𝑖
2𝐸𝑖(𝑇𝑛,𝑖

2 )
𝑁

𝑖
−∑ 𝜓𝑖𝜉𝑖

2[𝐸𝑖(𝑇𝑛,𝑖)]
2𝑁

𝑖
+∑ 𝜓𝑖𝜉𝑖

2[𝐸𝑖(𝑇𝑛,𝑖)]
2𝑁

𝑖
− 2[𝐸(𝑇𝑛)]

2 + [𝐸(𝑇𝑛)]
2 

=∑ 𝜓𝑖𝜉𝑖
2 {𝐸𝑖(𝑇𝑛,𝑖

2 ) − [𝐸𝑖(𝑇𝑛,𝑖)]
2
}

𝑁

𝑖
+∑ 𝜓𝑖 {[𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖)]

2
− 2𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖)[𝐸(𝑇𝑛)] + [𝐸(𝑇𝑛)]

2}
𝑁

𝑖
 

=∑ 𝜓𝑖𝜉𝑖
2𝑣𝑎𝑟𝑖(𝑇𝑛,𝑖)

𝑁

𝑖
+∑ 𝜓𝑖[𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖) − 𝐸(𝑇𝑛)]

2𝑁

𝑖
 

VI. Covariance between rainfall excess generation and runoff routing time 15 

The covariance between holding times of the two stages is calculated by finding Ei(Tr,iTn,i), 

𝐸𝑖(𝑇𝑟,𝑖𝑇𝑛,𝑖) =
1

|𝑇𝑃|
∫

1

|𝐴|
∫ (

𝑇 ∙ 𝛩𝑖 ∙ 𝑅𝑖
[𝑅𝑖]𝑎𝑡

) 𝑑𝑎
𝐴

𝑑𝑡
𝑇𝑃

 

= [𝑇]𝑡[𝛩𝑖]𝑎 +
[𝛩𝑖]𝑎{𝑇, [𝑅𝑖]𝑎}𝑡

[𝑅𝑖]𝑎𝑡
+
[𝑇]𝑡{𝛩𝑖, [𝑅𝑖]𝑡}𝑎

[𝑅𝑖]𝑎𝑡
+
{𝑇, {𝛩𝑖, 𝑅𝑖}𝑎}𝑡

[𝑅𝑖]𝑎𝑡
 

And then the covariance is defined as, 

𝑐𝑜𝑣𝑖(𝑇𝑟,𝑖, 𝑇𝑛,𝑖) = 𝐸𝑖(𝑇𝑟,𝑖𝑇𝑛,𝑖) − 𝐸𝑖(𝑇𝑟,𝑖)𝐸𝑖(𝑇𝑛,𝑖) =
{𝑇, {𝛩𝑖, 𝑅𝑖}𝑎}𝑡

[𝑅𝑖]𝑎𝑡
−
{𝑇, [𝑅𝑖]𝑎}𝑡{𝛩𝑖, [𝑅𝑖]𝑡}𝑎

[𝑅𝑖]𝑎𝑡
2  20 

For the cov(Tr,Tn), it is trivial to show 

𝐸(𝑇𝑟𝑇𝑛) =∑ 𝜓𝑖𝜉𝑖𝐸𝑖(𝑇𝑟,𝑖𝑇𝑛,𝑖)
𝑁

𝑖
 

Write 
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𝑐𝑜𝑣(𝑇𝑟, 𝑇𝑛) = 𝐸(𝑇𝑟𝑇𝑛) − 𝐸(𝑇𝑟)𝐸(𝑇𝑛) =∑ 𝜓𝑖𝜉𝑖𝐸𝑖(𝑇𝑟,𝑖𝑇𝑛,𝑖)
𝑁

𝑖
− 𝐸(𝑇𝑟)𝐸(𝑇𝑛) 

=∑ 𝜓𝑖𝜉𝑖𝐸𝑖(𝑇𝑟,𝑖𝑇𝑛,𝑖)
𝑁

𝑖
−∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖)𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖)

𝑁

𝑖
+∑ 𝜓𝑖𝐸𝑖(𝑇𝑟,𝑖)𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖)

𝑁

𝑖
− 𝐸(𝑇𝑟)𝐸(𝑇𝑛) 

=∑ 𝜓𝑖𝜉𝑖𝑐𝑜𝑣𝑖(𝑇𝑟,𝑖 , 𝑇𝑛,𝑖)
𝑁

𝑖
+∑ 𝜓𝑖[𝐸𝑖(𝑇𝑟,𝑖)𝜉𝑖𝐸𝑖(𝑇𝑛,𝑖) − 𝐸(𝑇𝑟)𝐸(𝑇𝑛)]

𝑁

𝑖
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Table 1. Mean magnitudes of terms in Eq.(9) in mm/h. 

Term 

Swift   Fishing   Tar 

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total 

R1 0.212 0.149 0.361  0.138 0.100 0.238  0.103 0.088 0.193 

R2 -0.005 \ -0.005  -0.001 \ -0.001  0.000 \ 0.000 

R3 0.011 \ 0.008  0.005 \ 0.005  0.004 \ 0.004 

R4 0.004 \ 0.005  0.001 \ 0.001  0.002 \ 0.002 

[R]at 0.222 0.149 0.371   0.144 0.100 0.243   0.108 0.090 0.198 

                     

MV 0.005 \ 0.005   0.001 \ 0.001   0.002 \ 0.002 

 

 

Table 2. Same as in Table 1 but for Eqs.(16) & (23). 

Term 

Swift   Fishing   Tar 

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total 

E1 32 32 32  38 38 38  40 40 40 

E2 -0.78 -4.5 -2.3  -4.3 -6.3 -5.1  -2.0 -4.1 -3.0 

E(Tr) 32 28 30  33 31 32  38 36 37 
 

           
E3 30 9 21  33 20 27  37 25 32 

E4 -1.2 -0.22 -0.64  -1.0 -0.37 -0.68  -2.6 -1.2 -1.8 

E(Tn) 29 9.2 21  32 20 27  35 24 30 
 

           
ψ 0.57 0.43 \  0.57 0.43 \  0.54 0.46 \ 

ξ 0.70 2.27 \  0.84 1.34 \  0.85 1.27 \ 

            

E(Tq) 61 37 51  65 51 59  72 59 66 

  5 
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Table 3. Same as in Table 1 but for Eqs.(27), (30) & (33). 

Term 

Swift   Fishing   Tar 

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total   

Sub- 

surface 
Surface Total 

v1 536 536 536  769 769 769  740 740 740 

v2 73 103 86  19 22 21  60 60 61 

LTr \ \ 7.6  \ \ 2.4  \ \ 2.5 

var(Tr) 609 638 629  788 791 792  800 800 803 
 

           
v3 223 21 112  150 59 106  340 152 244 

v4 -22 -1.0 -8.8  -7.7 -2.6 -5.1  -10 -3.4 -6.7 

LTn \ \ 0.65  \ \ 0.18  \ \ 0.58 

var(Tn) 201 20 103  142 56 101  330 149 238 
 

           
c 3.3 -1.1 -1.2  -26 -16 -22  -28 -19 -23 

LTrTn \ \ -0.59  \ \ -0.56  \ \ -0.82 

cov(Tr,Tn) 3.3 -1.1 -1.8  -26 -16 -23  -28 -19 -24 
 

           
var(Tq) 813 658 730  904 831 871  1102 930 1017 

 

 

Table 4. Statistics of the sensitivity tests. 

Reference 

Type 
Basin 

Mean Error   Centered Root Mean Square 

V (mm) C (h) S (h)   V (mm) C (h) S (h) 

Model 

Simulation 

Swift 2.9 -35.2 -12.7  1.6 7.6 5.7 

Fishing -0.6 -36.9 -10.7  1.6 3.8 5.5 

Tar 0.6 -39.6 -15.2   1.3 6.5 5.4 

Observation 

Swift 5.4 -26.8 -10.2  6.2 13.4 9.2 

Fishing 1.5 -30.9 -8.2  4.8 10.5 8.7 

Tar 1.7 -34.1 -7.6  5.7 12.5 7.6 

  5 
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Figure 1. Schematic of the analytical framework.  
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Figure 2. Event rainfall map and time series of rainfall and runoff for the two representative events.  
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Figure 3. Runoff routing time for the study basins.  
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Figure 4. Time series showing the spatial averaged terms in Eq.(7) for the different rainfall excess components of 

the two representative events.  
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Figure 5. Same as in Figure 4 but for temporal averaged terms in Eq.(8).  
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Figure 6. Differences between catchment-average and storm-average runoff coefficient.  
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Figure 7. Boxplot showing the spatiotemporal averaged terms in Eq.(9) based on all events from the study basins.  
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Figure 8. Same as in Figure 7 but for Eqs.(16) & (23).  



 

37 
 

 

Figure 9. Same as in Figure 7 but for Eqs.(27), (30) & (33).  
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Figure 10. Scatterplots of the analytical framework outputs vs. hydrograph properties. 


