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Abstract 8 

We present a workflow for efficient construction and calibration of large-scale groundwater models 9 

that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first 10 

step, the AEM data are inverted to form a 3D geophysical model. In the second step, the 3D 11 

geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3D 12 

hydraulic conductivity distribution. The geophysical models and the hydrological data are used to 13 

estimate spatially distributed petrophysical shape factors. The shape factors primarily work as 14 

translators between resistivity and hydraulic conductivity, but they can also compensate for structural 15 

defects in the geophysical model.  16 

The method is demonstrated for a synthetic case study with sharp transitions among various types of 17 

deposits.  Besides demonstrating the methodology, we demonstrate the importance of using 18 

geophysical regularization constraints that conform well with the depositional environment. This is 19 

done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient 20 

support (sharp) constraints, where the use of sharp constraints  conform best with the environment. 21 

The dependency on AEM data quality is also tested by inverting the geophysical model using data 22 

corrupted with four different levels of background noise. Subsequently, the geophysical models are 23 

used to construct competing groundwater models for which the shape factors are calibrated. The 24 

performance of each groundwater model is tested with respect to four types of prediction that are 25 

beyond the calibration base: a pumping well’s recharge area and groundwater age, respectively, are 26 

predicted by applying the same stress as for the hydrologic model calibration; and head and stream 27 

discharge are predicted for a different stress situation.   28 
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As expected, in this case the predictive capability of a groundwater model is better when it is based on 1 

a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge 2 

area, head change, and stream discharge, while we find no improvement for prediction of groundwater 3 

age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for 4 

predictions of recharge area, head change and stream discharge, while there appears to be no accuracy 5 

improvement for the prediction of groundwater age. 6 

1 Introduction 7 

Large-scale geological and groundwater models are used extensively to support aquifer management. 8 

(Here “large scale” refers to an area of from tens to thousands of square kilometers.) Determining the 9 

distribution of hydraulic properties and the geometry and connectivity of the groundwater system is of 10 

significant importance because these features control the flow paths (Desbarats and Srivastava 1991; 11 

Fogg et al. 1999; Weissmann and Fogg 1999). Incorrect reconstruction of the geological structures has 12 

thus been recognized as an important source of uncertainty when a groundwater model is used to make 13 

predictions outside its calibration base (Refsgaard et al. 2012; Seifert et al. 2012; Zhou et al. 2014). 14 

The data traditionally used for structural mapping include lithological logs from boreholes, 15 

hydrological data, and hydraulic testing results, but these data are often sparse and unevenly 16 

distributed within an investigated domain. In these (very common) cases, data scarcity becomes a 17 

major obstacle for structural mapping in relation to large scale groundwater modeling (Refsgaard et al. 18 

2012; Zhou et al. 2014).  19 

Ground-based and airborne electromagnetic methods have shown great potential for mapping 20 

geological structures (Jørgensen et al. 2003; Thomsen et al. 2004; Abraham et al. 2012; Oldenborger 21 

et al. 2013; He et al. 2014; Munday et al. 2015). For large scale mapping, the airborne electromagnetic 22 

method (AEM) is efficient and cost-effective, supplementing traditional data with dense estimates of 23 

electrical resistivity which, in some environments, inform about the lithology and thereby about 24 

structure (Robinson et al. 2008; Binley et al. 2015). AEM measurements can be made quickly over 25 

large areas, and the resolution can be as fine as 25 m in the horizontal direction and 5 m in the vertical 26 

(Schamper et al. 2014) with a penetration depth of up to several hundred meters (Siemon et al. 2009).  27 

Various methods to incorporate resistivity estimates (hereafter referred to as resistivity models) in 28 

groundwater model construction have been reported. Manual and knowledge-driven approaches have 29 

been used to combine geological, hydrological and geophysical data with expert knowledge 30 

(Jørgensen et al. 2013). However, the manual approach is subjective and can be very time consuming 31 

and expensive to use when resistivity models from large AEM surveys are to be incorporated in model 32 

construction. Alternatively, more objective and cost-efficient geostatistical modeling approaches 33 
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(Carle and Fogg 1996; Deutsch and Journel 1998; Strebelle 2002) are available for generating models 1 

from a combination of borehole information and AEM-determined resistivity models. For example: 2 

He et al. (2014) used a transition probability indicator simulation approach (Carle and Fogg 1996), 3 

while Gunnink and Siemon (2015) used sequential indicator simulation (Deutsch 2006). Marker et al. 4 

(2015) used a deterministic strategy for the integration of AEM resistivity models into the 5 

hydrological modeling process.  6 

The just mentioned studies all used sequential hydrogeophysical inversion approaches (SHI; as 7 

defined by Ferré et al. 2009). In SHI the geophysical data are inverted first and independently from the 8 

later inversion of the hydrological data. For large scale groundwater modeling, Herckenrath et al. 9 

(2013) and Christensen et al. (2016) used both SHI and joint hydrogeophysical inversion approaches 10 

(JHI; as defined by Ferré et al. 2009). In JHI, the geophysical and hydrological data are inverted 11 

jointly by linking the geophysical and hydrological models directly through some of their parameters. 12 

The linking can, for example, be done by using an Archie’s law inspired petrophysical relationship 13 

(Archie 1942) to translate between the geophysical and hydrologic parameters.  14 

In general, petrophysical relationships are difficult to establish because such translation tends to be 15 

site-, scale- and facies-specific (Chen et al. 2001; Hyndman and Tronicke 2005; Slater 2007) and 16 

uncertain (Mazáč et al. 1985; Slater 2007). The studies by Herckenrath et al. (2013) and Christensen et 17 

al. (2016) used a fixed petrophysical relationship throughout the model domain. Better results can be 18 

obtained by using a spatially variable relationship, which allows for local translation between 19 

hydraulic conductivity and electrical resistivity, and by including the spatially dependent petrophysical 20 

parameters in the optimization process (Linde et al. 2006).  21 

There are two other challenges for incorporating resistivity models into large scale groundwater 22 

modeling: differences in model discretization, and choice of geophysical regularization methodology. 23 

Groundwater models are often discretized in a regular voxel grid while the traditional resistivity 24 

models are 1D and placed at the respective sounding location. For airborne surveys, for example, the 25 

resistivity models are normally located along the flight lines (Christiansen et al. 2006). Such resistivity 26 

models therefore need to be relocated to conform to the grid of the groundwater model. The relocation 27 

will often be a subtle process where information can be lost. To address this issue, Fiandaca et al. 28 

(2015) presented a geophysical modeling approach referred to as “voxel inversion”, which decouples 29 

the geophysical inversion model space from the geophysical measurement positions. This allows 30 

estimation of a 3D geophysical model that is discretized on the same voxel grid as the groundwater 31 

model.  32 
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Traditionally, geophysical regularization includes horizontal and vertical smoothing constraints 1 

(Constable et al. 1987) or is limited to a few-layer inversion (Auken and Christiansen 2004), whereas a 2 

groundwater system often has sharp layer or body boundaries. It has therefore been recognized, e.g. by 3 

Day-Lewis (2005) and others, that the regularization used to stabilize the geophysical inversion may 4 

not reflect the actual hydrologic conditions unless it is chosen carefully. If, for example, smooth 5 

regularization is used to estimate resistivity models in a sharply layered system, it will produce a 6 

blurred resistivity distribution from which one should be careful with inferring the spatial distribution 7 

of hydraulic conductivity to be used in a groundwater model. In this case, it would be better to use 8 

minimum gradient support regularization (Portniaguine and Zhdanov 1999; Blaschek et al. 2008; 9 

Vignoli et al. 2015) for the geophysical inversion because the estimated resistivity distribution will 10 

tend to consist of fewer, more sharply defined layer boundaries (vertically and horizontally). However, 11 

it is often ignored that geophysical data can be inverted using alternative regularization schemes, and 12 

to test whether the alternative geophysical models affect the predictive capability of a groundwater 13 

model. 14 

The main objective of the present study is to present a novel sequential hydrogeophysical approach 15 

whereby a voxel based 3D resistivity model is used to parameterize and calibrate a groundwater 16 

model. The model parameterization methodology allows the calibration to compensate for errors in the 17 

resistivity model. Furthermore, we will demonstrate that it is important for groundwater flow 18 

simulations that the underlying resistivity model is estimated using regularization constraints that 19 

conform well to the geological environment. Finally, we analyze how groundwater model prediction 20 

accuracy depends on the quality of the geophysical data that was used to estimate the resistivity 21 

model. Section 2 of the paper presents the methodology. Section 3 describes the synthetic test case 22 

used for our demonstration purposes. Section 4 presents the results, while sections 5 and 6 present 23 

discussions and conclusions of the work, respectively. 24 

 25 

  26 
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2 Methodology 1 

Conceptually, we define a translator function that describes the petrophysical relationship between 2 

electrical resistivity and hydraulic conductivity. The petrophysical relationship can vary horizontally 3 

and vertically, thereby adapting to the local conditions in translation from the geophysical model space 4 

to the hydrological model space. Through inversion, the 3D spatially dependent optimal parameters of 5 

the petrophysical relationship are estimated for each layer interval, thereby covering the entire three-6 

dimensional model space.   7 

Figure 1 provides a workflow for the method. First, the gathered airborne electromagnetic (AEM) data 8 

from the survey area are inverted with smooth or sharp horizontal and vertical constraints (Vignoli et 9 

al. 2015). This is done by using a recently developed voxel inversion scheme which decouples the 10 

geophysical model from the position of the acquired data (Fiandaca et al. 2015). The geophysical 11 

model space thus corresponds to the full 3D hydrological model grid. Secondly, the geophysical voxel 12 

based resistivity model is used as input for the sequential hydrological inversion. The geophysical 13 

model parameter (resistivity) is linked to the main investigated parameter (hydraulic conductivity) 14 

through a petrophysical relationship that has unknown shape factor values. The shape factor values are 15 

estimated through a hydrological inversion which minimizes an objective function describing the 16 

misfit between simulated groundwater model responses and corresponding observed hydrological 17 

data. Finally, the calibrated groundwater model can be used to make a set of relevant hydrologic 18 

predictions. The various steps of the methodology are explained in more detail in the following. 19 

 20 

2.1 Geophysical voxel inversion 21 

In the first step (Figure 1, box 1), the AEM data undergoes constrained deterministic inversion using a 22 

recently developed voxel inversion approaches. This approach allows the geophysical model spaces to 23 

be spatially decoupled from the geophysical measurement positions (Fiandaca et al. 2015). In most 24 

inversion schemes, the forward and inverse formulations use the same model discretization.  In the 25 

voxel formulation, the two model discretizations are decoupled. The voxel model space thus defines 26 

the geophysical properties on the nodes of a regular 3D grid.  27 

For calculating the forward responses, a “virtual” 1D model is a built at each sounding position. The 28 

“virtual” 1D model is defined by a number of layers, and layer thicknesses. The geophysical properties 29 

are interpolated from the voxel model space into the layer centers of the virtual model that is 30 

subsequently used to simulate the forward response for the corresponding sounding. 31 
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The voxel inversion approach thus allows for inversion of AEM data into a geophysical model defined 1 

on a 3D regular grid, regardless of the sounding positions. As a result, the geophysical inversion can 2 

be conducted using the same grid as that defined for a 3D groundwater model, thereby minimizing 3 

scaling issues in the coupling of geophysical and hydrological models.  4 

The general solution to the non-linear geophysical inversion problem can be found in Auken et al. 5 

(2014). To stabilize the inverse problem, either of two types of regularization methods can be applied. 6 

The first regularization method is commonly referred to as smoothness-constrained inversion 7 

(Constable et al. 1987). The smoothness-constrained inversion tends to reduce contrasts and the 8 

resulting geophysical model may appear blurred. The reason for this is found in its minimum-structure 9 

L2 norm inversion formalism (Constable et al. 1987; Menke 2012).  Following the notation used by 10 

Vignoli et al. (2015), this can be expressed as: 11 

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄   

( 1 ) 

 

 12 

where the 𝑚𝑖 and 𝑚𝑗 are the constrained parameters and 𝜎𝑖,𝑗 defines the constraint strength. The 13 

penalization of structures is clearly seen in eq. ( 1 ), where (𝑚𝑖 − 𝑚𝑗)
𝑘

2
𝜎𝑖,𝑗

2⁄  is proportional to the 14 

square of the value of the variation (𝑚𝑖 − 𝑚𝑗). This implies that an increase in model parameter 15 

variation will always result in a penalization in the stabilizer. The smoothness regularization thus 16 

prevents reconstruction of sharp transitions.  17 

 18 

The second regularization method is the minimum gradient support (Portniaguine and Zhdanov 1999; 19 

Blaschek et al. 2008; Vignoli et al. 2015), which allows for large sharp vertical and horizontal model 20 

transitions. The minimum gradient support regularization seeks to minimize the spatial variations 21 

vertically and laterally by penalizing the vertical and horizontal model gradients through the stabilizer 22 

expressed as (Vignoli et al., (2015)): 23 

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄ + 1

 

 

( 2 ) 

 

 24 

In eq. ( 2 ), 𝜎𝑖,𝑗 is a parameter used to control the sharpness of the regularization constraints. The 25 

stabilizer contribution to the objective function is thus one when |𝑚𝑖 − 𝑚𝑗| ≫ 𝜎𝑖,𝑗 and zero when 26 
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𝜎𝑖,𝑗 ≫ |𝑚𝑖 − 𝑚𝑗|. The minimum gradient support functional thus counts the number of model 1 

variations larger than 𝜎𝑖,𝑗 for the stabilizer term of the objective function. This formalism allows sharp 2 

vertical and horizontal model transitions, which are penalized excessively by the smoothness-3 

constrained inversion. 4 

The geophysical voxel inversion is carried out on the logarithm of the resistivity values (𝑚 = 𝑙𝑜𝑔(𝜌)), 5 

and the constraints values are expressed in terms of constraint factors 𝐶𝐹𝑠, representing the relative 6 

strength of the constraints (Auken et al., 2014). The actual values of the constraint standard deviations 7 

𝜎𝑖,𝑗 of eq. (1) and eq. (2) are then computed as 𝜎𝑖,𝑗 = 𝑙𝑜𝑔(𝐶𝐹𝑖,𝑗). For instance, a constraint factor 8 

value of 𝐶𝐹𝑖,𝑗 = 1.9 gives (𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄ = 1 in eq. (1) when 𝜌𝑖 𝜌𝑗⁄ = 1.9, i.e. when the resistivity 9 

values are 90% different (Vignoli et al. 2015). 10 

 11 

2.2 Hydrological model parametrization 12 

In the second step (Figure 1, box 2), the three dimensional distribution of electrical resistivity values is 13 

linked to the hydrological parameters (i.e. hydraulic conductivity) through a spatially varying 14 

petrophysical relationship. Shape factors of this relationship are calibrated. 15 

Linking hydraulic conductivity and electrical resistivity is not trivial because the parameter values and 16 

the form of the petrophysical relationship may vary dramatically between different types of 17 

environments.  In addition, there can be fundamental questions about how the effective properties 18 

controlling electrical current flow are related to the effective properties controlling fluid flow (Slater 19 

2007). The primary factors controlling this relationship are porosity, pore water conductivity, 20 

tortuosity, grain size, degree of saturation, amount of clay minerals, etc. (McNeill 1980). The simplest 21 

petrophysical relationship is the empirical relationship known as Archie´s law (Archie 1942), which 22 

relates porosity, pore water conductivity, and the degree of saturation to bulk electrical conductivity. 23 

However, this type of relationship does not take the electrical surface conductance of clay minerals 24 

into account. The Waxman and Smits model (Waxman and Smits 1968) combined with the dual-water 25 

model by Clavier et al. (1984) provides a basis for establishing empirical relationships for shaly sand 26 

and sediments containing clays (Revil and Cathles 1999; Revil et al. 2012). For glacial sedimentary 27 

environments, it is reported that clay has low electrical resistivity and also low hydraulic conductivity, 28 

and sand has high electrical resistivity and high hydraulic conductivity (Mazáč et al. 1985). For these 29 

environments, it is common to use a power law relationship which is given some theoretical support 30 

by Purvance and Andricevic (2000). The relationship is expressed as 31 



8 

 

𝐾 = 𝛼 ∙ 𝜌𝛽 ( 3 ) 

 1 

where K is the hydraulic conductivity (m/s), 𝜌 is the electrical resistivity (ohm-m), and  𝛼 and 𝛽 are 2 

two empirical shape factors. To compute K for each element in the groundwater model grid, 𝛼 and 𝛽 3 

need to be parameterized and estimated. We suggest to make the parameterization by pilot points 4 

placed in a regular grid in each layer of the groundwater model (Certes and De Marsily 1991; Doherty 5 

2003). Each pilot point holds a set of 𝛼 and 𝛽 parameters, and kriging is used for spatial interpolation 6 

of 𝛼 and 𝛽 from the pilot points to the model grid. This kind of parametrization creates smooth 7 

transitions in the parameter fields and allows for variation in both the horizontal and vertical direction 8 

of the 𝜌 to K translation. Hydraulic conductivity can thus be calculated by eq. ( 3 ) for every element 9 

in the groundwater model grid. 10 

 11 

2.3 Hydrological Inversion 12 

The model parameters, 𝛼 and 𝛽 at the pilot points, are calibrated by fitting the groundwater model to 13 

hydrological data. When the number of model parameters is large compared to the number of 14 

observation data, the minimization must be stabilized by regularization.  The total objective function 15 

to be minimized is therefore a balanced compromise between a measurement term (Φ𝑚)  and a 16 

regularization term (Φ𝑟). The combined objective function has the form 17 

Φ𝑡𝑜𝑡𝑎𝑙 = Φ𝑚 + 𝜇 ∙ Φ𝑟 = ∑ 𝜔𝑑,𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑠𝑖𝑚,𝑖)
2

𝑛𝑑

𝑖=1

+ 𝜇 ∙ Φ𝑟 

 

( 4 ) 

  18 

where Φ𝑡𝑜𝑡𝑎𝑙 is the total objective function,  𝑑𝑜𝑏𝑠,𝑖  and 𝑑𝑠𝑖𝑚,𝑖  are measured and equivalent simulated 19 

data values, 𝜔𝑑𝑖 is a data dependent weight, 𝜇 is a weight factor, and 𝜙𝑟 is a Tikhonov regularization 20 

term. Here, 𝜙𝑟 is defined as preferred difference regularization, where the preferred difference 21 

between neighboring parameter values is set to zero. Φ𝑡𝑜𝑡𝑎𝑙 is minimized iteratively, and the 22 

regularization weight factor, 𝜇, is calculated during the iteration to ensure that Φ𝑚, the measurement 23 

part of the objective function, becomes approximately equal to a user specified target value (Doherty 24 

2010).  25 

 26 
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3 Synthetic example 1 

For illustrative purposes, we use a three dimensional synthetic system very similar to that presented by 2 

Christensen et al. (2016). The only difference is that the active part of the groundwater system only 3 

consists of 5 layers whereas Christensen et al. (2016) used a 20 layer model.  4 

3.1 Groundwater reference system and hydrological data 5 

The groundwater system is intended to mimic a glacial landscape and covers an area that is 7000 m 6 

(N-S) by 5000 m (E-W). The geology of the system was generated using T-PROGS (Carle 1999) as 7 

having  a horizontal discretization of 25 m x 25 m, and a vertical discretization of 10 m. The system 8 

extends 50 m in the vertical direction where it reaches impermeable clay with a horizontal surface. 9 

The T-PROGS generated geology above the impermeable clay consists of categorical deposits of sand, 10 

silt and clay. Within each of the three types of deposits, hydraulic conductivity, recharge and porosity 11 

were generated as horizontally correlated random fields using FIELDGEN (Doherty 2010). All 12 

boundaries of the domain were defined as having no-flow conditions except the southern boundary 13 

where hydraulic head was defined as constant, h = 0 m. The local recharge depends on the type of 14 

sediment at the uppermost layer. Most groundwater discharges through the southern boundary, but 15 

approximately 35% discharges into a river running north to south in the middle of the domain (Figure 16 

2). Groundwater flow was simulated as confined steady-state flow employing MODFLOW-2000 17 

(Harbaugh et al. 2000) with the spatial discretization equal to the geological discretization. 18 

Groundwater is pumped at a rate of 0.015 m3s-1 from a well located at x=2487.5m and y=1912.5 m and 19 

the well screens the deepest 10 meters of the groundwater system. In the following, this system is 20 

called the reference system. 21 

Thirty-five boreholes are found within the domain (Figure 2). Each borehole contains a monitoring 22 

well that screens the deepest 10 m of sand registered in the borehole. For each system realization, 23 

hydraulic head in the 35 wells and the river discharge at the southern boundary were extracted from a 24 

forward simulation made by MODFLOW-2000. The 35 simulated hydraulic head values were 25 

contaminated by independent Gaussian error with zero mean and 0.1 m standard deviation. The river 26 

discharge was corrupted with independent Gaussian error with zero mean and a standard deviation 27 

corresponding to 10% of the true river discharge. The 36 contaminated values constitute the 28 

hydrological data used for groundwater model calibration. 29 

 30 
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3.2 Geophysical reference system and data 1 

The geophysical reference system was designed so that there is perfect correlation between hydraulic 2 

conductivity and electrical resistivity. This implies that a relationship between hydraulic conductivity 3 

and measured electrical resistivity is likely to exist. The true relationship is of the same form as eq. ( 3 4 

), and it uses constant shape factor values 𝛼 = 1𝑒−12  and  𝛽 = 4. This corresponds to conditions 5 

where clay has low electrical resistivity and also low hydraulic conductivity, and sand has high 6 

electrical resistivity and high hydraulic conductivity. The impermeable clay at the base of the 7 

reference system was assigned a constant value of 5 ohm-m.   8 

The AEM data were simulated using AarhusInv (Auken et al. 2014) for a system setup similar to a 9 

typical dual-moment SkyTEM-304 system (Sørensen and Auken 2004). The simulated survey consists 10 

of 35 E-W flight lines with 200 meter spacing between the flight lines. AEM system responses were 11 

simulated for every 25 m along the flight lines giving a total of 6300 sounding locations for both the 12 

transmitted high and low moments. AarhusInv is a 1D modeling code. To mimic the loss of resolution 13 

with layer depth we simulated the responses using the 2D logarithmic average resistivity of all model 14 

cells inside the radius of the foot print at a given depth. To obtain the geophysical data set, the 15 

simulated data were contaminated with noise according to the noise model suggested by (Auken et al. 16 

2008):  17 

𝑉𝑟𝑒𝑠𝑝 = 𝑉 ∙ (1 + 𝐺(0,1) ∙ [𝑆𝑇𝐷2
𝑢𝑛𝑖 + (

𝑉𝑛𝑜𝑖𝑠𝑒

𝑉
)

𝟐

]

𝟏 𝟐⁄

) 

 

 

( 5 ) 

 

 18 

where 𝑉𝑟𝑒𝑠𝑝 is the perturbed synthetic data, 𝑉 is the synthetic noiseless data, 𝐺(0,1) is standard 19 

Gaussian noise (with zero mean and unit standard deviation), and 𝑆𝑇𝐷2
𝑢𝑛𝑖 is uniform noise variance. 20 

𝑉𝑛𝑜𝑖𝑠𝑒 is the background noise contribution given by 21 

𝑉𝑛𝑜𝑖𝑠𝑒 = 𝑏 ∙ (
𝑡

10−3
)

−𝟏 𝟐⁄

, 
( 6 ) 

 22 

where 𝑡 is the gate center time in seconds, and 𝑏 is the background noise level at 1 ms. For the 23 

following analysis we generated geophysical datasets with four levels of background noise, i.e. b equal 24 

to 1, 3, 5, and 10 nV/m2, respectively. The uniform standard deviation, which accounts for instrument 25 

and other non-specified noise contributions, was set to 3% for dB/dt responses. After the data were 26 

perturbed with noise, it was processed as a field data set (Auken et al. 2009), resulting in an uneven 27 
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number of gates per sounding. Figure 3 illustrates the resulting low and high moment AEM sounding 1 

data, respectively, for the different background noise levels.  2 

 3 

3.3 Geophysical voxel inversion 4 

The geophysical data were inverted by voxel inversion (Fiandaca et al. 2015) using AarhusInv (Auken 5 

et al. 2014). The voxel inversion was conducted in two different ways: by using L2-norm “smooth” 6 

constraints, or by using minimum gradient support “sharp” constraints (both implemented in 7 

AarhusInv; Auken et al. 2014).  8 

To avoid the influence of numerical discretization errors, the geophysical voxel inversion uses the 9 

same spatial discretization as the reference system and the groundwater model. For both smooth and 10 

sharp inversions, a 40 ohm-m uniform half-space was used as the starting model and spatial 11 

regularization was applied using the same settings throughout all inversions. Considering the small 12 

number of layers and the shallow discretization, it was unnecessary to apply vertical constraints for 13 

any of the inversions. On the contrary, depth and direction dependent horizontal constraint factors 14 

were used for both smooth and sharp inversions. The strength given to the horizontal constraints is 15 

based on experience, keeping in mind that the constraint factors should not prevent data fitting, but  16 

promote model consistency. Therefore, a few experiments were made to “manually” tune the 17 

magnitude of the constraint factors. Different values along the flight lines and perpendicular to them, 18 

respectively, were found to give better results. This is a result of having higher data density along the 19 

flight lines, compared to the perpendicular direction. In these synthetic tests (similar to what is done 20 

with field data with analogous data density) the smooth regularization constraint factors of 𝐶𝐹 =21 

1.91.9 along the flight lines and 𝐶𝐹 = 1.051.05 perpendicular to the flight lines were used for the first 22 

layer.  23 

Contrary to the conventional inversion of geophysical data, where the vertical discretization of the 24 

geophysical model is normally characterized by logarithmically increasing layer thicknesses, in this 25 

study fixed layer thicknesses were used in the geophysical models. To account for the loss of 26 

resolution with depth without increasing the layer thicknesses, the horizontal constrain factors were set 27 

to decrease linearly with depth (tighter bands for the deeper layers), resulting in constraint factors of 28 

1.4 along the flight lines and 1.02 perpendicular to the flight lines for the sixth layer.  29 

The same directional and depth-dependent tuning used for smooth regularization was also applied to 30 

the sharp inversion. In this case constraint factors of 𝐶𝐹 = 1.06251.0625 along the flight lines and 31 

1.01 perpendicular to the flight lines were used for the first layer, while factors of 𝐶𝐹 = 1.0251.025 32 
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along the flight lines and 𝐶𝐹 = 1.011.01 perpendicular to the flight lines were used for the sixth layer. 1 

The smaller values of the constraint factors in the sharp inversion are due to the different role that the 2 

factors play in the regularization definition, as evident when comparing eq. ( 1 ) and eq. ( 2 ). The 3 

difference in constraint values between smooth and sharp inversion is analogous to what has been used 4 

in other studies (e.g. Vignoli et al., 2015). All the constraints values used in this study represent typical 5 

values working also in other applications, both for synthetic and filed data. 6 

 7 

3.4 Groundwater model parametrization and calibration 8 

In the following, the groundwater model will be parameterized in two different ways. Both approaches 9 

treat the shape factors between hydraulic conductivity and resistivity, α and β, in relationship (3), as 10 

spatially dependent parameters to be estimated. The two parameterizations differ by the resistivity 11 

model that is used to calculate the hydraulic conductivity field of the groundwater model:  12 

 The first type of parameterization uses a resistivity model estimated by smooth voxel inversion of 13 

AEM data collected with a background noise level of 3 nV/m2.  These models will be referred to 14 

as SHI-smooth-3.  15 

 The second type of parameterization uses a resistivity model estimated by sharp voxel inversion of 16 

AEM data collected with a background noise level of either 1, 3, 5, or 10 nV/m2.  These models 17 

will be referred to as SHI-sharp-1, SHI-sharp-3, SHI-sharp-5, and SHI-sharp-10, respectively. 18 

The shape factors, α and β, of the petrophysical relationship are parametrized by placing pilot points in 19 

a uniform grid, with 5 nodes in the x direction and 7 in the y direction. Hence, in total the groundwater 20 

model is parameterized by 5x7x5 = 175 petrophysical relationships each having two parameters (the 21 

shape factors).      22 

The parameter values are estimated by fitting the available hydrological data consisting of the 35 23 

observations of hydraulic head and one river discharge observation. Calibration is done by 24 

minimization the total objective function given by eq. ( 4 ), where the measurement objective function 25 

is computed as 26 

Φ𝑚 = 𝑛ℎ
−1 ∑ 𝜔ℎ(ℎ𝑜𝑏𝑠,𝑖 − ℎ𝑠𝑖𝑚,𝑖)

2
+ 𝑛𝑟

−1 ∑ 𝜔𝑟(𝑟𝑜𝑏𝑠,𝑖 − 𝑟𝑠𝑖𝑚,𝑖)
2

𝑛𝑟

𝑖=1

𝑛ℎ

𝑖=1

 

 

( 7 ) 

 

 27 

where, 𝑛ℎ and 𝑛𝑟 are the number of head and river measurements, respectively; ℎ𝑜𝑏𝑠  and ℎ𝑠𝑖𝑚  are 28 

observed and corresponding simulated hydraulic heads; 𝑟𝑜𝑏𝑠  and 𝑟𝑠𝑖𝑚  are observed and 29 
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corresponding simulated river discharge; and 𝜔ℎ and 𝜔𝑟 are subjectively chosen weights for head and 1 

discharge data, respectively. If a model is expected not to have structural defects then it would be ideal 2 

to choose the weights 𝜔ℎ = 𝜎ℎ
−1 and 𝜔𝑟 = 𝜎𝑟

−1, where 𝜎ℎ and 𝜎𝑟 is the standard deviation of 3 

measurement error for head and river measurements, respectively. However, in this case (as in all real 4 

cases) the model has structural errors that make the misfit between hydraulic head data and equivalent 5 

simulated values much larger than what can be explained by measurement error. In accordance with 6 

common groundwater modeling practice (e.g. Christensen et al. 1998), we therefore conducted 7 

residual analysis and a few experiments to estimate the magnitude of the total head error (which is the 8 

sum of observation error and structural error). This indicated that the standard deviation for the total 9 

error on hydraulic head is approximately 10 ∙ 𝜎ℎ, while the total error for the river discharge is totally 10 

dominated by measurement error. As weights we therefore used 𝜔ℎ =   (10 ∙ 𝜎ℎ)−2 = 1.0 and 11 

𝜔𝑟 = (𝜎𝑟)−2 = 1.38 ∙ 105, respectively. Using these weights, and averaging over the 20 system 12 

realizations, gave a minimized objective function value of �̅�𝑚 = 2.5. This is close to the value of 2.0 , 13 

which would be expected from (7) if the weighting used reflects the error magnitudes. 14 

Calibration was performed using BeoPEST, a version of PEST (Doherty 2010) that allows the 15 

inversion to run in parallel using multiple cores and computers. 16 

It should be noted that for calibration and model prediction we applied the recharge field and boundary 17 

conditions of the reference system.  18 

3.5 Model predictions 19 

In step 3 (Figure 1, box), the calibrated groundwater model is used to make predictions.  20 

In the following synthetic demonstration study, the calibrated SHI-smooth and SHI-sharp groundwater 21 

models are evaluated by comparing their simulated model predictions with corresponding predictions 22 

simulated for the (synthetic and, therefore, known) reference system. The former are called “model 23 

predictions”, the latter are called “reference predictions”.  24 

Prediction types 1 and 2 relate to steady-state flow when groundwater is pumped from the well. This is 25 

also the condition for which the hydrologic data used for calibration were sampled. Type 1 is the 26 

average age of the groundwater pumped from the well. Type 2 is the size of the recharge area of the 27 

pumping well. Both of these predictions differ in type from the calibration data. For these model 28 

predictions, we used a homogeneous porosity of 0.2 (the average value of the reference system 29 

porosity fields is 0.184). 30 
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Prediction types 3 and 4 relate to a new stress situation long after pumping from the well has ceased: 1 

type 3 is groundwater discharge into the stream, and type 4 is head recovery for a well screening a 2 

layer north-east of the pumping well (the location is shown on Figure 2). 3 

The reference and model prediction types 3 and 4 were simulated by MODFLOW-2000 (Harbaugh et 4 

al. 2000), while type 1 and 2 were simulated by forward particle tracking using MODPATH version 5 5 

(Pollock 1994) and MODFLOW-2000 results. 6 

The first two types of prediction are interesting from the perspectives of protection and resource-7 

management of a well field, while the latter two are relevant in the case of possible change of 8 

management practice resulting in a new stress.  9 

 10 

3.6 Evaluation of prediction performance 11 

As said in the beginning of section 2, steps 1-3 of the framework can be repeated for a number of 12 

system realizations to provide consistent statistical interference regarding the model prediction results. 13 

Here, 20 different reference system realizations were used. For each prediction, we therefore have 20 14 

corresponding sets of reference predictions and model predictions that can be used to evaluate the 15 

performance of a calibrated model with respect to that prediction. The performance is evaluated for 16 

SHI-smooth and SHI-sharp models, respectively, and it is done in the following ways. 17 

Prediction error characteristics are quantified by the mean absolute error (𝑀𝐴𝐸), the mean error (𝑀𝐸) 18 

following:  19 

 20 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑡𝑖|

𝑁

𝑖=1

 

 

( 8 ) 

𝑀𝐸 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

− 𝑡𝑖 

 

( 9 ) 

 21 

where  𝑥𝑖 is the model prediction of realization i, 𝑡𝑖 is the reference prediction of realization i, and 22 

𝑁 = 20 is the number of system realizations. 𝑀𝐴𝐸  measures how close the model prediction tends to 23 

be to the reference prediction; 𝑀𝐸 measures the tendency of positive or negative bias in the model 24 

prediction.  25 

 26 
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4 Results 1 

4.1 Geophysical results 2 

Figure 4 shows a representative cross-section for one of the 20 system realizations. Both geophysical 3 

models in Figure 4 were inverted using data perturbed with a background noise level of 3nV/m2. 4 

Comparing the geophysical model results with the reference model, we find that the SHI-smooth-3 5 

resolves the main features reasonably well for the upper layers. The main discrepancy is found in the 6 

fifth layer, where the sand bodies are not resolved.  In general, the resistivity of the sand bodies (dark 7 

orange in the reference system) is underestimated, and the transitions between the categorical deposits 8 

are artificially smooth.  9 

Figure 4 shows that SHI-sharp-3 resolves the sand body in layer 5 much better than SHI-smooth-3. 10 

Moreover, the locations and boundaries of the geological deposits tend to be less smeared out when 11 

using the sharp constraints. Inspection of the histograms at the bottom of Figure 4 shows that the SHI-12 

sharp-3 model tends to produce resistivity distributions that are more similar to the reference 13 

distributions than the SHI-smooth-3 model. This improvement could allow for easier translation from 14 

electrical resistivity into hydraulic conductivity and correspondingly more faithful representation of 15 

hydrogeologic structure and connectivity.  16 

Figure 5 shows voxel by voxel density plots of reference versus estimated electrical resistivity for a 17 

SHI-smooth model and corresponding SHI-sharp models. Pearson’s correlation coefficient (PCC; 18 

Cooley and Naff 1990) is shown on top of the density plot for each layer. A comparison of the density 19 

plots and the PCC values of the SHI-smooth-3 and SHI-sharp-3 models shows that using sharp instead 20 

of smooth constraints improves the inverted geophysical model. The improvement is seen most clearly 21 

for the sand deposits  22 

For both SHI-smooth and SHI-sharp models there is a strong correlation between the electrical 23 

resistivity estimates and the true electrical resistivities of the first layer, but the SHI-smooth model has 24 

weaker correlation than the SHI-sharp models. For both types of models, the correlation weakens with 25 

depth and background noise. The former is caused by the resolution limitations of AEM data. 26 

However, the depth and resistivity of the low-resistivity clay at the base of the model are well resolved 27 

by both the SHI-smooth and SHI-sharp models inversions (results not shown).  28 

4.2 Hydrological calibration results 29 

The calibration results for the 20 different system realizations are shown in Figure 6. The figure shows 30 

that the measurement objective function value, Φ𝑚, for most system realizations is close 2.0. This is 31 

the case for almost all of the SHI-Sharp model realizations, even for large background noise levels. 32 
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For many of the realizations, the SHI-Smooth model also fits the data well; but, several realizations 1 

lead to higher misfit than desired. This makes 𝐸[Φ𝑚] equal to 5.8 for SHI-Smooth-3 models while it 2 

is 2.5 for the SHI-Sharp-3 models. That is, the estimated hydraulic conductivity field tends to be better 3 

for sharp models than for smooth models.  4 

 5 

4.3 Parameter estimation 6 

Figure 7 shows a cross section of the estimated K-,  - and 𝛽- fields for one of the system realizations. 7 

The two columns show estimates for the SHI-smooth-3 and  SHI-sharp-3 models. Figure 8 shows a 8 

density plot of the reference hydraulic conductivity distribution and the estimated hydraulic 9 

conductivity distributions. The results in Figure 7 and Figure 8 are typical for all 20 system 10 

realizations.    11 

 12 

From Figure 7 a) and Figure 7 b) it is seen that the estimated 𝛼 and 𝛽 parameter values change 13 

smoothly in the horizontal direction but have sharp transitions in the vertical direction. The second 14 

row of Figure 7 shows the corresponding estimated K fields whose main features are determined by 15 

the underlying resistivity models (Figure 4), but they are “corrected” during model calibration to make 16 

the groundwater model fit the hydrological data.  17 

 18 

For the SHI-smooth-3 model, 𝛼 and 𝛽 are taking compensatory roles particularly in the first layer. 19 

Here, the estimated 𝛼 and 𝛽 values are higher than the shape factors of the true relationship that was 20 

used to construct the geophysical reference system. This increases the hydraulic conductivity in layer 21 

1 to compensate for the too low hydraulic conductivity (and resistivity, Figure 4) in layer 2 and deeper 22 

layers. The estimated 𝛼 and 𝛽 values are not sufficient to compensate for the missing deep high-23 

resistivity body in in layer 5 of the SHI-Smooth-3 model (Figure 4).  24 

 25 

For the SHI-sharp-3 model, the estimated 𝛼 and 𝛽 parameter values only vary slightly from the shape 26 

factor values of the true relationship except for layer 5 (Figure 7 b). This indicates that for the 27 

shallower layers the sharp inversion of AEM data sufficiently resolves the resistivity of features that 28 

are important for groundwater model calibration. In layer 5 the estimate of shape factor 𝛽  turns out to 29 

be fairly high to compensate for the too low resistivity estimates in this layer (Figure 4).  30 

Figure 8 shows voxel by voxel density plots of reference versus estimated hydraulic conductivity for 31 

SHI-smooth and SHI-sharp models. The results confirm that the K field tends to be overestimated for 32 

the first layer, in particular for the SHI-smooth-3 model. From the second layer and deeper, the 33 

hydraulic conductivity values tend to be underestimated for sand but overestimated for silt and clay. 34 
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Moreover, the distributions of estimated K smear out with depth. Judged by PCC values and visual 1 

inspection of Figure 8 (highlighting connectivity of the K field), the hydraulic conductivity field 2 

estimated for any SHI-sharp model is in better agreement with the reference field than the field 3 

estimated by the SHI-Smooth-3 model.  4 

Model structural accuracy is quantified in table 1 for both the SHI-smooth and SHI-sharp models. 5 

Structural accuracy is calculated here as the fraction of total number of voxels for which the estimated 6 

log10-hydraulic conductivity plus/minus twenty percent contains the true log10-hydraulic conductivity 7 

value of the reference model. The results are averaged over the 20 system realizations. From table 1 it 8 

is seen that all SHI-sharp models outperform the accuracy of the SHI-smooth models except for layer 9 

5. The exception occurs because the SHI-smooth models are fairly good at estimating the K 10 

distributions for silt and clays, but underestimates K for sand (Figure 8). On the contrary, SHI-sharp 11 

models overestimate the K distributions for silt and clays, but only slightly underestimate K for sand 12 

(Figure 8). Therefore, for layer 5, the model structural accuracy appears to be better for SHI-smooth 13 

than for SHI-sharp models. 14 

 15 

4.4 Prediction results 16 

For each of the 20 system realizations, the calibrated groundwater models were used to make the 17 

model predictions described in section 3.5. Figure 9 shows scatter plots of reference prediction versus 18 

the calibrated model prediction; each plotted point corresponds to a particular system realization and 19 

corresponding SHI-smooth-3 or SHI-sharp-3 model.  The mean error (ME) and mean absolute error 20 

(MAE) of the prediction are also given in Figure 9. Figure 10 shows a MAE contour map for head 21 

recovery predictions.  22 

  23 

4.4.1 Particle tracking predictions 24 

The first column of Figure 9 shows results for prediction of average age of the groundwater pumped 25 

from the pumping well. The scatter plot illustrates that SHI-sharp models tend to over-predict average 26 

age. This is seen by the majority of points plotting above the identity line as well as by the value of 27 

ME = 32 (Figure 9). The age prediction results are similar for the SHI-smooth models although the 28 

spread of points is larger than for SHI-sharp-3 (e.g. quantified by the larger value of MAE). There are 29 

two major explanations for these relatively “poor” predictive performances. First, the calibrated K-30 

fields underestimate hydraulic conductivity of sand deposits in the deeper layers (Figure 8), which 31 

results in too slow particle travel times at depth. Secondly, the reconstruction of the deepest layers is 32 
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too smooth for both SHI-smooth and SHI-sharp models (Figure 7) and does not resolve the small-scale 1 

variability that controls the transport of particles.  2 

The second column of Figure 9 reports results related to prediction of the recharge area of the 3 

pumping well. The scatter plot shows that the SHI-smooth models under-predicts the recharge area. 4 

This happens because the smooth models lead to estimation of hydraulic conductivities in the deepest 5 

layers that are too low. This creates a deep cone of depression around the pumping well that extends 6 

upward locally to reach the river bed. This induces a local discharge of water from the stream through 7 

the groundwater system to the pumping well. These models thus predict that a significant proportion 8 

of the pumping comes from local discharge from the river. (This is compensated by increased model 9 

predicted groundwater discharge to other parts of the river.) For the true, reference system used to 10 

generate the data , the river is not losing water, and all water pumped from the well originates from 11 

groundwater recharge. 12 

The SHI-sharp models are better predictors of the recharge area, but also these models tend to predict 13 

an area that is too small. These models also predict local discharge from the river to the groundwater 14 

system, but to a lesser degree than the SHI-smooth models. This is likely because the main features of 15 

the reference system are better reconstructed by the SHI-sharp-3 models.  16 

 17 

4.4.2 Head recovery and discharge predictions  18 

The prediction of head recovery at an observation well (location shown in Figure 10) is done poorly 19 

by the SHI-smooth-3 (Figure 9). The predicted head recovery is very small for most of these models 20 

because they tend to have too little hydraulic connectivity between the deepest layers, the estimated 21 

hydraulic conductivities are too low in the deep sand layers, and the simulated cone of depression is 22 

therefore too deep and too local. 23 

The SHI-sharp-3 models make less biased, fairly reasonable predictions of the head recovery (Figure 24 

9) because they resolve the variations of hydraulic conductivity at depth better than the SHI-smooth-3 25 

models. The superiority of SHI-sharp-3 models for recovery prediction is also seen from the MAE 26 

contour maps in Figure 9. The MAE is seen to be spatially dependent: it is largest at the pumping well, 27 

and smallest at the constant head boundary to the south 28 

The fourth column of Figure 9 shows that both types of models are good predictors of discharge to the 29 

river after cessation of pumping. However, the SHI-sharp-3 model prediction is superior (its points 30 

plot closer to the identity line). For SHI-smooth-3, the prediction tends to be positively biased and 31 

more spread than for SHI-sharp-3.  32 
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 1 

4.4.3 Prediction error as function of data quality 2 

In Figure 11  MAE is used as a metric to evaluate how the prediction performance of SHI-sharp 3 

models depends on the level of background noise for the geophysical data. The noise levels were kept 4 

unchanged for the hydrological data.  5 

Figure 11 shows that the average age prediction made by SHI-sharp models are nearly unaffected by 6 

the quality of the geophysical data. It is speculative, but this result may be because this prediction is 7 

highly dependent on small scale variability in hydraulic conductivity and porosity that cannot be 8 

resolved from any of the geophysical data sets.  That is, even the highest quality geophysical data are 9 

not highly informative, so reducing the data quality further has little effect. 10 

It is different for the recharge area prediction (Figure 11): MAE increases for this by approximately 11 

25% when the level of background noise is increased from 1 nV/m2 to 10 nV/m2. This happens 12 

because the variations of resistivity (and thus hydraulic conductivity) are less well resolved when 13 

using the poor quality geophysical data.    14 

The third and fourth rows of Figure 11 show the head recovery and river discharge prediction after 15 

cessation of the pumping well. Head recovery and discharge predictions also tend to depend on the 16 

quality of the geophysical data. The MAE increases by 17 % for recovery prediction and 23 % for 17 

discharge prediction when the noise level of the geophysical data increases from 1 nV/m2 to 10 nV/m2.  18 

  19 
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5 Discussion 1 

5.1 Estimation of Parameters in the Petrophysical Relation 2 

Parameterizing the groundwater model by assuming a spatially dependent petrophysical relationship 3 

between resistivity and hydraulic conductivity makes it possible to use a resistivity voxel model for 4 

construction and calibration of a groundwater model. Assuming that the relationship is spatially 5 

dependent can account for two challenges: i) there may be actual changes in the petrophysical 6 

relationship within an investigated domain, and ii) there may be resolution limitations in the estimated 7 

resistivity model.  8 

Challenge i) is likely to be the rule for many environments, especially sedimentary environments, 9 

where the formation resistivity is primarily controlled by the pore water resistivity and the clay 10 

content. In the case of spatial changes of pore water resistivity and/or content of various clay mineral 11 

content, the discrimination between clay and sands may be less clear in the estimated resistivity 12 

values. For large-scale groundwater system, the variation of pore water resistivity (e.g. saline pore 13 

water) is expected to vary smoothly, which would be accounted for by the spatially varying 14 

petrophysical relationship. However, the procedure only works as applied here if the underlying 15 

assumption that clay rich deposits have lower electrical resistivity than sand deposits is valid, . 16 

Challenge ii) concerns the geophysical model resolution of the true formation resistivity. EM methods 17 

are, by nature, more sensitive to deposits of low electrical resistivity than to deposits of high 18 

resistivity, and their vertical and horizontal resolutions decrease with depth. This challenge affects the 19 

resistivity models estimated in the present synthetic study. Spatially dependent shape factors can take 20 

a compensatory role for the resolution issues of the estimated geophysical voxel model. The calibrated 21 

shape factors may thus no longer have firm physical meaning because they mainly act as correction 22 

parameters for absorbing structural errors of the geophysical model.  This is acceptable as long as the 23 

resulting hydraulic conductivity values are reasonable. The idea of calibrating the shape factors is 24 

related to the concept of compensatory parameters in highly parameterized calibration described by 25 

Doherty and Welter (2010) and by Doherty and Christensen (2011).  26 

Finally, Auken et al. (2008) showed that using borehole data as a priori information in the geophysical 27 

inversion improves the reconstruction of the model features significantly. Estimation of EM-based 28 

resistivity models should therefore, wherever possible, be supported by borehole information to 29 

improve the decreasing spatial resolution of the EM methods. 30 

 31 
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5.2 Geophysical inversion strategy and data quality  1 

Inversion of AEM data using a 1D geophysical model usually applies smoothness constraints in order 2 

to regularize the inversion (Auken and Christiansen 2004; Viezzoli et al. 2008). Traditionally, the 3 

regularization includes both lateral and vertical smoothing constraints (Constable et al. 1987) or a few 4 

layer parametrization (Auken et al. 2008). Inversion using the former type of regularization produces 5 

smooth images with blurred formation boundaries which can be problematic when it is important to 6 

resolve structural connections in a complex geological system. The latter few-layer inversion may is 7 

also be prone to produce artifacts when used to map such systems. Day-Lewis (2005) and others 8 

therefore recognized that regularization used to stabilize the geophysical inversion can lead to artifacts 9 

that do not reflect the actual hydrogeological conditions. Thoughtless use of such results to construct 10 

groundwater models can have serious ramifications.  11 

 12 

For the present case study, the number of vertical transitions is a great challenge for the AEM method 13 

due to the principle of high resistivity equivalence.  That is, it is difficult to resolve a high-resistivity 14 

layer between two low-resistivity layers because the energy loss, and therefore the sensitivity, is 15 

concentrated in the less resistive layers. This will result in layer suppression, because the data 16 

sensitivity to the high resistive layer is low (Christiansen et al. 2006). This effect is present for both 17 

the smooth and sharp inversion, but in the sharp inversion the effect is less fuzzy and features, 18 

especially for the fifth layer, could be more clearly reconstructed (Figure 4). When the sensitivity of 19 

the AEM method is too low, the regularization may make information migrate from areas with higher 20 

measurement sensitivity (Vignoli et al. 2015). In contrast to the smooth regularization scheme, the 21 

sharp regularization method is designed to penalize smooth transitions which eventually improves the 22 

reconstruction of the deeper sand bodies in the present study. Therefore, for the studied case, the sharp 23 

regularization methodology should be preferred over smooth regularization, because the sharp 24 

constraints correspond better to the actual structures of the reference system (sharp transitions between 25 

categorical deposits; Figure 4). Moreover, because the sharp regularization methodology leads to 26 

improved reconstruction of subsurface structures, these models lead to greater accuracy and 27 

improvement of most groundwater model predictions (Figure 9). 28 

 29 

The groundwater system considered here is relatively shallow, at least as seen from the perspective of 30 

the AEM system used in the demonstration example. This is evident from the transmitted EM signal 31 

(Figure 3). The background noise is primarily affecting the last time-gates (10-4-10-3s) of the low-32 

moment and only to a small degree the high moment time gates (even for low quality data). This 33 

implies that the resolution of the AEM data is generally high for the upper layers. Therefore, in the 34 

present case the upper layers of all the geophysical models (both SHI-smooth and SHI-sharp) are well-35 
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resolved and to a large extent unaffected by AEM data quality (Figure 5). However, the deep sand 1 

units are difficult to resolve because they give only a weak signature in the AEM data (Figure 3, 2 

Figure 5). This is particularly true for the poorest AEM data quality cases where the late time gates for 3 

the low moment measurements are disturbed by background noise.  4 

6 Summary and Conclusion 5 

We present a workflow for efficient construction and calibration of large-scale groundwater models 6 

using a combination of airborne electromagnetic (AEM) data and hydrological data. Other types of 7 

data could be integrated as well following the same procedure. First, the AEM data are inverted to 8 

form a 3D geophysical model.  Subsequently, the geophysical model is translated to a 3D model of 9 

hydraulic conductivity by using a spatially dependent petrophysical relationship for which the shape 10 

parameters are estimated by fitting the groundwater model to hydrological data. The estimated shape 11 

factors of the petrophysical relationship primarily work as translators between resistivity and hydraulic 12 

conductivity, but they can also compensate for structural defects in the model. 13 

The method is demonstrated for a synthetic case study where the subsurface consists of categorical 14 

deposits with different geophysical and hydraulic properties.  The AEM data are inverted using both 15 

smooth and sharp regularization constraints, resulting in two competitive geophysical models. 16 

Furthermore, the influence of the AEM data quality is tested by inverting the sharp geophysical 17 

models using data corrupted with four different levels of background noise. The resulting groundwater 18 

models are each calibrated on basis of head and discharge data, and their predictive performance is 19 

tested for four types of prediction beyond the calibration base. Predictions of a pumping well’s 20 

recharge area and groundwater age are applying the same stress situation as applied during hydrologic 21 

model calibration, while predictions of head and stream discharge is done for a changed stress 22 

situation. 23 

It is found that a geophysical model inverted with sharp constraints (SHI-sharp) leads to a more 24 

accurate groundwater model than one that is based on a geophysical model inverted with smooth 25 

constraints (SHI-smooth). The SHI-sharp model leads to an estimated hydraulic conductivity field of 26 

greater accuracy and to improvement of most groundwater model predictions. The explanation is that 27 

the reference system (like many real hydrogeologic systems) is characterized by sharp transitions 28 

between categorical deposits; this is resolved better by the SHI-sharp resistivity model than by the 29 

SHI-smooth model.  30 

Finally, it is shown that prediction accuracy improves with AEM data quality for predictions of 31 

recharge area, head change and stream discharge, while the accuracy appears to be unaffected for 32 
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prediction of groundwater age, which cannot be predicted accurately even with high quality 1 

geophysical data.   2 
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Table 1. Model structural accuracy comparison for groundwater model using both smooth or sharp 1 

geophysical models and different background noise levels. The results are averaged over the 20 2 

system realizations. A value of 1.0 means that the model’s hydraulic conductivity field is in good 3 

agreement with the reference field; a value of 0.0 means no agreement (see body text for exact 4 

definition of “structural accuracy”). 5 
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 1 

 2 

Figure 1. Conceptual flowchart for the sequential hydrogeophysical inversion. First step (box 1): 3 

geophysical inversion. Second step (box 2), groundwater model calibration where shape factors of the 4 

petrophysical relationship is estimated using hydrological data. Third step (box 3): The calibrated 5 

groundwater model is used for predictive modeling.     6 
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 1 

Figure 2. A map of locations of boreholes, a pumping well, pilot points, head recovery prediction and 2 

location of a geophysical cross-section. 3 

 4 
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 1 

Figure 3. AEM sounding data corrupted by four levels of background noise. The values on top of each 2 

subplot corresponds to the noise level at 1 ms and to the b-value in eq. 6. The black dashed curves 3 

indicate the background noise levels, low and high moment earth responses are illustrated as red and 4 

blue error bars, respectively, and the black error bars illustrate data which are removed by the data 5 

processing   6 
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 1 

Figure 4.  The figure shows an East-West cross section of resistivity for the reference system 2 

(realization number 20), and inversion results for Smooth and Sharp inversion, respectively. The last 3 

row shows at histogram of resistivity for each layer. The black curve is the resistivity distribution for 4 

the reference system, the red curve shows the resistivity distribution for the smooth inversion, and 5 

finally the green curve shows the resistivity distribution for the smooth sharp inversion.  6 
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 1 

Figure 5. Scatterplot of true and estimated electrical resistivity field for smooth geophysical inversion 2 

and sharp geophysical inversion for different data quality of the AEM data for model realization 3 

number 20. On top of each window is Pearson correlation coefficient (PCC) calculated.  4 



35 

 

 1 

Figure 6. Measurement objective function value obtained for the various groundwater model 2 

calibration cases, while 𝐸[Φ𝑚] is the mean value across all 20 different system realizations. The 3 

dashed line indicates the expected target value for the model calibrations. 4 
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 1 

Figure 7. East-West cross-section for model realization number 20. a) shows the parameters fields for 2 

the SHI-smooth-3 calibrated model. b) Shows the parameters fields for the SHI-sharp-3 calibrated 3 

model. First row shows the reference K-field, second row shows the estimated K-field, third and 4 

fourth row shows shape factors of the petrophysical relationship for alfa and beta, respectively.   5 
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 1 

Figure 8. Scatterplot of true and estimated hydraulic conductivity field for smooth geophysical 2 

inversion and sharp geophysical inversion for different data quality of the AEM data for model 3 

realization number 20. On top of each window is Pearson correlation coefficient (PCC) calculated.  4 
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 1 

Figure 9. Scatter plots of calibrated model prediction versus the reference model prediction using 2 

results from the 20 system realizations. The plots in the first and second columns are the average 3 

groundwater age and recharge area, respectively, of the pumping well. Column three is for head 4 

recovery when pumping has stopped in the observation well shown in Figure 10, and  column four is 5 

for groundwater discharge to the river after pumping has ceased ME and MAE are used to quantify the 6 

prediction error on basis of the 20 realizations. 7 
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 1 

Figure 10. MAE contour map for head recovery prediction. a) For predictions using the SHI-smooth 2 

models.  b) For predictions using the SHI-smooth models. c) Difference between maps shown in a) 3 

and b). Red dot marks the location of the observation well for the head recovery prediction shown in 4 

Figure 9. The red cross marks the location of the pumping well. 5 
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 1 

Figure 11. Prediction error as function of the background noise on the geophysical data.  The black dot 2 

is the SHI-smooth models using a background noise level of 3nV/m2. The red dots are the SHI-sharp 3 

models as a function of background noise level. 4 


