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Abstract. Large-scale hydrological modelling of flood hazard requires adequate extreme discharge data. Models based on 

physics are applied alongside those utilizing only statistical analysis. The former requires enormous computation power, 

while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical 

approach based on Bayesian Networks (BN), a graphical model for dependent random variables. We use a non-parametric 

BN to describe the joint distribution of extreme discharges in European rivers and variables describing the geographical 5 

characteristics of their catchments. Data on annual maxima of daily discharges from more than 1800 river gauge stations 

were collected, together with information on terrain, land use and climate of catchments that drain to those locations. The 

(conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the 

network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated 

with an accuracy similar to existing studies using physical models for Europe, and better than a comparable global statistical 10 

method. Performance of the model varies slightly between regions of Europe, but is consistent between different time 

periods, and is not affected by a split-sample validation. Though discharge prediction under climate change is not the main 

scope of this paper, as an example of application of our method, the BN was applied to a large domain covering all sizes of 

rivers in the continent, both for present and future climate. Results show large variation in influence of climate change on 

river discharges, as well as large differences between emission scenarios. The method could be used to provide quick 15 

estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling. 

Keywords. hydrology; catchments; floods; copulas; climate change; return periods; flood risk 

1 Introduction 

There is currently substantial concern in Europe about increasing flood risk linked mainly to climate change. Available 

studies (Whitfield 2012, Feyen et al. 2012, Alfieri et al. 2015) predict that the severity of floods will increase, due to changes 20 

in extreme precipitation and socio-economic development. Abundant availability of continental and global climate, land use 

and elevation data result in many studies analysing floods in the same large domain. However, the amount of hydrological 

observations at disposal is far from sufficient. This is not only the result of an uneven network of measurement stations, but 

also the limited dissemination of data by national or local bodies responsible for their collection. At the same time, they are 

necessary to calculate accurate hydrological event scenarios for the purpose of delimitating flood zones. Those scenarios are 25 

typically values of extreme river discharge or water level with a certain return period, i.e. the average interval of time 

between the occurrences of an event with the same magnitude. Such calculation additionally require long data series, further 

narrowing the number of locations were such analysis can be performed. In effect, large-scale flood studies must fill the gaps 

in measurements with modelled river flows. There are two main groups of methods used to obtain discharge values in 

ungauged catchments. 30 

The first group of methods are rainfall-runoff models. They utilize physical equations describing processes such as 

infiltration, runoff, retention in order to transform rainfall into river discharges. A large number of models have been used in 
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smaller scales, though in recent years few studies applied them on a continental or global scale. One series of publications 

(Dankers and Feyen 2008, Rojas et al. 2012, Alfieri et al. 2014 and others) presented calculations using LISFLOOD model. 

The simulation was set up for Europe with a 5-km resolution. Many different datasets of rainfall amount were tested, 

including historical observations and future climate simulations, deriving daily discharge data for most of the continent. 

Another group of studies (Ward et al. 2013, Winsemius et al. 2013) has presented a global hydrological model GLOFRIS. 5 

This model has a much coarser resolution than the previous one—the rainfall-runoff module uses a 0.5° grid (ca. 50–80 km 

resolution over Europe). All those studies used the results to perform an extreme value analysis of modelled river discharges, 

and some also carried on with a flood hazard study. The main drawback of this approach is the computational expense, 

which necessitates a reduction in resolution (though it should be noted that the main driver—meteorological data—also have 

limited resolution). Additionally, only a limited number of rivers is included. For instance, LISFLOOD-based studies used a 10 

threshold of 1000 km
2
 catchment size, later reduced to 500 km

2
. Meanwhile, GLOFRIS was prepared only for rivers with 

Strahler order 6 or above, which is about a third of the river length included in the aforementioned European model. 

The second group of approaches are statistical methods, of which a large variety exists. Several methods are based on 

the fact that catchments close to each other share many characteristics. River basins are therefore pooled into groups based 

on geographical proximity alone or also based on catchment size, climate data, terrain or soil type. However, the studies 15 

employing such techniques mostly covered a limited domain, typically single countries (Meigh et al. 1997, Salinas et al. 

2013). The first global analysis was recently presented by Smith et al. (2015). The study applied regional frequency analysis 

(RFA) for all continents for the first time. Here, after clustering catchments based on size, climate type and average rainfall, 

a probability distribution of discharges is calculated for each region. Estimates of extreme discharges for a given ungauged 

catchment are derived by first assigning it to a proper region. Then using data on catchment size and rainfall together with 20 

region-specific coefficients a simple regression equation is solved in order to obtain an estimate of the mean of annual 

maxima of discharges in the catchment. Lastly, a Generalized Extreme Value probability distribution with region-specific 

parameters is used to calculate return periods of discharges. Flood scenarios (though peak discharges only) obtained through 

this method were used for a global flood hazard analysis through LISFLOOD model by Sampson et al. (2015). 

There are also several statistical methods that rely solely on the geographical characteristics of catchments to estimate 25 

discharges. Many of them are simple equations that can be easily applied to quickly solve practical problems in engineering, 

such as estimating dike heights or calculating necessary channel or culvert capacity. Also, they are typically only applicable 

in small areas for which they were prepared. Usually, they are a variation of the “rational equation”, which states that river 

discharges can be calculated by multiplying catchment area, rainfall intensity and runoff coefficient (Chow 1988, Sando 

1998). The first two elements are used in virtually all methods. The remaining element is either left out due to the difficulty 30 

of estimating it, or is derived from a model table of coefficients, or additional factors are added as proxies. For instance, 

Stachý and Fal (1986) developed an equation to calculate 100-year discharge in catchments above 50 km
2
 in Poland which 

incorporates seven factors: catchment area, extreme rainfall (100-year return period), soil type, catchment slope, river slope, 

lake area and marsh area. However, it also requires an additional empirical coefficient for each physiogeographic region of 
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the country, while different return periods than the default 100 years are obtained by multiplying discharge by a region-

specific factor, similar to the RFA method. Another example is the preliminary flood risk assessment in Norway (Peereboom 

et al. 2011), which utilized a simple regression between catchment area and 500-year water level. An “envelope curve” 

approach was then applied, in which a curve is constructed in such a manner that it contains all (or almost all) observations. 

This concept was long used to make crude estimations of maximum possible floods, also on continental scale (e. g. Padi et 5 

al. 2011 applied it to Africa). Finally, some attempts were made to apply multiple linear regressions, also on global scale 

(Herold and Mouton 2010). 

This paper presents a new statistical method to calculate extreme river discharges under present and future climate in 

Europe. It was devised as an alternative to existing physical and statistical models; its purpose was to provide boundary 

conditions for hydraulic modelling that could be used in a pan-European flood hazard analysis. The method is based on 10 

Bayesian Networks that combine probability theory and graph theory in order to build and operate a joint distribution. It is 

used to analyse and represent the dependencies between different environmental variables, including river discharges. We 

present the quantification of the model based on a large dataset of river gauge observations and pan-European spatial 

datasets. The model shows good performance across regions of Europe at different time periods. We also present a 

comparison of this new approach with other methods, both physical and statistical. Lastly, we apply it over the entire domain 15 

to obtain a large database of extreme discharges, and analyse the influence of climate change on their return periods.  

An early and preliminary variant of the method was originally reported in Paprotny and Morales Nápoles (2015). The 

Bayesian Network presented there is superseded by an improved version described herein. Also, the work is part of a bigger 

effort to create pan-European meteorological and hydrological hazard maps under “Risk analysis of infrastructure networks 

in response to extreme weather” (RAIN) project. This fact influenced the choice of the domain and input data, which is 20 

explained in the next sections, though this does not limit the applicability of the method outside the domain. 

2 Materials and methods 

This section first gives an overview of the model’s framework and elements, and then proceeds with details on how the 

model was prepared, what datasets were used to build it, what are the underlying mathematical methods and how its 

accuracy and utility was assessed. 25 

2.1 Workflow and outline of the method 

The basic elements of the procedure to derive extreme discharge estimates through a Bayesian Network are presented in 

Fig. 1. The first step was identifying available data on annual maxima (QAMAX) of daily river discharge (I), and also 

catchments which contribute to locations where the measurements were made (section 2.2), i.e. gauged catchments (II). 

Then, several large-scale (pan-European or global) spatial datasets were compiled (III), providing information on most 30 

important variables influencing extreme river flow behaviour (section 2.3), both for gauged and ungauged catchments (IV). 
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The dependence between those variables and river discharges, were analysed through copulas and Bayesian Networks 

(section 2.4) (V). After extensive testing of different configurations, an optimal model was constructed (section 2.5) that had 

the highest performance in validation in terms of the underlying statistical model and prediction capability (sections 2.7 and 

3.1) (VI). The output of the model are annual maxima of daily river discharges (VII), which were then fitted to a probability 

distribution in order to obtain return periods (section 2.6). After the method was ready, it was applied for all catchments (IV) 5 

in the domain to create a database of discharges (VIII). Frequency analysis allowed then to obtain return periods of 

discharges under present and future climate in Europe (section 3.2) (IX). The accuracy of the Bayesian Network model was 

also contrasted with alternate methods (section 4.1) (X). 

2.2 River discharge data 

Discharge data from measurements stations were collected over a domain covering most of Europe (Fig. 2). Because 10 

this research focuses on European Union (EU) countries, all river basins at least partially located in this group of states are 

included (including Cyprus, geographically part of Asia). Some additional neighbouring basins were added for complete 

coverage of Europe except for the territory of the former Soviet Union. Only the outermost regions of Madeira, the Azores 

and the Canary Islands were omitted because they are outside the EURO-CORDEX climate model; notwithstanding, their 

river networks are very limited and therefore of little interest. 15 

In total, series for 1841 stations were compiled, not including a few dozens of available stations whose tributaries could 

not be unequivocally identified and were therefore not included in the analysis. The data were collected from five sources, as 

follows: 

• 1186 stations from the Global Runoff Data Centre (2016); 

• 82 stations from the Norwegian Water Resources and Energy Directorate (2015); 20 

• 284 stations from the Swedish Meteorological and Hydrological Institute (2016); 

• 239 stations from Centro de Estudios Hidrográficos (2012); 

• 50 stations from Fal (2000). 

The data collected were daily discharges observed between 1950 and 2013, though of primary interest were data up to 

2005, since it was the maximum range of EURO-CORDEX climate models’ historical scenario runs. All datasets were 25 

quality-checked by the providers, though a few erroneous records had to be corrected after inspection. Daily discharges were 

transformed into annual maxima (QAMAX) for each calendar year, except for the last group of 50 stations, as Fal (2000) only 

reported the extreme and mean values. Total number of QAMAX values for years 1950–2005 in the database was 74,757. The 

stations represent 37 countries and 439 different river basins (78% of the domain’s area of 5.67 million km
2
). However, the 

south-eastern part of Europe is substantially underrepresented, with most stations concentrated in Scandinavia and the 30 

Western Europe. France has the highest number of QAMAX values in the database (14%), followed closely by Spain,  Sweden 

and United Kingdom, as can be seen in Table 1. The catchments’ size spans from 1.4 to 807,000 km
2
, with a biggest group 

of them being in the 100–1000 km
2
 range.  
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Long data series, i.e. at least three full decades of uninterrupted data (1951–80, 1961–90 or 1971–2000) were available 

for 1125 stations. These observations were used to validate the accuracy of the model in estimating mean QAMAX and return 

periods, while the complete database was used to quantify the Bayesian Network model. 

2.3 Spatial datasets 

Several large-scale spatial datasets were collected for this work, even though not all of them were used in the final set-5 

up of the model. Nevertheless, all were useful for testing different configurations of the BN. The most important dataset is a 

map of the river network and catchments, which was derived from pan-European CCM River and Catchment Database v2.1, 

or CCM2 (Vogt et al. 2007, de Jager and Vogt 2010). It was created by calculating flow direction and accumulation on a 

100-m resolution digital elevation model (DEM), combined with land cover information, satellite imagery and national GIS 

databases. CCM2 was utilized to delimit the domain used in this paper; in total that area covers 831,125 river sections 10 

(almost 2m km in length) in 70,638 river basins. Each river gauge station was connected with a corresponding river section 

in CCM2. Each river section belongs to one primary catchment, whose attributes includes the identifier of the next 

downstream catchment. Using this information, the whole tributary of a gauge station, or any other point in the domain, 

could be delimitated. For each catchment, by employing GIS software, various statistics were calculated based on other 

datasets described below. Additionally, a few indicators could be derived from this dataset alone: catchment area, river 15 

network density (total river length divided by catchment area) and catchment circularity (catchment area divided by the area 

of a circle that has the same perimeter as the catchment). 

The next most relevant source of information are climate data, both historical and future projections. Two datasets for 

the former were analysed. E-OBS is an spatial interpolation of observations made by weather stations covering years 1950–

2015 (Haylock et al. 2008), while ERA-Interim is a complete climate reanalysis for 1979–2015 (Dee et al. 2011). However, 20 

E-OBS has gaps in spatial coverage and includes few variables, whereas ERA-Interim has a relatively coarse resolution 

(0.75°). In effect, slightly better performance of the model was recorded using high-resolution control runs of a climate 

model under EURO-CORDEX framework (Jacob et al. 2014); the results of this analysis can be found in Supplement 2. 

EURO-CORDEX uses regional climate models (RCM) for Europe, where boundary conditions are obtained from global-

scale general circulation models (GCM). In this work, we utilize simulations for the historical run (1950–2005) and two 25 

climate change scenarios (RCP 4.5 and RCP 8.5 for 2006–2100). The necessary variables (precipitation, snowmelt, runoff) 

and resolution (0.11°) were included in a total of 14 model runs; of these, 8 model runs start in 1950. One of the model runs 

was made using a 12-member ensemble and was therefore chosen as the model to develop and test the method. 

 This model run was made by the Climate Limited-area Modelling-Community utilizing EC-Earth general circulation 

model (run by ICHEC) with COSMO_4.8_clm17 regional climate model (Rockel et al. 2008), realization r12i1p1. This 30 

RCM also has relatively good model performance when estimating extreme precipitation in comparison with others 

(Kotlarski et al. 2014). No bias correction was performed, even though it is often considerable for extreme precipitation 

(Rojas et al. 2011). For the sake of simplicity and universality of the method we opted for using all input data unaltered. 
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However, as an additional check on the method’s performance, a different GCM-RCM combination was analysed, and the 

results were added to Supplement 2. From this dataset four variables were derived: total precipitation, snowmelt, near-

surface temperature and total runoff. All data were daily values on a 0.11° rotated grid (spatial resolution of about 12 km). 

Meteorological factors are the driving force behind floods, but more factors influence the runoff – terrain, land use and 

soils. Information on terrain was obtained from two digital elevation models. Most of the domain is available from EU-5 

DEM, a dataset produced for the European Environment Agency. It was created by merging two sources of satellite altimetry 

data – Shuttle Radar Topography Mission (SRTM) and ASTER GDEM. It has a 25 m resolution and covers 39 countries 

(DHI GRAS 2014), including areas north of 60° N missing from SRTM-only datasets. For Eastern Europe and some Atlantic 

islands which are not covered by EU-DEM, SRTM data where used instead (Farr et al. 2007). This model has a 3 arc second 

resolution (~100 meters over Europe) and has several versions available. The one used here is a void-filled derivate obtained 10 

from Viewfinder Panoramas (2014). Both datasets were resampled to a common 100 m grid matching the CCM2 dataset. 

The variables calculated from the DEMs included average elevation, average river slope and average catchment slope. The 

latter was derived in the ways: by averaging all slopes in DEM, or calculating the slope S with the equation: 

𝑆 =
𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛

√𝐴
                                                                                        (1) 

where Hmax is the maximum, and Hmin the minimum, elevation in the catchment and A is the catchment area. Another 

variable, the time of concentration, which is a measure of water circulation speed in the catchment, was calculated based on 15 

Gericke and Smithers (2014). Finally, we tested terrain classification similar to one used in FLEX-Topo hydrological model 

(Savenije 2010). In this approach, all grid cells in the DEM are classified based on height-above-nearest-drainage (HAND), 

slope inclination and absolute elevation (Gharani et al. 2011, Gao et al. 2014). Three classes—wetlands, hillslopes and 

mountains—were calculated as percentage of total catchment area. 

Land use statistics for catchments were mainly based on CORINE Land Cover (CLC), another dataset produced by the 20 

European Environment Agency (2014a). CLC 2000 edition, version 17 (12/2013) in raster format (100 m resolution) was 

used here. It includes 44 land cover classes with a minimum mapping unit of 25 ha and covers 39 countries. The main source 

material were Landsat 7 satellite images from years 1999–2001 (European Environment Agency 2007). Similarly to EU-

DEM, the dataset does not cover some catchments in Eastern Europe and few other areas. Missing information was 

supplemented by Global Land Cover 2000 dataset, produced by the Joint Research Centre using algorithmic processing of 25 

SPOT 4 satellite images (Bartalev et al. 2003). This product has a 30 arc second resolution and includes 22 land cover 

classes. The different classifications were synchronised to derive the area covered by forests, croplands (total and irrigated), 

marshes, lakes, glaciers, bare land and artificial surfaces. However, the data is only available for a single year for the whole 

domain, even though CLC was produced also for 2006 and, in some countries, for 1990. In contrast to terrain or soils, land 

use is dynamic and could influence the analysis for early time periods. Some historical land-use reconstructions and 30 

projections (e. g. Klein Goldewijk et al. 2011) do not have the necessary resolution or thematic coverage for use in this 

analysis. Therefore, a fixed values of land use percentages was used for all years, including climate change scenarios. 
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Last but not least, data on soil properties were analysed. Occurrence of peat, unconsolidated and Eolian deposits, 

average water content and soil texture were derived from European Soil Database v2.0 (Panagos et al. 2012), developed at 

1:1,000,000 scale, and Harmonized World Soil Database v1.2 (FAO/IIASA/ISRIC/ISS-CAS/JRC 2012), available at 30 arc 

second resolution. Also, soil sealing (i.e. area covered by artificial impervious surfaces) was obtained from Revised Soil 

Sealing 2006, a dataset based on satellite imagery with a 100 m resolution (European Environment Agency 2014b). 5 

Additionally, grain-size structure of the soil (gravel, sand, silt, clay) was calculated from SoilGrids1km database (Hengl et 

al. 2014).  

2.4 Bayesian Networks 

As noted in the introduction, Bayesian Networks (BN) are graphical, probabilistic models (Pearl 1988, Kurowicka and 

Cooke 2006). They have several advantages, compared to other methods, for the application described in this paper. For one 10 

thing, its graphical nature makes the dependence configuration explicit, as evidenced in Fig. 3 in the next section. It captures, 

for example, dependencies between different environmental variables, which are not easily modelled with regression 

methods. Also, it allows to capture the often non-linear nature of those dependencies. The class of BNs used in this research 

includes several elements, whose specifics need to be explained before the actual hydrological model is presented. 

First of all, consider a set of random variables (𝑋1, 𝑋2, … , 𝑋𝑛), which could be discrete, continuous, or both. This 15 

distinction defines the different types of BNs. Here, more suitable is a continuous BN, since our environmental data are of 

this sort. Also, discrete BNs are only efficient for small models with variables having a limited number of states. That is 

because of the way the (conditional) probabilities are calculated, as we explain later on. The random variables are 

represented as “nodes” of the BN, while the dependencies between them are represented as “arcs” joining different nodes. 

An arc represents the (conditional) correlation between two variables, and has a defined direction. The node whose arc points 20 

into the direction of another node is known as the “parent”, while the node on the other end of the arc is its “child”. A set of 

nodes and arcs forms the eponymous “network” of the BN. The arcs have to connect the nodes in such a manner that the 

graph is acyclic, i.e. if we chose any node and follow strictly the direction of all arcs in a path, we will not end up in the 

same node. Each variable is conditionally independent of all its predecessors given its parents. Therefore, each variable has a 

conditional probability function given its parents, and the joint probability can be expressed as:  25 

𝑓𝑋1,𝑋2,…,𝑋𝑛
(𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓𝑋𝑖|𝑃𝑎(𝑋𝑖)(𝑥𝑖|𝒙𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

                                                                             (2) 

where  𝑃𝑎(𝑋𝑖) is the set of parent nodes of 𝑋𝑖, with 𝑖 = 1, … , 𝑛. Naturally, if there are no parents, 𝑓𝑋𝑖|𝑃𝑎(𝑋𝑖) = 𝑓𝑋𝑖
. We 

already see that one of the purposes of BNs, perhaps the main one, is updating the probability distributions of subsets of 

nodes, when evidence (observations) of a different subset becomes available. Hence, it is important not only to properly set-

up the network with nodes and arcs, but also choosing a good method to describe the dependencies. In case of a discrete 

network, this is done using conditional probability tables. Node ‘Max discharge’ has 7 parents, therefore if each continuous 30 
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node were to be discretized into 5 states a probability table with 5
8
 = 390,625 conditional probabilities would be required. 5

7
 

= 78,125 may be estimated by difference, as probabilities must add to 1. Thus, 312,500 probabilities would need to be 

specified. Similarly, if we were to discretize into 10 states each node 90,000,000 probabilities would need to be specified. 

Even a discretization into 5 states for each node in our model would make the quantification prohibitive given the data 

available. Considering other nodes (node ‘Buildup’ has 4 continuous parents) would make it even more restrictive for the use 5 

of discrete BNs. 

Meanwhile, using a non-parametric continuous BN, we only need to specify an empirical marginal distribution for each 

variable and a rank correlation for each arc (Hanea et al. 2015). We use the usual estimator of the cumulative probability 

distribution: 

𝐹̂(𝑥) =
1

𝑛
∑ 1{𝑥𝑖≤𝑥}

𝑛

𝑖=1

                                                                               (3) 

where (xi, …, xn) are the samples of a random variable, while 1{𝑥𝑖≤𝑥} = 1 over the set {𝑥𝑖 ≤ 𝑥} and zero elsewhere. 10 

Spearman’s rank correlations are used to parameterize one-parameter (conditional) copulas. A copula is, loosely, a joint 

distribution on the unit hypercube with uniform (0,1) margins. There are many types of copulas, described in detail by Joe 

(2014). Here, we use bivariate Gaussian copulas, an assumption that was tested against alternate distributions (Clayton and 

Gumbel copulas). Details of this calculation, and the validation of the whole Bayesian Network can be found in Supplement 

1. The bivariate Gaussian copula C has the following cumulative distribution function: 15 

𝐶𝜌(𝑢, 𝑣) = Φ𝜌(Φ−1(𝑢), Φ−1(𝑣)), (𝑢, 𝑣) ∈ [0,1]2                                                            (4) 

where Φ is the standard normal distribution, Φ−1 its inverse and Φ𝜌 the bivariate Gaussian cumulative distribution with  

(conditional) product moment correlation ρ between the two marginal  uniform variates u and v in the interval [0,1]. In 

contrast to the copula specification, the non-parametric BN we apply here is parametrized by (conditional) rank correlations. 

This is because they are algebraically independent; hence, any number in the interval [-1,1] assigned to the arcs of the BN 

will warranty a positive definite correlation matrix. The rank correlation (denoted by r ) of two random variables Xi and Xj 20 

with cumulative distribution functions 𝐹𝑋𝑖
 and 𝐹𝑋𝑗

 is the usual Pearson’s product moment correlation ρ computed with the 

ranks of Xi and Xj, i.e. 

𝑟(𝑋𝑖 , 𝑋𝑗) = 𝜌 (𝐹𝑋𝑖
(𝑋𝑖), 𝐹𝑋𝑗

(𝑋𝑗))                                                                           (5) 

Conditional rank correlations are calculated as shown in eq. 5, except that the conditional distributions are used inside 

the arguments to the right of the equal sign. For the Gaussian copula conditional correlations are equal to partial correlations 

and these are constant. For a one-parameter bivariate copulas, eq. 5 becomes: 25 

𝑟(𝑋𝑖 , 𝑋𝑗) = 12 ∫ ∫ 𝐶𝜃(𝑢, 𝑣)
1

0

𝑑𝑢 𝑑𝑣 − 3
1

0

                                                                   (6) 
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The conditional rank correlation of Xi and Xj given the random vector 𝒁 = 𝒛 is the rank correlation calculated in the 

conditional distribution of (𝑋𝑖 , 𝑋𝑗|𝒁 = 𝒛). For each variable Xi with m parents 𝑃𝑎1(𝑋𝑖), … , 𝑃𝑎𝑚(𝑋𝑖) the arc 𝑃𝑎𝑗(𝑋𝑖) → 𝑋𝑖 is 

associated with the rank correlation: 

{
𝑟 (𝑋𝑖 , 𝑃𝑎𝑗(𝑋𝑖)) ,                                              𝑗 = 1

𝑟 (𝑋𝑖 , 𝑃𝑎𝑗(𝑋𝑖)|𝑃𝑎1(𝑋𝑖), … , 𝑃𝑎𝑗−1(𝑋𝑖)) ,   𝑗 = 2, … , 𝑚
                                                     (7) 

where the index j is in the non-unique sampling order. For more details on the non-parametric Bayeian Networks we refer 

the reader to Hanea et al. (2015). Having all the variables and parameters of the Bayesian Network in place the joint 5 

distribution is uniquely determined. Under the Gaussian copula assumption, exact inference is available as well as efficient 

sampling procedures (for details, see Hanea et al. 2006). Here, 1000 samples were used each time we wanted to 

conditionalize the BN in order to derive an estimate of river discharges for a given location in our dataset. This number of 

samples is adequate to approximate the conditional distributions of interest while keeping the procedure computationally 

feasible. The Bayesian Network for river discharges presented here was implemented in Matlab software; UniNet 10 

programme for non-parametric BNs was also used to visualize and analyse the model (for details, see Morales Nápoles et al. 

2013). 

2.5 Extreme discharge model 

The final BN for extreme river discharge was derived through testing many configurations involving around 30 

variables. The BN cannot be created in an automated manner, nor is it desirable to do so. Therefore, it was build stepwise 15 

and assessed using a set of statistical measures presented in section 2.7. The final model uses 8 variables and  is presented in 

Fig. 3, with a histogram representing each variables’ distributions. The position of the nodes shows their hierarchy relative to 

the annual maximum of daily river discharge (MaxDischarge): the order in which different variables conditionalize on the 

river discharge distribution (using eq. 7) is clockwise. The (conditional) rank correlation coefficients are indicated at the 

arcs. The variables are described below. 20 

Annual maximum of daily river discharge (MaxDischarge) in m³/s. The parents of this variable are all the remaining 

variables in the BN. By far the most important is the catchment area (Area) in km
2
. It determines the scale of the processes 

in a river basin and is largely dependent on catchment steepness (Steepness) in m/km. This is because mountainous 

catchment are very small, divided by ranges, and only grow in size when many rivers join along the way to its drainage 

basin, crossing more planar regions. Steepness was calculated here using eq. 1; it is a proxy for terrain characteristics that 25 

influences the speed with which the water from rainfall moves down the slopes (Savenije 2010). 

The climate model from EURO-CORDEX framework delivered two variables to the BN. First is the annual maximum 

of daily precipitation and snowmelt (MaxEvent) in mm. Both factors are relevant, though melting of snow cover is 

important only regionally. Both events also often occur concurrently (as evidenced in the list of European floods by Barredo 

2007), so using a summation of the two improved the performance of the BN. The variable has one parent, catchment 30 



11 

 

steepness, as hilly and mountainous areas receive more precipitation, also in form of snow. The second variable is the 

extreme runoff coefficient (RunoffCoef), a dimensionless indicator. It was constructed to include meteorological factors 

influencing the circulation of water in a catchment. Every climate model needs to represent this variable, taking into account 

factors such as soil moisture, evaporation and retention. The annual maximum of climate model variable “total runoff” was 

obtained for each sample, and then divided by MaxEvent. This variable is dependent on catchment steepness, since in 5 

hilly/mountainous terrain conditions limit evaporation or retention. It should be noted that the values of these climate 

variables were calculated as an average of annual maxima derived for each grid cell separately, and not by identifying the 

largest single event that occurred in the catchment.  

The BN is completed by three land cover types, all expressed as % of total catchment area. The statistics were obtained 

by choosing relevant classes from land cover datasets. First variable are lakes, which were obtained using “water bodies” 10 

class in Corine Land Cover (CLC), with missing coverage supplemented by the water body layer in CCM2 database. Lakes 

retain water from rainfall or snowmelt, thus reducing river discharge. This node has two parents, catchment steepness and 

extreme runoff coefficient. Lakes, especially large, are more prevalent in post-glacial plains of northern Europe, though 

increase lake cover is observed also in the mountains. In both those areas runoff coefficient is higher, with the same factors 

influencing both (like soils or temperature). Second variable are marshes, which are defined by CLC as three classes “inland 15 

marshes”, “peat bogs” and “salt marshes”, while from Global Land Cover 2000 (GLC) “regularly flooded shrub and/or 

herbaceous cover” class was used here. Similarly to lakes, marshes increase retention in a catchment. They often occur in the 

same areas as lakes, with soils and climatology also having influence (as estimated by the runoff coefficient). Lastly, the 

build-up areas (Buildup) variables contain the “artificial surfaces” class from CLC or GLC. Construction seals the soil, 

reducing infiltration, while water management systems collect the rainfall and routes it directly to river. This variable is 20 

influenced, in order, by catchment steepness (flat areas are preferred for construction), runoff coefficient (which is higher is 

colder areas), lakes and marshes (less space available for construction). 

In order to estimate river discharge in an ungauged catchment, the BN is updated, i.e. the value a node or set of nodes  

(other than discharge) is defined based new evidence, which are the observations corresponding to that particular catchment. 

Fig. 4 shows the effects of updating on the example of Basel station in Switzerland (meteorological data pertain to the year 25 

2005). Conditionalizing on only two variables: catchment area and steepness changed the mean of the distribution from 341 

to 1740 m³/s. Knowing all seven variables that are parents of the river discharge node, we obtain an estimate of river 

discharge of 2819 m³/s. In this case, the estimate is fairly accurate, as discharge of 3212 m³/s was actually measured. The 

same procedure was applied to all rivers in the domain. Additional examples of conditionalization of the BN can be found in 

Supplement 1. It should be noted that the discharge in each river section was estimated independently from another section 30 

in the same river using data for the entire upstream area. 

In addition to validation of the method, we apply it to future climate predictions using EC-EARTH-COSMO_4.8_clm17 

(Figure 8) and EC-HadGEM2-ES-RACMO22E (Figure S9) climate model runs. As noted before, land cover statistics are 

fixed in time, therefore only the climate variables change over time in the prediction. Future changes were calculated for two 
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climate scenarios RCP 4.5 and RCP 8.5. Those “representative concentration pathways” indicate changes in future physical 

and socio-economic environment that would cause, by 2100, increase in radiative forcing by 4.5 or 8.5 W/m
2 

(Moss et al. 

2010). 

2.6 Return periods of discharges 

Annual maxima of daily river discharges calculated using the BN are used to perform a frequency analysis. Only 5 

stations with long data series were used, i.e. with at least 30 years of data. To find an optimal model for estimating the 

marginal probability distribution of annual maxima of discharges, we used Akaike Information Criterion (AIC) measure 

(Mutua 1994). It showed significant variability among stations. On average, the AIC value was the lowest for the 

Generalized Extreme Value (GEV) distribution, indicating that it was the best fit over 15 other distributions, such as 

generalized Pareto, Gamma, Lognormal or Weibull. This three-parameter distribution, however, gave very large errors for 10 

some stations. Therefore, to avoid completely unrealistic estimates in the database, we decided to use the two-parameter 

Gumbel distribution, which is essentially the GEV distribution with the shape parameter equal zero. This distribution was 

used in several large-scale flood hazard studies (Dankers and Feyen 2008, Hirabayashi et al. 2013, Winsemius et al. 2013, 

Alfieri et al. 2014). In order to calculate discharge Q with probability of occurrence p, the following equation is used: 

𝑄𝑝 = 𝜇 − 𝜎 ln(− ln(1 − 𝑝))                                                                               (8) 

where μ is the location parameter and σ is the scale parameter. Parameters were fitted using maximum likelihood 15 

estimation (Katz et al. 2002). 

In order to maximise the number of stations available, 30-year time periods were used in the calculation. 30 years were 

used because such a time period maximises the number of stations available for validation. Also, this time span is commonly 

used in climate research. The main validation set consists of 958 stations with 1971–2000 data, 129 with 1961–90 data and 

38 with 1951–80 data. For further analysis, we made the calculation for all stations with data for a given time period; 1981–20 

2010 period was added as well, utilizing modelled discharge estimates based on RCP 4.5 climate scenario for the years 

2006–2010. Additionally, subsets comprising different regions of Europe and catchment size were also analysed. 

 

2.7 Measures for validation of the model’s results 

Accurate estimation of return periods of extreme discharges, as well as mean annual maximum, are the desired 25 

outcomes of the Bayesian Network model. Quality of return period and average maxima simulations was evaluated using a 

set of three measures: coefficient of determination, Nash-Sutcliff efficiency and RMSE-observations standard deviation 

ratio. Those methods were selected because they were also used in other studies (e.g. Rojas et al. 2011) and they were 

included in an overview of most important measures by Moriasi et al. (2007). Firstly, the Pearson’s coefficient of 
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determination (R
2
) was used to measure the correlation between observed and simulated values. In Kurowicka and Cooke 

(2006) it is noted that R
2
 actually factorizes into a function of the conditional rank correlations attached to the BN. Secondly, 

Nash-Sutcliffe efficiency (INSE) was applied to measure bias of the model. Its maximum value is 1, which means a plot of 

observed vs simulated data fits the 1:1 line (no bias), while a value below 0 (down to –∞) indicates that the mean of the 

observations is a better predictor than the simulated value. The relevant equation is as follows: 5 

𝐼𝑁𝑆𝐸 = 1 − [
∑ (𝑥𝑖

𝑜𝑏𝑠 − 𝑥𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

]                                                                        (9) 

where 𝑥𝑖
𝑜𝑏𝑠  

is the i-th observation of a variable, 𝑥𝑖
𝑠𝑖𝑚 is the i-th simulated value of that variable and 𝑥𝑚𝑒𝑎𝑛 is the mean of 

observations. The final measure is root mean square error (IRMSE)-observations standard deviation ratio (IRSR). It standardizes 

the RMSE based on the standard deviation of observations (ISDobs): 

𝐼𝑅𝑆𝑅 =
𝐼𝑅𝑀𝑆𝐸

𝐼𝑆𝐷𝑜𝑏𝑠

=
√∑ (𝑥𝑖

𝑜𝑏𝑠 − 𝑥𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

√∑ (𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

                                                                (10) 

3 Results 

In this section, extreme river discharges calculated using the Bayesian Network are compared with observations. 10 

Additionally, we present the results of applying the method to estimate the influence of climate change on discharges in 

Europe. Here, we present the results using EC-EARTH-COSMO_4.8_clm17 climate models. Results obtained with alternate 

climate models can be found in Supplement 2. 

3.1 Validation of the model’s results  

Extreme river discharges estimates obtained from the Bayesian Network are presented and compared with observations 15 

in Fig. 5 and 6. The graphs include the mean annual maximum of daily discharge (QMAMX) and three return periods of 

discharges. In Fig. 6 we show a comparison of specific river discharges, i.e. runoff divided by the respective catchment areas 

(Wrede et al. 2013). The former shows the highest performance with both R
2
 and INSE at 0.92, while accuracy of simulated 

discharge fitted to Gumbel distribution decreases with the probability of occurrence. The 10-year discharge (Q10) has almost 

the same performance as QMAMX, while the 1000-year (Q1000) discharge is noticeably becoming biased, mainly for very large 20 

rivers. It should be also remembered that the return periods were based only on 30-year series, therefore a 100- or 1000-year 

discharge includes the uncertainty of extrapolation of the return periods. However, the INSE value is still  good, and R
2
 

changes moderately. The R
2
 drops when considering specific river discharge, to 0.52 for QMAMX and 0.44 for 100-year 

discharge, with INSE at 0.43 in both cases. Again, performance is slightly higher for 10-year discharge and drops approaching 
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1000-year discharge. It is also interesting to notice that the rank correlations for all four cases discussed previously (QMAMX, 

Q1000, Q100, Q10) are in the order of 0.8 and their bivariate distribution does not present large asymmetries (Fig. S5 in 

Supplement 2). This could be indication that a method based on copulas could also be used as for bias correction, however 

investigating this fact further falls out of the scope of this paper.   

Performance of the model was analysed also in more detail, by time period, region or catchment area (Table 2). For four 5 

different time periods, where availability of stations varies, the results of the validation are almost identical. Only for 1981–

2010 it is slightly lower, because it is partially outside the timespan of the historical scenario of EURO-CORDEX; data from 

RCP 4.5 climate change scenario run had to be used to fill the missing information for 2006–2010. Much more variations in 

the quality of simulations is observed when dividing the results by geographical region (their definitions correspond to the 

regionalisation of the CCM2 catchment database). Western Europe (comprised mainly of France, Belgium, the Netherlands 10 

and Rhine river basin) had particularly good results for QMAMX, followed by Danube river basin and Scandinavia (roughly 

defined as Sweden and Norway). The lowest correlation for QMAMX was observed in the Iberian Peninsula (Spain and 

Portugal), while Central Europe (mainly Poland, Lithuania, Denmark and north-east Germany) had the lowest bias. Iberia 

had the lowest performance for Q100, while Western Europe recorded the highest correlation, and Scandinavia the best score 

in INSE and IRSR. Central European and Scandinavian stations’ bias and error was lower for 100-year return period compared 15 

to QMAMX. No region dropped below acceptable levels (a value of 0.5, according to Moriasi et al. 2007), albeit stations in the 

Iberia and “other regions” have noticeably lower performance. In case of Spain, to which almost all stations collected for the 

Iberian Peninsula belong, discharges tend to be overestimated, which may point to the influence of reservoirs on river flow. 

Indeed, many Spanish stations with large errors were found to be just downstream of large dams. Meanwhile, “other 

regions” is a grouping of a small number of stations scattered around Europe, mainly from Finland, Italy and Iceland. Those 20 

areas, containing many rivers in both arid and polar climates, are underrepresented in the quantification of the Bayesian 

Network, hence a potential reason for their lower performance. 

In Fig. 5 it can be seen that the amount of scatter in the plot increases for rivers with smaller discharges. Indeed, when 

choosing only smaller rivers, with a catchment area of 500 km
2 
and lower, the performance of the model drops substantially, 

though it still remains acceptable. Conversely, correlation or bias for stations with more than 500 km
2
 catchment area 25 

remains almost unchanged. MAMX 

Additionally, to validate the robustness of the method, we did a split-sample test. Stations were randomly divided into 

two sets. Data from 917 stations were used to quantify the Bayesian Network in order to simulate discharges in the 

remaining 924 stations. Of the latter, 586 stations had at least three full decades of discharge observations, which allowed us 

to make a comparison with simulated discharge. The validation result was almost identical with reported for the full 30 

quantification, and even a notch better: R
2
=0.94 and INSE=0.93 was observed for QMAMX, while for Q100 the same value of INSE 

was calculated and R
2
 equalled 0.90. Finally, the results were compared with other available studies, but that is discussed in 

section 4.1. 
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Still, performance for individual stations varies. A selection of observed and simulated discharges, both annual maxima 

and fitted to Gumbel distribution, is presented in Fig. 7. In some stations, there is a very close fit, while in others either the 

discharge is overestimated, or the distributions have different shapes. This is however not atypical even in more local 

studies.  

3.2 River discharges in Europe 5 

Calculation of river discharges utilizing data from EURO-CORDEX climate simulations was done for years 1950–2100, 

and are presented here in three time slices: 1971–2000, 2021–2050 and 2071–2100. The first period is from the historical 

“control” run, while the other two were analysed for two emission scenarios: RCP 4.5 and RCP 8.5. Trends calculated from 

the data are presented in Fig. 8. For the sake of clarity, only rivers with catchment area above 500 km
2
 are presented in the 

picture; full-scale maps of discharges were included in the Supplement. Aggregate statistics by region and catchment size 10 

were included in Table 3. In the description we focus on 100-year discharge, but the trends are mostly also representative for 

other return periods. 

The trends in Europe are very diversified. For Europe as a whole, there is a slight 4–7% increase in discharges with a 

100-year return period (Q100), with the biggest change observed in the 2021–2050 RCP 8.5 scenario. Along 34–44% of river 

length in Europe, Q100 is projected to increase at least by 10%, depending on scenario. Yet, along 16–21% a decrease by 15 

more than 10% is expected, with only small changes (±10%) for the remaining 35–49%. In RCP 8.5 both increases and 

decreases of Q100 are more prominent than in RCP 4.5. In effect, Q100 in the 2071–2100 RCP 8.5 scenario is projected to 

correspond to 176-year discharge under present climate (1971–2000), if we take the median value. This value is slightly 

lower in mid-century, and in end-century for RCP 4.5, with the smallest change compared to present climate in the 2021–

2050 RCP 4.5 scenario. 20 

Between regions, by mid-century the largest average increases in extreme discharges are expected in the Iberian 

Peninsula and Danube basin (RCP 4.5), while Q100 in Central Europe (i.e. mainly Elbe, Oder and Vistula river basins) is 

projected to surge even more in RCP 8.5. By the end of the century, however, Southern Europe (comprised mostly of Italy) 

is the region were the biggest average increase was observed in the simulations. On the other hand, Q100 is projected to 

decrease on average in the British Isles in all four scenarios, in North-East Europe (Finland, north-west Russia, the Baltics) 25 

in three scenarios, in Scandinavia in two and in South-East Europe (mainly Greece) in one. Those discrepancies are the 

result of several trends, namely changes in extreme precipitation, snowmelt and runoff coefficient. The first is projected to 

increase across the continent, while the other two decrease at the same time, with some exceptions. Decline in snowmelt, a 

consequence of thinner snow cover, will contribute to lower extreme discharges in parts of Scandinavia and Scotland. 

However, in most of Sweden, Finland and other areas, less snowmelt twill be offset by more rainfall. Lower precipitation is 30 

expected only in small, scattered patches of Europe, most noticeably in southern Spain. At the same time, an increase of the 
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runoff coefficient could be observed in predictions for the Iberian Peninsula and western Europe, with decreases in the 

remainder of the continent. Higher temperatures and less soil moisture are contributing factors to those trends. 

In Table 3 trends in Q100 were also provided per catchment size. The differences in average increase of discharges are 

very small, and partially caused by their uneven distribution in Europe. Median return periods show more diversity, since 

relative increase in discharge by certain increment of return period typically gets smaller as the river grows in size. Most 5 

importantly, this breakdown shows that the method is able to detect trends in discharge in both large and small rivers. 

4 Discussion 

The results presented in the previous section, however encouraging on their own, have to be contrasted with other 

existing studies. Such analysis is presented in section 4.1, while in the subsequent subsection a discussion is carried out 

about the limitations of the method and the uncertainties in the model’s set-up and results. Finally, ongoing and planned 10 

developments of the BN are presented. 

4.1 Comparison with other models 

The accuracy of the Bayesian Network model of extreme river discharges can be compared, directly or indirectly, with 

results of other physical and statistical models. In case of the former, reported values of R
2
 and INSE from several studies 

could be obtained. Meanwhile, the regional frequency (RFA) analysis from Smith et al. (2015) could be easily performed on 15 

our sample of European gauge stations, based on parameters provided by the authors. 

Studies with measures of model performance comparable with this one where summarised in Table 4. All of them are 

based on LISFLOOD model, forced by a large variety of climate models. Still, the validation of this model was mainly based 

on Global Runoff Data Centre discharge data. Consequently, though a smaller number of gauge stations was used, they 

mostly overlap with the ones utilized in this study. Nevertheless, correlation between observed and simulated mean annual 20 

maxima of daily discharges (QMAMX), measured by R
2
 is between 0.86 and 0.94. The corresponding value in this study is 

within this range. Only one study (Dankers and Feyen 2008) reported R
2
 for discharge with different return periods (Q20, Q50, 

Q100), and our results are slightly higher. It should be noted that in that analysis, using Gumbel distribution (like in this 

study) yielded better correlation than Generalized Extreme Value (GEV) distribution. Only two studies reported bias 

measured by INSE. Most interestingly, Rojas et al. (2011) show that the performance of the hydrological model changed 25 

significantly depending on how climate data were treated. The authors noted large biases in modelled precipitation data, and 

made a correction based on observational datasets. This modification of climate data output slightly improved the 

correlation, but most importantly the INSE went from a negative value, indicating poor performance, to a value close to that 

showing no bias at all. In this study, no modification to climate data was made and yet INSE values for our statistical model 

are in the range of a physical model forced by bias-corrected climate data. Of course the reported validation results are not 30 

perfectly comparable due, since the described studies focused on relatively large rivers (those more than ca. 1000 km
2 
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catchment area) and used ENSEMBLES regional climate simulations, which are several years older than the CORDEX 

simulations employed here. Additionally, R
2
 and INSE are not the only measures available. Dankers and Feyen (2008) report 

that the error in simulating QMAMX was bigger than 50% in 24–25% of stations and more than 100% in 6–8%. In this study, 

for comparable river size, i.e. with extreme discharge of ca. 100 m
3
/s and more, those values are 34% and 11%. Still, in 

overall the performance of the Bayesian Network can be described as similar to LISFLOOD model in estimating annual 5 

extremes. 

To further investigate the relative accuracy of the method in light of alternate models, we performed a RFA analysis, as 

presented by Smith et al. (2015). This required us to obtain some supplementary data. Each river gauge station had to be 

assigned to one of five climate zones according to the Köppen-Geiger classification; a world map by Kottek et al. (2006) was 

used for that purpose. In overall, 65% of stations with long records in our sample are located in the temperate climate zone, 10 

30% in continental, 4% in polar and 1% in arid. Additionally, mean annual rainfall was derived from CORDEX climate data. 

The final input information was catchment area, readily available from our datasets. In order to estimate discharge in the 

RFA, a given station had to be assigned to one of 82 clusters included in the RFA. The first criterion is the climate zone, 

which allocated a station to a group of clusters. Then, the Euclidean distance to the each cluster centroid (defined through a 

logarithm of area and rainfall) was calculated. Afterwards, “mean annual flood” equation (see Smith et al. 2015) was solved 15 

using the coefficients from the nearest cluster as well as catchment area and annual rainfall providing us with QMAMX; 

cluster-specific GEV distribution parameters were then applied to obtain return periods of extreme discharges.  

The method provided estimates for all 1125 stations with long records, which were compared with observed discharges 

in Fig. 9. In case of Q100, Gumbel-distributed discharges were used; performance with GEV distribution was lower. The 

performance of both BN and RFA models is visually similar, though the BN recorded higher correlation and less bias then 20 

the RFA. Less scatter can be observed in upper and lower ranges of discharges, with similar performance in the middle. 

Using specific river discharges (Fig. 10) the performance of both methods was lower, but still much better for the BN: INSE, 

for example, was negative for both QMAMX and Q100 when using RFA, in contrast to a value of 0.43 for the BN. RFA was 

devised as a global method instead of a regional one, but at the same time it is in fact a set of 82 regional approximations of 

hydrological processes. Here, we analyse contributing factors of extreme discharges all together, achieving comparable or 25 

better results. 

4.2 Limitations and uncertainties 

The Bayesian Network model, despite its overall high performance, has lower accuracy over some regions where 

outliers are observed. Some of the uncertainties and limitations of the model are immanent properties of large-scale 

hydrological simulations, while others are specific to how the method was conceived, and what assumptions and data were 30 

included. One of the foremost aspect belonging to the first group is that the method assumes natural flow in the catchment. 

Hydraulic structures, such as large dams, can have profound influence on extreme discharges, as many were developed as a 
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flood-reducing measure. As mentioned in the results section, flows in Spanish rivers were generally overestimated, with 

reservoirs being a likely explanation. Continental or global scale models routinely omit this aspect, as there is not enough 

information available to incorporate the existence of reservoirs. They have different functions (flood protection, flow 

regulation, water supply) and function according to various operational procedures. The BN model includes reservoirs only 

indirectly; they count as lakes, and therefore contribute to the percentage of the catchment covered by water bodies, thus 5 

having negative influence of extreme discharge. However, dams can have a much larger impact on discharges, as indicated 

by the lower performance of the methods in Spain, were large dams are plenty. In total, 326 large dams are within the 

catchments of the stations used in this study, according to the GRanD database (Lehner et al. 2008). Additionally, the 

conditions in the catchment may change over the timespan of the analysis of discharge data (1950–2005), due to reservoir 

construction or river regulation, or simply because of land use developments. Currently a single snapshot of European land 10 

cover is used (from around the year 2000), but area covered by lakes, marshes and particularly artificial surfaces is dynamic. 

In our analysis there was very little difference in performance between different time periods, but this aspect could be 

relevant locally. 

The configuration of the Bayesian Network presented here was the best one we found, but may not be the only solution 

possible, or the best one there could be. In Paprotny and Morales Nápoles (2015) the set-up of the model was slightly 15 

different, with unconsolidated deposits (calculated a fraction of all soil types in a catchment) used instead of the runoff 

coefficient. It can be noticed that despite several soil datasets being mentioned in the methodology (section 2.3), none made 

it the final configuration of the model. Low resolution and limited thematic accuracy of global soil data is like the cause. 

Several other variables describing terrain, climate or land cover mentioned in section 2.3 were not included, as adding them 

did not improve the model. One alternative configuration, however, is worth mentioning, namely a BN incorporating terrain 20 

classification based on height-above-nearest drainage (HAND). Replacing lake and marsh cover with “wetlands” and 

“hillslopes” identified in the digital elevation model (see Gharani et al. 2014) caused only fractional drop in performance. 

Given that land cover data for Europe has very high resolution and good accuracy, this approach may give better results in 

areas with less satisfactory data such as the developing countries. 

Some issues are related with the datasets used. Discharge data are daily values, rather than absolute peak flows, as that 25 

variable was only available from the main source of information, i.e. the Global Runoff Data Centre. Yet, Polish data were 

only available as sub-daily maxima, which did not affect much the accuracy for Poland or Europe, but is nonetheless a slight 

inconsistency. More crucially, daily discharge is not adequate to model flash floods. These events can occur in matter of 

minutes, and do not even require a river bed. Also, the model utilizes daily precipitation and snowmelt, which also may not 

be accurate for large catchments, where the biggest floods are caused by rainfalls lasting many days. Potential incorporation 30 

of different timespans of flood-inducing meteorological events is yet to be analysed. In some regions the amount of river 

gauge station data was very limited, mainly in south-eastern Europe, while in others (northern and western Europe) was 

abundant, making the sample less representative.  
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Further concerns are related with the river and catchment dataset CCM2. It has lower accuracy in areas with low relief 

energy, otherwise known as plains. Slightest inaccuracies in the DEM result in improper delimitation of catchments in such 

regions. Large number lakes in post-glacial parts of Europe also result in sometimes substantial errors. For instance, INSE 

value for QMAMX for mountainous Norway is 0.90, while for Sweden, with its lake-filled landscape, it drops to 0.71. River 

gauge stations, for which there was a significant difference between catchment area in CCM2 and the corresponding value in 5 

the stations’ metadata, were removed. The improperly divided basins still exist in our final database of simulated extreme 

discharges, though. This also involves omission of most artificial channels and all cases of bifurcation, river deltas included. 

 Climate data from CORDEX are the highest resolution available, yet biases in representing rainfall, snowmelt and 

runoff could influence the results. As noticed in section 4.1, bias-correction of precipitation significantly improved 

performance of LISFLOOD hydrological model, therefore leaving room for further enhancements of the method. Another 10 

issue is related with climate change scenarios used to construct the database of discharges. The difference between RCP 4.5 

and RCP 8.5 scenarios is sometimes very large, as witnessed in Fig. 7. This alone illustrates major uncertainty related with 

future projections of climate. For the historical period, the use of an alternative CORDEX model and a climate reanalysis has 

shown (Supplement 2) that the BN model’s performance depends on the climate model used, yet it is still considerably better 

than the regional frequency analysis. 15 

Finally, the underlying dependence structure requires further investigation, since some of the bivariate distributions of 

variables indicate that a non-Gaussian copula could be a better model (see Supplement 1 for details). Other copulas could 

potentially be used, as for some distributions tail dependence and other asymmetries may be present. Even though the normal 

copula works well most of the time. Skewness for example may be modelled by copulas based on mixture distributions. This 

would correspond to copulas with more than two parameters (Joe 2014). 20 

4.3 Applications and further developments 

The method was originally conceived to provide extreme discharge estimates that could be used for pan-European 

hazard mapping. As shown in the previous sections, it has similar accuracy to hydrological models, yet it is much faster. For 

hydrodynamic modelling of water levels, catchments with area greater than 100 km
2
 where selected. In order to estimate 

annual maximum discharge for 246 years (56 years of the historical run and 95 years for each of the climate change 25 

scenarios) in a domain of almost 156,000 river sections above the threshold, and obtain return periods of flood event, it takes 

less than a day on a desktop PC. The exact value depends on the number of samples used when conditionalizing the BN, and 

number of samples used to quantify the BN. Nevertheless, the method can reduce time needed to perform a flood hazard 

analysis, both continental-scale and local, as long as annual extremes are relevant for a particular study. 

The results of this study – extreme discharges with certain return periods under present and future climate for all river 30 

sections in the domain – are publicly available online (Paprotny and Morales Nápoles 2016). It was formatted in GIS in such 

a manner, that it can be easily combined with the CCM2 river and catchment database. The files include a total of 10 
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different return periods of discharges (2–1000 years) and 5 scenarios, the same as described in section 3.2. Additionally, for 

each future scenario, change in return periods of discharge with certain probability of occurrence in 1971–2000 was 

calculated and included in dataset. Flood hazard maps that utilized those results are also accessible and summarized in Fig. 8 

and Fig. S10; however, further discussion about them is outside the scope of this paper. This is definitely a line for future 

research recommended by the authors.  5 

The methods scope was limited so far to Europe, but investigation is also ongoing on applying the method to other 

regions. Currently, data from United States and Mexico are being analysed. There is a very large number of river gauge 

observations available for the contiguous US, while in its southern neighbour the number of records with good quality is 

limited. Mexico also lays mostly within tropical and arid climate zones, which is in stark contrast to Europe. The United 

States are also very geographically diversified and its biggest river system – the Mississippi-Missouri basin – is almost four 10 

times larger than the Danube basin. Moreover, for these countries global spatial datasets will be used, which have a lower 

resolution than those utilized in this study. It is possible, for instance, to quantify the BN model with those datasets and 

analyse its performance relative to the European quantification presented in this paper, as well as combine those data. In this 

way, the model’s configuration with seven variables can be challenged; one risk is that the method is overfitting the data 

from Europe. But again, this could only be definitely resolved by testing the model in other geographical areas of the world.  15 

5 Conclusions 

In this paper we presented a first attempt to model extreme river discharges in Europe with Bayesian Networks. The 

method revisits the old concept of estimating discharges using only geographical properties of catchments, but with a 

entirely new approach. Instead of a usual regression analysis, we determine the (conditional) correlations between different 

variables describing the catchments with copulas and a non-parametric BN. We show that the model has comparable 20 

accuracy to large-scale hydrological models in simulating mean annual maxima and return periods of daily discharges, and 

higher performance than a regional frequency analysis. The method can be applied to create basic flood scenarios at any 

ungauged location based on a few variables. For that reason it was used to provide estimates of extreme river discharges for 

both present and future climate in all rivers in a domain covering most of the continent. Trends in discharges we found to be 

very diversified, while the database itself will be applied to delimiting flood hazard zones in a separate study. Especially for 25 

future climate scenarios, further research regarding discharge estimates with our model is recommended.  

The advantages of our approach is that it is has low computational expense, it is explicit and flexible. Its configuration 

could be easily modified, and the model can be used even if not all variables for a given location are available. At the same 

time it allows to perform sensitivity analysis of different variables on extreme discharges, as well as easily incorporate 

changes in climate or land use over time. It purely relies on the statistical distributions and statistical dependence of 30 

catchment descriptors, without any empirical modifiers or clustering typical for other statistical methods. The aim was to 

make the method universal, and though it was so far only tested for Europe, the overall performance is encouraging. The 
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accuracy of the model changes relatively little between regions and time periods, as well as when a split-sample test is 

applied. The disadvantages are mostly typical for other large-scale models, such as assumption of natural flow conditions in 

the rivers and lower performance in smaller catchments. The method was also crafted only for annual maxima of discharges, 

with the purpose of accurately estimating return periods rather than discharges in a particular year. But again, this is the most 

relevant parameter in flood hazard analysis. The method will be further developed and tested in other parts of the world.  5 

Data availability 

This work relied entirely on public data as inputs, which are available from the providers cited in the paper. Results of 

the work can be downloaded from an online repository (Paprotny and Morales Nápoles 2016). 
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Table 1.  Summary statistics of stations used in the work. 

Country 
Number of 

stations 

QAMAX values 

(1950–2005) 
Catchment size 

(km
2
) 

Number of 

stations 

QAMAX values 

(1950–2005) 

absolute percentage absolute percentage 

France 273 10642 14.2 >100,000
 

32 1303 1.7 

Spain 247 10602 14.2 10,000–100,000 207 8849 11.8 

Sweden 283 10520 14.1 1000–10,000 513 20826 27.9 

United Kingdom 228 9159 12.3 100–1000 795 32030 42.8 

Germany 133 6996 9.4 <100 294 11749 15.7 

Norway 104 5035 6.7 Total 1841 74757 100.0 

Switzerland 90 4093 5.5     

Austria 73 3464 4.6     

Poland 78 2807 3.8     

Finland 53 2287 3.1     

Ireland 40 1371 1.8     

Other countries 239 7781 8.8     

 

Table 2. Validation results for simulated and observed average annual maxima of daily river discharges QMAMX and annual maxima with a 

100-year return period Q100.  

              Category Stations 
QMAMX Q100 

R
2
 INSE IRSR R

2
 INSE IRSR 

 Total 1125 0.92 0.92 0.29 0.89 0.80 0.44 

Regions 

Central Europe 138 0.89 0.71 0.54 0.86 0.85 0.39 

British Isles 145 0.86 0.85 0.39 0.81 0.77 0.48 

Western Europe 261 0.97 0.96 0.19 0.94 0.79 0.46 

Iberian Peninsula 112 0.79 0.78 0.47 0.71 0.57 0.65 

Danube basin 167 0.93 0.92 0.27 0.92 0.83 0.42 

Scandinavia 227 0.92 0.83 0.42 0.91 0.90 0.31 

Other regions 75 0.79 0.82 0.43 0.72 0.70 0.55 

Time 

period 

1951–1980 512 0.93 0.92 0.28 0.89 0.85 0.38 

1961–1990 792 0.93 0.92 0.28 0.90 0.85 0.39 

1971–2000 958 0.93 0.93 0.27 0.90 0.84 0.40 

1981–2010 765 0.91 0.91 0.31 0.87 0.83 0.42 

Catchment 

area 

>500 km
2
 605 0.92 0.91 0.30 0.88 0.78 0.47 

<500 km
2
 520 0.59 0.52 0.69 0.56 0.55 0.67 

Specific discharge 1125 0.52 0.43 0.77 0.44 0.43 0.76 

 5 

Table 3. Projected change in 100-year river discharge (Q100) relative to 1971–2000, and return periods of discharge equal to Q100 in 1971–

2000. Predictions based on EC-EARTH-COSMO_4.8_clm17 climate model run. 

              Category Average change in Q100 weighted by Median return period of discharge 
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Table 4. Reported validation results for extreme discharge simulations for Europe. 

Study Description Variable 
Measure 

R
2
 NSE 

This study Bayesian Network model, 1125 stations 
QMAMX 0.92 0.92 

Q100 0.89 0.80 

Dankers and Feyen 

(2008) 

LISFLOOD model, 2 different climate model 

resolutions, 1961–1990, 209 stations, Gumbel or GEV 

distribution 

QMAMX 0.90–0.91 - 

Q100 0.80–0.87 - 

Q50 0.84–0.88 - 

Q20 0.86–0.88 - 

Dankers and Feyen 

(2009) 

LISFLOOD model, 8 different climate models and runs, 

1961–1990, 209 stations 
QMAMX 0.86–0.93 - 

Rojas et al. (2011) 
LISFLOOD model, 

1961–1990, 554 stations 

Without bias correction of 

climate data 
QMAMX 0.87 -1.89 

With bias correction QMAMX 0.92 0.89 

Rojas et al. (2012) 
LISFLOOD model, 12 different bias-corrected climate 

models, 1961–1990, 554 stations 
QMAMX 0.90–0.94 0.88–0.93 

 

length of river sections (%) equal to Q100 in 1971–2000 (years) 

2021–

2050 

RCP4.5 

2071–

2100 

RCP4.5 

2021–

2050 

RCP8.5 

2071–

2100 

RCP8.5 

2021–

2050 

RCP4.5 

2071–

2100 

RCP4.5 

2021–

2050 

RCP8.5 

2071–

2100 

RCP8.5 

 Total +3.7 +5.7 +7.0 +5.9 133 168 163 176 

Regions 

(selected) 

Central Europe +3.5 +9.6 +13.5 +12.2 138 200 225 276 

British Isles -6.0 -6.5 -6.8 -13.5 59 62 58 42 

Southern Europe +3.9 +12.1 +8.8 +17.7 142 311 209 492 

Western Europe +1.1 +4.5 +5.8 +11.4 116 163 174 269 

Iberian Peninsula +7.3 +8.1 +12.2 +11.0 181 177 215 206 

Danube basin +6.5 +9.4 +9.3 +8.0 173 234 190 207 

North-East Europe +1.2 -0.1 -1.5 -8.4 99 117 87 64 

Scandinavia +1.8 -1.9 +4.6 -5.0 121 110 184 80 

South-East Europe +1.2 +2.7 -1.2 +3.7 137 135 111 149 

Catchment 

area 

>100,000 km
2
 +2.9 +6.4 +8.2 +5.2 195 500 685 337 

10,000–100,000 km
2
 +4.7 +7.4 +8.9 +7.2 168 205 269 227 

1000–10,000 km
2
 +3.3 +4.3 +6.0 +5.1 133 156 173 162 

100–1000 km
2
 +3.7 +5.1 +5.7 +5.7 128 163 170 159 

<100 km
2
 +2.9 +4.4 +3.8 +5.0 134 170 162 178 
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Figure 1. Schematic workflow of obtaining extreme river discharges from catchment characteristics. QAMAX = annual maxima of 

discharges. Roman numerals refer to the text. 
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Figure 2. Measurement stations used in the work (“long data series” indicates stations with sufficient data for calculating return periods) 

and river basins included in the domain. 
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Figure 3. Bayesian Network for river discharges in Europe. The nodes are presented as histograms, with numbers indicating the means 

and standard deviations of the variables. Values on the arcs are the (conditional) rank correlation coefficients. 

 

 5 

Figure 4. Cumulative probability distribution of river discharge: unconditional and conditionalized on two and seven nodes using values 

for Basel station in Switzerland (river Rhine, year 2005). 
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(a)      (b) 

 

(c)      (d) 

 5 

Figure 5. Simulated and observed average annual maxima of daily river discharges (a) and annual maxima fitted to Gumbel distribution to 

calculate 1000-, 100- and 10-year return periods (b–d), for 1125 stations. 30-year periods of annual maxima were used (the most recent 

available out of 1971–2000, 1961–1990 or 1951–1980). 
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(a)      (b) 

 

(c)      (d) 

 

Figure 6. The same as Fig. 5, but for specific discharge, i.e. divided by catchment area. 5 

 



33 

 

 

Figure 7. Simulated and observed annual maxima of daily river discharges fitted to Gumbel distribution at selected stations. Data refer to 

1971–2000, except h), which refers to 1961–1990. 
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Figure 8. Predicted trends in daily river discharge with a 100-year return period (Gumbel distribution) under climate change scenarios 

(rivers with catchment area above 500 km2 only). Predictions based on EC-EARTH-COSMO_4.8_clm17 climate model run. 
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Figure 9. Simulated and observed average annual maxima of daily river discharges and 100-year discharge for 476 stations; Bayesian 

Network model in red, regional frequency analysis in green. 30-year periods of annual maxima were used (the most recent available out of 

1971–2000, 1961–1990 or 1951–1980). 5 

 

 

Figure 10. As Fig. 9, but for specific discharge, i.e. divided by catchment area. 


