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Abstract. Large-scale hydrological modelling of flood hazard requires adequate extreme discharge data. In practise, models 

based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational 

power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical 

approach based on Bayesian Networks (BN), a graphical model for dependent random variables. We use a non-parametric 

BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical 5 

characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with 

catchment areas ranging from 1.4 to 807,000 km2) were collected, together with information on terrain, land use and local 

climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure 

defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could 

be estimated with an accuracy similar to existing studies using physical models for Europe, and better than a comparable 10 

global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between 

different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change 

is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for 

present and future climate, as an example. Results show substantial variation in the influence of climate change on river 

discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of 15 

obtaining input information for hydraulic modelling. 
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1 Introduction 

There is currently substantial concern in Europe about increasing flood risk linked mainly to climate change. Available 

studies (Whitfield 2012, Feyen et al. 2012, Alfieri et al. 2015) predict that the severity of floods will increase, due to changes 20 

in extreme precipitation and socio-economic development. Abundant availability of continental and global climate, land use 

and elevation data result in many studies analysing floods in a similarly large domain. However, the amount of hydrological 

observations at disposal is far from sufficient for comprehensive assessments of flood hazard. This is not only the result of 

the uneven distribution of measurement stations, but also of the limited dissemination of data by national or local bodies 

responsible for their collection. High resolution historical measurements are critical for calculating hydrological event 25 

scenarios for the purpose of delineating flood zones. Those scenarios are typically values of extreme river discharge or water 

level with a certain return period, i.e. the average interval of time between the occurrences of an event with the same 

magnitude. Such calculation additionally requires long data series, further narrowing the number of locations were such 

analysis can be performed. In effect, to conduct large-scale flood hazard studies, it is necessary to fill the gaps in 

measurements with modelled river flows. There are two primary approaches used to obtain discharge values in ungauged 30 

catchments, i.e. catchments for which no discharge measurements are available. 
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The first approach is to use rainfall-runoff models. They utilize physical equations describing processes such as 

infiltration, runoff and retention in order to transform rainfall into river discharges. These models are typically used to model 

river flows at the catchment scale, although in recent years a few studies applied them on a continental or global scale. One 

series of publications (Dankers and Feyen 2008, Rojas et al. 2012, Alfieri et al. 2014 and others) presented calculations using 

LISFLOOD model. The simulation was set up for Europe with a 5-km resolution. Many different datasets of rainfall amount 5 

were analysed, including historical observations and future climate simulations, deriving daily discharge data for most of the 

continent. Another group of studies (Ward et al. 2013, Winsemius et al. 2013) have introduced a global hydrological model 

GLOFRIS. This model has a much coarser resolution than the previous on, as its the rainfall-runoff module uses a 0.5° grid 

(ca. 50–80 km resolution over Europe). The aforementioned studies used the modelling results to perform an extreme value 

analysis of river discharges. Some also continued the research with flood hazard estimation. The main drawback of this 10 

approach is the computational expense, which necessitates a reduction in resolution. Additionally, only a limited number of 

rivers are included in the models. For example, LISFLOOD-based studies used a threshold of 1000 km2 catchment size, later 

reduced to 500 km2, while GLOFRIS was prepared only for rivers with Strahler order 6 or above, which only accounts for 

about a third of the river length included in the aforementioned European model. 

The second approach is to use statistical methods, of which a large variety exists. Several statistical models rely on the 15 

fact that catchments close to each other share many characteristics. River basins are therefore pooled into groups based on 

geographical proximity alone or also based on catchment size, climate data, terrain or soil type. However, the studies 

employing such techniques mostly covered a limited domain, typically single countries (Meigh et al. 1997, Salinas et al. 

2013). The first global analysis was recently presented by Smith et al. (2015). The study applied regional frequency analysis 

(RFA) for all continents for the first time. Here, after clustering catchments based on size, climate type and average rainfall, 20 

a probability distribution of discharges is calculated for each region. Estimates of extreme discharges for a given ungauged 

catchment were derived by first assigning them to a proper region and then using data on catchment size and rainfall together 

with region-specific coefficients to solve a simple regression equation is solved in order to obtain an estimate of the mean of 

annual maxima of discharges in the catchment. Finally, a Generalized Extreme Value probability distribution with region-

specific parameters is used to calculate return periods of discharges. Flood scenarios (peak discharges) obtained through this 25 

method were then used in a global flood hazard analysis by Sampson et al. (2015). 

There are also several statistical methods that rely solely on the geographical characteristics of catchments to estimate 

discharges. Many of them are simple equations that can be easily applied to quickly solve practical problems in engineering, 

such as estimating dike heights or calculating necessary channel or culvert capacity. Moreover, they are typically only 

applicable in small areas for which they were prepared. Usually, they are a variation of the “rational equation”, which states 30 

that river discharges can be calculated by multiplying the catchment area by the rainfall intensity and runoff coefficient 

(Chow 1988, Sando 1998). The first two elements are used in virtually all methods, but the remaining element is either left 

out due to the difficulty of estimating it, or is derived from a model table of coefficients, or additional factors are added as 

proxies. For instance, Stachý and Fal (1986) developed an equation to calculate 100-year discharge in catchments above 50 
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km2 in Poland which incorporates seven factors: catchment area, extreme rainfall (100-year return period), soil type, 

catchment slope, river slope, lake area and marsh area. However, it also requires incorporating an additional empirical 

coefficient for each physiogeographic region of the country, while different return periods than the default 100 years are 

obtained by multiplying discharge by a region-specific factor, similar to the RFA method. Another example is the 

preliminary flood risk assessment in Norway (Peereboom et al. 2011), which utilized a simple regression between catchment 5 

area and 500-year water level. An “envelope curve” approach was then applied, in which a curve is constructed in such a 

manner that it contains all (or almost all) observations. This concept was long used to make crude estimations of maximum 

possible floods; also on continental scale (e. g. Padi et al. 2011 applied it to Africa). Some attempts have also been made to 

apply multiple linear regressions on global scale (Herold and Mouton 2010). 

This paper presents a new statistical method to calculate extreme river discharges under present and future climate in 10 

Europe. It was devised as an alternative to existing physical and statistical models; its purpose was to provide boundary 

conditions for hydraulic modelling that could be used in a pan-European flood hazard analysis. The method is based on 

Bayesian Networks that combine probability theory and graph theory in order to build and operate a joint distribution. A 

Bayesian Network is used to analyse and represent the dependencies between different environmental variables, including 

river discharges. In this paper, we present the quantification of the model based on a large dataset of river gauge observations 15 

and pan-European spatial datasets. The model shows good performance across regions of Europe at different time periods. 

We also present a comparison of this new approach with other methods, both physical and statistical. Lastly, we apply it over 

the entire domain to obtain a large database of extreme discharges, and analyse the influence of climate change on their 

return periods.  

An early and preliminary variant of the method was originally reported in Paprotny and Morales Nápoles (2015). The 20 

Bayesian Network presented there is superseded by an improved version described herein. Also, the work is part of a bigger 

effort to create pan-European meteorological and hydrological hazard maps under “Risk analysis of infrastructure networks 

in response to extreme weather” (RAIN) project. This influenced the choice of the domain and input data, which is explained 

in section 2, although this does not limit the applicability of the method outside of the European domain. 

2 Materials and methods 25 

In this section, an overview of the model’s framework and elements is given, followed by a description of how the 

model was prepared, what datasets were used to build it, what the underlying mathematical methods are, and how the 

model’s accuracy and utility were assessed. 

2.1 Workflow and outline of the method 

The basic elements of the procedure to derive extreme discharge estimates through a Bayesian Network are presented in 30 

Fig. 1. The first step was to identify available data on annual maxima (QAMAX) of daily river discharge (I), and also the 
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catchments which contribute to locations where the measurements were made (section 2.2), i.e. gauged catchments (II). 

Then, several large-scale (pan-European or global) spatial datasets were compiled (III), providing information on the most 

important variables influencing extreme river flow behaviour (section 2.3) both for gauged and ungauged catchments (IV). 

The dependence between those variables and river discharges were analysed through copulas and Bayesian Networks 

(section 2.4) (V). After extensive testing of different configurations, an optimal model was constructed (section 2.5) that had 5 

the highest performance in validation in terms of the underlying statistical model and prediction capability (sections 2.7 and 

3.1) (VI). The output of the model are annual maxima of daily river discharges (VII), which were then fitted to a probability 

distribution in order to obtain return periods (section 2.6). After the method was ready, it was applied for all catchments (IV) 

in the domain to create a database of discharges (VIII). Using frequency analysis, return periods of discharges under present 

and future climate in Europe (section 3.2) were obtained (IX). The accuracy of the Bayesian Network model was also 10 

contrasted with alternate methods (sections 3.1 and 4.1) (X). 

2.2 River discharge data 

Discharge data from measurement stations were collected over a domain covering most of Europe (Fig. 2). The study 

area includes the entire continent, plus Cyprus as a European Union (EU) member, with two exceptions. Out of the territory 

of the former Soviet Union, only river basins that are at least partially located within the EU were included. Also, the 15 

outlying regions of Madeira, the Azores and the Canary Islands were omitted because they are outside the EURO-CORDEX 

climate model’s domain. 

In total, data series for 1841 stations were compiled, not including a few dozens of available stations whose tributaries 

could not be unequivocally identified and were therefore excluded from the analysis. The data were collected from five 

sources, as follows: 20 

• 1186 stations from the Global Runoff Data Centre (2016); 

• 82 stations from the Norwegian Water Resources and Energy Directorate (2015); 

• 284 stations from the Swedish Meteorological and Hydrological Institute (2016); 

• 239 stations from Centro de Estudios Hidrográficos (2012); 

• 50 stations from Fal (2000). 25 

The data collected were daily discharges observed between 1950 and 2013, though of primary interest were data up to 

2005, since it was the maximum range of EURO-CORDEX climate models’ historical scenario runs. All datasets were 

quality-checked by the providers; only a few cases of misplaced decimals in daily series were identified in the data after 

inspection. Daily discharges were transformed into annual maxima (QAMAX) for each calendar year, except for the last group 

of 50 stations, as Fal (2000) only reported the extreme and mean values. Total number of QAMAX values for years 1950–2005 30 

in the database was 74,757. The stations represent 37 countries and 439 different river basins (78% of the domain’s area of 

5.67 million km2). However, the south-eastern part of Europe is substantially underrepresented, with most stations 

concentrated in Scandinavia and western Europe. France has the highest number of QAMAX values in the database (14%), 
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followed closely by Spain, Sweden and the United Kingdom (UK), as can be seen in Table 1. However, the largest density of 

stations is in Switzerland, Austria and the UK. The catchments’ size spans from 1.4 to 807,000 km2, with a biggest group of 

them being in the 100–1000 km2 range. 

Long data series, i.e. at least three full decades of uninterrupted data (1951–80, 1961–90 or 1971–2000) were available 

for 1125 stations. These observations were used to validate the accuracy of the model in estimating mean QAMAX and return 5 

periods, while the complete database was used to quantify the Bayesian Network model. 

2.3 Spatial datasets 

Several large-scale spatial datasets were collected for this study, even though not all of them were used in the final set-

up of the model. Nevertheless, all were useful for testing different configurations of the BN. The most important dataset was 

a map of the river network and catchments, which was derived from the pan-European CCM River and Catchment Database 10 

v2.1, or CCM2 (Vogt et al. 2007, de Jager and Vogt 2010). It was created by calculating flow direction and accumulation on 

a 100-m resolution digital elevation model (DEM), combined with land cover information, satellite imagery and national 

GIS databases. CCM2 was utilized to delimitate the domain used in this paper. In total that area covers 831,125 river 

sections (almost 2 million km in length) in 70,638 river basins. Each river gauge station was connected with a corresponding 

river section in CCM2. Each river section belongs to one primary catchment, whose attributes include the identifier of the 15 

next downstream catchment. Using this information, the whole tributary of a gauge station, or any other point in the domain, 

could be delimitated. For each catchment, various statistics were calculated in GIS. A few indicators could be derived from 

this dataset alone: catchment area, river network density (total river length divided by catchment area) and catchment 

circularity (catchment area divided by the area of a circle that has the same perimeter as the catchment), whereas others were 

derived using the datasets described below. 20 

The next most relevant source of information is climate data, both historical and future projections. Two datasets for the 

former were analysed. E-OBS is a spatial interpolation of observations made by weather stations covering years 1950–2015 

(Haylock et al. 2008), while ERA-Interim is a complete climate reanalysis for 1979–2015 (Dee et al. 2011). However, E-

OBS has gaps in spatial coverage and includes few variables, whereas ERA-Interim has a relatively coarse resolution 

(0.75°). In effect, slightly better performance of the model was recorded using high-resolution control runs of a climate 25 

model under EURO-CORDEX framework (Jacob et al. 2014); the results of this analysis can be found in Supplement 2. 

EURO-CORDEX uses regional climate models (RCM) for Europe, where boundary conditions are obtained from global-

scale general circulation models (GCM). In this work, we utilize simulations for the historical run (1950–2005) and two 

climate change scenarios (RCP 4.5 and RCP 8.5 for 2006–2100). The necessary variables (precipitation, snowmelt 

andrunoff) and resolution (0.11°) were included in a total of 14 model runs; of these, 8 model runs start in 1950. Of the 30 

model runs, one was made using GCM boundary conditions which came from a 12-member ensemble. 

 This model run, which was selected to carry out this study, was made by the Climate Limited-area Modelling-

Community utilizing EC-Earth general circulation model (run by ICHEC) with COSMO_4.8_clm17 regional climate model 
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(Rockel et al. 2008), realization r12i1p1. This RCM also has relatively good model performance when estimating extreme 

precipitation in comparison with others (Kotlarski et al. 2014). No bias correction was performed, even though it is often 

considerable for extreme precipitation (Rojas et al. 2011). For the sake of simplicity and universality of the method, we 

opted to use all input data unaltered. However, as an additional check on the method’s performance, a different GCM-RCM 

combination was analysed, and the results have been added to Supplement 2. From this dataset four variables were derived: 5 

total precipitation, snowmelt, near-surface temperature and total runoff. All data were daily values on a 0.11° rotated grid 

(spatial resolution of about 12 km). 

Meteorological factors are the driving force behind floods, but more factors influence the runoff – terrain, land use and 

soils. Information on terrain was obtained from two digital elevation models. Most of the domain is available from EU-

DEM, a dataset produced for the European Environment Agency. It was created by merging two sources of satellite altimetry 10 

data – Shuttle Radar Topography Mission (SRTM) and ASTER GDEM. It has a 25 m resolution and covers 39 countries 

(DHI GRAS 2014), including areas north of 60° N, missing from SRTM-only datasets. For Eastern Europe and some 

Atlantic islands which are not covered by EU-DEM, SRTM data were used instead (Farr et al. 2007). SRTM has a 3 arc 

second resolution (~100 meters over Europe) and there are several versions available. The one used here is a void-filled 

derivate obtained from Viewfinder Panoramas (2014). Both datasets were resampled to a common 100 m grid matching the 15 

CCM2 dataset. The variables calculated from the DEMs included average elevation, average river slope and average 

catchment slope. The latter was derived either by averaging all slopes in the DEM or by calculating the slope S with the 

equation: 

𝑆 =
𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛

√𝐴
                                                                                        (1) 

where Hmax is the maximum, and Hmin the minimum, elevation in the catchment and A is the catchment area. Another 20 

variable, the time of concentration, which is a measure of water circulation speed in the catchment, was calculated based on 

Gericke and Smithers (2014). Finally, we tested terrain classification similar to one used in FLEX-Topo hydrological model 

(Savenije 2010). In this approach, all grid cells in the DEM are classified based on height-above-nearest-drainage (HAND), 

slope inclination and absolute elevation (Gharani et al. 2011, Gao et al. 2014). Three classes—wetlands, hillslopes and 

mountains—were calculated as percentage of total catchment area. 25 

Land use statistics for catchments were mainly based on CORINE Land Cover (CLC), another dataset produced by the 

European Environment Agency (2014a). In this study, CLC 2000 edition, version 17 (12/2013) in raster format (100 m 

resolution) was used. It includes 44 land cover classes with a minimum mapping unit of 25 ha and covers 39 countries. The 

main source material were Landsat 7 satellite images from years 1999–2001 (European Environment Agency 2007). Similar 

to EU-DEM, the dataset does not cover some catchments in Eastern Europe and in a few other areas. Missing information 30 

was supplemented using the Global Land Cover 2000 dataset, produced by the Joint Research Centre using algorithmic 

processing of SPOT 4 satellite images (Bartalev et al. 2003). This product has a 30 arc second resolution and includes 22 

land cover classes. The different classifications were synchronised to derive the area covered by forests, croplands (total and 
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irrigated), marshes, lakes, glaciers, bare land and artificial surfaces. However, the data was only available for a single year 

for the whole domain, even though CLC was produced also for 2006, 2012 and, in some countries, for 1990. In contrast to 

terrain or soils, land use is dynamic and could influence the analysis for early time periods. Yet, some historical land-use 

reconstructions and projections (e. g. Klein Goldewijk et al. 2011) do not have the necessary resolution or thematic coverage 

for use in this analysis. Therefore, fixed values of land use percentages were used for all years, including the future climate 5 

change scenarios. 

Last but not least, soil property data were analysed. Occurrence of peat, unconsolidated and Eolian deposits, average 

water content and soil texture were derived from European Soil Database v2.0 (Panagos et al. 2012), developed at 

1:1,000,000 scale, and Harmonized World Soil Database v1.2 (FAO/IIASA/ISRIC/ISS-CAS/JRC 2012), available at 30 arc 

second resolution. Soil sealing (i.e. area covered by artificial impervious surfaces) was obtained from Revised Soil Sealing 10 

2006, a dataset based on satellite imagery with a 100 m resolution (European Environment Agency 2014b). Grain-size 

structure of the soil (gravel, sand, silt, clay) was calculated from SoilGrids1km database (Hengl et al. 2014).  

2.4 Bayesian Networks 

As noted in the introduction, Bayesian Networks (BN) are graphical, probabilistic models (Pearl 1988, Kurowicka and 

Cooke 2006). They have several advantages when compared against other methods, for the application described in this 15 

paper. For one, their graphical nature makes the dependence configuration explicit, as evidenced in Fig. 3 in the next section. 

BN takes into account, for example, dependencies between different environmental variables, which are not easily modelled 

with regression methods. Also, they can capture the often non-linear nature of those dependencies. The class of BNs used in 

this research includes several elements, whose specifics need to be explained before the actual hydrological model is 

presented. 20 

First of all, consider a set of random variables (𝑋1, 𝑋2, … , 𝑋𝑛), which could be discrete, continuous, or both. This 

distinction defines the different types of BNs. In this paper, we build a continuous BN, since our environmental data are 

continuous. Furthermore, discrete BNs are only efficient for small models with variables having a limited number of states 

because of the way the (conditional) probabilities are calculated, as we explain later on. The random variables are 

represented as “nodes” of the BN, while the dependencies between them are represented as “arcs” joining different nodes. 25 

An arc represents the (conditional) correlation between two variables, and has a defined direction. The node whose arc points 

into the direction of another node is known as the “parent”, while the node on the “receiving” end of the arc is its “child”. A 

set of nodes and arcs forms the eponymous “network” of the BN. The arcs have to connect the nodes in such a manner that 

the graph is acyclic, i.e. if we chose any node and follow strictly the direction of all arcs in a path, we will not end up at the 

same node. Each variable is conditionally independent of all its predecessors given its parents. Therefore, each variable has a 30 

conditional probability function given its parents, and the joint probability can be expressed as:  
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𝑓𝑋1,𝑋2,…,𝑋𝑛
(𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓𝑋𝑖|𝑃𝑎(𝑋𝑖)(𝑥𝑖|𝒙𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

                                                         (2) 

where 𝑃𝑎(𝑋𝑖) is the set of parent nodes of 𝑋𝑖, with 𝑖 = 1, … , 𝑛. Naturally, if there are no parents, 𝑓𝑋𝑖|𝑃𝑎(𝑋𝑖) = 𝑓𝑋𝑖
. We 

already see that one of the purposes of BNs, perhaps the main one, is updating the probability distributions of subsets of 

nodes, when evidence (observations) of a different subset becomes available. Hence, it is important not only to properly set-

up the network with nodes and arcs, but also to choose a good method to describe the dependencies. In case of a discrete 5 

network, this is done using conditional probability tables. In our model, node ‘Max discharge’ has 7 parents. In this case, if 

each continuous node was to be discretized into 5 states, a probability table with 58 = 390,625 conditional probabilities 

would be required. Of these, only 57 = 78,125 may be estimated by difference, as probabilities must add to 1. Thus, 312,500 

probabilities would need to be specified. Similarly, if we were to discretize each node into 10 states, 90,000,000 probabilities 

would need to be specified. Even a discretization into 5 states for each node in our model would make the quantification 10 

prohibitive given the data available. Considering other nodes (node ‘Buildup’ has 4 continuous parents) would make it even 

more restrictive for the use of discrete BNs. Thus, in this paper we apply a continuous non-parametric BN to avoid the use of 

probability tables. 

By using a non-parametric continuous BN, we only need to specify an empirical marginal distribution for each variable 

and a rank correlation for each arc (Hanea et al. 2015). We use the usual estimator of the cumulative probability distribution: 15 

�̂�(𝑥) =
1

𝑛
∑ 1{𝑥𝑖≤𝑥}

𝑛

𝑖=1

                                                                                         (3) 

where (xi, …, xn) are the samples of a random variable, while 1{𝑥𝑖≤𝑥} = 1 over the set {𝑥𝑖 ≤ 𝑥} and zero elsewhere. 

Spearman’s rank correlations are used to parameterize one-parameter (conditional) copulas. A copula is, loosely, a joint 

distribution on the unit hypercube with uniform (0,1) margins. There are many types of copulas, described in detail by Joe 

(2014). Here, we use bivariate Gaussian copulas, an assumption that was tested against alternate distributions (Clayton and 20 

Gumbel copulas). Details of this calculation and the validation of the whole Bayesian Network can be found in Supplement 

1. The bivariate Gaussian copula C has the following cumulative distribution function: 

𝐶𝜌(𝑢, 𝑣) = Φ𝜌(Φ−1(𝑢), Φ−1(𝑣)), (𝑢, 𝑣) ∈ [0,1]2                                                            (4) 

where Φ is the standard normal distribution, Φ−1 its inverse and Φ𝜌 the bivariate Gaussian cumulative distribution with 

(conditional) product moment correlation ρ between the two marginal uniform variates u and v in the interval [0,1]. In 25 

contrast to the copula specification, the non-parametric BN we apply in this study is parametrized by (conditional) rank 

correlations. This is because they are algebraically independent; hence, any number in the interval [-1,1] assigned to the arcs 

of the BN will warranty a positive definite correlation matrix. The rank correlation (denoted by r ) of two random variables 

Xi and Xj with cumulative distribution functions 𝐹𝑋𝑖
 and 𝐹𝑋𝑗

 is the usual Pearson’s product moment correlation ρ computed 

with the ranks of Xi and Xj, i.e. 30 
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𝑟(𝑋𝑖 , 𝑋𝑗) = 𝜌 (𝐹𝑋𝑖
(𝑋𝑖), 𝐹𝑋𝑗

(𝑋𝑗))                                                                           (5) 

Conditional rank correlations are calculated as shown in eq. 5, except that the conditional distributions are used inside 

the arguments to the right of the equal sign. For the Gaussian copula conditional correlations are equal to partial correlations 

and these are constant. For one-parameter bivariate copulas, eq. 5 becomes: 

𝑟(𝑋𝑖 , 𝑋𝑗) = 12 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)
1

0

𝑑𝑢 𝑑𝑣 − 3
1

0

                                                                   (6) 5 

The conditional rank correlation of Xi and Xj given the random vector 𝒁 = 𝒛 is the rank correlation calculated in the 

conditional distribution of (𝑋𝑖 , 𝑋𝑗|𝒁 = 𝒛). For each variable Xi with m parents 𝑃𝑎1(𝑋𝑖), … , 𝑃𝑎𝑚(𝑋𝑖) the arc 𝑃𝑎𝑗(𝑋𝑖) → 𝑋𝑖 is 

associated with the rank correlation: 

{
𝑟 (𝑋𝑖 , 𝑃𝑎𝑗(𝑋𝑖)) ,                                              𝑗 = 1

𝑟 (𝑋𝑖 , 𝑃𝑎𝑗(𝑋𝑖)|𝑃𝑎1(𝑋𝑖), … , 𝑃𝑎𝑗−1(𝑋𝑖)) ,   𝑗 = 2, … , 𝑚
                                                     (7) 

where the index j is in the non-unique sampling order. For more details on the non-parametric Bayesian Networks we refer 10 

the reader to Hanea et al. (2015). After all the variables and parameters of the Bayesian Network are in place the joint 

distribution is uniquely determined. Under the Gaussian copula assumption, exact inference is available as well as efficient 

sampling procedures (for details, see Hanea et al. 2006). Here, 1000 samples were used each time we wanted to 

conditionalize the BN in order to derive an estimate of river discharges for a given location in our dataset. This number of 

samples is adequate to approximate the conditional distributions of interest while keeping the procedure computationally 15 

feasible. The Bayesian Network for river discharges presented here was implemented in Matlab, however the UniNet 

software for non-parametric BNs was also used to visualize and analyse the model during the study (for details, see Morales 

Nápoles et al. 2013). 

2.5 Extreme discharge model 

The final BN for extreme river discharges was derived by testing many configurations involving around 30 variables. It 20 

is important to note that a BN can neither be created uniquely in an automated manner nor is it desirable to do so. Therefore, 

the BN in this study was built stepwise and assessed using a set of statistical measures presented in section 2.7. The final 

model is based on 8 variables and is presented in Fig. 3, with a histogram representing each variables’ distributions. The 

position of the nodes shows their hierarchy relative to the annual maximum of daily river discharge (MaxDischarge); the 

order in which different variables conditionalize on the river discharge distribution (using eq. 7) is clockwise. The 25 

(conditional) rank correlation coefficients are indicated on the arcs. The variables and BN structure are described in more 

detail below. 

Annual maximum of daily river discharge (MaxDischarge) in m³/s. The parents of this variable are all the remaining 

variables in the BN. By far the most important is the catchment area (Area) in km2 which determines the scale of the 

processes in a river basin and is largely dependent on catchment steepness (Steepness) in m/km. This is because 30 
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mountainous catchments are very small, divided by ranges, and only grow in size when many rivers join along the way to its 

drainage basin, crossing more planar regions. Steepness was calculated here using eq. 1; it is a proxy for terrain 

characteristics that influences the speed with which the water from rainfall moves down the slopes (Savenije 2010). 

The climate model from EURO-CORDEX framework delivered two variables to the BN. First is the annual maximum 

of daily precipitation and snowmelt (MaxEvent) in mm. Both factors are relevant, though melting of snow cover is 5 

important only in some regions. Both events often occur concurrently (as evidenced in a list of large European floods by 

Barredo 2007), hence using a summation of the two improved the performance of the BN. The variable has one parent, 

catchment steepness, as hilly and mountainous areas receive more precipitation, also in the form of snow. The second 

variable is the extreme runoff coefficient (RunoffCoef), a dimensionless indicator. It was constructed to include 

meteorological factors influencing the circulation of water in a catchment. Every climate model needs to represent this 10 

variable to take into account factors such as soil moisture, evaporation and retention. The annual maximum of the climate 

model variable “total runoff” was obtained for each sample, and then divided by MaxEvent. This variable is dependent on 

catchment steepness, since in hilly/mountainous terrain conditions limit evaporation or retention. It should be noted that the 

values of these climate variables were calculated as an average of annual maxima derived for each grid cell separately, and 

not by identifying the largest single event that occurred in a given catchment.  15 

The BN is completed by three land cover types, all expressed as % of total catchment area. The statistics were obtained 

by choosing relevant classes from land cover datasets. The first variable represents lakes, and was obtained using “water 

bodies” class in Corine Land Cover (CLC), with missing coverage supplemented by the water body layer in CCM2 database. 

Lakes retain water from rainfall or snowmelt, thus reducing river discharge. This node has two parents, catchment steepness 

and extreme runoff coefficient. Lakes, especially large ones, are more prevalent in post-glacial plains of northern Europe, 20 

though increase lake cover is observed also in the mountains. In both those areas the runoff coefficients are higher, due to 

lower temperatures and more prevalence of impermeable soils. The second variable represents marshes, which are defined 

by CLC as three classes “inland marshes”, “peat bogs” and “salt marshes”, while from Global Land Cover 2000 (GLC) 

“regularly flooded shrub and/or herbaceous cover” class was used here. Similar to lakes, marshes increase retention in a 

catchment. They often occur in the same areas as lakes, with soils and climatology also having influence (as estimated by the 25 

runoff coefficient). Lastly, the build-up areas (Buildup) variable contains the “artificial surfaces” class from CLC or GLC. 

Construction increases the amount of impervious cover in a catchment, reducing infiltration, while water management 

systems collect the rainfall and route it directly to rivers. This variable is influenced, in order, by catchment steepness (flat 

areas are preferred for construction), runoff coefficient (which is higher is colder areas), lakes and marshes (less space 

available for construction). 30 

In order to estimate river discharge in an ungauged catchment, the BN is updated, i.e. the value of the node or set of 

nodes (other than discharge) is defined based on the observations corresponding to that particular catchment, i.e. new 

evidence. Fig. 4 shows the effects of updating on the example of Basel station in Switzerland (meteorological data pertain to 

the year 2005). Conditionalizing on only two variables: catchment area and steepness changed the mean of the distribution 
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from 341 to 1740 m³/s. Knowing all seven variables that are parents of the river discharge node, we obtain an estimate of 

river discharge of 2819 m³/s. In this case, the estimate is fairly accurate, as discharge of 3212 m³/s was actually measured. 

The same procedure was applied to all rivers in the domain. Additional examples of conditionalization of the BN can be 

found in Supplement 1. It should be noted that the discharge in each river section was estimated independently from another 

section in the same river using data for the entire upstream area. 5 

In addition to validation of the method, we apply it to model the influence of future climate predictions from EC-

EARTH-COSMO_4.8_clm17 (Figure 8) and EC-HadGEM2-ES-RACMO22E (Figure S9) models. As noted before, land 

cover statistics are fixed in time, therefore only the climate variables change over time in the prediction. Future changes were 

calculated for two climate scenarios RCP 4.5 and RCP 8.5. Those “representative concentration pathways” indicate changes 

in future physical and socio-economic environment that would cause, by 2100, increase in radiative forcing by 4.5 or 8.5 10 

W/m2 (Moss et al. 2010). 

2.6 Return periods of discharges 

Annual maxima of daily river discharges calculated by the BN were used to perform a frequency analysis. Only stations 

with long data series were used, i.e. those with at least 30 years of discharge observations. To find an optimal model for 

estimating the marginal probability distribution of annual maxima of discharges, we used the Akaike Information Criterion 15 

(AIC) measure (Mutua 1994). AIC values varied significantly between stations. On average, the AIC value was the lowest 

for the Generalized Extreme Value (GEV) distribution, indicating that it was the best fit over 15 other tested distributions, 

such as generalized Pareto, Gamma, Lognormal or Weibull. This three-parameter distribution, however, gave very large 

errors for some stations. Therefore, to avoid completely unrealistic estimates in the database, we decided to use the two-

parameter Gumbel distribution, which is essentially the GEV distribution with the shape parameter equal zero. This 20 

distribution was previously used in several large-scale flood hazard studies (Dankers and Feyen 2008, Hirabayashi et al. 

2013, Winsemius et al. 2013, Alfieri et al. 2014). In order to calculate discharge Q with probability of occurrence p, the 

following equation is used: 

𝑄𝑝 = 𝜇 − 𝜎 ln(− ln(1 − 𝑝))                                                                               (8) 

where μ is the location parameter and σ is the scale parameter. Parameters were fitted using maximum likelihood 25 

estimation (Katz et al. 2002, Gelman et al. 2013). The extreme value analysis assumes the stationarity of the river discharge 

series. Using Spearman’s rank correlation we found that in 918 of 1125 gauges used to obtain return periods the trend was 

not significant at level of significance of 0.05. 

In order to maximise the number of stations available for validation, 30-year time periods were used in the calculation. 

30 years were used because such a time period maximises the number of stations available for validation. Also, this time 30 

span is commonly used in climate research. The main validation set consists of 958 stations with 1971–2000 data, 129 with 
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1961–90 data and 38 with 1951–80 data. That is 1125 in total out of 1841 used to quantify the BN. For further analysis, we 

made the calculation for all stations with data for a given time period; 1981–2010 period was added as well, utilizing 

modelled discharge estimates based on RCP 4.5 climate scenario for the years 2006–2010. Additionally, subsets comprising 

different regions of Europe and catchment size were also analysed. 

 5 

2.7 Measures for validation of the model’s results 

Accurate estimation of return periods of extreme discharges, as well as mean annual maxima, are the desired outcomes 

of the Bayesian Network model. Quality of return periods and average maxima simulations were evaluated using a set of 

three measures: coefficient of determination, Nash-Sutcliff efficiency and RMSE-observations standard deviation ratio. 

Those methods were selected because they have also been used in other studies (e.g. Rojas et al. 2011) and were included in 10 

an overview of most important measures by Moriasi et al. (2007). First, the Pearson’s coefficient of determination (R2) was 

used to measure the correlation between observed and simulated values. In Kurowicka and Cooke (2006) it is noted that R2 

actually factorizes into a function of the conditional rank correlations attached to the BN. Second, Nash-Sutcliffe efficiency 

(INSE) was applied to measure bias of the model. Its maximum value is 1, which means a plot of observed vs simulated data 

fits the 1:1 line (no bias), while a value below 0 (down to –∞) indicates that the mean of the observations is a better predictor 15 

than the simulated value. The relevant equation is as follows: 

𝐼𝑁𝑆𝐸 = 1 − [
∑ (𝑥𝑖

𝑜𝑏𝑠 − 𝑥𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

]                                                                        (9) 

where 𝑥𝑖
𝑜𝑏𝑠  is the i-th observation of a variable, 𝑥𝑖

𝑠𝑖𝑚 is the i-th simulated value of that variable and 𝑥𝑚𝑒𝑎𝑛  is the mean of 

observations. The final measure is root mean square error (IRMSE)-observations standard deviation ratio (IRSR). It standardizes 

the RMSE based on the standard deviation of observations (ISDobs): 20 

𝐼𝑅𝑆𝑅 =
𝐼𝑅𝑀𝑆𝐸

𝐼𝑆𝐷𝑜𝑏𝑠

=
√∑ (𝑥𝑖

𝑜𝑏𝑠 − 𝑥𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

√∑ (𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

                                                                (10) 

To further investigate the relative accuracy of the method in light of alternate models, we performed a RFA analysis, as 

presented by Smith et al. (2015). This required us to obtain supplementary data. Each river gauge station had to be assigned 

to one of five climate zones according to the Köppen-Geiger classification; a world map by Kottek et al. (2006) was used for 

that purpose. Overall, 65% of stations with long records in our sample are located in the temperate climate zone, 30% in 25 

continental, 4% in polar and 1% in arid. Additionally, mean annual rainfall was derived from CORDEX climate data. The 

final input information was catchment area, readily available from our datasets. In order to estimate discharge in the RFA, a 
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given station had to be assigned to one of the 82 clusters included in the RFA. The first criterion is the climate zone, which 

allocated a station to a group of clusters. Then, the Euclidean distance to the each cluster centroid (defined through a 

logarithm of area and rainfall) was calculated. Afterwards, “mean annual flood” equation (see Smith et al. 2015) was solved 

using the coefficients from the nearest cluster as well as catchment area and annual rainfall. providing us with QMAMX. 

Finally, cluster-specific GEV distribution parameters were then applied to obtain return periods of extreme discharges.  5 

3 Results 

In this section, extreme river discharges calculated using the Bayesian Network are compared with observed river 

discharges. Additionally, we present the results of applying the method to estimate the influence of climate change on 

discharges in Europe using EC-EARTH-COSMO_4.8_clm17 climate models. Results obtained with alternate climate models 

can be found in Supplement 2. 10 

3.1 Validation of the model’s results  

Extreme river discharge estimates obtained from the Bayesian Network are presented and compared with observed 

discharges in Fig. 5 and 6. The graphs include the mean annual maximum of daily discharge (QMAMX) and three return 

periods of discharges. In Fig. 6 we show a comparison of specific river discharges, i.e. runoff divided by the respective 

catchment areas (Wrede et al. 2013). The former shows the highest performance with both R2 and INSE at 0.92, while 15 

accuracy of simulated discharge fitted to Gumbel distribution decreases with the probability of occurrence. The 10-year 

discharge (Q10) has almost the same performance as QMAMX, while the 1000-year (Q1000) discharge noticeably deviates from 

the 1:1 line, mainly for very large rivers. It should be also remembered that the return periods were based only on 30-year 

series, therefore a 100- or 1000-year discharge includes the uncertainty of extrapolation of the return periods. However, the 

INSE value is still good, and R2 changes moderately. The R2 drops to 0.52 for QMAMX when considering specific river 20 

discharge and 0.44 for 100-year discharge, with INSE at 0.43 in both cases. Again, performance is slightly higher for 10-year 

discharge and drops approaching 1000-year discharge. It is also interesting to notice that the rank correlations for all four 

cases discussed previously (QMAMX, Q1000, Q100, Q10) are in the order of 0.8 and their bivariate distribution does not present 

large asymmetries (Fig. S5 in Supplement 2). This could be indication that a method based on copulas could also be used as 

for bias correction, however further investigation of this observation is outside of the scope of this paper. 25 

Performance of the model by time period, region or catchment area was also analysed in more detail (Table 2). For four 

different time periods, where availability of stations varies, the results of the validation are almost identical. Only for 1981–

2010 is it slightly lower because it is partially outside the timespan of the historical scenario of EURO-CORDEX; for 2006–

2010, data from RCP 4.5 climate change scenario run had to be used to fill the missing information. Much more variation in 

the quality of the simulations is observed when dividing the results by geographical regions (their definitions correspond to 30 

the regionalisation of the CCM2 catchment database). Western Europe (comprised mainly of France, Belgium, the 
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Netherlands and Rhine river basin) had particularly good results for QMAMX, followed by Danube river basin and Scandinavia 

(roughly defined as Sweden and Norway). The lowest correlation for QMAMX was observed in the Iberian Peninsula (Spain 

and Portugal), while Central Europe (mainly Poland, Lithuania, Denmark and north-east Germany) had the highest INSE 

values. Iberia had the lowest performance for Q100, while Western Europe recorded the highest correlation, and Scandinavia 

the best score in INSE and IRSR. Central European and Scandinavian stations’ error was lower and INSE values higher for 100-5 

year return period compared to QMAMX. No region dropped below acceptable levels (i.e. R2 or INSE value of 0.5, according to 

Moriasi et al. 2007), albeit stations in the Iberia and “other regions” have noticeably lower performance. In the case of Spain, 

to which almost all stations collected for the Iberian Peninsula belong, discharges tend to be overestimated, which may point 

to the influence of reservoirs on river flow. Indeed, many Spanish stations with large errors were found to be just 

downstream of large dams. Finally, “other regions” is a grouping of a small number of stations scattered around Europe, 10 

mainly from Finland, Italy and Iceland. Those areas, containing many rivers in both arid and polar climates, are 

underrepresented in the quantification of the Bayesian Network, which may provide a potential justification for their lower 

performance. 

In Fig. 5 it can be seen that the amount of scatter in the plot increases for rivers with smaller discharges. Detailed results 

in Table 2 show that the performance of the model drops for smallest catchments, especially for those below 100 km2 (177 15 

catchments). For others, above 500 km2, the R2 and INSE values are mostly in the range of 0.5–0.6 for specific discharges, as 

when considering all stations. Additionally, to validate the robustness of the method, we did a split-sample test. Stations 

were randomly divided into two sets. Data from 917 stations were used to quantify the Bayesian Network in order to 

simulate discharges in the remaining 924 stations. Of the latter, 586 stations had at least three full decades of discharge 

observations, which allowed us to make a comparison with simulated discharge. The validation result was almost identical 20 

with reported for the full quantification, and even better results (R2=0.94 and INSE=0.93) were observed for QMAMX, while for 

Q100 the same value of INSE was calculated and R2 equalled 0.90. Still, performance at individual stations varies. A selection 

of observed and simulated discharges, both annual maxima and fitted to Gumbel distribution, is presented in Fig. 7. At some 

stations, there is a very close fit, while at others either the discharge is overestimated, or the distributions have different 

shapes. This is however not atypical even for more local studies. 25 

The final analysis in this section is the comparison of the BN model and Regional Frequency Analysis (RFA). Using 

RFA, estimates of extreme discharge were obtained for all 1125 stations with long records and compared to discharges in 

Fig. 9. In the case of Q100, Gumbel-distributed discharges were used, as the performance with GEV distribution was slightly 

lower. The performance of both BN and RFA models is visually similar, though the BN recorded higher correlation and less 

bias then the RFA. Less scatter can be observed in upper and lower ranges of discharges, with similar performance in the 30 

middle. Using specific river discharges (Fig. 10) the performance of both methods was lower, but still much better for the 

BN: INSE, for example, was negative for both QMAMX and Q100 when using RFA, in contrast to a value of 0.43 for the BN. 

RFA was devised as a global method instead of a regional one, but at the same time it is in fact a set of 82 regional 



16 

 

approximations of hydrological processes. Here, we analyse contributing factors of extreme discharges all together, 

achieving comparable or even better results. 

 

3.2 River discharges in Europe 

Calculation of river discharges utilizing data from EURO-CORDEX climate simulations was done for years 1950–2100, 5 

and are presented here in three time slices: 1971–2000, 2021–2050 and 2071–2100. The first period is from the historical 

“control” run, while the other two were analysed for two emission scenarios: RCP 4.5 and RCP 8.5. Projected trends 

calculated from the data are presented in Fig. 8. For the sake of clarity, only rivers with catchment area above 500 km2 are 

presented in the picture; full-scale maps of discharges have been included in the Supplement. Aggregate statistics by region 

and catchment size were included in Table 3. In the description we focus on 100-year discharge, but the trends are also 10 

representative of other return periods. 

The projected trends in Europe are very diversified. For Europe as a whole, there is a slight 4–7% increase in discharges 

with a 100-year return period (Q100), with the biggest change observed in the 2021–2050 RCP 8.5 scenario. Along 34–44% 

of river length in Europe, Q100 is projected to increase at least by 10%, depending on scenario. Yet, along 16–21% of river 

length a decrease by more than 10% is expected with only small changes (±10%) for the remaining 35–49%. In RCP 8.5 15 

both increases and decreases of Q100 are more prominent than in RCP 4.5. In effect, Q100 in the 2071–2100 RCP 8.5 scenario 

is projected to correspond to 176-year discharge under present climate (1971–2000) if we take the median value. This value 

is slightly lower in mid-century and in end-century for RCP 4.5, with the smallest change compared to present climate in the 

2021–2050 RCP 4.5 scenario. 

Between regions, by mid-century, the largest average increases in extreme discharges are expected in the Iberian 20 

Peninsula and Danube basin (RCP 4.5), while Q100 in Central Europe (i.e. mainly Elbe, Oder and Vistula river basins) is 

projected to surge even more in RCP 8.5. By the end of the century, however, Southern Europe (comprised mostly of Italy) 

will experience the biggest average increase. On the other hand, Q100 is projected to decrease on average in the British Isles 

in all four scenarios, in North-East Europe (Finland, north-west Russia, the Baltics) in three scenarios, in Scandinavia in two 

and in South-East Europe (mainly Greece) in one. Those discrepancies are the result of several trends, namely changes in 25 

extreme precipitation, snowmelt and runoff coefficient. The first is projected to increase across the continent, while the other 

two decrease at the same time with some exceptions. Decline in snowmelt, a consequence of thinner snow cover, will 

contribute to lower extreme discharges in parts of Scandinavia and Scotland. However, in most of Sweden, Finland and other 

areas, less snowmelt will be offset by more rainfall. Lower precipitation is expected only in small, scattered patches of 

Europe, most noticeably in southern Spain. At the same time, an increase of the runoff coefficient could be observed in 30 

predictions for the Iberian Peninsula and western Europe with decreases in the remainder of the continent. Higher 

temperatures and less soil moisture are contributing factors to those trends. 
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In Table 3 projected trends in Q100 were also provided per catchment size. The differences in average increase of 

discharges are very small and partially caused by their uneven distribution in Europe. Median return periods show more 

diversity, since relative increase in discharge by certain increment of return period typically gets smaller as the river grows in 

size. Most importantly, this breakdown shows that the method is able to detect trends in discharge in both large and small 

rivers. 5 

4 Discussion 

The results presented in the previous section, however encouraging on their own, have to be compared to other existing 

studies. Such analysis is presented in section 4.1. Section 4.2 presents a discussion of the limitations of the method and the 

uncertainties in the model’s set-up and results. Finally, in section 4.3, ongoing and planned developments of the BN are 

presented. 10 

4.1 Comparison with other models 

The accuracy of the Bayesian Network model of extreme river discharges can be compared, directly or indirectly, with 

results of other statistical and physical models. In case of the former, a comparison with RFA method was shown in section 

3.1. For the latter, reported values of R2 and INSE from several studies were obtained.  

Studies with measures of model performance comparable with this analysis were summarised in Table 4. All of the 15 

publications were based on the LISFLOOD model forced by a large variety of climate models. The validation of those 

hydrological models was mainly based on Global Runoff Data Centre discharge data, similarly to this study. The correlation 

between observed and simulated mean annual maxima of daily discharges (QMAMX), measured by R2 was between 0.86 and 

0.94. The corresponding value in this study is within this range. Only one other study (Dankers and Feyen 2008) reported R2 

for discharge with different return periods (Q20, Q50, Q100). When compared with the results using the BN model, our results 20 

are slightly higher. It should be noted that in the aforementioned analysis, using Gumbel distribution (like in this study) 

yielded better correlation than Generalized Extreme Value (GEV) distribution. Only two studies reported INSE values. Most 

interestingly, Rojas et al. (2011) show that the performance of the hydrological model changed significantly depending on 

how climate data were treated. The authors noted large biases in modelled precipitation data, and made a correction based on 

observational datasets. This modification of climate data output slightly improved the correlation, but most importantly the 25 

INSE went from a negative value, indicating poor performance, to a value close to perfect fit with a 1:1 line. In this study, no 

modifications to climate data were made and yet INSE values for our statistical model are in the range of a physical model 

forced by bias-corrected climate data. Of course the reported validation results are not perfectly comparable with this 

analysis, since the described studies focused on relatively large rivers (those more than ca. 1000 km2 catchment area) and 

used ENSEMBLES regional climate simulations which are several years older than the CORDEX simulations employed 30 

herein. Additionally, R2 and INSE are not the only measures available. Dankers and Feyen (2008) report that the error in 
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simulating QMAMX was bigger than 50% in 24–25% of stations and more than 100% in 6–8%. In this study, for comparable 

river size, i.e. with extreme discharge of ca. 100 m3/s and more, those values are 34% and 11%. Still, in overall the 

performance of the Bayesian Network can be described as similar to LISFLOOD model in estimating annual extremes. 

4.2 Limitations and uncertainties 

The Bayesian Network model, despite its overall high performance, has lower accuracy over certain regions. Some of 5 

the uncertainties and limitations of the model are immanent properties of large-scale hydrological simulations, while others 

are specific to how the method was conceived and what assumptions and data were included. One of the foremost aspects 

belonging to the first category is that the method assumes natural flow in the catchment. Hydraulic structures, such as large 

dams, can have profound influence on extreme discharges, as many were developed as a flood-reducing measure. As 

mentioned in the results section, flows in Spanish rivers were generally overestimated and reservoirs may provide a likely 10 

explanation. Continental or global scale models routinely omit this aspect, as there is not enough information available to 

incorporate the existence of reservoirs or their operation. The BN model includes reservoirs only indirectly; they count as 

lakes and contribute to the percentage of the catchment covered by water bodies and have a negative influence of extreme 

discharge. In total, 326 large dams are within the catchments of the stations used in this study, according to the GRanD 

database (Lehner et al. 2008). Additionally, the conditions in the catchment may change over the timespan of the analysis of 15 

discharge data (1950–2005), due to reservoir construction or river regulation, or simply because of land use developments. 

Currently a single snapshot of European land cover is used (from around the year 2000), but the area covered by lakes, 

marshes and particularly artificial surfaces is dynamic. In our analysis there was very little difference in performance 

between different time periods, but this aspect could be relevant locally. 

The configuration of the Bayesian Network presented here was the best one we found, but may not be the only solution 20 

possible, or the best one there could be. In Paprotny and Morales Nápoles (2015) the set-up of the model was slightly 

different, with unconsolidated deposits (calculated as a fraction of all soil types in a catchment) used instead of the runoff 

coefficient. It can be noticed that despite several soil datasets being mentioned in the methodology (section 2.3), none made 

the final configuration of the model. Low resolution and limited thematic accuracy of global soil data is likely the cause. 

Several other variables describing terrain, climate or land cover mentioned in section 2.3 were not included, as adding them 25 

did not improve the model. However, one alternative configuration worth mentioning is a BN incorporating terrain 

classification based on height-above-nearest drainage (HAND). Replacing lake and marsh cover with “wetlands” and 

“hillslopes” identified in the digital elevation model (see Gharani et al. 2014) caused only fractional drop in performance. 

Given that land cover data for Europe has very high resolution and good accuracy, this approach may give better results in 

areas with less satisfactory data such as the developing countries. 30 

Some issues are related with the datasets used. Discharge data are daily values, rather than absolute peak flows, as that 

variable was the only one available from the main source of information, i.e. the Global Runoff Data Centre. Yet, Polish data 
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were only available as sub-daily maxima, which did not affect much the accuracy for Poland or Europe, but is nonetheless a 

slight inconsistency. More crucially, daily discharge is not adequate to model flash floods, floods of short duration, or floods 

in small catchments. Flash floods can occur in matter of minutes and outside of river beds. Also, the model utilizes daily 

precipitation and snowmelt, which also may not be accurate for large catchments, where the biggest floods are caused by 

rainfalls lasting many days. Potential incorporation of different timespans of flood-inducing meteorological events is yet to 5 

be analysed. In some regions the amount of river gauge station data was very limited, mainly in south-eastern Europe, while 

in others (northern and western Europe) was abundant, making the sample less representative. The river gauge observations 

might still contain errors, even though they were quality-checked by the providers; they could also be systematically 

inaccurate due to e.g. outdated rating curves. 

Further concerns are related with the river and catchment dataset CCM2. It has lower accuracy in areas with low relief 10 

energy, otherwise known as plains. Slight inaccuracies in the DEM result in improper delimitation of catchments in such 

regions. Large numbers of lakes in post-glacial parts of Europe can also result in sometimes substantial errors. For instance, 

INSE value for QMAMX for mountainous Norway is 0.90, while for Sweden, with its lake-filled landscape, it drops to 0.71. 

River gauge stations, for which there was a significant difference between catchment area in CCM2 and the corresponding 

value in the stations’ metadata, were removed from the sample. The improperly divided basins still exist in our final database 15 

of simulated extreme discharges, though. This also involves omission of most artificial channels and all cases of bifurcation, 

river deltas included. 

 Climate data from CORDEX have the highest resolution available, yet biases in representing rainfall, snowmelt and 

runoff could influence the results. As addressed in section 4.1, bias-correction of precipitation significantly improved 

performance of LISFLOOD hydrological model, leaving room for further enhancements of the method. Another issue is 20 

related with climate change scenarios used to construct the database of discharges. The difference between RCP 4.5 and RCP 

8.5 scenarios is sometimes very large as witnessed in Fig. 7. This alone illustrates major uncertainty related with future 

projections of climate. For the historical period, the use of an alternative CORDEX model and a climate reanalysis has 

shown (Supplement 2) that the BN model’s performance depends on the climate model used, yet it is still considerably better 

than the regional frequency analysis. 25 

Finally, the underlying dependence structure requires further investigation since some of the bivariate distributions of 

variables indicate that a non-Gaussian copula could be a better model (see Supplement 1 for details). Other copulas could 

potentially be used since, for some distributions tail dependence and other asymmetries may be present, even though the 

normal copula works well most of the time. Skewness, for example, may be modelled by copulas based on mixture 

distributions. This would correspond to copulas with more than two parameters (Joe 2014). 30 
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4.3 Applications and further developments 

The method was originally conceived to provide extreme discharge estimates that could be used for pan-European 

hazard mapping. As shown in the previous sections, the BN provides similar results when compared to existing hydrological 

models, yet it is much faster. For hydrodynamic modelling of water levels (Paprotny et al. 2017), catchments with area 

greater than 100 km2 where selected, both to further reduce calculation time and due to limited applicability of the BN model 5 

to very small catchments. The calculation of annual maximum discharge for 151 years, including 95 years in two climate 

change scenarios, in a domain of almost 156,000 river sections above the threshold and obtaining return periods of flood 

events, takes less than a day on a desktop PC. The exact value depends on the number of samples used when 

conditionalizing the BN and the number of samples used to quantify the BN. Nevertheless, the method can reduce time 

needed to perform a flood hazard analysis, both continental-scale and local, as long as annual extremes are relevant for a 10 

particular study.  

The results of this study – extreme discharges with certain return periods under present and future climate for all river 

sections in the domain – are publicly available online (Paprotny and Morales Nápoles 2016). The dataset was formatted in 

GIS in such a manner that it can be easily combined with the CCM2 river and catchment database. The files include a total 

of 10 different return periods of discharges (2–1000 years) and 5 scenarios, the same as described in section 3.2. 15 

Additionally, for each future scenario, change in the return period of discharge compared to 1971–2000 was calculated and 

included in dataset. Flood hazard maps that utilized those results are also accessible, but further discussion about them is 

outside the scope of this paper. This is definitely a line for future research recommended by the authors, with first application 

presented in Paprotny et al. (2017). We should note, however, that all the databases were published with the intention of 

analysing them on a European scale, and users should be careful applying them at local scale, especially for small and 20 

medium catchments (with an area of less than 500 km2).  

Thus far, the model’s domain has been limited to Europe, but investigation is also ongoing on applying the method to 

other regions, globally. Currently, data from United States and Mexico are being analysed. There is a very large number of 

river gauge observations available for the contiguous US, while for its southern neighbour the number and quality of 

historical records is limited. These case studies provide interesting challenges when compared to Europe. Mexico lays 25 

mostly within tropical and arid climate zones, which is in stark contrast to Europe. The United States is geographically 

diversified and its biggest river system – the Mississippi-Missouri basin – is almost four times larger than the Danube basin. 

For these countries global spatial datasets will be used which have a lower resolution than those applied in this study. It is 

possible, for instance, to quantify the BN model with those datasets and analyse its performance relative to the European 

quantification presented in this paper, as well as to combine those data. In this way, the model’s configuration with seven 30 

variables can be challenged, as the risk is that the method is overfitting the data from Europe. But again, this could only be 

definitely resolved by testing the model in other geographical areas of the world. As a first check, Couasnon (2017) applied 

the model for the contiguous United States, indicating that the European quantification performed generally well, though 
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much less accuracy was observed for arid and hurricane-influenced parts of the country than in those with temperate climate. 

Quantification based on US or combined (US/Europe) data performed less well, though for any variant the results were 

better than when using RFA, which was originally validated for that area by Smith et al. (2015). Finally, the model could be 

potentially evaluated not only using all variables, but conditionalized only on some of them, as observations for all variables 

might not be available in a given location. 5 

5 Conclusions 

In this paper we presented a first attempt to model extreme river discharges in Europe using Bayesian Networks. The 

method revisits the old concept of estimating discharges using only geographical properties of catchments, but employing an 

entirely new approach. Instead of a usual regression analysis, we determine the (conditional) correlations between different 

variables describing the catchments with copulas and a non-parametric BN. We show that the model has comparable 10 

accuracy to other large-scale hydrological models in simulating mean annual maxima and return periods of daily discharges 

and better performance than a regional frequency analysis. The data necessary to apply the method can be obtained from 

pan-European (or global) databases for any location in the continent (or other locations where global data is available). In 

this sense, the method can be used to create basic flood scenarios at any ungauged location where data for these variables are 

available. For that reason it was used to provide estimates of extreme river discharges for both present and future climate in 15 

all rivers in a domain covering most of the continent. However, the accuracy at different ungauged locations varies to some 

degree. The best performance was found in Scandinavia, western Europe and the Danube basin, while the lowest was 

observed in southern Europe, especially in the Iberian Peninsula. Trends in discharges were found to be very diversified, 

while the database itself will be applied to delimitating flood hazard zones in a separate study. Especially for future climate 

scenarios, further research regarding discharge estimates with our model is recommended.  20 

There are several advantages of our approach. It has low computational expense, The method is also flexible as its 

configuration could be easily modified, and the model can be used even if not all variables for a given location are available. 

At the same time it allows to perform sensitivity analysis of different variables on extreme discharges, as well as easily 

incorporate changes in climate or land use over time. It relies purely on the statistical distributions and statistical dependence 

of catchment descriptors, without any empirical modifiers or clustering typical for other statistical methods. The model also 25 

has a graphical nature, which makes its formulation is explicit. The aim was to make the method universal and, even though 

so far it was only comprehensively tested for Europe, its overall performance is encouraging. The accuracy of the model 

changes relatively little between regions and time periods, as well as when a split-sample test is applied. The disadvantages 

are mostly typical for other large-scale models, such as assumption of natural flow conditions in the rivers and lower 

performance in smaller catchments. Validation has shown that for catchments smaller than 500 km2, and especially than 100 30 

km2, performance is significantly lower than for larger ones due to increasing influence of local factors. The method was also 

crafted only for annual maxima of discharges, with the purpose of accurately estimating return periods rather than discharges 
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in a particular year. But again, this is the most relevant parameter in flood hazard analysis. The method will be further 

developed and tested in other parts of the world.  

Data availability 

This work relied entirely on public data as inputs, which are available from the providers cited in the paper. Results of 

the work can be downloaded from an online repository (Paprotny and Morales Nápoles 2016). 5 
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Table 1. Summary statistics of stations used in the work. 

Country 

Number of 

stations 

QAMAX values 

(1950–2005) 
Catchment size 

(km2) 

Number 

of 

stations 

QAMAX values 

(1950–2005) 

total 

per 

1000 

km2 

total % total % 

France 273 0.50 10642 14.2 >100,000 32 1303 1.7 

Spain 247 0.50 10602 14.2 10,000–100,000 207 8849 11.8 

Sweden 283 0.65 10520 14.1 1000–10,000 513 20826 27.9 

United Kingdom 228 0.92 9159 12.3 100–1000 795 32030 42.8 

Germany 133 0.37 6996 9.4 <100 294 11749 15.7 

Norway 104 0.32 5035 6.7 Total 1841 74757 100.0 

Switzerland 90 2.18 4093 5.5     

Austria 73 0.87 3464 4.6     

Poland 78 0.25 2807 3.8     

Finland 53 0.16 2287 3.1     

Ireland 40 0.57 1371 1.8     

Other countries 239 0.10 7781 8.8     

Total 1841 0.32 74757 100.0     

 

Table 2. Validation results for simulated and observed average annual maxima of daily river discharges QMAMX and annual maxima with a 

100-year return period Q100.  

              Category Stations 
QMAMX Q100 

R2 INSE IRSR R2 INSE IRSR 

 Total 1125 0.92 0.92 0.29 0.89 0.80 0.44 

Regions 

Central Europe 138 0.89 0.71 0.54 0.86 0.85 0.39 

British Isles 145 0.86 0.85 0.39 0.81 0.77 0.48 

Western Europe 261 0.97 0.96 0.19 0.94 0.79 0.46 

Iberian Peninsula 112 0.79 0.78 0.47 0.71 0.57 0.65 

Danube basin 167 0.93 0.92 0.27 0.92 0.83 0.42 

Scandinavia 227 0.92 0.83 0.42 0.91 0.90 0.31 

Other regions 75 0.79 0.82 0.43 0.72 0.70 0.55 

Time 

period 

1951–1980 512 0.93 0.92 0.28 0.89 0.85 0.38 

1961–1990 792 0.93 0.92 0.28 0.90 0.85 0.39 

1971–2000 958 0.93 0.93 0.27 0.90 0.84 0.40 

1981–2010 765 0.91 0.91 0.31 0.87 0.83 0.42 

Catchment 

area 

>500 km2 605 0.92 0.91 0.30 0.88 0.78 0.47 

<500 km2 520 0.59 0.52 0.69 0.56 0.55 0.67 

>10,000 km2 166 0.90 0.89 0.33 0.84 0.68 0.57 

1000-10,000 km2 311 0.64 0.43 0.75 0.58 0.57 0.66 

100-1000 km2 471 0.55 0.38 0.78 0.47 0.44 0.75 
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<100 km2 177 0.47 0.41 0.77 0.42 0.40 0.77 

Specific 

discharge 

by area 

>500 km2 605 0.61 0.40 0.78 0.51 0.47 0.73 

<500 km2 520 0.36 0.23 0.88 0.27 0.23 0.88 

>10,000 km2 166 0.58 0.45 0.74 0.43 0,37 0.79 

1000-10,000 km2 311 0.60 0.41 0.77 0.51 0.50 0.71 

100-1000 km2 471 0.40 0.17 0.91 0.32 0.25 0.86 

<100 km2 177 0.29 0.20 0.90 0.20 0.12 0,94 

Total 1125 0.52 0.43 0.77 0.44 0.43 0.76 

 

Table 3. Projected change in 100-year river discharge (Q100) relative to 1971–2000, and return periods of discharge equal to Q100 in 1971–

2000 for two emission scenarios RCP4.5 and RCP8.5. Predictions based on EC-EARTH-COSMO_4.8_clm17 climate model run. 
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Table 4. Reported validation results for extreme discharge simulations for Europe. 

Study Description Variable 
Measure 

R2 NSE 

This study Bayesian Network model, 1125 stations 
QMAMX 0.92 0.92 

Q100 0.89 0.80 

Dankers and Feyen 

(2008) 

LISFLOOD model, 2 different climate model 

resolutions, 1961–1990, 209 stations, Gumbel or GEV 

distribution 

QMAMX 0.90–0.91 - 

Q100 0.80–0.87 - 

Q50 0.84–0.88 - 

Q20 0.86–0.88 - 

Dankers and Feyen LISFLOOD model, 8 different climate models and runs, QMAMX 0.86–0.93 - 

              Category 

Average change in Q100 weighted by 

length of river sections (%) 

Median return period of discharge 

equal to Q100 in 1971–2000 (years) 

2021–

2050 

RCP4.5 

2071–

2100 

RCP4.5 

2021–

2050 

RCP8.5 

2071–

2100 

RCP8.5 

2021–

2050 

RCP4.5 

2071–

2100 

RCP4.5 

2021–

2050 

RCP8.5 

2071–

2100 

RCP8.5 

 Total +3.7 +5.7 +7.0 +5.9 133 168 163 176 

Regions 

(selected) 

Central Europe +3.5 +9.6 +13.5 +12.2 138 200 225 276 

British Isles -6.0 -6.5 -6.8 -13.5 59 62 58 42 

Southern Europe +3.9 +12.1 +8.8 +17.7 142 311 209 492 

Western Europe +1.1 +4.5 +5.8 +11.4 116 163 174 269 

Iberian Peninsula +7.3 +8.1 +12.2 +11.0 181 177 215 206 

Danube basin +6.5 +9.4 +9.3 +8.0 173 234 190 207 

North-East Europe +1.2 -0.1 -1.5 -8.4 99 117 87 64 

Scandinavia +1.8 -1.9 +4.6 -5.0 121 110 184 80 

South-East Europe +1.2 +2.7 -1.2 +3.7 137 135 111 149 

Catchment 

area 

>100,000 km2 +2.9 +6.4 +8.2 +5.2 195 500 685 337 

10,000–100,000 km2 +4.7 +7.4 +8.9 +7.2 168 205 269 227 

1000–10,000 km2 +3.3 +4.3 +6.0 +5.1 133 156 173 162 

100–1000 km2 +3.7 +5.1 +5.7 +5.7 128 163 170 159 

<100 km2 +2.9 +4.4 +3.8 +5.0 134 170 162 178 
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(2009) 1961–1990, 209 stations 

Rojas et al. (2011) 
LISFLOOD model, 

1961–1990, 554 stations 

Without bias correction of 

climate data 
QMAMX 0.87 -1.89 

With bias correction QMAMX 0.92 0.89 

Rojas et al. (2012) 
LISFLOOD model, 12 different bias-corrected climate 

models, 1961–1990, 554 stations 
QMAMX 0.90–0.94 0.88–0.93 

 

 

Figure 1. Schematic workflow of obtaining extreme river discharges from catchment characteristics. QAMAX = annual maxima of 

discharges. Roman numerals refer to the text. 
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Figure 2. Measurement stations used in the work (“long data series” indicates stations with sufficient data for calculating return periods) 

and river basins included in the domain. 
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Figure 3. Bayesian Network for river discharges in Europe. The nodes are presented as histograms, with numbers indicating the means 

and standard deviations of the variables. Values on the arcs are the (conditional) rank correlation coefficients. 

 

 5 

Figure 4. Cumulative probability distribution of river discharge: unconditional and conditionalized on two and seven nodes using values 

for Basel station in Switzerland (river Rhine, year 2005). 
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(a)      (b) 

 

(c)      (d) 

 5 

Figure 5. Simulated and observed average annual maxima of daily river discharges (a) and annual maxima fitted to Gumbel distribution to 

calculate 1000-, 100- and 10-year return periods (b–d), for 1125 stations. 30-year periods of annual maxima were used (the most recent 

available out of 1971–2000, 1961–1990 or 1951–1980). 
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(a)      (b) 

 

 

(c)      (d) 

 5 

Figure 6. The same as Fig. 5, but for specific discharge, i.e. divided by catchment area. 
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Figure 7. Simulated and observed annual maxima of daily river discharges fitted to Gumbel distribution at selected stations. Data refer to 

1971–2000, except h), which refers to 1961–1990. 
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Figure 8. Predicted trends in daily river discharge with a 100-year return period (Gumbel distribution) under climate change scenarios 

RCP 4.5 and RCP 8.5 (rivers with catchment area above 500 km2 only). Projections based on EC-EARTH-COSMO_4.8_clm17 climate 

model run.  
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Figure 9. Simulated and observed average annual maxima of daily river discharges and 100-year discharge for 476 stations; Bayesian 

Network model in red, regional frequency analysis in green. 30-year periods of annual maxima were used (the most recent available out of 

1971–2000, 1961–1990 or 1951–1980). 5 

 

 

Figure 10. As Fig. 9, but for specific discharge, i.e. divided by catchment area. 


