
 

First, we would like to thank the editor and the two anonymous referees for their valuable and relevant comments. Our replies are found below. 

Authors’ corrections to the manuscript 
Besides answering the questions from the referees we have also made some editing to the manuscript: 

We have made some editorial changes for English usage (Nothing major, just a bit of native-speaker polish.). 

The Abstract and parts of the Introduction have been rewritten to pinpoint the manuscript’s  contributions. 

Page 8, line 26 and line 27. The reference of Christensen et al (2015) was an old HESSD reference. The manuscript has now been published and is 

therefore cited as Christensen et al (2016).  

Page 17 line 21-22: To clarify,  ” On the contrary, SHI models…” has been changed to ” On the contrary, SHI-sharp models…”  

Page 19 line 3: We have corrected the statement “The superiority of SHI-smooth-3 models…”  to ”The superiority of  SHI-sharp-3 models…” 

Page 21 line 16-17: We have corrected the statement “… and therefore the sensitivity is concentrated in the more resistive layers.” to “… and 

therefore the sensitivity is concentrated in the less resistive layers.” 

Fig. 3. Y-label has been corrected, and some additional text has been added to the figure caption.  

Fig. 7. To clarify we have updated the figure text and the caption from “SHI-smooth” to “SHI-smooth-3” and from “SHI-sharp” to  “SHI-sharp-3”. 

Fig. 9. We have updated the text in the caption, because the order of predictions (the columns) in the figure did not correspond to the caption text.   

 

  



Referee #1: The author's response and corrections  
Comments from Referee # 1 Authors Comments Changes in manuscript 

General comments 1. In section 3.3, depth and 
direction dependent horizontal constraint 
factors were used for both smooth and sharp 
inversions, and the constraint factors assigned 
for the two inversion methods are different. 
However, in the results part, the author 
compared the impact of the two methods on 
the predictions of flow model, is the comparison 
fair? 
 

 Yes, the reviewer is right. This section was not 
clear enough. We have added a few more 
sentences about our choice of constraint 
factors and how these were determined. 

General comments 2. In section 3.4, the author 
weighted the river discharge observation more 
than hydraulic head observation when defined 
the objective function. Why the author think 
that the calibrated models have error in their 
simulation of hydraulic head but not in 
simulation of river discharge? 
 

 We have rewritten the explanation of our 
choice of weights that follows after equation 
(7).  

General comments 3. Figure 1 in this 
manuscript described the conceptual flowchart 
for the sequential hydrogeophysical inversion. 
The whole framework of the experiment process 
was clearly displayed by the flowchart, however 
the content and details of each experiment step 
are obscure. It is hard to understand that what 
kind of experiment was conducted exactly in 
this research without reading the text 
description, thus I suggest the author modify 
the flowchart to make it intelligible. 
 

We don’t understand?  
However, some references to the flowchart in 
the body text of the manuscript could be 
clearer and consistent with the numbering! 

We have made a few improvements to figure 1 
to clarify the workflow. 
Page 7 line 10: 
(Error! Reference source not found., box 1) 
changed to (figure 1, box 2) 

 



Referee #2: The author's response and corrections  
 

Comments from referee # 2 Authors Comments Changes in manuscript 

This paper uses geophysical “voxel inversion” to 
do resistivity field estimation, and linked the 
resistivity field with hydraulic conductivity field 
through power law. Those methods are already 
proposed and utilized in the past. Please 
highlight the new theoretical development and 
findings. 
 

This paper is the first to demonstrate 
application of voxel inversion results directly in 
a groundwater modeling context. Furthermore, 
it presents and demonstrates a novel 
parameterization method for a groundwater 
model for which the calibration is supported by 
the 3D geophysical voxel model. Finally, it 
demonstrates the importance of choosing a 
geologically plausible regularization when the 
geophysical model is to be used in a 
groundwater modeling context.  
Furthermore, it should also be pointed out that 
previous studies (linking resistivity field with 
hydraulic conductivity field through a power 
law) that we cite deal with interpretation of 
tomographic data that provide a high degree of 
resolution, thereby allowing for interpretation 
of spatial variability in petrophysical 
relationships.  In large scale applications (ten to 
thousands of square kilometers), this type of 
data will in general not be available.   
 

We have rewritten parts of the Abstract.  
 
On page 4 L25-28  we added this sentences in 
the text: 
”However, it is often ignored that geophysical 
data can be inverted using alternative 
regularization schemes, and to test whether the 
alternative geophysical models affect the 
predictive capability of a groundwater model.” 

In the numerical part, all the simulations are 
done with pre-defined true/reference model 
without the realistic field data. It will be better 
to prove the idea with realistic field data than 
the synthetic model. 
 

We disagree with the referees saying that “it will 

be better to prove the idea with realistic field 

data than the synthetic model”. Nothing can be 

“proved” from a real field case using real data; 

this can only be used to “demonstrate” that the 

method can be applied in practice and that it can 

produce results that appear to be plausible. The 

results from a real field case can only be 

evaluated by subjective plausibility. 

This fact is actually our reason for using a 

Nothing changed in the manuscript 



synthetic model with “realistic complexity” and 

“synthetic data sets” that are comparable to 

typical data sets for a real field case. Using the 

synthetic case makes us able to compare model 

estimation results and predictions with “true 

fields” and “true values of the predictions”. By 

using the synthetic case we can quantify actual 

estimation errors and actual prediction errors; 

we can for example quantify the improvement 

obtained by using sharp instead of smooth 

inversion.  

 

Furthermore, in this case, we have tried to 

faithfully represent the standard practice of 

hydrologists in constructing models (first 

handling the geophysical data, hereafter the 

geophysical models are used as input to the 

hydrological construction/calibration)  

 

In the section 3.3, how do you get those values 
of constraint factors? 
 

This answer has also been given to referee #1: 
 

Yes, the reviewer is right. This section was not 
clear enough. We have added a few more 
sentences about our choice of constraint 
factors and how these were determined. 

In the section 3.4, the choices of weights for 
head and discharge data are significantly 
different. Why it has such a big difference? In 
the reality, how could you get the weight based 
on “trial and error” method? 
 

This answer has also been given to referee #1: 
 
We can add a few more sentences about our 
choice of weights to the manuscript if this is 
recommended. 
 

As said above to referee #1, we have rewritten 
the explanation of our choice of weights that 
follows after equation (7). 
 

In the simulation part, the only case used 
Smooth regularization is Smooth-3. What is the 
simulation results looks like for other noise 
level?  
 

Good question! We did not analyze other 
smooth models than “smooth-3”, because 
when we saw the “smooth-3” and “sharp-3” 
results it convinced us that for the studied case 
the smooth model will always perform worse 
than the sharp model.  This is because the 
geology of the synthetic system consists of 

Nothing changed 



“large-scale” structures of categorical fields 
with sharp transitions (like in a North-European 
or North-American glacial landscape). “Smooth 
inversion” cannot produce sharp transitions, so 
it is unlikely that a “smooth model” can do as 
good as a “sharp model”. We therefore only use 
the one “smooth-3” example to demonstrate 
ramifications of using smooth instead of sharp 
inervsion. We do not see value in performing 
the comparison for other noise levels. 
Furthermore, doing the remaining smooth 
simulations would be computationally 
expensive (approx. 2-3 weeks using 64 CPU´s).  
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Abstract 8 

We present a workflow for automated efficient construction and calibration of large-scale groundwater 9 

models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In 10 

the first step, Tthe AEM data are inverted to form a 3D geophysical model. The parameter of interest 11 

is the hydraulic conductivity, which can be determined by translating In the second step, the 3D 12 

geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3D 13 

hydraulic conductivity distribution. We use tThe geophysical models and the hydrological data are 14 

used to estimate determine the optimum spatially distributed petrophysical relationshipshape factors. 15 

The two shape factors of the petrophysical relationship primarily work as translators between 16 

resistivity and hydraulic conductivity, but the shape factors they can also compensate for structural 17 

defects in the geophysical model.  18 

The method is demonstrated for a synthetic case study with sharp transitions betweenamong various 19 

types of deposits.  Besides demonstrating the methodology, we demonstrate the importance of using 20 

geophysical regularization constraints that conform well with the depositional environment. This is 21 

done by inverting e the AEM data are inverted using either with both smoothness (smooth) constraints 22 

and or minimum gradient support (sharp) constraints, where the use of sharp constraints  conform best 23 

with the environment.resulting in two competitive geophysical models. The value of the dependency 24 

on AEM data quality is also tested by inverting the alternative geophysical models using data 25 

corrupted with four different levels of background noise. Subsequently, the geophysical models are 26 

used to construct two competing groundwater models for which the shape factors are calibrated. The 27 

performance of the each flow groundwater model was is tested for with respect to four types of 28 

prediction . All predictions occurred that are beyond the calibration base. : Predictions of a a pumping 29 

http://library.seg.org/author/Fiandaca%2C+Gianluca
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well’s recharge area and groundwater age, respectively, were are predicted by applying the same stress 1 

situation as applied during for the hydrologic model calibration, ; while predictions ofand head and 2 

stream discharge was done are predicted for a different stress situation changed from those applied 3 

during hydrologic model calibration.   4 

As expected, in this case the predictive capability of a groundwater model is better when it is based on 5 

a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge 6 

area, head change, and stream discharge, while we find no improvement for prediction of groundwater 7 

age. The results show that geophysical models inverted with sharp constraints improve the predictive 8 

capability of the groundwater models compared to geophysical models inverted with smooth 9 

constraints. It was found that the use of sharp models improves the prediction of recharge area, while 10 

prediction of groundwater age does not improve significantly. When the stress situation is changed the 11 

prediction of head change and stream discharge improves significantly for sharp models compared to 12 

smooth models. This is especially true for predictions of head change made in the vicinity of the 13 

pumping well and far-away from hydrologic boundaries. Furthermore, we show that the geophysical 14 

data quality has variable influence on different model predictions. Prediction the model prediction 15 

accuracy improves with AEM data quality for predictions of recharge area, head change and stream 16 

discharge, while the accuracy there appears to be not accuracy improvement for the prediction of 17 

groundwater age. 18 

1 Introduction 19 

Large-scale geological and groundwater models are used extensively to support aquifer management. 20 

(Here “large scale” refers to an area of from tens to thousands of square kilometers.) Determining the 21 

distribution of hydraulic properties and the geometry and connectivity of the groundwater system is of 22 

significant importance since because these features control the flow paths (Desbarats and Srivastava 23 

1991; Fogg et al. 1999; Weissmann and Fogg 1999). Incorrect reconstruction of the geological 24 

structures has thus been recognized as an the most important source of uncertainty when a 25 

groundwater model is used to make predictions outside its calibration base (Refsgaard et al. 2012; 26 

Seifert et al. 2012; Zhou et al. 2014). The data traditionally used for structural mapping include 27 

lithological logs from boreholes, hydrological data, and hydraulic testing results, but these data are 28 

often sparse and unevenly distributed within an investigated domain. In these (very common) cases, 29 

data scarcity becomes a major obstacle for structural mapping in relation to large scale groundwater 30 

modeling (Refsgaard et al. 2012; Zhou et al. 2014).  31 

Ground-based and airborne electromagnetic method (AEM) methods have shown a great potential for 32 

mapping of geological structures (Jørgensen et al. 2003; Thomsen et al. 2004; Abraham et al. 2012; 33 
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Oldenborger et al. 2013; He et al. 2014; Munday et al. 2015). For large scale mapping, the airborne 1 

electromagnetic method (AEM) is an efficient and cost-effective, supplementing method by which the 2 

traditional data can be supplemented bywith dense estimates of electrical resistivity which, in some 3 

environments, inform about the lithology and thereby about structure (Robinson et al. 2008; Binley et 4 

al. 2015). The AEM measurements can quickly be made quickly over large areas, and the resolution 5 

can be as fine as 25 m in the horizontal direction and 5 m in the vertical (Schamper et al. 2014) with a 6 

penetration depth of up to several hundred meters (Siemon et al. 2009).  7 

Various methods have been reported for how to incorporate resistivity estimates (hereafterfrom now 8 

on called referred to as resistivity models) in groundwater model construction have been reported. 9 

Manual and knowledge knowledge-driven approaches have been used to combine geological, 10 

hydrological and geophysical data with expert knowledge (Jørgensen et al. 2013). However, the 11 

manual approach is subjective and possibly can be very time consuming and expensive to use when 12 

resistivity models from large AEM surveys are to be incorporated in model construction. 13 

Alternatively, more objective and cost-efficient geostatistical modeling approaches (Carle and Fogg 14 

1996; Deutsch and Journel 1998; Strebelle 2002) are available for generating models from a 15 

combination of borehole information and AEM AEM-determined resistivity models. For example: He 16 

et al. (2014) used a transition probability indicator simulation approach (Carle and Fogg 1996), while 17 

Gunnink and Siemon (2015) used sequential indicator simulation (Deutsch 2006). Marker et al. (2015) 18 

used a deterministic strategy for the integration of AEM resistivity models into the hydrological 19 

modeling process.  20 

The just mentioned studies all used sequential hydrogeophysical inversion approaches (SHI; as 21 

defined by Ferré et al. 2009). In SHI the geophysical data are inverted first and independently from the 22 

later inversion of the hydrological data. For large scale groundwater modeling, Herckenrath et al. 23 

(2013) and Christensen et al. (2016) were using used both SHI and joint hydrogeophysical inversion 24 

approaches (JHI; as defined by Ferré et al. 2009). By In JHI, the geophysical and hydrological data are 25 

inverted jointly by linking the geophysical and hydrological models directly through some of their 26 

parameters. The linking can, for example, be done by using an Archie’s law inspired petrophysical 27 

relationship (Archie 1942) to translate between the geophysical and hydrologic parameters.  28 

In general, petrophysical relationships are difficult to establish, because such translation tends to be 29 

site-, scale- and facies facies-specific (Chen et al. 2001; Hyndman and Tronicke 2005; Slater 2007) 30 

and uncertain (Mazáč et al. 1985; Slater 2007). The studies by Herckenrath et al. (2013) and 31 

Christensen et al. (2016) were usingused a fixed petrophysical relationship throughout the model 32 

domain. Better results can potentially be obtained by using a spatially variable relationship, which 33 
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allows for local translation between hydraulic conductivity and electrical resistivity, and by including 1 

the spatially dependent petrophysical parameters in the optimization process (Linde et al. 2006).  2 

There are two other challenges for incorporating resistivity models into large scale groundwater 3 

modeling: differences in model discretization, and choice of geophysical regularization methodology. 4 

Groundwater models are often discretized in a regular voxel grid while the traditional resistivity 5 

models are 1D and placed at the respective sounding location. For airborne surveys, for example, the 6 

resistivity models are normally located along the flight lines (Christiansen et al. 2006). Such resistivity 7 

models therefore need to be relocated to conform to the grid of the groundwater model. The relocation 8 

will often be a subtle process where information easily can be lost. To accommodate address this 9 

issue, Fiandaca et al. (2015) presented a geophysical modeling approach referred to as “voxel 10 

inversion”, which decouples the geophysical inversion model space from the geophysical 11 

measurement positions. This allows estimation of a 3D geophysical model that is discretized on the 12 

same voxel grid as the groundwater model.  13 

Traditionally, geophysical regularization includes horizontal and vertical smoothing constraints 14 

(Constable et al. 1987) or is limited to a few few-layer inversion (Auken and Christiansen 2004), 15 

whereas a groundwater system often has sharp layer or body boundaries. It has therefore been 16 

recognized, e.g. by Day-Lewis (2005) and others, that the regularization used to stabilize the 17 

geophysical inversion may not reflect the actual hydrologic conditions unless it is chosen carefully. If, 18 

for example, smooth regularization is used to estimate resistivity models in a sharply layered system, it 19 

will produce a blurred resistivity distribution from which one should be careful with inferring  the 20 

spatial distribution of hydraulic conductivity to be used in a groundwater model. In this case, it would 21 

be better to use minimum gradient support regularization (Portniaguine and Zhdanov 1999; Blaschek 22 

et al. 2008; Vignoli et al. 2015) for the geophysical inversion because thus the estimated resistivity 23 

distribution will tend to consist of fewer, and more sharply defined layer boundaries (vertically and 24 

horizontally). However, it is often ignored that geophysical data can be inverted using alternative 25 

regularization schemes, and to test whether that the alternative geophysical models are likely to lead 26 

the alternative interpretations and conceptualizations of the hydrological system which may affect the 27 

predictive capability of a groundwater model. 28 

 29 

The main objective of the present study is to present a novel In this paper we present a sequential 30 

hydrogeophysical approach for using whereby a voxel based 3D resistivity model is used to 31 

parameterize and calibrate a groundwater model. We will demonstrate that tThe model 32 

parameterization methodology allows the calibration to compensate for errors in the resistivity model. 33 
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Groundwater flow simulation of course depends on the alternative hydrogeological model on which it 1 

is based. ThereforeFurthermore, weWe will also demonstrate that it is important for groundwater 2 

modeling flow simulations that the underlying resistivity model is estimated by using regularization 3 

constraints that conform well to the geological environment. Finally, we analyze how groundwater 4 

model prediction accuracy depends on the quality of the geophysical data that was used to estimate the 5 

resistivity model. Section 2 of the paper presents the methodology. Section 3 describes the synthetic 6 

test case used for our demonstration purposes. Section 4 presents the results, while sections 5 and 6 7 

present discusses discussions and conclusions of the workand draws the conclusions, respectively. 8 

 9 

  10 
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2 Methodology 1 

Conceptually, the methodology we defines a translator function that describes the petrophysical 2 

relationship between electrical resistivity and hydraulic conductivity. The A fundamental aspect is that 3 

the petrophysical relationship can vary horizontally and vertically, thereby adapting to the local 4 

conditions in translation from the geophysical model space to the hydrological model space. Through 5 

inversion, the 3D spatially dependent optimal parameters of the petrophysical relationship are 6 

estimated for each layer interval, thereby covering the entire three-dimensional model space.   7 

Figure 1Figure 1 provides a workflow for the method. First, the gathered airborne electromagnetic 8 

(AEM) data from the survey area are inverted with smooth or sharp horizontal and vertical constraints 9 

(Vignoli et al. 2015). This is done by using a recently developed voxel inversion scheme which 10 

decouples the geophysical model from the position of the acquired data (Fiandaca et al. 2015). The 11 

geophysical model space thus corresponds to the full 3D hydrological model grid. Secondly, the 12 

geophysical voxel based resistivity model is used as input for the subsequential hydrological inversion. 13 

The geophysical model parameter (resistivity) is linked to the main investigated parameter (hydraulic 14 

conductivity) through a petrophysical relationship which that has unknown shape factor values. The 15 

shape factor values are estimated through a hydrological inversion which minimizes an objective 16 

function describing the misfit between simulated groundwater model responses and corresponding 17 

observed hydrological data. Finally, the calibrated groundwater model can be used to make a set of 18 

relevant hydrologic predictions. The various steps of the methodology are explained in more detail in 19 

the following. 20 

 21 

2.1 Geophysical voxel inversion 22 

In the first step (Figure 1, box 1), Tthe AEM data undergoes constrained deterministic inversion 23 

(Figure 1, box 1) using a recently developed voxel inversion approaches. This approach allows the 24 

geophysical model spaces to be spatially decoupled from the geophysical measurement positions 25 

(Fiandaca et al. 2015). In most inversion schemes, the forward and inverse formulations use the same 26 

model discretization .  for both inversion and forward calculation, but iIn the voxel formulation, the 27 

two model discretizations are decoupled. The voxel model space thus defines the geophysical 28 

properties on the a set of nodes of a regular 3D grid.  29 

For calculating the forward responses, a “virtual” 1D model is a built at each sounding position. The 30 

“virtual” 1D model is defined by a number of layers, and layer thicknesses. The geophysical properties 31 

are interpolated from the voxel model space into the layer centers of the virtual model that is 32 

subsequently used to simulate the forward response for the corresponding sounding. 33 
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The voxel inversion approach thus allows for inverting inversion of AEM data into a geophysical 1 

model defined on a 3D regular grid, regardless of the sounding positions. This implies thatAs a result, 2 

the geophysical inversion can be conducted using the same grid as that defined for a 3D groundwater 3 

model, thereby minimizing. S scaling issues in the coupling of geophysical and hydrological models 4 

can thus be avoided by using the same spatial discretization.  5 

The general solution to the non-linear geophysical inversion problem can be found in Auken et al. 6 

(2014). To stabilize the inverse problem, either of two types of regularization methods can be applied. 7 

The first regularization method is commonly referred to as smoothness-constrained inversion 8 

(Constable et al. 1987). The smoothness-constrained inversion tends to reduce contrasts and the 9 

resulting geophysical model may appear blurred. The reason for this is found in its minimum-structure 10 

L2 norm inversion formalism (Constable et al. 1987; Menke 2012).  F, which following the notation 11 

used by Vignoli et al. (2015), this can be expressed as: 12 

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄   

( 1 ) 

 

 13 

where the 𝑚𝑖 and 𝑚𝑗 are the constrained parameters and 𝜎𝑖,𝑗 defines the constraint strength. The 14 

penalization of structures is clearly seen in eq. ( 1 )( 1 ), where (𝑚𝑖 − 𝑚𝑗)
𝑘

2
𝜎𝑖,𝑗

2⁄  is proportional to 15 

the square of the value of the variation (𝑚𝑖 − 𝑚𝑗). This implies that an increase in model parameter 16 

variation will always result in a penalization in the stabilizer. The smoothness regularization thus 17 

prevents reconstruction of sharp transitions.  18 

 19 

The second regularization method is the minimum gradient support (Portniaguine and Zhdanov 1999; 20 

Blaschek et al. 2008; Vignoli et al. 2015), which allows for large sharp vertical and horizontal model 21 

transitions. The minimum gradient support regularization seeks to minimize the spatial variations 22 

vertically and laterally by penalizing the vertical and horizontal model gradients through the stabilizer 23 

expressed as (Vignoli et al., (2015)): 24 

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄

(𝑚𝑖 − 𝑚𝑗)
2

𝜎𝑖,𝑗
2⁄ + 1

 

 

( 2 ) 

 

 25 
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In eq. ( 2 ), 𝜎𝑖,𝑗 is a parameter used to control the sharpness of the regularization constraints. The 1 

stabilizer contribution to the objective function is thus one when |𝑚𝑖 − 𝑚𝑗| ≫ 𝜎𝑖,𝑗 and zero when 2 

𝜎𝑖,𝑗 ≫ |𝑚𝑖 − 𝑚𝑗|. The minimum gradient support functional thus counts the number of model 3 

variations larger than 𝜎𝑖,𝑗 for the stabilizer term of the objective function. This formalism thus allows 4 

sharp vertical and horizontal model transitions, which are excessively penalized excessively by the 5 

smoothness-constrained inversion. 6 

 7 

2.2 Hydrological model parametrization 8 

Section 2.1 describes an inversion methodology for which the geophysical property distribution can be 9 

estimated for each element in a voxel gridIn the second step  (Figure 1Figure 1, box 12), . Tthe three 10 

dimensional distribution of electrical resistivity values is linked to the main investigated hydrological 11 

parameters (ei.ge. hydraulic conductivity) through a spatially varying petrophysical relationship. 12 

Shape factors of theis relationship are calibrated. 13 

Linking hydraulic conductivity and electrical resistivity is not trivial because the parameter values and 14 

the form of the petrophysical relationship may vary dramatically between different types of 15 

environments.  In addition, there can be fundamental questions about how the effective properties 16 

controlling electrical current flow are related to the effective properties controlling fluid flow (Slater 17 

2007). The primary factors controlling this relationship are porosity, pore water conductivity, 18 

tortuosity, grain size, degree of saturation, amount of clay minerals, etc. (McNeill 1980). The simplest 19 

petrophysical relationship is the empirical relationship known as Archie´s law (Archie 1942), that 20 

which relates porosity, pore water conductivity, and the degree of saturation to bulk electrical 21 

conductivity. However, this type of relationship does not take the electrical surface conductance on the 22 

surface of clay minerals into account. The Waxman and Smith Smits model (Waxman and Smits 23 

1968) combined with the dual-water model by Clavier et al. (1984) provides a basis for establishing 24 

empirical relationships for shaly sand and sediments containing clays (Revil and Cathles 1999; Revil 25 

et al. 2012). For glacial sedimentary environments, it is reported that clay has low electrical resistivity 26 

and also low hydraulic conductivity, and sand has high electrical resistivity and high hydraulic 27 

conductivity (Mazáč et al. 1985). For these environments, iIt is common to use a power law 28 

relationship which is given some theoretical support by Purvance and Andricevic (2000). The 29 

relationship is expressed as 30 

𝐾 = 𝛼 ∙ 𝜌𝛽 ( 3 ) 

 31 
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where K is the hydraulic conductivity (m/s), 𝜌 is the electrical resistivity (ohm-m), and  𝛼 and 𝛽 are 1 

two empirical shape factors. To compute K for each element in the groundwater model grid, 𝛼 and 𝛽 2 

need to be parameterized and estimated. We suggest to make the parameterization by pilot points 3 

placed in a regular grid in each layer of the groundwater model (Certes and De Marsily 1991; Doherty 4 

2003). Each pilot point holds a set of 𝛼 and 𝛽 parameters, and kriging is used for spatial interpolation 5 

of 𝛼 and 𝛽 from the pilot points to the model grid. This kind of parametrization creates smooth 6 

transitions in the parameter fields and allows for variation in both the horizontal and vertical direction 7 

of the 𝜌 to K translation. Hydraulic conductivity can thus be calculated by eq. ( 3 )( 3 ) for every 8 

element in the groundwater model grid. 9 

 10 

2.3 Hydrological Inversion 11 

The model parameters, 𝛼 and 𝛽 at the pilot points, are calibrated by fitting the groundwater model to 12 

hydrological data. When the number of model parameters is large compared to the number of 13 

observation data, the minimization must be stabilized by regularization.  The total objective function 14 

to be minimized is therefore a balanced compromise between a measurement term (Φ𝑚)  and a 15 

regularization term (Φ𝑟). The combined objective function has the form 16 

Φ𝑡𝑜𝑡𝑎𝑙 = Φ𝑚 + 𝜇 ∙ Φ𝑟 = ∑ 𝜔𝑑,𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑠𝑖𝑚,𝑖)
2

𝑛𝑑

𝑖=1

+ 𝜇 ∙ Φ𝑟 

 

( 4 ) 

  17 

where Φ𝑡𝑜𝑡𝑎𝑙 is the total objective function,  𝑑𝑜𝑏𝑠,𝑖  and 𝑑𝑠𝑖𝑚,𝑖  are measured and equivalent simulated 18 

data values, 𝜔𝑑𝑖 is a data dependent weight, 𝜇 is a weight factor, and 𝜙𝑟 is a Tikhonov regularization 19 

term. Here, 𝜙𝑟 is defined as preferred difference regularization, where the preferred difference 20 

between neighboring parameter values is set to zero. Φ𝑡𝑜𝑡𝑎𝑙 is minimized iteratively, and the 21 

regularization weight factor, 𝜇, is calculated during the iteration in a way soto ensure that Φ𝑚, the 22 

measurement part of the objective function, becomes approximately equal to a user specified target 23 

value (Doherty 2010).  24 

 25 

3 Synthetic example 26 

For illustrative purposes, we use a three dimensional synthetic system very similar to that presented by 27 

Christensen et al. (2015) Christensen et al. (2016). The only difference is that the active part of the 28 
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groundwater system only consists of 5 layers whereas Christensen et al. (2015) Christensen et al. 1 

(2016) used a 20 layer model.  2 

3.1 Groundwater reference system and hydrological data 3 

The groundwater system is intended to mimic a glacial landscape and covers an area that is 7000 m 4 

(N-S) by 5000 m (E-W). The geology of the system was generated using T-PROGS (Carle 1999) as 5 

having  a horizontal discretization of 25 m x 25 m, and a vertical discretization of 10 m. The system 6 

extends 50 m in the vertical direction where it reaches impermeable clay with a horizontal surface. 7 

The T-PROGS generated geology above the impermeable clay consists of categorical deposits of sand, 8 

silt and clay. Within each of the three types of deposits, hydraulic conductivity, recharge and the 9 

porosity were generated as horizontally correlated random fields using FIELDGEN (Doherty 2010). 10 

All boundaries of the domain were defined as having no-flow conditions except the southern boundary 11 

where hydraulic head was defined as constant, h = 0 m. The local recharge depends on the type of 12 

sediment at the uppermost layer. Most groundwater discharges through the southern boundary, but 13 

approximately 35% discharges into a river running  north to south in the middle of the domain (Figure 14 

2). Groundwater flow was simulated as confined steady-state flow employing MODFLOW-2000 15 

(Harbaugh et al. 2000) with the spatial discretization equal to the geological discretization. 16 

Groundwater is pumped at a rate of 0.015 m3s-1 from a well located at x=2487.5m and y=1912.5 m and 17 

the well screens the deepest 10 meters of the groundwater system. In the following, this system is 18 

called the reference system. 19 

Thirty-five boreholes are found within the domain (Figure 2). Each borehole contains a monitoring 20 

well that screens the deepest 10 m of sand registered in the borehole. For each system realization, 21 

hydraulic head in the 35 wells and the river discharge at the southern boundary were extracted from a 22 

forward simulation made by MODFLOW-2000. The 35 simulated hydraulic head values were 23 

contaminated by independent Gaussian error with zero mean and 0.1 m standard deviation. The river 24 

discharge was corrupted with independent Gaussian error with zero mean and a standard deviation 25 

corresponding to 10 % of the true river discharge. The 36 contaminated values constitute the 26 

hydrological data used for groundwater model calibration. 27 

 28 

3.2 Geophysical reference system and data 29 

The geophysical reference system was designed so that there is perfect correlation between hydraulic 30 

conductivity and electrical resistivity. This implies that a relationship between hydraulic conductivity 31 

and measured electrical resistivity is likely to exist. The true relationship is of the same form as eq. ( 3 32 

)( 3 ), and it uses constant shape factor values 𝛼 = 1𝑒−12  and  𝛽 = 4. This corresponds to conditions 33 
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where clay has low electrical resistivity and also low hydraulic conductivity, and sand has high 1 

electrical resistivity and high hydraulic conductivity. The impermeable clay at the base of the 2 

reference system was assigned a constant value of 5 ohm-m.   3 

The AEM data were simulated using AarhusInv (Auken et al. 2014) for a system setup similar to a 4 

typical dual-moment SkyTEM-304 system (Sørensen and Auken 2004). The simulated survey consists 5 

of 35 E-W flight lines with 200 meter spacing between the flight lines. AEM system responses were 6 

simulated for every 25 m along the flight lines giving a total of 6300 sounding locations for both the 7 

transmitted high and low moments. AarhusInv is a 1D modeling code. To mimic the loss of resolution 8 

with layer depth we simulated the responses using the 2D logarithmic average resistivity of all model 9 

cells inside the radius of the foot print at a given depth.. To obtain the geophysical data set, the 10 

simulated data were contaminated with noise according to the noise model suggested by (Auken et al. 11 

2008):  12 

𝑉𝑟𝑒𝑠𝑝 = 𝑉 ∙ (1 + 𝐺(0,1) ∙ [𝑆𝑇𝐷2
𝑢𝑛𝑖 + (

𝑉𝑛𝑜𝑖𝑠𝑒

𝑉
)

𝟐

]

𝟏 𝟐⁄

) 

 

 

( 5 ) 

 

 13 

where 𝑉𝑟𝑒𝑠𝑝 is the perturbed synthetic data, 𝑉 is the synthetic noiseless data, 𝐺(0,1) is standard 14 

Gaussian noise (with zero mean and unit standard deviation), and 𝑆𝑇𝐷2
𝑢𝑛𝑖 is uniform noise variance. 15 

𝑉𝑛𝑜𝑖𝑠𝑒 is the background noise contribution given by 16 

𝑉𝑛𝑜𝑖𝑠𝑒 = 𝑏 ∙ (
𝑡

10−3
)

−𝟏 𝟐⁄

, 
( 6 ) 

 17 

where 𝑡 is the gate center time in seconds, and 𝑏 is the background noise level at 1 ms. For the 18 

following analysis we generated geophysical datasets with four levels of background noise, i.e. b equal 19 

to 1, 3, 5, and 10 nV/m2, respectively. The uniform standard deviation, which accounts for instrument 20 

and other non-specified noise contributions, was set to 3% for dB/dt responses. After the data were 21 

perturbed with noise, it was processed as a field data set (Auken et al. 2009), resulting in an uneven 22 

number of gates per sounding. Figure 3Figure 3 illustrates the resulting low and high moment AEM 23 

sounding data, respectively, for the different background noise levels.  24 

 25 
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3.3 Geophysical voxel inversion 1 

The geophysical data were inverted by voxel inversion (Fiandaca et al. 2015) using AarhusInv (Auken 2 

et al. 2014). The voxel inversion was conducted in two different ways: by using L2-norm “smooth” 3 

constraints, or by using minimum gradient support “sharp” constraints (both implemented in 4 

AarhusInv; Auken et al. 2014).  5 

To avoid the influence of numerical discretization errors, the geophysical voxel inversion uses the 6 

same spatial discretization as the reference system and the groundwater model. For both smooth and 7 

sharp inversions, a 40 ohm-m uniform half-space was used as the starting model, and spatial 8 

regularization was applied using the same settings throughout all inversions. Considering the small 9 

number of layers and the shallow discretization, It it was unnecessary to apply vertical constraints for 10 

any of the inversions. (On the contrary, depth and direction dependent horizontal constraint factors 11 

were used for both smooth and sharp inversions. The strength given to the horizontal constraints is 12 

based on experience, keeping in mind that the constraint factors should not prevent data fitting, but 13 

must not be too strong preventing fitting the data promote model consistency. Therefore, a few 14 

experiments were made to “manually” estimatetune the magnitude of the constraint factors. 15 

Furthermore, Different values along the flight lines and perpendicular to them, respectively, were 16 

found to give better results. strong inversion artifacts were found in perpendicular to the flight lines 17 

when using the same uniform constraint factors along the flight lines as to perpendicular to the flight 18 

lines. This is a result of having morehigher data density along the flight lines, compared to the 19 

perpendicular directionto the flight lines, and that’s why the horizontal contains is different for the two 20 

directions. In thisthese synthetic testscase (as in all real casessimilarly to what is done with field data 21 

with analogous data density) the For smooth regularization constraint factors of 1.9 along the flight 22 

lines and 1.05 perpendicular to the flight lines was were used for the first layer.  23 

Contrary to the conventional inversion of geophysical data, Furthermore,where the vertical 24 

discretization of the geophysical model is normally characterized by logarithmically increasing layer 25 

thicknesses, in this study fixed layer thicknesses were used in the geophysical models. To account for 26 

using fixed layer thicknesses in the geophysical modelthe loss of resolution with depth without 27 

increasing the layer thicknesses, the horizontal constrain factors were set to decrease linearly with 28 

depth (tighter bands for the deeper layers), The constraint factors was set to decrease linear with depth, 29 

resulting in constraint factors of  1.4 along the flight lines and 1.02 perpendicular to the flight lines for 30 

the sixth layer.  31 

The conceptionssame directional and depth-dependent tuning used for smooth regularization wereas 32 

also applied For forto the sharp inversion. In this case constraint factors of 1.0625 along the flight 33 
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lines and 1.01 perpendicular to the flight lines was were used for the first layer, while factors of 1.025 1 

along the flight lines and 1.01 perpendicular to the flight lines was were used for the sixth layer. The 2 

smaller values of the constraint factors in the sharp inversion are due to the different role that the 3 

factors play in the regularization definition, as evident when comparing eq. ( 1 ) and eq. ( 2 ). The 4 

difference in constraint values between smooth and sharp inversion is analogous to what has been used 5 

in other studies (e.g. Vignoli et al., 2015). 6 

 7 

3.4 Groundwater model parametrization and calibration 8 

In the following, the groundwater model will be parameterized in two different ways. Both ways 9 

approaches treat the shape factors between hydraulic conductivity and resistivity, α and β , of thein 10 

relationship (3), between hydraulic conductivity and resistivity as spatially dependent parameters to be 11 

estimated. The two parameterizations differ by the resistivity model that is used to calculate the 12 

hydraulic conductivity field of the groundwater model:  13 

 The first type of parameterization uses a resistivity model estimated by smooth voxel inversion of 14 

AEM data collected with a background noise level of 3 nV/m2.  These models will be referred to 15 

as SHI-smooth-3.  16 

 The second type of parameterization uses a resistivity model estimated by sharp voxel inversion of 17 

AEM data collected with a background noise level of either 1, 3, 5, or 10 nV/m2.  These models 18 

will be referred to as SHI-sharp-1, SHI-sharp-3, SHI-sharp-5, and SHI-sharp-10, respectively. 19 

The shape factors, α and β , of the petrophysical relationship are parametrized by placing pilot points 20 

in a uniform grid, with 5 nodes in the x direction and 7 in the y direction. Hence, in total the 21 

groundwater model is parameterized by 5x7x5 = 175 petrophysical relationships each having two 22 

parameters (the shape factors).      23 

The parameter values are estimated by fitting the available hydrological data consisting of the 35 24 

observations of hydraulic head and one river discharge observation. Calibration is done by 25 

minimization the total objective function given by eq. ( 4 )( 4 ), where the measurement objective 26 

function is computed as 27 

Φ𝑚 = 𝑛ℎ
−1 ∑ 𝜔ℎ(ℎ𝑜𝑏𝑠,𝑖 − ℎ𝑠𝑖𝑚,𝑖)

2
+ 𝑛𝑟

−1 ∑ 𝜔𝑟(𝑟𝑜𝑏𝑠,𝑖 − 𝑟𝑠𝑖𝑚,𝑖)
2

𝑛𝑟

𝑖=1

𝑛ℎ

𝑖=1

 

 

( 7 ) 
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where, 𝑛ℎ and 𝑛𝑟 are the number of head and river measurements, respectively; ℎ𝑜𝑏𝑠  and ℎ𝑠𝑖𝑚  are 1 

observed and corresponding simulated hydraulic heads; 𝑟𝑜𝑏𝑠  and 𝑟𝑠𝑖𝑚  are observed and 2 

corresponding simulated river discharge; and 𝜔ℎ and 𝜔𝑟 are subjectively chosen weights for head and 3 

discharge data, respectively. If a model is expected not to have structural defects then it would be ideal 4 

to choose the weights 𝜔ℎ = 𝜎ℎ
−1 and 𝜔𝑟 = 𝜎𝑟

−1, where 𝜎ℎ and 𝜎𝑟 is the standard deviation of 5 

measurement error for head and river measurements, respectively. However, in this case (as in all real 6 

cases) the model has structural errors that make the misfit between hydraulic head data and equivalent 7 

simulated values much larger than what can be explained by measurement error. In accordance with 8 

common groundwater modeling practice (e.g. Christensen et al. 1998), we therefore conducted 9 

residual analysis and a few experiments to estimate the magnitude of the total head error (which is the 10 

sum of observation error and structural error). This indicated that the standard deviation for the total 11 

error on hydraulic head is approximately 10 ∙ 𝜎ℎ, while the total error for the river discharge is totally 12 

dominated by measurement error. As weights we therefore used 𝜔ℎ =   (10 ∙ 𝜎ℎ)−2 = 1.0 and 13 

𝜔𝑟 = (𝜎𝑟)−2 = 1.38 ∙ 105, respectively. Using these weights, and averaging over the 20 system 14 

realizations, gave a minimized objective function value of 𝜙̅𝑚 = 2.5. This is close to the value of 2.0 , 15 

which would be expected from (7) if the weighting used reflects the error magnitudes. 16 

Calibration was performed using local search as optimization implemented in the parameter estimation 17 

software BeoPEST, a version of PEST (Doherty 2010) that allows the inversion to run in parallel 18 

using multiple cores and computers. 19 

It should be noted that for calibration and model prediction we applied the recharge field and boundary 20 

conditions of the reference system.  21 

3.5 Reference and mModel predictions 22 

In step 3 (Figure 1, box), the calibrated groundwater model is used to make predictions.  23 

In the following synthetic demonstration study, the The calibrated SHI-smooth and SHI-sharp 24 

groundwater models are evaluated by comparing their simulated model predictions with corresponding 25 

predictions simulated for the (synthetic and, therefore, known) reference system. The former are called 26 

“model predictions”, the latter are called “reference predictions”.  27 

Prediction types 1 and 2 relate to steady-state flow when groundwater is pumped from the well. This is 28 

also the condition for which the hydrologic data used for calibration were sampled. Type 1 is the 29 

average age of the groundwater pumped from the well. Type 2 is the size of the recharge area of the 30 

pumping well. Both of these predictions differ in type from the calibration data. For these model 31 
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predictions, we used a homogeneous porosity of 0.2 (the average value of the reference system 1 

porosity fields is 0.184). 2 

Prediction types 3 and 4 relate to a new stress situation long after pumping from the well has ceased: 3 

type 3 is groundwater discharge into the stream, and type 4 is head recovery for a well screening a 4 

layer north-east of the pumping well (the location is shown in on Figure 2). 5 

The reference and model prediction types 3 and 4 were simulated by MODFLOW-2000 (Harbaugh et 6 

al. 2000), while type 1 and 2 were simulated by forward particle tracking using MODPATH version 5 7 

(Pollock 1994) and MODFLOW-2000 results. 8 

The first two types of prediction are interesting from the perspectives of protection and resource-9 

management of a well field, while the latter two are relevant in the case of possible change of 10 

management practice resulting in a new stress.  11 

 12 

3.6 Evaluation of prediction performance 13 

As said in the beginning of section 2, steps 1-3 of the framework can be repeated for a number of 14 

system realizations to providefor making consistent statistical interference on regarding the model 15 

prediction results. Here, 20 different reference system realizations were used. For each prediction, we 16 

thereforehereby have 20 corresponding sets of reference predictions and model predictions that can be 17 

used to evaluate the performance of a calibrated model with respect to that prediction. The 18 

performance is evaluated for SHI-smooth and SHI-sharp models, respectively, and it is done in the 19 

following ways. 20 

Prediction error characteristics are quantified by the mean absolute error (𝑀𝐴𝐸), the mean error (𝑀𝐸) 21 

following, respectively:  22 

 23 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑡𝑖|

𝑁

𝑖=1

 

 

( 8 ) 

𝑀𝐸 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

− 𝑡𝑖 

 

( 9 ) 

 24 

where  𝑥𝑖 is the model prediction of realization i, 𝑡𝑖 is the reference prediction of realization i, and 25 

𝑁 = 20 is the number of system realizations. 𝑀𝐴𝐸  measures how close the model prediction tends to 26 
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be to the reference prediction; 𝑀𝐸 measures the tendency of positive or negative bias in the model 1 

prediction.  2 

 3 

4 Results 4 

4.1 Geophysical results 5 

Figure 4Figure 4 shows a representative cross-section for one of the 20 system realizations. Both 6 

geophysical models in Figure 4Figure 4 were inverted using data perturbed with a background noise 7 

level of 3nV/m2. Comparing the geophysical model results with the reference model, we find that the 8 

SHI-smooth-3 resolves the main features reasonably well for the upper layers. The main discrepancy 9 

is found in the fifth layer, where the sand bodies are not resolved.  In general, the resistivity of the 10 

sand bodies (dark orange in the reference system) is underestimated, and the transitions between the 11 

categorical deposits are artificially smooth.  12 

Figure 4Figure 4 shows that SHI-sharp-3 resolves the sand body in layer 5 much better than SHI-13 

smooth-3. Moreover, the locations and boundaries of the geological deposits tend to be less smeared 14 

out when using the sharp constraints. Inspection of the histograms at the bottom of Figure 4Figure 4 15 

shows that the SHI-sharp-3 model tends to produce resistivity distributions that are have more 16 

similarities with to the reference distributions than the SHI-smooth-3 model. This improvement should 17 

could potentially allow for easier translation from electrical resistivity into hydraulic conductivity and 18 

correspondingly more faithful representation of hydrogeologic structure and connectivity.  19 

Figure 5 shows corresponding voxel by voxel density plots of reference versus estimated electrical 20 

resistivity for a SHI-smooth model and corresponding SHI-sharp models. Pearson’s correlation 21 

coefficient (PCC; Cooley and Naff 1990) is shown on top of the density plot for each layer. A 22 

comparison of the density plots and the PCC values of the SHI-smooth-3 and SHI-sharp-3 models 23 

shows that using sharp instead of smooth constraints improves the inverted geophysical model. The 24 

improvement is seen most clearly seen for the sand deposits  25 

For both SHI-smooth and SHI-sharp models there is a strong correlation between the electrical 26 

resistivity estimates and the true electrical resistivities of the first layer, but the SHI-smooth model has 27 

weaker correlation than the SHI-sharp models. For both types of models, the correlation weakens with 28 

depth and background noise. The former is caused by the resolution limitations of AEM data. 29 

However, the depth and resistivity of the low-resistivity clay at the base of the model are well resolved 30 

by both the SHI-smooth and SHI-sharp models inversions (results not shown).  31 
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4.2 Hydrological calibration results 1 

The calibration results for the 20 different system realizations are shown in Figure 6Figure 6. The 2 

figure shows that the measurement objective function value, Φ𝑚, for each most system realizations is 3 

close 2.0. We aimed at using weights that would make the minimized measurement objective function 4 

value averaged over the 20 system realizations approximately equal to 2. Figure 6 shows that this is 5 

nearly satisfied by This is the case for almost all of the the SHI-Sharp model realizations, and even for 6 

large background noise levels. For many of the realizations, the SHI-Smooth model also fits the data 7 

well;, but, several for a couple of realizations lead to higher the misfit is much larger than aimed atthan 8 

desired. This makes 𝐸[Φ𝑚] equal to 5.8 for SHI-Smooth-3 models while it is 2.5 for the SHI-Sharp-3 9 

models. That is, This indicates that the estimated hydraulic conductivity field tends to be better less 10 

wrong for sharp models than for smooth models.  11 

 12 

4.3 Parameter estimation 13 

Figure 7Figure 7 shows a cross section of the estimated K-,  𝛼- and 𝛽- fields for one of the system 14 

realizations . The two columns show estimates for the SHI-smooth-3 and  SHI-sharp-3 models, 15 

respectively. Figure 8Figure 8 shows a density plot of the reference hydraulic conductivity distribution 16 

and the estimated hydraulic conductivity distributions. The results in Figure 7Figure 7 and Figure 17 

8Figure 8 are typical for all 20 system realizations.    18 

 19 

From Figure 7Figure 7 a) and Figure 7Figure 7 b) it is seen that the estimated 𝛼 and 𝛽 parameter 20 

values are changing change smoothly in the horizontal direction but have sharp transitions in the 21 

vertical direction. The second row of Figure 7Figure 7 shows the corresponding estimated K fields 22 

whose main features are determined by the underlying resistivity models (Figure 4Figure 4), but they 23 

are “corrected” during model calibration to make the groundwater model fit the hydrological data.  24 

 25 

For the SHI-smooth-3 model, 𝛼 and 𝛽 are taking compensatory roles particularly in the first layer. 26 

Here, the estimated 𝛼 and 𝛽 values in this layer are higher than the shape factors of the true 27 

relationship that was used to construct the geophysical reference system. This increases the hydraulic 28 

conductivity in layer 1 to compensate for the too low hydraulic conductivity (and resistivity, Figure 29 

4Figure 4) in layer 2 and deeper layers. The estimated 𝛼 and 𝛽 values are not sufficient to compensate 30 

for the missing deep high-resistivity body in in layer 5 of the SHI-Smooth-3 model (Figure 4Figure 4).  31 

 32 

For the SHI-sharp-3 model, the estimated 𝛼 and 𝛽 parameter values only vary slightly from the shape 33 

factor values of the true relationship except for layer 5 (Figure 7Figure 7 b)). This indicates that for the 34 
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more shallower layers the sharp inversion of AEM data sufficiently resolves the resistivity of features 1 

that are important for groundwater model calibration. In layer 5 the estimate of shape factor 𝛽  turns 2 

out to be fairly high, this to compensates for the too low resistivity estimates in this layer (Figure 3 

4Figure 4).  4 

Figure 8Figure 8 shows voxel by voxel density plots of reference versus estimated hydraulic 5 

conductivity for SHI-smooth and SHI-sharp models. The figure is equivalent to Figure 5. Figure 8The 6 

results confirms that the resulting K field tends to be overestimated for the first layer, and in particular 7 

for the SHI-smooth-3 model. From the second layer and deeper,own the hydraulic conductivity values 8 

tend to be underestimated for sand but overestimated for silt and clay. Moreover, the distributions of 9 

estimated K smear out with depth. Judged by PCC values and visual inspection of Figure 8Figure 8 10 

(highlighting connectivity of the K field), the hydraulic conductivity field estimated for any SHI-sharp 11 

models is in better agreement with the reference field than the field estimated by the SHI-Smooth-3 12 

model.  13 

Model structural accuracy is quantified in   14 
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Table 1Table 1 for both the SHI-smooth and SHI-sharp models. Structural accuracy is here calculated here as 1 

the fraction of total number of voxels for which the estimated log10-hydraulic conductivity plus/minus twenty 2 

percent contains the true log10-hydraulic conductivity value of the reference model. The results are averaged 3 

over the 20 system realizations. From   4 
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Table 1Table 1 it is seen that all SHI-sharp models outperform the accuracy of the SHI-smooth models 1 

except for layer 5. The exception occurs because the SHI-smooth models are fairly good at estimating 2 

the K distributions for silt and clays, but underestimates K for sand (Figure 8Figure 8). On the 3 

contrary, SHI-sharp models overestimate the K distributions for silt and clays, but only slightly 4 

underestimate K for sand (Figure 8Figure 8). Therefore, for layer 5, the model structural accuracy 5 

appears to be better for SHI-smooth than for SHI-sharp models. 6 

 7 

4.4 Prediction results 8 

For each of the 20 system realizations, the calibrated groundwater models were used to make the 9 

model predictions described in section 3.5. Figure 9Figure 9 shows scatter plots of reference 10 

prediction versus the calibrated model prediction; each plotted point corresponds to a particular system 11 

realization and corresponding SHI-smooth-3 or SHI-sharp-3 model.  The mean error (ME) and mean 12 

absolute error (MAE) of the prediction are also given in Figure 9Figure 9. Figure 10Figure 10 shows a 13 

MAE contour map for head recovery predictions.  14 

  15 

4.4.1 Particle tracking predictions 16 

The first column of Figure 9Figure 9 shows results for prediction of average age of the groundwater 17 

pumped from the pumping well. The scatter plot illustrates that SHI-sharp models tend to over-predict 18 

average age. This is seen by the majority of points plotting above the identity line as well as by the 19 

value of ME = 32 (Figure 9Figure 9). The age prediction results are similar for the SHI-smooth models 20 

although the spread of points is larger than for SHI-sharp-3 (e.g. quantified by the larger value of 21 

MAE). There are two major explanations for these relatively “poor” predictive performances. First, the 22 

calibrated K-fields underestimate hydraulic conductivity of sand deposits in the deeper layers (Figure 23 

8Figure 8), which results in too slow particle travel times at depth. Secondly, the reconstruction of the 24 

deepest layers is too smooth for both SHI-smooth and SHI-sharp models (Figure 7Figure 7) and does 25 

not resolve the small-scale variability that controls the transport of particles.  26 

The second column of Figure 9Figure 9 reports results related to is for prediction of the recharge area 27 

of the pumping well. The scatter plot shows that the SHI-smooth models under-predicts the recharge 28 

area. This happens because the smooth models lead to estimation of hydraulic conductivities in the 29 

deepest layers that are too low. This creates a deep cone of depression around the pumping well that 30 

extends upward locally to reach the river bed. This induces a local discharge of water from the stream 31 

through the groundwater system to the pumping well. These models thus predict that a significant 32 
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proportion of the pumping comes from local discharge from the river. (This is compensated by 1 

increased model predicted groundwater discharge to other parts of the river.) For the true, reference 2 

system used to generate the data For the corresponding reference systems, the river is not losing water, 3 

and all water pumped from the well originates from groundwater recharge. 4 

The SHI-sharp models are better predictors of the recharge area, but also these models tend to predict 5 

an area that is too small. These models also predict local discharge from the river to the groundwater 6 

system, but to a lesser degree than the SHI-smooth models. This is likely because the main features of 7 

the reference system are better reconstructed by the SHI-sharp-3 models.  8 

 9 

4.4.2 Head recovery and discharge predictions  10 

The prediction of head recovery at the an observation well (location shown in Figure 10) is done 11 

poorly by the SHI-smooth-3 (Figure 9Figure 9). The predicted head recovery is very small for most of 12 

these models because they tend to have too little hydraulic connectivity between the deepest layers, the 13 

estimated hydraulic conductivities are too low in the deep sand layers, and the simulated cone of 14 

depression is therefore too deep and too local. 15 

The SHI-sharp-3 models make less biased, fairly reasonable predictions of the head recovery (Figure 16 

9Figure 9) because they resolve the variations of hydraulic conductivity at depth better than the SHI-17 

smooth-3 models. The superiority of  SHI-smoothsharp-3 models for recovery prediction is also seen 18 

from the MAE contour maps in Figure 9Figure 9. The MAE is seen to be spatially dependent: it is 19 

largest at the pumping well, and smallest at the constant head boundary to the south 20 

The fourth column of Figure 9Figure 9 shows that both types of models are good predictors of 21 

discharge to the river after cessation of pumping. However, the SHI-sharp-3 model prediction is 22 

superior (since its points tend to plot closer to the identity line). For SHI-smooth-3, the prediction 23 

tends to be positively biased and more spread than for SHI-sharp-3.  24 

 25 

4.4.3 Prediction error as function of data quality 26 

In Figure 11Figure 11  MAE is used as a metric to evaluate how the prediction performance of SHI-27 

sharp models depends on the level of background noise for the geophysical data. The noise levels were 28 

kept unchanged for the hydrological data.  29 

Figure 11Figure 11 shows that the average age prediction made by SHI-sharp models are nearly 30 

unaffected by the quality of the geophysical data. It is speculative, but this result may be because this 31 
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prediction is highly dependable dependent on small scale variability in hydraulic conductivity and 1 

porosity that cannot be resolved from any of the geophysical data sets.  That is, even the highest 2 

quality geophysical data are not highly informative, so reducing the data quality further has little 3 

effect. 4 

It is different for the recharge area prediction (Figure 11Figure 11): MAE increases for this by 5 

approximately 25% when the level of background noise is increased from 1 nV/m2 to 10 nV/m2. This 6 

happens because the variations of resistivity (and thus hydraulic conductivity) are less well resolved 7 

when using the poor quality from the geophysical data of poor quality.    8 

The third and fourth rows of Figure 11Figure 11 shows the head recovery and river discharge 9 

prediction after cessation of the pumping well. Head recovery and discharge predictions also tend to 10 

depend on the quality of the geophysical data. The MAE increases by 17 % for recovery prediction and 11 

23 % for discharge prediction when the noise level of the geophysical data increases from 1 nV/m2 to 12 

10 nV/m2.  13 

  14 
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5 Discussion 1 

5.1 Estimation of Parameters in the Petrophysical Relation 2 

Parameterizing the groundwater model by assuming a spatially dependent petrophysical relationship 3 

between resistivity and hydraulic conductivity makes it possible to use a resistivity voxel model for 4 

construction and calibration of a groundwater model. By aAssuming that the relationship to beis 5 

spatially dependent can account for two challenges: i) there may be actual changes in the petrophysical 6 

relationship within an investigated domain, and ii) there may be resolution limitations in the estimated 7 

resistivity model.  8 

Challenge i) is likely to be the rule for many environments, especially can for example be expected for 9 

sedimentary environments, where the formation resistivity is primarily controlled by the pore water 10 

resistivity and the clay content. In the case of spatially changes of pore water resistivity and/or content 11 

of various clay minerals content, the discrimination between clay and sands may be less clear in the 12 

estimated resistivity values. For large-scale groundwater system, the variation of pore water resistivity 13 

(e.g. saline pore water) is expected to vary smoothly, which would be accounted for by the spatially 14 

varying petrophysical relationship. However, the procedure only works as applied here if the 15 

underlying assumption is valid, that clay rich deposits have lower electrical resistivity compared to 16 

than sands deposits is valid,  is valid. 17 

Challenge ii) concerns the geophysical model resolution of the true formation resistivity. EM methods 18 

are, by nature, more sensitive to deposits of low electrical resistivity than to deposits of high 19 

resistivity, and their vertical and horizontal resolutions decrease with depth. This challenge is what 20 

affects the resistivity models estimated in the present synthetic study. Estimating sSpatially dependent 21 

shape factors by groundwater model calibration letallow themcan take a compensatory role for the 22 

resolution issues of the estimated geophysical voxel model. The calibrated shape factors may thus no 23 

longer have firm physical meaning since because they mainly act as correction parameters for 24 

absorbing structural errors of the geophysical model.  T, . The estimation of locally unreasonable 25 

shape factors may be this is acceptable as long as the resulting hydraulic conductivity values are 26 

reasonable. The idea of calibrating the shape factors is related to the concept of compensatory 27 

parameters in highly parameterized calibration described by Doherty and Welter (2010) and by 28 

Doherty and Christensen (2011).  29 

Finally, Auken et al. (2008) showed that using borehole data as a priori information in the geophysical 30 

inversion improves the reconstruction of the model features significantly. Estimation of EM-based 31 

resistivity models should therefore, in generalwherever possible, be supported  by borehole 32 

information to improve the decreasing spatial resolution of the EM methods. 33 
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 1 

5.2 Geophysical inversion strategy and dData quality  2 

Inversion of AEM data using a 1D geophysical model usually applies smoothness constraints in order 3 

to regularize the inversion (Auken and Christiansen 2004; Viezzoli et al. 2008). Traditionally, the 4 

regularization includes both lateral and vertical smoothing constraints (Constable et al. 1987) or a few 5 

layer parametrization (Auken et al. 2008). Inversion using the former type of regularization produces 6 

smooth images with blurred formation boundaries which can be problematic when it is important to 7 

resolve structural connections in a complex geological system. The latter few-layer inversion may is 8 

also be prone to produce artifacts when used to map complex geological environmentssuch systems. It 9 

has therefore been recognized, e.g. by Day-Lewis (2005) and others therefore recognized , that the 10 

regularization used to stabilize the geophysical inversion may can lead to artifacts that do not reflect 11 

the actual hydrogeological conditions. Thoughtless use of such results to construct groundwater 12 

models for making hydrologic predictions can therefore have serious ramifications.  13 

 14 

Furthermore, for the present case study, the number of vertical transitions is a great challenge for the 15 

AEM method due to the principle of high resistivity equivalence.  T: that is, it is difficult to resolve a 16 

high-resistivity layer between two low-resistivity layers because the energy loss, and therefore the 17 

sensitivity, is concentrated in the more less resistive layers. This will result in layer suppression, 18 

because the data sensitivity to the high resistive layer is low (Christiansen et al. 2006). This effect is 19 

present for both the smooth and sharp inversion, but in the sharp inversion the effect is less fuzzy and 20 

features, especially for the fifth layer, are could be more clearly reconstructed (Figure 4Figure 4). 21 

When the sensitivity of the AEM method is too low, the contribution from the regularization may 22 

make dominate, and information might migrate from areas with higher measurement sensitivity 23 

(Vignoli et al. 2015). In contrast to the smooth regularization scheme, the sharp regularization method 24 

is designed to penalize smooth transitions, which eventually improves the reconstruction of the deeper 25 

sand bodies in the present study. Therefore, for the present studied case ,study the sharp regularization 26 

methodology should be preferred over smooth regularization, because the sharp constraints correspond 27 

better to the true actual  structures of the reference system (categorical deposits with sharp transitions 28 

between categorical deposits; Figure 4Figure 4). Moreover, because the sharp regularization 29 

methodology leads to improved reconstruction of subsurface structures, these models lead to greater 30 

accuracy and improvement of most groundwater model predictions (Figure 9Figure 9). 31 

 32 

The groundwater system considered here is relatively shallow, at least as seen from the perspective of 33 

the AEM system used in the demonstration example. This is evident from the transmitted EM signal 34 
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(Figure 3Figure 3). The background noise is primarily affecting the last time-gates (10-4-10-3s) of the 1 

low-moment and only f to a small degree the high moment time gates (even for low quality data). This 2 

implies that the resolution of the AEM data is generally high for the upper layers. Therefore, in the 3 

present case the upper layers of all the geophysical models (both SHI-smooth and SHI-sharp) are well-4 

resolved and to a large extent unaffected by AEM data quality (Figure 5Figure 5). However, the deep 5 

sand units are difficult to resolve because they give only a weak signature in the AEM data (Figure 6 

3Figure 3, Figure 5Figure 5). This is particularly true for the poorest AEM data quality cases where 7 

the late time gates for the low moment measurements are disturbed by background noise.  8 

6 Summary and Conclusion 9 

We present a workflow for automated efficient construction and calibration of large-scale groundwater 10 

models using a combination of airborne electromagnetic (AEM) data and hydrological data. , but 11 

oOther types of data could be integrated as well following the same procedure. First, the AEM data are 12 

inverted to form a 3D geophysical model.  Subsequently, the geophysical model is translated to a 3D 13 

model of hydraulic conductivity by using a spatially dependent petrophysical relationship for which 14 

the shape parameters are estimated by fitting the groundwater model to hydrological data. The 15 

estimated shape factors of the petrophysical relationship primarily work as translators between 16 

resistivity and hydraulic conductivity, but they can also compensate for structural defects in the model. 17 

The method is demonstrated for a synthetic case study where the subsurface consists of categorical 18 

deposits with different geophysical and hydraulic properties.  The AEM data are inverted using both 19 

smooth and sharp regularization constraints, resulting in two competitive geophysical models. 20 

Furthermore, the influence of the AEM data quality is tested by inverting the sharp geophysical 21 

models using data corrupted with four different levels of background noise. The resulting groundwater 22 

models are each calibrated on basis of head and discharge data, and their predictive performance is 23 

tested for four types of prediction beyond the calibration base. Predictions of a pumping well’s 24 

recharge area and groundwater age are applying the same stress situation as applied during hydrologic 25 

model calibration, while predictions of head and stream discharge is done for a changed stress 26 

situation. 27 

It is found that a geophysical model inverted with sharp constraints (SHI-sharp) leads to a more 28 

accurate groundwater model than one that is based on a geophysical model inverted with smooth 29 

constraints (SHI-smooth). The SHI-sharp model leads to an estimated hydraulic conductivity field of 30 

greater accuracy and to improvement of most groundwater model predictions. The explanation is that 31 

the reference system (like many real hydrogeologic systems) is characterized by sharp transitions 32 
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between the categorical deposits; this is resolved better by the SHI-sharp resistivity model than by the 1 

SHI-smooth model.  2 

Finally, it is shown that prediction accuracy improves with AEM data quality for predictions of 3 

recharge area, head change and stream discharge, while the accuracy appears to be unaffected not 4 

improve for prediction of groundwater age, which cannot be predicted accurately even with high 5 

quality geophysical data.   6 
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Table 1. Model structural accuracy comparison for groundwater model using both smooth or sharp 1 

geophysical models and different background noise levels. The results are averaged over the 20 2 

system realizations. A value of 1.0 means that the model’s hydraulic conductivity field is in good 3 

agreement with the reference field; a value of 0.0 means no agreement (see body text for exact 4 

definition of “structural accuracy”). 5 

  6 
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 1 

 2 

Figure 1. Conceptual flowchart for the sequential hydrogeophysical inversion. First step (box 1): 3 

geophysical inversion. Second step (box 2), groundwater model calibration where shape factors of the 4 

petrophysical relationship is estimated using hydrological data. Third step (box 3): The calibrated 5 

groundwater model is used for predictive modeling.     6 

 7 

 8 
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 1 

Figure 2. A map of locations of boreholes, a pumping well, pilot points, head recovery prediction and 2 

location of a geophysical cross-section. 3 

 4 
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 1 

Figure 3. AEM sounding data corrupted by four levels of background noise. The values on top of each 2 

subplot corresponds to the noise level at 1 ms and to the b-value in eq. 6. The black dashed curves 3 

indicate the background noise levels, low and high moment earth responses are illustrated as red and 4 

blue error bars, respectively, and the black error bars illustrate data which are removed by the data 5 

processing   6 

 7 
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 1 

Figure 4.  The figure shows an East-West cross section of resistivity for the reference system 2 

(realization number 20), and inversion results for Smooth and Sharp inversion, respectively. The last 3 

row shows at histogram of resistivity for each layer. The black curve is the resistivity distribution for 4 

the reference system, the red curve shows the resistivity distribution for the smooth inversion, and 5 

finally the green curve shows the resistivity distribution for the smooth inversion.  6 

 7 
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 1 

Figure 5. Scatterplot of true and estimated electrical resistivity field for smooth geophysical inversion 2 

and sharp geophysical inversion for different data quality of the AEM data for model realization 3 

number 20. On top of each window is Pearson correlation coefficient (PCC) calculated.  4 
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 1 

Figure 6. Measurement objective function value obtained for the various groundwater model 2 

calibration cases, while 𝐸[Φ𝑚] is the mean value across all 20 different system realizations. The 3 

dashed line indicates the expected target value for the model calibrations. 4 
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 1 

Figure 7. East-West cross-section for model realization number 20. a) shows the parameters fields for 2 

the SHI-smooth-3 calibrated model. b) Shows the parameters fields for the SHI-sharp-3 calibrated 3 

model. First row shows the reference K-field, second row shows the estimated K-field, third and 4 

fourth row shows shape factors of the petrophysical relationship for alfa and beta, respectively.   5 

 6 

 7 

 8 
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 1 

Figure 8. Scatterplot of true and estimated hydraulic conductivity field for smooth geophysical 2 

inversion and sharp geophysical inversion for different data quality of the AEM data for model 3 

realization number 20. On top of each window is Pearson correlation coefficient (PCC) calculated.  4 
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 1 

Figure 9. Scatter plots of calibrated model prediction versus the reference model prediction using 2 

results from the 20 system realizations. The plots in the first and second  columns isare the average 3 

groundwater age and recharge area, respectively, to of the pumping well. Column three for head, the 4 

second column is for head recovery when pumping has stopped in the observation well shown in 5 

Figure 10, and the fourth third column four is for groundwater discharge to the river after pumping has 6 

stoppedceased, fourth and fifth column is the average age and recharge area to the pumping well. ME 7 

and MAE are used to quantify the prediction error on basis of the 20 realizations. 8 
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 1 

Figure 10. MAE contour map for head recovery prediction. a) For predictions using the SHI-smooth 2 

models.  b) For predictions using the SHI-smooth models. c) Difference between maps shown in a) 3 

and b). Red dot marks the location of the observation well for the head recovery prediction shown in 4 

Figure 9Figure 9. The red cross marks the location of the pumping well. 5 

 6 



43 

 

 1 

Figure 11. Prediction error as function of the background noise on the geophysical data.  The black dot 2 

is the SHI-smooth models using a background noise level of 3nV/m2. The red dots are the SHI-sharp 3 

models as a function of background noise level. 4 
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