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Abstract: Evaporation plays important roles in regional water resources management,
terrestrial ecological process and regional climate change. This study investigated the abilities
of six different soft computing methods, Multi-layer perceptron (MLP), generalized
regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine
(LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference
systems with grid partition (ANFIS-GP), and two regression methods, multiple linear
regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term
climatic data at eight stations in different climates, air temperature (Ta), solar radiation (RQ),
sunshine hours (HSs), relative humidity (RH) and wind speed (Ws) during 1961-2000 are used
for model development and validation. The first part of applications focused on testing and
comparing the model accuracies using different local input combinations. The results showed
that the models have different accuracies in different climates and the MLP model performed
superior to the other models in predicting monthly Ep at most stations, while GRNN model
performed better in Tibetan Plateau. The accuracies of above models ranked as: MLP, GRNN,
LSSVM, FG, ANFIS-GP, MARS and MLR. Generalized models were also developed and
tested with data of eight stations. The overall results indicated that the soft computing
techniques generally performed better than the regression methods, but MLR and SS models
can be more preferred at some climatic zones instead of complex nonlinear models, for

example, the BJ, CQ and HK stations.

Keywords: Pan evaporation; soft computing techniques; regression methods; model

comparison

1. Introduction
Evaporation is the process of conversion of liquid water to water vapor, which depends on the

differences in vapor pressure and air between the surface and surrounding atmosphere
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(Penman 1948; Kisi, 2013; Kim et al., 2015). Pan evaporation (Ep), which is a major
component of hydrological cycle, plays important roles in scheduling water resources and
designing of irrigation systems. It has been widely used as an index of lake and reservoir
evaporation, potential or reference crop evapotranspiration and irrigation (Snyder 1993).
There are many factors influencing the rates of Ep, including solar radiation (Rg), air
temperature (Ta), relative humidity (RH), sunshine hours (Hs) and wind speed (WSs). The
quantitative effects of different climatic parameters on Ep variations in different regions is
still one of the less understood aspects in the hydrologic cycle. Therefore, proper estimation
and prediction of Ep is of great importance to integrated water resources management and
modeling studies.

The direct measurements of Ep are spatially and temporally limited due to some instrumental
and practical issues (Shirsath and Singh, 2010; Shiri et al., 2014). Many researchers have tried
to estimate the evaporation through indirect methods using climatic variables, for example,
many empirical or semi-empirical equations have been developed for estimating Ep as a
function of meteorological data (Stephens and Stewart 1963; Piri et al., 2009), but some of
these techniques require the data which are often incomplete or not always available for many
locations (Sharda et al., 2008; Majidi et al., 2015). Recently, the advanced soft computing
techniques (such as artificial neural network, ANN) have been successfully applied for
modeling Ep due to its ability to learn complex and non-linear relationships that are difficult
to model with conventional techniques (Sudheer et al., 2002; Kisi and Ozturk, 2007; Kim
and Kim, 2008; Kisi, 2009b; Rahimikhoob, 2009; Guven and Kisi, 2011; Kim et al., 2013;
Goyal et al., 2014; Shiri et al., 2015; Kisi et al., 2016), for example, Kisi (2009a) investigated
the abilities of three different ANN techniques and it was found that the MLP and radial basis
neural network (RBNN) computing techniques could be employed successfully to model the

evaporation process using the available climatic data; Piri et al. (2009) improved the ANN
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model by incorporating an autoregressive external input (ARX) component and evaluated the
models for Ep estimation at a site in hot and dry climate of Southeast Iran. The results showed
that NNARX is better than the ANN and Marciano method, the models with inputs of wind
and vapor pressures performed much better than the ones with temperature and dew point;
Chang et al. (2010) proposed a self-organizing map neural network (SOMN) to assess the
variability of daily evaporation based on meteorological variables, the results demonstrated
that the topological structures of SOMN could give a meaningful map to present the clusters
of meteorological variables and the networks could well estimate the daily evaporation (Kim
et al,, 2015). Kim et al. (2012) applied multilayer perceptron-neural networks (MLP),
generalized regression neural networks (GRNN) and support vector machine-neural networks
(SVM) to estimate Ep in temperate and arid climatic zones and the results indicated that these
ANN models performed better than the emprical Linacre model and MLR model. Goyal et al.
(2014) investigated the abilities of ANN, Least Squares Support Vector Machine (LSSVM),
Fuzzy Logic (FG), Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques, Hargreaves
and Samani method (HGS), as well as the Stephens-Stewart (SS) method to improve the
accuracy of daily Ep estimation in sub-tropical climates of India. The results showed that the
above soft computing models outperformed the HGS and SS methods, and the LSSVM and
FG models produced the highest accuracies. Kisi (2015) investigated the accuracy of LSSVM,
multivariate adaptive regression splines (MARS) and M5 Model Tree (M5Tree) in modeling
Ep at Mersin and Antalya stations in Mediterranean region of Turkey, which indicated that the
LSSVM model could be successfully used for estimating Ep using local input and output data
while the MARS model performed better than the LSSVM model in case of without local
input and outputs. Several studies have also been performed in order to compare and assess
the Ep models with limited data around the world (Kisi and Cengiz, 2013; Majidi et al., 2015).

On the contrary, only a few studies have been conducted to find the most appropriate methods
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to estimate Ep, and most of these studies focused on comparing only two or three models.
Therefore, there is no clear consensus on which methods are better to employ when lacking
important long term measured data such as radiation and heat fluxes. Meanwhile, the Ep
models are only tested at few number of stations in literature, for example, Keskin et al. (2004)
only compared the FG model with empirical Penman method at Lake Egirdir in Turkey;
Sanikhani et al. (2012) compared two different ANFIS models including grid partitioning (GP)
and subtractive clustering (SC), in modeling Ep at San Francisco and San Diego in California,
however, there are almost no studies using large number of stations (> 3) for obtaining more
generalized conclusions. In addition, there are not any studies in literature that compare
different methods in estimating Ep at different climates (for example, the arid continental
climate, desert climate, semi humid monsoon climate, plateau climate and the tropical
maritime monsoon climate), which provided an impetus for the present investigation for
revealing a more robust and applicable Ep estimation model.

Considering the importance of the evaporation in either irrigation management or
hydrological modeling, the aim of this study is to investigate capability and usability of six
different soft computing methods, ANFIS-GP, FG, GRNN, LSSVM, MARS and MLP, and
two regression methods, MLR and SS, in modeling Ep using different climatic input
combinations of Rg, Ta, Hs, RH and Ws. Data from eight stations in different climatic zones are
used for training and testing above models. The model performances will be compared and
discussed through: (i) estimating Ep of each station using different local input combinations;
(ii) estimating Ep of eight stations using generalized ANFIS-GP, FG, GRNN, LSSVM,
MARS, MLP, MLR and SS models. To the knowledge of the authors, no similar studies have
been reported using above mentioned methods for modeling Ep, this will be the first study to
compare the accuracy of multiple soft computing models for Ep estimation in different

climates.
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2. Methods and materials
2.1. Modeling strategies
2.1. 1. Multi-layer perceptron neural network

Fig. 1
MLP is well-known and efficient neural network widely used for a variety of problems such
as classification, time series modeling and regression. MLPs are organized hierarchically
networks by several layers, including an input layer, hidden layer(s) and an output layer
(Zounemat-Kermani et al., 2013; Wang et al., 2016b). There are one or more hidden layers
between the input and output layers which are connected by neurons (including synaptic
weights, biases and activation or transfer functions). Each neuron receives its input value(s)
from the input vector (or the antecedent hidden layer’s output) and then calculates a weighted
sum of input values passing through the transfer function, which generates the output of the
neuron (Fig. la). MLPs are feed-forward networks, using the error back-propagation (BP)
algorithm for network training. In the BP algorithm, an iterative process changes the weights
and biases of the network to optimize the solution by reducing the overall error between the
output and target (generally the observed parameters) values. More details about the MLP

model can be found in Kisi (2009b) and Zounemat-Kermani (2012).
2.1. 2. Generalized regression neural network

The GRNN model has a parallel structure, but they do not use an iterative process for learning
procedure between the input and output variables. The structure of GRNN consists of four
consequent layers, namely the 1) input, 2) pattern, 3) summation, and 4) output layers (see
Fig.1b for a schematic diagram of a GRNN network). In the first layer, the total number of
input variables is equal to the number of input units. Input data are linked to the second layer

where each neuron presents a training pattern. The second layer sends processed information
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to the third (summation) layer through the pattern neurons. In the summation layer, there are
two types of S-summation and D-summation neurons, which are connected to the pattern
layer unit (Zounemat-Kermani, 2014). The sum of the weighted responses of the second layer
is calculated by the S-summation neurons, while the D-summation neurons compute the un-
weighted outputs. Finally, in the output layer, the division of the output of each S-summation
neuron by D-summation neuron gives the output value. More descriptions about the GRNN

model can be seen from Cigizoglu and Alp (2006).
2.1. 3. Grid partitioning adaptive neuro-fuzzy inference system

Fig. 2

ANFIS refers to a multi-layer adaptive network combined with neural network analogy with
the fuzzy inference system. It consists of five consecutive layers (fuzzification, product,
normalization, de-fuzzification and output) in an implementation procedure of different node
functions to learn and adjust the parameters in a fuzzy inference system (Fig. 2). A hybrid
learning algorithm, including forward and backward passes is utilized for reducing calculated
errors and training phase. With the calculation of the least squared error, the consequent
parameters are updated, whereas, the premise parameters are fixed. Hence, in the backward
pass the consequent parameters are fixed and the premise parameters are updated through the
gradient descent algorithm (Kisi and Ozturk, 2007; Zounemat-Kermani and Teshnehlab,
2008; Khayam et al., 2012).

Membership functions and fuzzy inference parameters are identified according to the
adjustment of premise and consequent parameters by an iterative process of the forward and
backward passes. Construction of ANFIS models is based on the partitioning of the input-
output data for establishing the rule base system. In this respect, various approaches such as

ANFIS-GP, subtractive clustering and fuzzy c-means methods can be applied.
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In this study the Sugeno model, which is the most commonly used system, along with the grid
partitioning method is applied for modelling evapotranspiration. The reader can find out more
details about ANFIS-GP in several available publications (Jang, 1993; Terzi et al., 2006;

Khayam et al., 2012).
2.1. 4. Fuzzy-genetic algorithm

The hybrid FG algorithm combines a meta-heuristic algorithm (genetic algorithm) and an
adaptive fuzzy inference system (AFIS). In the AFIS, the input vectors along with the
corresponding output(s) are introduced to the fuzzy system which is established based on the
fuzzy logic approach. For further information about fuzzy logic, the reader is referred to
related reports (Zounemat-Kermani and Scholz, 2013).

Genetic algorithms (GAs) are stochastic search algorithm based on the mechanics of natural
genetics and natural selection which can be used for optimization problems. Getting the
advantage of using the evolutionary mechanism, they are capable of searching large solution
spaces efficiently. GA is composed of three main stages, namely, population initialization,
GA operators (reproduction, crossover, and mutation) and evaluation (Kisi and Tombul,
2013). In this study, the proposed hybrid FG model is based on a model wherein the
membership functions’ parameters (e.g. center and width of Gaussian MFs) are optimized
using a GA algorithm. The objective function of the genetic algorithm optimizer is the
minimization of the error criterion (e.g. RMSE) of prediction made by an AFIS model (Kisi,

2009; Ganjidoost et al., 2015).
2.1. 5. Least-Squares support vector machine

The SVM is based on a statistical learning theory which projects the input data classes to a
higher dimensional feature space. The aim of the SVM algorithm is searching for an optimum

hyper-plane with the minimum distance to the observed values. The algorithm is efficient,
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quick and converging procedure to the global optimum (Mesbah et al., 2015; Lu et al., 2016).
However, the SVM algorithm has been modified and improved, referring to the Least-
Squares-SVM (LSSVM) (Suykens and Vandewalle, 1999). In addition to have all the merits
of the original SVM, LSSVM has become simpler and more rapid. This issue is caused by the
structure of the LSSVM algorithm which solves a group of linear equations instead of solving
a quadratic programming problem in the SVM method. LSSVM gets the advantage of the
applying equality constraints (in exchange for traditional inequality constraints of SVM) and
implements the sum of squared regression errors in the training process. Further details about
the main equations and complete explanations of this subject can be found in Suykens and

Vandewalle (1999) and Kisi (2015).
2.1. 6. Multivariate adaptive regression splines

MARS, introduced by Friedman (1991), is categorized as a nonparametric regression method.
MARS divides the space of each independent variable into split various regions called sub-
regions. For each sub-region a unique mathematical regression equation is defined. A
relationship is developed for each sub-region of the independent variable to the output
(response) of the system based on the attained mathematical equation. This whole process is
conducted by a stepwise procedure consists of backward and forward steps. In the forward
step, a set of appropriate input variables is selected and split. However, split process in the
forward step might generate an over-fitted complex model resulting in poor performance.
Thereafter, in the backward step unnecessary variables will be eliminated (Adamowski et al.,
2012; Kisi, 2015). For more detailed information on the development of the MARS models

used throughout in this research the reader can refer to Shardaet al. (2008) and Kisi (2015).

2.1. 7. Multiple Linear Regressions
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MLR is a technique utilized to model the linear relationship between a dependent variable and
one or more independent variables. The dependent variable is sometimes additionally called
the predictors. MLR is depends on least squares: the model is fit such that the sum of squares
of  differences of estimated and observed values is minimized

(http://tree.ltrr.arizona.edu/webhome/dmeko/geos585a.html#cLessonll). MLR is probably

the most widely used method in hydrology and climatology for developing models to
reconstruct or analysis the long-term variations of climatic factors in literature. In this study,
MLR models are developed using the same data set which was used to train and test the above

soft computing models.
2.1. 8. Stephens and Stewart Model

Stephens and Stewart (SS) model is an empirical linear equation and requires only radiation
and temperature data (Stephens and Stewart 1963). This model was reported as the best
among 23 models (Al-Shalan and Salih, 1987; Sudheer et al., 2002; Shirsath and Singh, 2010),
which can be expressed as Ep = Rg (a + bxTa), where a and b are fitting constants

(determined on the training data through least square fitting).
2.2. Case study and data

Fig.3
In this study, monthly climatic data at eight stations of China Meteorological Administration
(CMA) were used for developing and testing Ep models in different climates. Fig.3 shows the
detailed geographical locations of above stations, which are named as HEB (latitude 45°45' N,
longitude 126°46'E, 142.3 masl (m above sea level), ALT (47°44' N, 188° 05'E, 735.3 masl),
MQ (38°38' N, 103°05'E, 1367 masl), BJ (39°48' N, 116°28'E, 31.3 masl), LSA (29°40' N,
91°08'E, 3648.7 masl), CQ (29°35' N, 106°28'E, 259.1 masl), HZ (30°14’' N, 120°10'E, 41.7

masl) and HK (20°02' N, 110°21'E, 13.9 masl). It should be noted that above stations are

10
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located at different climatic zones, for example, the HEB station is in the Northeast China
with long and cold winter (semi humid temperate continental climate); the ALT station is in
the Northwest China with arid continental climate; the MQ station is surrounded by the
Tengger and Badan Jilin desert, which is characterized by continental desert climate with hot
summer and cold winter, enough light and little rainfall amount; BJ is characterized by typical
north temperate semi humid continental monsoon climate; LSA is in the zone of semi-arid
plateau climate, which is called the sunlight city due to the sufficient sunshine resources in
Tibetan Plateau; CQ is characterized by subtropical monsoon humid climate with more
cloudy and foggy conditions; the HZ station is known as one of China's "four ovens" cities
where summertime temperatures can reach to 40 °C, which is characterized by hot and rainy
in summer, cold and dry in winter due to the effects of East Asian atmospheric circulation, the
terrain of Qinghai-Tibet Plateau and the North Pacific Ocean; the HK station is located at the
northern margin of the low latitude tropics, which belongs to the tropical maritime monsoon
climate. The detailed information about the geographical, climatic and hydrological
conditions in this region can also be seen in Zhai et al. (1999) and Ding et al. (2006).
Fig. 4

The data used in this research cover 40 years (1961-2000) of monthly records of air
temperature (Ta), solar radiation (Rg), sunshine durations (HS), relative humidity (RH), wind
speed (Ws) and pan evaporation (Ep). For each station, 50% of the whole data were randomly
chosen for training the Ep models and the remaining data were used for testing the models.
The annual variations of Ep and associated climatic factors are shown clearly in Fig. 4, it is
clear that Ep at MQ and LSA are generally higher than those at other stations, there are
decreasing trends of Ep for ALT, BJ and HK stations during 1960-2000, and the most
significant increasing trends of Ep are observed for LSA station. The Hs at CQ and HZ

stations are much lower than those at other stations and the annual mean Hs is the highest

11
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among the eight stations. There are also slight increasing trends for Hs at most stations except
BJ, HK and HZ stations. The annual mean Rg is obviously higher at LSA station and Rg at
CQ is the lowest, the Rg generally decreased from 1961 to 1990 and then increased for most
stations. The RH is generally larger than 75% at HZ, CQ and HK stations and lower than 50%
for MQ and LSA stations. There are distinct differences for annual mean Ta at above eight
stations, for example, Ta at HK is generally higher than 23 °C, while the highest annual mean
Ta at HEB is lower than 5 °C. However, Ws is highest at HEB and lowest at CQ station, and
Ws is decreasing from 1960s to 2000s at most stations.
Table 1
Fig. 5

Table 1 showed the monthly statistics of the climatic parameters, Xmean, Sx, Cv, Cx, Xmin and
Xmax denote the mean, standard deviation, variation coefficient, skewness, minimum and
maximum values, respectively. It is clear that the monthly mean Ep is 4.35, 4.72, 7.26, 5.09,
6.35, 2.86, 3.65 and 5.00 mm for station HEB, ALT, MQ, BJ, LSA, CQ, HZ and HK,
respectively. The mean Rg at LSA, MQ and ALT (20.41, 16.41 and 15.13MJ m™) are higher
than those at other stations; the mean Ta at HK station is 24.08°C, which is highest among all
the stations. The Hs shows low variations for the MQ, BJ and LSA stations (see Cv values in
Tablel) and the monthly mean Hs at CQ (2.83 hour) is much lower than the other station. The
monthly RH is 65.44%, 57.99%, 44.82%, 57.29%, 44.39%, 79.15%, 78.04% and 84.14% for
HEB, ALT, MQ, BJ, LSA, CQ, HZ and HK, respectively, which indicates that RH is
generally higher at lower latitudes. The Ws at HEB station is higher than other station in each
month and the lowest monthly Ws (1.36 m s7) is observed at CQ station. The monthly Ep, Ta,
Hs and Rg are generally higher in summer and lower in winter months (Fig.5); the RH is also
lower in spring months for some stations such as HEB and MQ; the WSs is higher at spring and

lower in summer months for most stations (Fig.5). For the HEB station, RG shows low

12
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skewed distribution and has a relatively higher correlation with Ep (R =0.89); the RH and Ws
data have the lowest (R = -0.30, 0.26) correlation with Ep. For the ALT station, the Ta data
have a high skewness (C,=3.07) and high correlation with Ep (R =0.93). For the MQ station,
the Hs shows the lower skewed distribution (C,=0.13) and has a positive correlation with Ep
(R =0.72); the Ta data have a higher skewness (C,=1.36) and the highest correlation with Ep
(R =0.93). In similar, the Rg and Hs data show relatively higher skewness and correlations
with Ep for the BJ, CQ and HK stations. At some cases, the correlations between Ta and Ep
are also higher than those with Hs, for example, the LSA (R =0.75) and HZ (R =0.88) stations.
It is clear from the statistical indices in Table 1 that each climatic variable have different
correlations with Ep, and Rg, Hs and Ta variables seem to be the most effective parameters

for predicting Ep with respect to the correlations.
2.3. Evaluation criteria

In this study, the ANFIS-GP, FG, GRNN, LSSVM, MARS, MLP, MLR and SS models were
evaluated and compared with each other utilizing the mean absolute errors (MAE), root mean

square errors (RMSE) and determination coefficient (R?), which can be expressed as

RMSE =\/I§Z(Epm,i —Ep,; ) (1)
i=1

n

1
MAE = N Z‘i‘Epm’i — Epyj| @)
1=

(Y (Epm; — EPm EPo; — EP, )7

R == A3)

> (Epn; —Epy ) > (Epo; ~ Ep, f

i=1 i=1

where N and bar respectively indicate the number of data and mean of the variable, Epy and
Ep, are the modeled and observed pan evaporation.

13
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3. Results and discussion

This study compares six different soft computing methods, ANFIS-GP, FG, GRNN, LSSVM,
MARS and MLP, and two empirical methods, MLR and SS, in modeling Ep using climatic
inputs of Rg, Ta, Hs, RH and Ws. Data from eight stations, HEB, ALT, MQ, BJ, LSA, CQ, HZ
and HK were utilized in the applications. The input combinations used for each model are
provided in Table 2, the numbers after each model indicates the input combination. Two
Gaussian membership functions were utilized for each ANFIS-GP and FG model. Different
regularization constants and RBF kernel widths were tried for the LSSVM models and the
optimal models that provided the least RMSE error in testing stage were obtained. For the
GRNN models, different spread constants were tried. Different hidden node numbers were
tried and the optimal ones were obtained for each MLP model.

Table 2

Table 3

Table 4
The training and testing results of the ANFIS-GP, FG, GRNN, LSSVM, MARS, MLP, SS
and MLR models in predicting Ep of HEB station are shown in Table 3. It is clear from the
table that the models with full weather data (Rg, Ta, Hs, RH and Ws) have the best accuracy.
The MLP7 model performs superior to the other models in predicting Ep at HEB. The
accuracy ranks of the applied soft computing models in testing period are: MLP, ANFIS-GP,
FG, GRNN, MARS, LSSVM and MLR. It is clear from the first three input combinations that
there is a slight difference between Rg and Ta and they are much more effective on modeling
Ep at HEB station than the other variables. This is also confirmed by the R* values given in
Table 1. Comparisons of the simple two-input (Rg and Ta) models clearly indicate that the
ANFIS-GP4, GRNN4 and LSSVM4 models have better accuracy than those of the SS model
while the FG4, MARS4 and MLP4 models give inferior results in testing period. Table 4
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gives the accuracy of the applied models in predicting Ep at ALT station. Similar to the HEB
station, the models comprising whole weather inputs generally provide the best accuracy and
the optimal MLP7 model outperforms the other models in predicting Ep at ALT station. The
accuracy ranks of the models in testing stage are: MLP, LSSVM, ANFIS-GP, FG, MARS,
GRNN and MLR. There is a slight difference between the Rg, Ta and Hs parameters and
these are also parallel to the correlations given in Table 1. Two-input soft computing models
seem to have a better accuracy than the SS model in predicting Ep at ALT station in the
testing stage.
Table 5
Table 6

The training and testing statistics of the soft computing models, SS and MLR in predicting Ep
of MQ station are provided in Table 5. In this station, five-input models also have the best
performance and the MLP7 model performs superior to the other models. The accuracy ranks
of the 5-input models are: MLP, FG, ANFIS-GP, GRNN, MARS, MLR and LSSVM. From
the first three inputs, it is clear that the Rg and Ta variables have more effects on Ep than the
Hs in MQ station. The correlations in Table 1 also confirm these results. It is apparent from
Table 5 that the SS model provides inferior results in comparison with the 2-input soft
computing models at MQ station. Table 6 reports the training and testing results of the applied
models in predicting Ep at BJ station. From the table, it is obvious that the models with full
weather data generally have the best accuracy. The MLP model provides better performance
than the other models with respect to MAE, RMSE and R”. The ranks of the applied models in
testing accuracy are: MLP, LSSVM, GRNN, ANFIS-GP, FG, MARS and MLR. It is clear
from the first three input combinations that the Rg which has a higher correlation with Ep (see

Table 1) is much more effective on Ep than the Ta and Hs at BJ. Simple SS model seems to
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have better accuracy than the applied 2-input soft computing models in predicting Ep at BJ
station in testing stage.
Table 7
Table 8

Table 7 compares the accuracy of the applied soft computing models in predicting Ep at LSA
station. Similar to the previous stations, the best accuracies were generally obtained from five-
input models and the GRNN model performs better than the other models with respect to
MAE and RMSE statistics. The accuracies of the applied models in testing stage rank as:
GRNN, MLP, LSSVM, MARS, FG, ANFIS-GP and MLR. The Ta seems to be the most
effective parameter in predicting Ep at this station, which is also confirmed by the high
correlation between Ta and Ep given in Table 1. The models with HS input generally provide
worse results than those comprising Rg input parameter. Two-input LSSVM4, ANFIS-GP4
and SS models have similar accuracy and they perform inferior to the FG4, GRNN4, MARS4
and MLP4 models. The accuracies of the ANFIS-GP, FG, GRNN, LSSVM, MARS, MLP, SS
and MLR models in both training and testing stages are given in Table 8 for predicting Ep of
CQ station. Unlike the previous stations, four-input models generally provide the best
performance in this station. This implies that adding Ws input generally decreases the model
accuracies even though it does not have a low correlation (R=0.58) with Ep at CQ station. The
MLP6 and GRNN6 models have similar accuracies and they perform superior to the other
models. The accuracy ranks of the above applied models in testing stage are: MLP, GRNN,
FG, LSSVM, MARS, ANFIS-GP and MLR. Similar to the BJ station, the Rg input seems to
have more effects on Ep than the Ta and Hs input at CQ station than the other variables even
though the Hs has a higher correlation with Ep. Comparison of two-input models obviously
shows that the SS model has a better accuracy than those of the other two-input soft

computing models in testing period.
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Table 9
Table 10

The training and testing accuracy of the soft computing models, SS and MLR in predicting Ep
of HZ station are provided in Table 9. In this station, four- and five-input models also have
the best accuracies. The optimal MLP and GRNN models have similar performance and they
perform superior to the other models in predicting Ep at HZ station. The performance ranks of
the optimal models are: MLP, GRNN, MARS, FG, LSSVM, ANFIS-GP and MLR. Similar to
the BJ station, the Rg variable which has a higher correlation with Ep (see Table 1) is much
more effective on estimating Ep than the Ta and Hs at HZ. Ta variable also provides better
accuracy than the Hs in predicting Ep. Comparisons of simple two-input models clearly
indicates that the MARS4 and MLP4 models have better accuracy than those of the SS model
while the ANFIS-GP4, FG4, GRNN4 and LSSVM4 provide inferior results in testing stage.
Table 10 compares the accuracy of the models in predicting Ep at HK station. From the table,
it is clear that the best accuracies were obtained from five-input models in predicting Ep. The
MLP model performs superior to the other models with respect to MAE, RMSE and R*
statistics. The accuracies of the applied models in testing period rank as: MLP, MLR, GRNN,
MARS, LSSVM, ANFIS-GP and FG. The accuracies of the MLR and MLP model are close
to each other. Therefore, simple MLR model can be preferred instead of more complex soft
computing models in predicting Ep at HK station. Unlike the previous stations, the models
comprising Hs input provide better accuracy than those which use only Rg or Ta input. The
Rg variable also seems to be more effective on Ep than the Ta at HZ station. The difference
among the two-input models is very small and the GRNN4 and SS models perform slightly
better than the other two-input models in predicting Ep at HK station.

It can be seen from above analysis that adding RH or WSs inputs into the applied models

generally increased their accuracies in predicting Ep in all stations even though these
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parameters had the lowest correlation with Ep (see Table 1). This indicates the non-linear
relationship between RH (Ws) and Ep and linear R? indicator cannot show this phenomenon.
General accuracies of the applied models are compared in Table 11. It is obvious that the
MLP model provides much better scores than the other methods in predicting Ep at above
eight stations (and data from all station) and the final accuracy ranks of the above models are:
MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. In some stations (e.g., BJ, CQ),
simple SS model performed superior to the two-input soft computing models and it can be
preferred in these stations where Hs, RH and Ws parameters are not available.
Table 11

Figs.6-13 illustrates the estimates of the optimal models in testing phase for eight stations in
the form of scatterplot. For HEP station, the fit line of the MARS model seems to be closer to
the ideal line (y=x) while the MLP model has the highest R? means less scattered estimates
than the other models. All the soft computing models provide close estimates to the
corresponding observed ones in ALT station while MLR generally tends to overestimation.
For MQ station, the LSSVM, MARS and MLR models provide more scattered estimates than
the ANN (MLP and GRNN) and fuzzy based ANFIS-GP and FG models. All the models
generally have good estimates at the BJ, CQ, HK and HZ stations. In LSA station, the MLP,
GRNN, LSSVM and MARS provide less scattered estimates than the fuzzy based ANFIS-GP,
FG and MLR models. From Figs.6-13, it is clear that the MLP model generally provided less
scattered estimates than the other models in all stations. The models generally provided the
worst accuracy in LSA station. One of the main reasons of this may be the fact that the Ep has
low correlations with the climatic input data at LSA in comparison with other stations. It is
clear from Fig. 12 that the SS model provides less scattered estimates for the ALT, CQ and
HZ in comparison with other stations.

Fig. 6
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Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13
The Ep data at all stations are further estimated using single generalized MLP, GRNN,
MARS, LSSVM, ANFIS-GP, FG, MLR and SS models. The optimal models are obtained
using training and testing data of above eight stations, the training and testing statistics of the
applied models are compared in Table 12. Similar to the previous results, the best accuracies
are obtained from the five-input models and the MLP model performs better than the other
models. The accuracies of the applied models in testing stage rank as: MLP, GRNN, LSSVM,
FG, ANFIS-GP, MARS and MLR. The Rg variable seems to be the most effective parameter
in predicting Ep for data from all station, and the models with Hs input generally provides
slightly better results than those comprising Ta input parameter. Two-input MARS4 and
ANFIS-GP4 models perform inferior to the FG4, GRNN4, LSSVM4 and MLP4 models; the
SS model has a lower accuracy than those of the other two-input soft computing models in
testing period (Table 12). It is also observed that only Ta or Hs input seems to be insufficient
for obtaining an accurate generalized Ep model and the model performances generally
increase with input numbers, which implies that all above climatic parameters have positive
effects on estimating Ep for most stations in different climates. The estimates of the
generalized models are illustrated in Figs.6-13 (see the last scatterplot in each figure). It is
clearly observed from the figures that the generalization significantly decreases models

accuracy in estimating Ep at all stations. However, all the soft computing models generally
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have good generalization ability. Some underestimations of the high Ep values are clearly
seen for the generalized models. Different data ranges in training and test stages may be the
reason of this.

Table 12

4. Conclusion

This study investigated and compared the abilities of six different soft computing techniques,
MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS, and two regression methods, MLR and SS,
in modeling Ep using different climatic input combinations of Rg, Ta, Hs, RH and Ws. The
climatic data obtained from eight stations in different climatic zones were used as inputs for
training and testing above models. In the first part of applications, the models with different
local input combinations were compared with each other in estimating Ep at each station,
separately. The results showed that the models with more inputs generally have better
accuracies and the MLP model performed superior to the other models in predicting monthly
Ep at most stations, however, the GRNN model performed better than the other models at
LSA station with respect to MAE and RMSE statistics. The Rg and Ta variables are more
effective on modeling Ep at most stations, while Ta seems to be the most important parameter
in predicting Ep at LSA, and adding WS to the input combinations even decreases the model
accuracies. Sometimes, MLR model can be used for predicting Ep in tropic climate instead of
more complex soft computing models, and SS model can also be adopted for some stations in
regions of subtropical humid climate or temperate continental climate. The second part of
applications focused on estimating Ep of all stations using generalized models, which could
be successfully used for predicting Ep using different input combinations. The accuracies of

the applied models rank as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The
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Rg and Hs variables seem to be the most effective parameters in predicting Ep for data from
all stations.

In summary, it is revealed in this study that the MLP models are the most appropriate for
predicting Ep using limited climatic inputs in different climates. The present applications can
be practically adopted in the field of water resources management for accurately mapping

regional and global distributions of evaporation and related water resource storages.
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610 Table 1.Monthly statistical parameters of each data set for each station
Station Dataset Xmean Sx Cy  Cx  Xmin Xmax R
HEB Rg 12.98 5.35 0.41 0.00 3.68 28.71 0.89
Ta 4.17 1452 3.48 -0.25 2471 2525 0.86
Hs 7.02 1.59 0.23 -0.25 2.82 10.89 0.79
RH 65.44 11.01  0.17 -0.44 36.23  85.06 -0.36
Ws 3.69 0.97 0.26 0.61 1.88 6.69 0.26
Ep 4.35 3.27 0.75 0.44 0.16 12.96 1
ALT Rg 15.13 7.21 0.48 -0.06 2.34 27.69 0.92
Ta 4.54 1395  3.07 -0.25 -25.08 24.87 0.93
Hs 8.2 2.52 0.31 -0.25 1.92 12.66 0.90
RH 57.99 1341 0.23 0 30.1 86.77 -0.89
Ws 2.40 0.99 0.41 0.05 0.31 5.46 0.69
Ep 4.72 3.84 0.81 0.33 0.15 13.79 1
MQ Rg 16.41 4.98 0.30 0.07 7.21 26.9 0.92
Ta 8.33 11.32 1.36 -0.19 -15.46 2572 0.93
Hs 8.37 1.12 0.13 0.30 5.47 11.38 0.72
RH 4482 9.06 0.2 0.12 243 74.58 -0.29
Ws 2.68 0.55 0.20 0.08 1.23 4.32 0.55
Ep 7.26 4.45 0.61 0.10 0.42 15.89 1
BJ Rg 14.61 4.94 0.34 0.05 5.14 25.59 0.91
Ta 12.20 10.74  0.88 -0.17 -7.6 29.56 0.75

Hs 7.41 1.42 0.19 0.06 3.79 11.21 0.76
RH 57.29 13.70  0.24 0.02 21.86 85.52 0.09

Ws 2.50 0.67 0.27 0.49 1.07 4.65 0.14
Ep 5.09 2.83 0.56 0.70 0.85 15.63 1
LSA Rg 20.41 4.20 0.21 0.11 10.39 30.69 0.68
Ta 7.82 6.37 0.81 -0.21 -5.16 18.19 0.75
Hs 8.19 0.96 0.12 -0.59 4.66 10.55 0.18
RH 44.39 15.10  0.34 0.30 15.36 76.61 0.19
Ws 1.90 0.46 0.24 0.30 0.92 3.41 0.34
Ep 6.35 2.23 0.35 0.36 2.15 13.28 1
CQ Rg 8.80 4.69 0.53 0.43 0 21.32 0.92
Ta 17.93 7.46 0.42 -0.10 0.64 30.90 0.85
Hs 2.83 2.02 0.71 0.91 0 9.19 0.94
RH 79.15 8.55 0.11 -4.66 6.97 90.30 -0.40
Ws 1.36 0.34 0.25 -0.12 0.64 2.13 0.58
Ep 2.86 1.94 0.68 0.87 0.54 9.32 1
HZ Rg 11.63 4.20 0.36 0.54 3.93 24.83 0.94
Ta 16.45 8.46 0.51 -0.06 -0.01 31.03 0.88
Hs 4.99 1.74 0.35 0.63 1.19 11.25 0.80
RH 78.04 5.63 0.07 -0.80 53.74 90.42 -0.04
Ws 2.24 0.43 0.19 0.05 1.01 3.58 0.13
Ep 3.65 1.94 0.53 0.84 0.74 11.33 1
HK Rg 13.86 4.33 0.31 -0.05 4.06 24.34 0.90

Ta 24.08 4.07 0.17 -0.55 13.21 29.83 0.81
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Hs
RH
Ws
Ep

5.83
84.14
2.65
5.00

1.96
3.61
0.66
1.59

Hydrology and
Earth System

Sciences
Discussions
0.34 -0.26 0.47 9.94 0.89
0.04 -0.52 71.39 94.46 -0.41
0.25 0.61 1.33 4.98 0.04
0.32 0.08 1.37 9.97 1

611 The unit of Ry, Ta, Pa, Wsand Ep are MJ m'z, °C,hPa,ms'1 and mm, respectively; Xmean, Sx» Cvs Cx, Xmin and
612 Xmax denote the mean, standard deviation, variation coefficient, skewness, minimum and maximum values,

613  respectively.
614

615
616
617
618
619
620

621  Table 2.The input combinations for different artificial intelligence techniques.

Models Input combinations

ANFIS-GP FG GRNN LSSV MARS MLP
ANFIS-GP1 FG1 GRNNI1 LSSV1 MARS1  MLPI1 Rg
ANFIS-GP2 FG2 GRNN2 LSSV2 MARS2 MLP2 Ta
ANFIS-GP3 FG3 GRNN3 LSSV3 MARS3  MLP3 Hs
ANFIS-GP4 FG4 GRNN4 LSSV4 MARS4 MLP4 Rg, Ta
ANFIS-GP5 FG5 GRNNS5 LSSV5 MARSS MLP5 Rg, Ta, Hs
ANFIS-GP6 FG6 GRNN6 LSSVe6 MARS6  MLP6 Rg, Ta, Hs, RH
ANFIS-GP7 FG7 GRNN7 LSSV7 MARS7 MLP7 Rg, Ta, Hs, RH, Ws

622

623

624

625

626

627

628

629

630

631

632

633

634

635
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636  Table 3. Comparisons of different models for predicting Ep at HEB.

HEB MAE RMSE R? MAE RMSE R?
ANFIS-GP1  1.062 1.411 0.815 1.044 1.431 0.819
ANFIS-GP2  1.226 1.68 0.737 1.082 1.471 0.797
ANFIS-GP3  1.589 2.05 0.609 1.496 1.834 0.726
ANFIS-GP4  0.865 1.225 0.86 0.781 1.089 0.894
ANFIS-GP5  0.785 1.167 0.873 0.645 0.907 0.923
ANFIS-GP6  0.429 0.601 0.966 0.517 0.751 0.956
ANFIS-GP7  0.378 0.521 0.975 0.431 0.6 0.967

FG1 1.031 1.371 0.825 1.031 1.507 0.816
FG2 1.151 1.632 0.752 1.077 1.502 0.786
FG3 1.528 2.008 0.625 1.354 1.798 0.74
FG4 0.719 1.071 0.893 0.688 1.178 0.891
FG5 0.67 1.002 0.907 0.673 1.059 0.897
FG6 0.39 0.56 0.971 0.474 0.69 0.961
FG7 0.305 0.421 0.983 0.435 0.661 0.959

GRNN1 1.057 1.428 0.819 1.039 1.403 0.817

GRNN2 1.155 1.632 0.753 1.057 1.475 0.796

GRNN3 1.519 2 0.628 1.379 1.816 0.738

GRNN4 0.729 1.089 0.892 0.733 1.116 0.886

GRNN5 0.703 1.042 0.901 0.652 0.988 0.908

GRNN6 0.405 0.579 0.97 0.492 0.785 0.943

GRNN7 0.343 0.483 0.979 0.499 0.745 0.951

LSSV1 1.035 1.375 0.824 1.025 1.426 0.82

LSSV2 1.131 1.619 0.756 1.062 1.491 0.79

LSSV3 1.685 2.135 0.604 1.557 1.951 0.712

LSSV4 0.675 1.007 0.906 0.703 1.099 0.89

LSSV5 0.901 1.267 0.853 0.761 1.031 0.9

LSSV6 0.556 0.812 0.941 0.591 0.864 0.934

LSSV7 0.808 1.092 0.901 0.84 1.082 0.903

MARSI 1.038 1.371 0.825 1.064 1.581 0.805

MARS?2 1.067 1.523 0.784 1.098 1.584 0.767

MARS3 1.537 2.01 0.624 1.369 1.795 0.744

MARS4 0.659 0.972 0.912 0.806 1.39 0.861

MARS5 0.659 0.972 0.912 0.806 1.39 0.861

MARS6 0.548 0.72 0.952 0.596 0.959 0.931

MARS7 0.507 0.641 0.962 0.581 0.763 0.949

MLPI 1.044 1.374 0.824 1.03 1.483 0.818

MLP2 1.082 1.567 0.771 1.03 1.49 0.792

MLP3 1.135 1.618 0.757 1.04 1.46 0.798

MLP4 0.655 0.963 0.914 0.716 1.148 0.892

MLP5 0.608 0.908 0.923 0.584 0.879 0.928

MLP6 0.314 0.458 0.98 0.409 0.607 0.97

MLP7 0.279 0.398 0.985 0314 0.405 0.988

SS 0.954 1.327 0.838 0.822 1.152 0.886
MLR 0.825 1.05 0.897 0.874 1.16 0.875
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638  Table 4. Comparisons of different models for predicting Ep at ALT.

ALT MAE RMSE R? MAE RMSE R?
ANFIS-GP1  1.19 1.597 0.841 1.003 1.268 0.896
ANFIS-GP2  1.19 1.506 0.859 1.11 1.435 0.884
ANFIS-GP3  1.345 1.763 0.807 1.214 1.601 0.844
ANFIS-GP4  0.535 0.786 0.962 0.707 1.013 0.973
ANFIS-GP5  0.494 0.737 0.966 0.691 1.012 0.977
ANFIS-GP6  0.286 0.411 0.99 0.398 0.586 0.984
ANFIS-GP7  0.241 0.351 0.992 0.371 0.545 0.987

FG1 1.079 1.398 0.878 0.994 1.3 0.891
FG2 0.78 1.065 0.929 0.953 1.29 0.928
FG3 1.052 1.375 0.882 1.002 1.328 0.92
FG4 0.45 0.703 0.969 0.67 1.027 0.971
FG5 0.49 0.717 0.968 0.697 1.043 0.971
FG6 0.266 0.38 0.991 0.391 0.575 0.987
FG7 0.253 0.343 0.993 0.394 0.57 0.988

GRNN1 1.172 1.516 0.865 0.881 1.113 0.906

GRNN2 0.875 1.223 0.913 0.882 1.187 0.927

GRNN3 1.173 1.552 0.868 0.885 1.213 0.91

GRNN4 0.532 0.84 0.957 0.663 0.936 0.977

GRNN5 0.527 0.809 0.96 0.69 0.952 0.982

GRNN6 0.192 0.301 0.994 0.47 0.657 0.989

GRNN7 0.158 0.251 0.996 0.476 0.679 0.986

LSSV1 1.077 1.421 0.875 0.928 1.212 0.9

LSSV2 0.776 1.058 0.93 0.957 1.294 0.927

LSSV3 1.063 1.381 0.881 0.986 1.299 0.92

LSSV4 0.514 0.763 0.964 0.669 0.957 0.973

LSSV5 0.481 0.732 0.967 0.669 0.974 0.978

LSSV6 0.303 0.435 0.989 0.369 0.528 0.987

LSSV7 0.39 0.587 0.98 0.487 0.647 0.986

MARSI 1.032 1.371 0.883 0.956 1.269 0.899

MARS?2 0.748 1.029 0.934 0.927 1.28 0.929

MARS3 1.043 1.356 0.886 1.043 1.367 0.916

MARS4 0.437 0.657 0.973 0.641 0.996 0.975

MARS5 0.438 0.658 0.973 0.644 1.0 0.975

MARS6 0.29 0.411 0.989 0.428 0.655 0.985

MARS7 0.276 0.382 0.991 0.403 0.622 0.987

MLPI 1.03 1.363 0.884 0.951 1.268 0.897

MLP2 0.787 1.07 0.929 0.951 1.282 0.93

MLP3 0.752 1.039 0.933 0.93 1.28 0.929

MLP4 0.445 0.689 0.97 0.667 1.033 0.971

MLP5 0.521 0.769 0.963 0.659 1.017 0.974

MLP6 0.234 0.34 0.993 0.348 0.523 0.989

MLP7 0.161 0.211 0.989 0.19 0.265 0.989

SS 0.539 0.761 0.964 0.681 1.053 0.963
MLR 0.712 0.89 0.951 0.74 0.861 0.969
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640  Table 5. Comparisons of different models for predicting Ep at MQ.

MQ MAE RMSE R’ MAE RMSE R?
ANFIS-GP1  1.337 1.76 0.85 1.133 1.396 0.941
ANFIS-GP2 133 1.698 0.86 1.203 1.587 0.863
ANFIS-GP3  2.467 3.11 0.53 2.453 3.045 0.55
ANFIS-GP4  0.83 1.178 0.933 0.868 1.22 0.952
ANFIS-GP5  0.828 1.165 0.828 0.882 1.229 0.951
ANFIS-GP6  0.648 0.886 0.962 0.608 0.81 0.981
ANFIS-GP7  0.474 0.66 0.979 0.512 0.646 0.987

FG1 1.297 1.735 0.854 1.112 1.412 0.926
FG2 1.263 1.638 0.87 1.198 1.555 0.87
FG3 2.447 3.057 0.546 2373 2.953 0.58
FG4 0.828 1.178 0.933 0.854 1.196 0.952
FG5 0.795 1.13 0.938 0.923 1.335 0.942
FG6 0.608 0.81 0.968 0.636 0.805 0.978
FG7 0.456 0.614 0.983 0.435 0.574 0.99
GRNN1 1.427 1.814 0.854 1.071 1315 0.925
GRNN2 1.225 1.593 0.877 1.148 1.504 0.876
GRNN3 2.663 3.15 0.542 2.381 2.821 0.596
GRNN4 0.733 1.056 0.946 0.78 1.089 0.954
GRNN5 0.647 0.944 0.957 0.815 1.161 0.951
GRNN6 0.329 0.486 0.989 0.634 0.892 0.972
GRNN7 0.248 0.392 0.993 0.548 0.74 0.981

LSSV1 1.343 1.758 0.85 1.094 1.368 0.935

LSSV2 1.274 1.643 0.869 1.187 1.548 0.869

LSSV3 2.46 3.057 0.547 2.383 2.942 0.574

LSSV4 1.06 1.365 0.925 0.93 1.107 0.951

LSSV5 0.815 1.143 0.937 0.9 1.225 0.945

LSSV6 0.934 1.193 0.94 0.891 1.089 0.962

LSSV7 0.888 1.113 0.95 0.767 0.927 0.97

MARSI 1.291 1.728 0.855 1.092 1.404 0.928
MARS2 1.076 1.462 0.896 1.078 1.471 0.888
MARS3 2.419 3.039 0.552 2.436 2.996 0.564
MARS4 0.815 1.144 0.936 0.922 1.23 0.947
MARS5 0.807 1.126 0.938 0.97 1.29 0.95
MARS6 0.668 0.87 0.963 0.735 0.929 0.973
MARS7 0.546 0.72 0.975 0.627 0.826 0.977

MLP1 1.297 1.735 0.854 1.107 1.408 0.928

MLP2 1.057 1.458 0.897 1.113 1.492 0.888

MLP3 1.139 1.524 0.887 1.108 1.488 0.884

MLP4 0.724 1.026 0.949 0.797 1.074 0.96

MLP5 0.742 1.064 0.945 0.821 1.113 0.959

MLP6 0.538 0.738 0.974 0.538 0.716 0.981

MLP7 0.384 0.532 0.986 0.358 0.489 0.99

SS 0.922 1.281 0.92 1.039 1.389 0.944

MLR 0.77 0.967 0.955 0.784 0.921 0.972
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642  Table 6. Comparisons of different models for predicting Ep at BJ.

BJ MAE RMSE R? MAE RMSE R?
ANFIS-GP1  0.872 1.205 0.826 0.749 0.956 0.922
ANFIS-GP2  1.439 1.907 0.564 1.294 1.554 0.662
ANFIS-GP3  1.431 1.818 0.603 1.482 1.88 0.561
ANFIS-GP4  0.846 1.189 0.831 0.717 0.923 0.921
ANFIS-GP5  0.742 1.071 0.862 0.688 0.972 0.909
ANFIS-GP6  0.464 0.735 0.935 0.384 0.51 0.965
ANFIS-GP7  0.424 0.657 0.948 0.361 0.48 0.971

FG1 0.835 1.127 0.848 0.823 1.075 0.914

FG2 1.416 1.891 0.571 1.256 1.544 0.665

FG3 1.387 1.733 0.64 1.483 1.846 0.561

FG4 0.742 1.063 0.864 0.688 0.997 0.922

FG5 0.721 1.052 0.867 0.679 0.959 0.926

FG6 0.451 0.721 0.938 0.394 0.484 0.971

FG7 0.431 0.655 0.949 0.431 0.586 0.963

GRNN1 0.819 1.114 0.852 0.811 1.062 0.916
GRNN2 1.379 1.852 0.589 1.23 1.52 0.678
GRNN3 1.374 1.727 0.647 1.491 1.843 0.564
GRNN4 0.626 0.924 0.898 0.657 0.939 0.904
GRNN5 0.665 0.998 0.882 0.639 0.947 0.914
GRNN6 0.32 0.533 0.966 0.391 0.513 0.962
GRNN7 0.166 0.301 0.989 0.356 0.473 0.968
LSSV1 0.842 1.139 0.845 0.824 1.062 0.911
LSSV2 1.519 1.986 0.552 1.441 1.658 0.647
LSSV3 1.386 1.734 0.64 1.483 1.841 0.562
LSSV4 0.743 1.069 0.864 0.69 0.977 0.922
LSSV5 0.823 1.184 0.839 0.692 0.958 0.911
LSSV6 0.736 1.078 0.875 0.622 0.827 0.925
LSSV7 0.486 0.76 0.933 0.338 0.444 0.973
MARSI 0.829 1.118 0.85 0.854 1.071 0.915
MARS?2 1.364 1.832 0.597 1.282 1.607 0.659
MARS3 1.355 1.717 0.647 1.477 1.846 0.565
MARS4 0.705 0.979 0.885 0.68 0.976 0.909
MARS5 0.687 0.972 0.887 0.687 0.991 0.903
MARS6 0.52 0.767 0.929 0.5 0.603 0.963
MARS7 0.478 0.717 0.938 0.427 0.527 0.971
MLP1 0.784 1.075 0.861 0.813 1.045 0.914
MLP2 1325 1.803 0.61 1.249 1.595 0.677
MLP3 1.401 1.875 0.578 1.236 1.523 0.678
MLP4 0.675 0.968 0.888 0.66 0.974 0.911
MLP5 0.653 0.962 0.889 0.62 0.907 0.904
MLP6 0.417 0.692 0.943 0312 0.394 0.982
MLP7 0.337 0.506 0.969 0314 0.428 0.979
SS 0.89 1.263 0.816 0.647 0.921 0.897
MLR 0.614 0.879 0.907 0.514 0.648 0.946
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644  Table 7. Comparisons of different models for predicting Ep at LSA.

LSA MAE RMSE R? MAE RMSE R?
ANFIS-GP1  1.327 1.718 0.411 1.072 1.424 0.594
ANFIS-GP2  1.245 1.523 0.536 1.192 1.417 0.601
ANFIS-GP3  1.821 2218 0.017 1.796 2.148 0.055
ANFIS-GP4  1.149 1.471 0.568 1.046 1.304 0.651
ANFIS-GP5  0.966 1.223 0.701 0.875 1.082 0.761
ANFIS-GP6  0.529 0.675 0.909 0.73 0.907 0.896
ANFIS-GP7  0.478 0.61 0.926 0.816 1.038 0.875

FG1 1.324 1.715 0.413 1.073 1.415 0.6

FG2 1.151 1.465 0.571 1.159 1.392 0.621
FG3 1.803 2.169 0.06 1.771 2.093 0.118
FG4 1.044 1.381 0.619 0.987 1.201 0.725
FG5 0.968 1215 0.705 0.896 1.099 0.757
FG6 0.499 0.631 0.921 0.767 0.925 0.903
FG7 0.491 0.61 0.926 0.729 0.886 0.914

GRNN1 1.296 1.692 0.429 1.094 1.436 0.587

GRNN2 1.025 1.336 0.647 1.072 1.288 0.679

GRNN3 1.783 2.152 0.077 1.762 2.08 0.134

GRNN4 0.841 1.131 0.751 0.817 1.032 0.795

GRNN5 0.639 0.844 0.862 0.714 0.937 0.828

GRNN6 0.33 0.427 0.965 0.533 0.65 0.926

GRNN7 0.326 0.417 0.967 0.459 0.592 0.933

LSSV1 1.376 1.754 0.41 1.211 1.508 0.599

LSSV2 1.22 1.499 0.554 1.213 1.422 0.606

LSSV3 1.811 2.209 0.027 1.791 2.144 0.07

LSSV4 1.163 1.476 0.573 1.078 1.31 0.663

LSSV5 0.987 1.253 0.69 0.894 1.085 0.777

LSSV6 0.462 0.601 0.933 0.646 0.799 0.916

LSSV7 0.47 0.609 0.932 0.591 0.713 0.928

MARSI 1.316 1.713 0.414 1.072 1.412 0.602

MARS?2 1.012 1.318 0.653 1.098 1.299 0.683

MARS3 1.82 2.182 0.049 1.766 2.089 0.12

MARS4 0.917 1.23 0.698 0.947 1.176 0.735

MARSS5 0.94 1.227 0.699 0.913 1.135 0.746

MARS6 0.501 0.641 0.918 0.762 0.929 0.91

MARS7 0.528 0.66 0.913 0.697 0.85 0.92

MLPI 1.308 1.707 0.418 1.073 1.413 0.596

MLP2 0.992 1307 0.659 1.111 1313 0.675

MLP3 0.994 1.316 0.654 1.108 1312 0.675

MLP4 0.883 1.187 0.719 0.918 1.123 0.754

MLP5 0.686 0.91 0.835 0.728 0.958 0.825

MLP6 0.397 0.503 0.949 0.629 0.771 0.928

MLP7 0.522 0.681 0.907 0.53 0.638 0.936

SS 1.198 1.577 0.515 0.969 1.307 0.652
MLR 0.628 0.795 0.874 0.656 0.789 0.906
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646  Table 8. Comparisons of different models for predicting Ep at CQ.

CQ MAE RMSE R’ MAE RMSE R?
ANFIS-GP1  0.466 0.859 0.815 0.28 0.397 0.958
ANFIS-GP2  0.82 1.189 0.645 0.693 0.959 0.748
ANFIS-GP3  0.539 0.722 0.869 0.537 0.679 0.876
ANFIS-GP4  0.416 0.786 0.845 0316 0.398 0.959
ANFIS-GP5 0369 0.492 0.939 0.242 0.329 0.968
ANFIS-GP6  0.225 0.29 0.979 0.224 0.312 0.976
ANFIS-GP7  0.187 0.244 0.985 0.203 0.3 0.978

FG1 0.467 0.805 0.837 0.294 0.375 0.963

FG2 0.611 0.881 0.805 0.571 0.691 0.873

FG3 0.474 0.672 0.887 0.479 0.607 0.905

FG4 0.385 0.704 0.876 0.303 0.384 0.96

FG5 0.297 0.402 0.959 0.273 0.19 0.944

FG6 0.275 0.359 0.968 0.3 0.407 0.955

FG7 0.195 0.25 0.984 0.182 0.28 0.981
GRNN1 0.437 0.746 0.861 0.284 0.374 0.963
GRNN2 0.574 0.845 0.823 0.507 0.651 0.883
GRNN3 0.453 0.652 0.893 0.473 0.61 0.902
GRNN4 0.328 0.645 0.897 0.285 0.37 0.962
GRNN5 0.221 0.308 0.976 0.24 0.327 0.968
GRNN6 0.145 0.203 0.99 0.177 0.24 0.983
GRNN7 0.227 0.308 0.977 0.234 0.297 0.975
LSSV1 0.714 1.028 0.81 0.6 0.734 0.961
LSSV2 0.552 0.825 0.829 0.503 0.65 0.888
LSSV3 0.687 0.862 0.887 0.625 0.765 0.906
LSSV4 0.543 0.873 0.833 0.449 0.58 0.94
LSSV5 0.336 0.48 0.942 0.292 0.372 0.959
LSSV6 0314 0.496 0.94 0.219 0.284 0.977
LSSV7 0317 0.49 0.942 0.22 0.292 0.976
MARSI 0.451 0.709 0.874 0.28 0.441 0.943
MARS2 0.555 0.822 0.83 0.498 0.651 0.889
MARS3 0.453 0.664 0.889 0.466 0.599 0.904
MARS4 0.363 0.624 0.902 0.33 0.441 0.95
MARS5 0.336 0.48 0.942 0.292 0372 0.959
MARS6 0.273 0.426 0.954 0.219 0.299 0.974
MARS7 0.267 0.417 0.956 0.25 0.323 0.956

MLP1 0.419 0.733 0.865 0.27 0.371 0.96

MLP2 0.55 0.81 0.835 0.509 0.658 0.887

MLP3 0.568 0.845 0.82 0.502 0.637 0.893

MLP4 0.334 0.65 0.894 0.266 0.355 0.966

MLP5 0.252 0.348 0.97 0.218 0.296 0.975

MLP6 0.185 0.239 0.986 0.167 0.23 0.985

MLP7 0.161 0.211 0.989 0.189 0.265 0.985

SS 0.379 0.786 0.847 0.226 0.307 0.973

MLR 0.389 0.534 0.928 0.317 0.398 0.955

647

33

Hydrology and
Earth System



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-247, 2016

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Published: 23 May 2016

(© Author(s) 2016. CC-BY 3.0 License.

648  Table 9. Comparisons of different models for predicting Ep at HZ station.

MAE RMSE R? MAE RMSE R?
ANFIS-GP1  0.532 0.698 0.87 0.451 0.605 0.903
ANFIS-GP2  0.72 1.001 0.734 0.728 0.965 0.754
ANFIS-GP3  0.937 1.164 0.64 0.991 1.178 0.694
ANFIS-GP4  0.377 0.521 0.928 0.333 0.448 0.948
ANFIS-GP5  0.357 0.482 0.938 0311 0.397 0.961
ANFIS-GP6  0.272 0.356 0.966 0.329 0.427 0.965
ANFIS-GP7  0.242 0312 0.974 0.347 0.453 0.949
FG1 0.519 0.686 0.875 0.438 0.59 0.908
FG2 0.62 0.817 0.822 0.626 0.786 0.837
FG3 0.943 1.151 0.648 1.01 1.188 0.699
FG4 0.358 0.485 0.938 0.299 0.397 0.959
FG5 0.344 0.462 0.943 0.29 0.373 0.965
FG6 0.269 0.347 0.968 0.295 0.375 0.974
FG7 0.26 0.36 0.966 0.278 0.369 0.964
GRNN1 0.519 0.68 0.878 0.457 0.607 0.904
GRNN2 0.556 0.733 0.859 0.581 0.736 0.86
GRNN3 0.926 1.127 0.664 1.02 1.197 0.705
GRNN4 0.322 0.438 0.949 0314 0.409 0.957
GRNN5 0.238 0.327 0.972 0.295 0.404 0.961
GRNN6 0.232 0.3 0.977 0.275 0.346 0.969
GRNN7 0.223 0.295 0.978 0.335 0.445 0.956
LSSV1 0.593 0.801 0.87 0.572 0.731 0.903
LSSV2 0.715 0.984 0.778 0.733 0.97 0.799
LSSV3 0.996 1.214 0.638 1.074 1.267 0.678
LSSV4 0.413 0.594 0.924 0.399 0.548 0.94
LSSV5 0.398 0.554 0.929 0.376 0.509 0.953
LSSV6 0.278 0.378 0.964 0.3 0.372 0.968
LSSV7 0.292 0.406 0.959 0.338 0.441 0.957
MARSI 0.52 0.69 0.874 0.443 0.601 0.904
MARS?2 0.534 0.686 0.875 0.524 0.673 0.881
MARS3 0.915 1.125 0.664 0.999 1.189 0.698
MARS4 0.339 0.449 0.946 0.273 0.362 0.966
MARS5 0.335 0.437 0.949 0.282 0.358 0.966
MARS6 0.286 0.37 0.964 0.318 0.393 0.976
MARS7 0.27 0.358 0.966 0.276 0.361 0.967
MLPI 0.529 0.691 0.873 0.449 0.598 0.906
MLP2 0.523 0.68 0.877 0.523 0.674 0.881
MLP3 0.908 1.124 0.664 0.992 1.181 0.698
MLP4 0.334 0.65 0.894 0.266 0.355 0.966
MLP5 0.333 0.446 0.947 0.279 0.348 0.968
MLP6 0.247 0.326 0.972 0.318 0.405 0.978
MLP7 0.244 0319 0.973 0.263 0.34 0.977
SS 0.35 0.487 0.938 0.291 0.388 0.96
MLR 0.32 0.427 0.952 0.395 0.486 0.942
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650  Table 10. Comparisons of different models for predicting Ep at HK.

HK MAE RMSE R? MAE RMSE R?
ANFIS-GP1  0.528 0.688 0.814 0.669 0.8 0.854
ANFIS-GP2  0.741 0.964 0.634 0.802 0.97 0.742
ANFIS-GP3  0.619 0.798 0.749 0.482 0.61 0.851
ANFIS-GP4  0.488 0.646 0.836 0.66 0.796 0.861
ANFIS-GP5  0.46 0.597 0.86 0.494 0.609 0.891
ANFIS-GP6  0.388 0.501 0.901 0.809 0.93 0.919
ANFIS-GP7  0.286 0.379 0.943 0.428 0.555 0.925

FG1 0.506 0.661 0.828 0.662 0.792 0.858

FG2 0.716 0.914 0.671 0.793 0.94 0.784

FG3 0.612 0.768 0.768 0.503 0.63 0.85

FG4 0.471 0.626 0.846 0.659 0.786 0.875

FG5 0.451 0.591 0.863 0.485 0.596 0.895

FG6 0.39 0.496 0.903 0.718 0.849 0.92

FG7 0.381 0.494 0.904 0.452 0.566 0.886
GRNN1 0.505 0.666 0.829 0.673 0.81 0.854
GRNN2 0.699 0.902 0.681 0.786 0.929 0.776
GRNN3 0.6 0.759 0.775 0.511 0.642 0.845
GRNN4 0.452 0.605 0.859 0.65 0.771 0.879
GRNN5 0.405 0.535 0.889 0.484 0.589 0.892
GRNN6 0.408 0.538 0.894 0.539 0.651 0.916
GRNN7 0.241 0.342 0.956 0.415 0.512 0.917
LSSV1 0.51 0.671 0.826 0.659 0.791 0.859
LSSV2 0.717 0.924 0.665 0.788 0.934 0.78
LSSV3 0.614 0.781 0.766 0.519 0.643 0.852
LSSV4 0.481 0.64 0.841 0.661 0.789 0.87
LSSV5 0.446 0.583 0.867 0.483 0.596 0.891
LSSV6 0.414 0.528 0.891 0.625 0.748 0.919
LSSV7 0.313 0.41 0.935 0.419 0.529 0.918
MARS]I 0.505 0.662 0.828 0.665 0.79 0.862
MARS?2 0.664 0.862 0.708 0.858 1.023 0.766
MARS3 0.603 0.758 0.774 0.5 0.632 0.845
MARS4 0.438 0.581 0.867 0.733 0.899 0.869
MARS5 0.426 0.547 0.882 0.536 0.691 0.891
MARS6 0.407 0.517 0.895 0.682 0.807 0.917
MARS?7 0.322 0.414 0.932 0.397 0.515 0.927

MLPI 0.512 0.671 0.823 0.657 0.793 0.855

MLP2 0.686 0.878 0.697 0.822 0.979 0.792

MLP3 0.707 0.903 0.679 0.821 0.973 0.79

MLP4 0.47 0.623 0.847 0.657 0.779 0.878

MLP5 0.421 0.542 0.884 0.485 0.594 0.897

MLP6 0.431 0.554 0.88 0.671 0.786 0.916

MLP7 0.34 0.444 0.923 0.386 0.491 0.930

SS 0.523 0.683 0.827 0.64 0.773 0.823

MLR 0.328 0.431 0.927 0.396 0.505 0.927
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655 Table 11. Accuracy ranks of the soft computing models in estimating Ep.
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695  Table 12. Comparisons of different models for predicting Ep at all stations.

MAE RMSE R? MAE RMSE R?
ANFIS-GP1  1.204 1.681 0.739 1.022 1.378 0.804
ANFIS-GP2  1.906 2.522 0.412 1.768 2.345 0.437
ANFIS-GP3  1.913 2377 0.478 1.877 2.262 0.475
ANFIS-GP4  0.994 1.446 0.807 0.88 1.228 0.847
ANFIS-GP5 0917 1.341 0.834 0.782 1.113 0.872
ANFIS-GP6  0.606 0.846 0.934 0.601 0.833 0.933
ANFIS-GP7  0.517 0.738 0.95 0.486 0.666 0.957
FG1 1.208 1.676 0.74 1.028 1.377 0.805
FG2 1.883 2511 0.417 1.741 2332 0.443
FG3 1.8 2.221 0.544 1.812 2.148 0.524
FG4 0.936 1.378 0.824 0.821 1.154 0.865
FG5 0.883 1.294 0.845 0.753 1.072 0.882
FG6 0.589 0.834 0.936 0.607 0.842 0.931
FG7 0.518 0.744 0.949 0.495 0.678 0.956
GRNN1 1.193 1.669 0.743 1.013 1.373 0.806
GRNN2 1.859 2.49 0.427 1.716 2311 0.453
GRNN3 1.772 2216 0.549 1.773 2.127 0.532
GRNN4 0.819 1.234 0.86 0.733 1.075 0.884
GRNN5 0.724 1.114 0.886 0.642 0.963 0.905
GRNN6 0.458 0.674 0.958 0.489 0.723 0.947
GRNN7 0.265 0.425 0.984 0.364 0.573 0.967
LSSV1 1.198 1.667 0.743 1.017 1.371 0.807
LSSV2 1.85 2.495 0.425 1.703 2312 0.453
LSSV3 1.854 2314 0.506 1.858 2215 0.493
LSSV4 0.935 1.386 0.823 0.806 1.149 0.866
LSSV5 0.933 1.369 0.827 0.8 1.134 0.867
LSSV6 0.824 1.148 0.879 0.774 1.023 0.893
LSSV7 0.494 0.719 0.952 0.476 0.657 0.958
MARSI 1.198 1.666 0.744 1.021 1.373 0.806
MARS?2 1.793 2428 0.455 1.676 2.268 0.476
MARS3 1.782 2.209 0.549 1.788 2.131 0.532
MARS4 1.025 1.439 0.808 0.929 1.235 0.845
MARS5 0.925 1.324 0.838 0.804 1.113 0.873
MARS6 0.783 1.032 0.902 0.76 0.963 0.909
MARS7 0.692 0.933 0.920 0.654 0.829 0.932
MLPI 1.196 1.663 0.744 1.02 1.373 0.806
MLP2 1.835 2.485 0.429 1.689 2.304 0.457
MLP3 1.842 2.491 0.426 1.695 2302 0.458
MLP4 0.836 1.256 0.854 0.74 1.086 0.882
MLP5 0.774 1.181 0.871 0.649 0.98 0.902
MLP6 0.529 0.758 0.947 0.531 0.77 0.943
MLP7 0.279 0.398 0.985 0314 0.405 0.988
SS 1.107 1.544 0.785 1.007 1.336 0.823
MLR 0.905 1.235 0.859 0.86 1.091 0.88
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Figure captions:

Fig.1. Schematic architecture of: a) MLP neural network; b) GRNN.

Fig.2. Schematic architecture of network-based ANFIS.

Fig.3. The geographical locations of the stations in different climatic zones.

Fig.4. The annual variations of Ep and associated climatic parameters in each station.

Fig.5. Monthly variations of Ep and associated climatic parameters in each station.

Fig.6. Comparison of the observed and estimated Ep using the optimal ANFIS-GP model
during the testing period.

Fig.7. Comparison of the observed and estimated Ep using the optimal FG model during the
testing period.

Fig.8. Comparison of the observed and estimated Ep using the optimal GRNN model during
the testing period.

Fig.9. Comparison of the observed and estimated Ep using the optimal LSSVM model during
the testing period.

Fig.10. Comparison of the observed and estimated Ep using the optimal MARS model during
the testing period.

Fig.11. Comparison of the observed and estimated Ep using the optimal MLP model during
the testing period.

Fig.12. Comparison of the observed and estimated Ep using the optimal SS model during the
testing period.

Fig.13. Comparison of the observed and estimated Ep using the optimal MLR model during
the testing period.
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826  Fig.3. The geographical locations of the stations in different climatic zones.
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900 Fig.6. Comparison of the observed and estimated Ep using the optimal ANFIS-GP model
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