The effect of chalk representation in land surface modelling

Mostaquimur Rahman¹, Rafael Rosolem¹,²

¹Department of Civil Engineering, University of Bristol, Bristol, UK
²Cabot Institute, University of Bristol, Bristol, UK

Abstract

Modelling and monitoring of hydrological processes in the unsaturated zone of the chalk, which is a porous medium with fractures, is important to optimize water resources assessment and management practices in the United Kingdom (UK). However, efficient simulations of water movement through chalk unsaturated zone is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the subsurface. Complex hydrology in the chalk aquifers may also influence land surface mass and energy fluxes because processes in the hydrological cycle are connected via non-linear feedback mechanisms. In this study, it is hypothesized that explicit representation of chalk hydrology in a land surface model influences land surface processes by affecting water movement through the shallow subsurface. In order to substantiate this hypothesis, a macroporosity parameterization is implemented in the Joint UK Land Environment Simulator (JULES), which is applied on a study area encompassing the Kennet catchment in the Southern UK. The simulation results are evaluated using field measurements and satellite remote sensing observations of various fluxes and states in the hydrological cycle (e.g., soil moisture, runoff, latent heat flux) at two distinct spatial scales (i.e., point and catchment). The results reveal the influence of representing chalk hydrology on land surface mass and energy balance components such as surface runoff and latent heat flux via subsurface processes (i.e., soil moisture dynamics) in JULES, which corroborates the proposed hypothesis.

Keywords: Chalk hydrology, macroporosity, land surface modelling, bulk conductivity model.
1. Introduction

Chalk can be described as a fine-grained porous medium traversed by fractures [Price et al., 1993]. The unsaturated zone of chalk aquifers play an important role on various important processes (e.g., recharge) of the hydrological cycle in the UK [e.g., Lee et al., 2006; Ireson et al., 2009]. Therefore, both monitoring [e.g., Bloomfield, 1997; Ireson et al., 2006] and modelling [e.g., Brouyère, 2006; Ireson and Butler, 2011, 2013; Sorensen et al., 2014] strategies have been adapted previously to understand the governing hydrological processes in the chalk unsaturated zone.

In chalk, the matrix provides porosity and storage capacity, while the fractures greatly enhance permeability [Van den Daele et al., 2007]. Water movement through chalk matrix is slow due to its relatively high porosity (0.3-0.4) and low permeability (10^{-9}-10^{-8} ms^{-1}). A fractured chalk system, in contrast, conducts water at a considerably higher velocity because of relatively high permeability (10^{-5}-10^{-3} ms^{-1}) and low porosity (of the order 10^{-4}) of fractures [Price et al., 1993].

Simulating water flow through the matrix-fracture system of chalk has been the subject of research for some time. Both conceptual [e.g., Price et al., 2000; Haria et al., 2003] and physics-based [e.g., Mathius et al., 2006; Ireson et al., 2009] models have been proposed previously to describe water flow through chalk unsaturated zone. The physics-based models mentioned above were developed based on dual-continua approach and required relatively large number of parameters that were calibrated via inverse modelling using observed soil moisture and matric potential data.

The aforementioned studies revealed the importance of representing the matrix-fracture flow nature in simulating subsurface hydrological processes in chalk-dominated aquifers. In recent years, representation of chalk has also gained attention in land surface modelling. Gascoin et
al. [2009] applied the Catchment Land Surface Model (CLSM) over the Somme River basin in northern France. A linear reservoir was included in the TOPMODEL based runoff formulation of CLSM to account for the contribution of chalk aquifers to river discharge. Le Vine et al. [2016] applied the Joint UK Land Environment Simulator (JULES [Best et al., 2011]) over the Kennet catchment in southern England to evaluate the hydrological limitations of land surface models. In that study, two intersecting Brooks and Corey curve was proposed, which allowed a dual curve soil moisture retention representation for the two distinct flow domains of chalk (i.e., matrix and fracture) in the model. Considering this dual Brooks and Corey curve, a three-dimensional groundwater flow model (ZOOMQ3D [Jackson and Spink, 2004]) was coupled to JULES to demonstrate the strong influence of representing chalk hydrology and groundwater flow on simulated soil moisture and runoff.

The above mentioned studies suggest that the representation of chalk affects the hydrological processes simulated by land surface models. Because the processes of the hydrological cycle are connected via non-linear feedback mechanisms [e.g., Kollet and Maxwell, 2008; Rahman et al., 2014], the representation of water flow through the matrix-fracture system of chalk may also influence simulated land surface energy fluxes (e.g., latent heat flux), which has not yet been explicitly discussed. In this context, our hypothesis is that a consistent representation of water movement through chalk in a land surface model affects the exchange of mass and energy fluxes at the surface, which may be important to consider in water resources assessment and management practices (e.g., flood and drought prediction over chalk-dominated areas). In order to substantiate this hypothesis, a macroporosity parameterization, namely the Bulk Conductivity (BC) model is implemented in JULES and evaluated at two distinct spatial scales (i.e., point and catchment). At the point-scale, the BC model is evaluated against observed soil moisture data. The proposed model is then applied over the Kennet catchment in the Southern England and the fluxes and states of the hydrological cycle
are simulated for multiple years to demonstrate the importance of representing chalk hydrology, which supports the proposed hypothesis.

2. A model of flow through chalk unsaturated zone

In this study, the Bulk Conductivity (BC) model based on the work by Zehe et al. [2001] is incorporated to represent the flow of water through the fractured chalk unsaturated zone. According to this approach, if the relative saturation (S) exceeds a certain threshold (S_0) at a soil grid, the saturated hydraulic conductivity (K_s) is increased to a bulk saturated hydraulic conductivity (K_{sb}) as follows

$$K_{sb} = K_s + K_s f_m \frac{S - S_0}{1 - S_0} \quad \text{if } S > S_0 \quad (1)$$

with $S = \frac{\theta - \theta_r}{\theta_s - \theta_r}$

where f_m is a macroporosity factor (-), θ is soil moisture (m3m$^{-3}$), θ_s is soil moisture at saturation (m3m$^{-3}$), and θ_r is the residual soil moisture (m3m$^{-3}$). Note that S ranges from zero in case of completely dry soils to one for fully wet soils.

Equation 1 indicates that the onset of water flow through the fracture system of chalk is controlled by the threshold S_0. According to Wellings and Bell [1980], water flow through fractures dominates over matrix flow in chalk when the pressure head in soil becomes higher than -0.50 mH$_2$O. In this study, $S_0 = 0.80$, which is based on observed soil moisture-matric potential relationship in the study area (Figure S1).

In Zehe et al. [2001], f_m was defined as the ratio of the saturated water flow rate in all macropores in a model element to the corresponding value in soil matrix, which can be determined based on density and length of fractures at small scales. In addition, f_m has also been considered as a calibration parameter previously [e.g., Blume, 2008; Zehe et al., 2013]. In this study, we define f_m as a characteristic soil property reflecting the influence of fractures.
on soil water movement [Zehe and Blöschl, 2004], and estimate it from the relative difference of permeability between chalk matrix and fractured chalk system that can be of the order 10^5 according to Price et al. [1999]. Consequently, we consider a macroporosity factor of $f_m = 10^5$ in this study.

3. Methods

3.1. Study area

The study area encompasses the Kennet catchment located in the Southern England with an area of about 1033 km2 (Figure 1a). Kennet, in general, is rural in nature with scattered settlements and has a maximum altitude of approximately 297 m (Above Ordnance Level). River Kennet discharges into the North Sea through London. Major tributaries of this river are Lambourn, Dun, Enborne, and Foudry Brook. An average annual rainfall of approximately 760 mm was recorded in the catchment over a 40 year period from 1961-1990.

Solid geology of the Kennet catchment is dominated by chalk, which is overlain by thin soil layer. While lower chalk outcrops along the northern catchment boundary, progressively younger rocks are found in the southern part. In general, surface runoff production is very limited over the regions of the catchment where chalk outcrops. The flow regime shows a distinct characteristics of slow response to groundwater held within the chalk aquifer [Le Vine et al., 2016]. According to Ireson and Butler [2013], the unsaturated zone of chalk shows slow drainage over summer and bypass flow during wet periods in this catchment.

3.2. Field measurements and remotely sensed data

Table 1 summarizes the field measurements and remote sensing data used in this study. We use in-situ soil moisture and runoff measurements along with remotely sensed latent heat flux (LE) data to assess model performance in simulating the mass and energy balance components of the hydrological cycle. Point scale soil moisture measurements at two
adjacent sites (~20 m apart) at the Warren Farm (Figure 1) were provided by Centre for Ecology and Hydrology (CEH). A Didcot neutron probe was used at these locations to measure fortnightly soil moisture at different depths below land surface (10 cm apart down to 0.8 m, 20 cm apart between 0.8-2.2 m, and 30 cm apart between 2.2-4 m) [Hewitt et al., 2010].

The National River Flow Archive (NRFA) coordinates discharge measurements from gauging station networks across UK. These networks are operated by Environmental Agency (England), Natural Resources Wales, the Scottish Environment Protection Agency, and Rivers Agency (Northern Ireland). We use discharge measurement provided by NRFA to calculate the runoff ratio over the Kennet catchment in this study.

The MOD16 product of the Moderate Resolution Imaging Spectroradiometer (MODIS) is a part of NASA/EOS project that provides estimation of global terrestrial LE. The LE estimation from MOD16 is based on remotely sensed land surface data [e.g., Mu et al., 2007]. In this study, 8-day and monthly LE data products from MODIS is used to evaluate the model’s performance in simulating land surface energy fluxes.

3.3. Land surface model

In this study, we use the Joint UK Land Environment Simulator (JULES [e.g., Best et al., 2011; Clark et al., 2011]) version 4.2. JULES is a flexible modelling platform with a modular structure aligned to various physical processes developed based on the Met Office Surface Exchange Scheme (MOSES [e.g., Cox et al., 1999; Essery et al., 2003]). Meteorological data including precipitation, incoming short- and longwave radiation, temperature, specific humidity, surface pressure, and wind speed are required to drive JULES. Each grid box in JULES can comprise nine surface types (broadleaf trees, needle leaf trees, C3 grass, C4 grass,
shrubs, inland water, bare soil, and ice) represented by respective fractional coverage. Each
surface type is represented by a tile and a separate energy balance is calculated for each tile.

Subsurface heat and water transport equations are solved based on finite-difference
approximation in JULES as described in Cox et al. [1999]. Moisture transport in the
subsurface is described by the finite difference form of Richards’ equation. The vertical soil
moisture flux is calculated using the Darcy’s law. While the top boundary condition to solve
Richards’ equation is infiltration at soil surface, the bottom boundary condition in JULES is
free drainage that contributes to subsurface runoff.

Surface runoff is calculated by combining the equations of throughfall and grid box average
infiltration in JULES. In order to direct the generated runoff to a channel network, river
routing is implemented based on the discrete approximation of one-dimensional kinematic
wave equation [e.g., Bell et al., 2007]. In this approach, river network is derived from the
digital elevation model (DEM) of the study area and different wave speeds are applied to
surface and subsurface runoff components and channel flows [e.g., Bell and Moore, 1998]. A
return flow term accounts for the transfer of water between subsurface and land surface [e.g.,
Dadson et al., 2010, 2011].

3.4. Model configurations and input data

3.4.1. Point scale

At the point scale, JULES is configured to simulate the mass and energy fluxes at Warren
Farm (Figure 1). A total subsurface depth of 5 m is considered in the model with a vertical
discretization ranging from 10 cm at the land surface to 50 cm at the bottom of the model
domain. Note that this discretization is consistent with the soil moisture measurement depths
mentioned in section 3.2. The vegetation type is implemented as C3 grass using the default
parameters in JULES. The soil hydraulic properties are estimated based on texture (Table 2),
which is predominantly loamy at Warren Farm. The saturation-pressure head relationship is described using the Van Genuchten \cite{Van Genuchten, 1980} model with parameter values (Table 2) obtained from \textit{Schaap and Leij} [1998] in the model.

Point scale simulations were performed over 2 consecutive years from 2003-2005 at an hourly time step. Except for precipitation, hourly atmospheric forcing data to drive JULES was obtained from an automatic weather station operated by the CEH at Warren Farm. In order to estimate hourly precipitation data to run JULES, rain gauge measurements by the Met Office \cite{Met Office, 2006} were used. Inverse distance interpolation technique \cite[e.g.][]{Garcia et al., 2008, Ly et al., 2013} was applied on rainfall measurements from 13 gauges closest to Warren Farm (distance varies from 25-60 km) to obtain hourly precipitation for the point scale simulations.

3.4.2. Catchment scale

At the catchment scale, JULES is configured over the study area (Figure 1) with a uniform lateral grid resolution of 1 km with 70 x 40 cells in x and y dimensions, respectively. The vertical discretization is identical to that of the point scale simulations described in the previous section. Spatially distributed vegetation type information for the study area (Figure 1b) is obtained from the Land Cover Map 2007 (LCM2007) dataset \cite[e.g.,][]{Morton et al., 2011}. Harmonized World Soil Database (HWSD) from the Food and Agricultural Organization of UNO (FAO) is used to obtain the texture of different soil types in the region (Figure 1c). Van Genuchten model, with parameter values (Table 2) obtained from \textit{Schaap and Leij} [1998] is used to represent the saturation-pressure head relationship for different soil types, which is identical to the point scale simulations.

Simulations were performed over 5 consecutive years from 2006-2011 at the catchment scale. Note that the simulation periods of catchment and point scale (2003-2005) does not coincide.
due to the availability of soil moisture measurements described in section 3.2. Spatially distributed meteorological data from the Climate, Hydrology, and Ecology research Support System (CHESS) was used to obtain the atmospheric forcing to drive JULES. The CHESS data includes 1 km resolution gridded daily meteorological variables [Robinson et al., 2015]. This daily data is downscaled using a disaggregation technique described in Williams and Clark [2014] to obtain hourly atmospheric forcing. The flow direction required for river routing is extracted from the USGS HydroSHEDS digital elevation data [Lehner et al., 2008].

3.5. Setup of numerical experiments

We consider two different model configurations, namely, default and macro (Figure 2), to explore the influence of chalk hydrology on simulated land surface processes in JULES. The default configuration corresponds to the standard parameterizations of JULES that does not represent chalk hydrology in the model. In this configuration, each soil column in JULES is considered to be vertically homogeneous with the soil properties defined in Table 2, which is motivated by the Met Office JULES Global Land 4.0 configuration described in Walters et al. [2014]. The macro configuration, in contrast, explicitly represents chalk hydrology in the model. The macro setup modifies the default configuration by applying chalk hydraulic properties (Table 3) from 30 cm below land surface to the bottom of the model domain (i.e. 500 cm). The BC model is applied in the chalk layers (30-500 cm) to simulate water flow in the macro configuration. Therefore, soil columns in the model can be divided into topsoil (0-30 cm) and chalk (30-500 cm) in macro. Note that except for this inclusion of chalk, default and macro configurations are identical in terms of model set up and input data.

The topsoil depth of 30 cm is defined based on several augured soil samples collected during a field campaign at Warren Farm in 2015 (Figure 2). This depth is corroborated by additional information from the British Geological Survey (BGS) operated borehole records.
which show that topsoil depths vary from 10-40 cm over the study area. We therefore apply the macro configuration assuming a spatially homogeneous 30 cm topsoil depth for both point and catchment scale simulations.

4. Results and discussion

4.1. Point scale simulations

Figure 3 shows observed and simulated volumetric soil moisture from the default model configuration at Warren Farm from 2003-2005. This figure shows that simulated soil moisture at shallow soil layers (up to 50 cm) compares reasonably well with the observed data. However, in the deeper layers, the model considerably underestimates soil moisture.

Figure 4 compares observed and simulated volumetric soil moisture from the macro configuration at Warren Farm over the simulation period. This figure shows that especially in the deeper soil layers, the agreement between observed and simulated soil moisture improves remarkably relative to the default configuration throughout the simulation period. Notice again that the default and macro configurations are identical in terms of model setup and inputs except for the consideration of chalk. Therefore, the differences in soil moisture simulations between the two model configurations can be attributed to the representation of chalk hydrology in JULES.

Figure 5 presents the relative bias ($\Delta \mu$, see Appendix) of simulated soil moisture from the two model configurations at Warren Farm for various depth ranges. In the soil layers (0-30 cm), both default and macro configurations reproduces soil moisture reasonably well with the latter showing slightly better agreement with observations. However, in the chalk layers (30-500 cm), default fails to reproduce the soil moisture dynamics efficiently, simulating substantially dry conditions, which are observed from the mean relative bias ($\Delta \mu_{\text{mean}}$) of
$\Delta \mu_{\text{mean}} > 0.28$ for this configuration. In contrast, the \emph{macro} configuration remarkably improves the agreement with the observed soil moisture profile in the chalk layers with the largest calculated $\Delta \mu_{\text{mean}} = -0.02$. Therefore, the inclusion of the BC model in JULES appears to improve the performance of overall soil moisture simulation at Warren Farm especially in the chalk layers.

In order to explore the reason of the discrepancies between simulated soil moisture from the two model configurations, Figure 6 shows S and water flux (w_f) profiles along with drainage through the bottom boundary (d_b) of \emph{default} and \emph{macro} for the entire simulation period. Figure 6b plots the contours of daily accumulated w_f through chalk (30-500 cm) over daily average S for the \emph{macro} configuration (S_{macro}). Figure 6c shows S (S_{default}) and w_f through the same profile for the \emph{default} configuration. A comparison between Figure 6b and 6c reveals that \emph{default} is considerably drier compared to \emph{macro} ($S_{\text{default}} < S_{\text{macro}}$) throughout the profile, which is consistent with Figure 5. Figure 6b shows notable flux through the profile following strong precipitation events (Figure 6a), indicating fast water flow through subsurface in the \emph{macro} configuration (especially in winter). The \emph{default} configuration, on the other hand, shows relatively slower movement of water in the subsurface (Figure 6c).

According to the BC model, fracture flow in chalk is activated in a soil grid if S exceeds S_0 (defined as 0.80), which is achieved predominantly during winter following strong precipitation events because of the prevailing wet conditions. Therefore, the activation of fracture flow explains the fast water movement patterns after strong precipitation events observed in Figure 6b. This result is consistent with Ireson \emph{et al.} [2009], who showed that fracture flow through chalk dominates at Warren Farm during wet periods. Compared to the \emph{macro} configuration, \emph{default} does not show fast water flow to the deeper soil layers because the latter does not represent the matrix-fracture flow nature of chalk in JULES.
Figure 6d compares daily sum of d_b from the two configurations. The **macro** configuration generally shows lower drainage compared to **default** with an exception in March 2003. Because of the gravity drainage lower boundary condition, water flow through the bottom of the model domain depends on K_s at the deepest soil layer in JULES. In chalk (**macro** configuration), K_s at the deepest soil layer is smaller compared to **default** (loam soil) especially when $S_0 < 0.8$ (Equation 1), which explains the lower drainage flux in case of the Chalk configuration. The reason of higher d_b in **macro** compared to **default** in March 2003 is the strong precipitation events (Figure 6a) causing considerable fracture flow and $S > 0.8$ at the bottom of the model domain (Figure 6b).

Figure 6 outlines the differences in simulated subsurface processes by the two model configurations. Fracture flow in chalk is activated according to the BC approach during wet periods that allows recharge at deeper soil layers in **macro**, which is absent in case of the **default** configuration. Moreover, the **default** configuration generally shows higher drainage flux through the lower boundary compared to **macro**. The combination of relatively low recharge and high drainage through lower boundary is the reason of the drier conditions simulated by **default**. In contrast, the **macro** configuration is characterized by fast recharge at the deeper soil layers through fractures and slow drainage through the bottom because of considerably lower K_s compared to **default**, which is the reason of relatively higher simulated soil moisture by this configuration that compares well with observations.

Several previous studies have discussed the influence of root zone soil moisture on land surface mass and energy balance components [e.g., Wetzel and Chang, 1987; Chen and Hu, 2004]. Therefore, the differences in soil moisture from two configurations discussed above may affect the land surface mass and energy fluxes in the model. In order to investigate this effect, Figure 7 shows the difference between daily average latent heat flux (LE) time series from **default** and **macro** configurations ($LE_{default}$ and LE_{macro}, respectively) at Warren Farm.
over the simulation period. This figure shows that the \textit{default} configuration generally simulates lower \textit{LE} compared to \textit{macro} especially in the warmer months of the year.

The underestimation of \textit{LE} in Figure 7 can be attributed to the differences in simulated soil moisture by the two configurations (Figure 3 and 4). In winter, abundant soil moisture is available in both \textit{default} and \textit{macro} to meet the relatively low evapotranspiration (ET) demand due to the prevailing energy-limited conditions. Therefore, Figure 7 shows negligible differences between \textit{LE}_{\text{default}} and \textit{LE}_{\text{macro}} in winter. However, in summer, the discrepancies between soil moisture from the two model configurations result in marked differences between \textit{LE}_{\text{default}} and \textit{LE}_{\text{macro}} because of the increased ET demand, which is consistent with previous studies [e.g., Rahman et al., 2016].

In this section, subsurface and land surface processes simulated by \textit{default} and \textit{macro} configurations are discussed at the point scale. The simulation results show notable differences in soil moisture and \textit{LE} from the two configurations. Because the only difference between \textit{default} and \textit{macro} configurations is the representation of the chalk hydrology, it appears that a consistent representation of chalk in JULES affects land surface processes via subsurface hydrodynamics supporting our hypothesis. In the next section, we test this hypothesis regionally by evaluating the mass and energy fluxes of the hydrological cycle at the catchment scale.

4.2. Catchment scale simulations

Figure 8 plots spatially averaged 8-day composites of \textit{LE} from MODIS (\textit{LE}_{\text{MOD}}) against \textit{LE}_{\text{default}} and \textit{LE}_{\text{macro}} over the Kennet catchment. In this figure, the agreement between simulated \textit{LE} and \textit{LE}_{\text{MOD}} is evaluated using the coefficient of determination (R^2, see Appendix) that outlines the differences between \textit{LE} simulated by the two model configurations. Comparison between \textit{LE}_{\text{default}} and \textit{LE}_{\text{MOD}} shows a coefficient of determination
of $R^2_{\text{default}} = 0.78$. The agreement between simulated LE and LE_{MOD} improves in case of

macro configuration, which is reflected by an increased coefficient of determination of $R^2_{\text{macro}} = 0.82$.

Figure 8 shows differences between LE_{default} and LE_{macro} especially for relatively high LE, indicating discrepancies especially during the warmer months of the year. Figure 9a presents spatially averaged time series of monthly LE_{MOD}, LE_{default} and LE_{macro}. This figure shows negligible differences in LE from the two configurations during the colder months of the year, while differences between LE_{default} and LE_{macro} increases substantially in summer.

Consequently, the default configuration underestimates LE especially in summer compared to LE_{MOD}, which is improved when chalk hydrology is explicitly considered in JULES in the macro configuration.

Figure 9b plots spatially averaged time series of daily S_{default} and S_{macro} over the Kennet catchment. Note that average S at the first 8 vertical model layer (0-100 cm below land surface) is presented in this figure, which highlights the difference in root zone moisture content from the two model configurations. Figure 9b shows relatively lower S simulated by the default configuration compared to S_{macro}. In JULES, LE depends on surface conductance to evaporation, which is controlled by the mean soil moisture in the root zone. Therefore, the differences in S_{default} and S_{macro} is consistent with the underestimation of LE by the macro configuration (Figure 9a). Note that despite the differences in S between the two configurations over the entire simulation period, Figure 9a shows significant LE differences only in summer. This is due to the prevailing energy limited conditions during the colder months over the region, which was discussed in the previous section. Figure 9 suggest that representing chalk hydrology in JULES considerably influences simulated LE by modifying shallow soil moisture at the catchment scale, also supporting our hypothesis.
Table 4 compares observed and simulated daily average runoff from the two model configurations over the Kennet catchment from 2006-2011. The runoff ratio (RR, see Appendix), which is equal to the mean volume of flow divided by the volume of precipitation [e.g., Kelleher et al., 2015], assesses the partitioning of precipitation into runoff over the catchment. The default configuration ($RR = 0.82$) shows considerably higher RR compared to observation ($RR = 0.40$), indicating overestimation of runoff by the model. Including chalk hydrology in the model remarkably improves the agreement between observed and simulated mean runoff over the Kennet catchment, which is assessed from a runoff ratio of $RR = 0.38$ for the macro configuration.

In Table 4, the relative bias ($\Delta \mu$) of 1.04 between observed and simulated runoff from the default configuration again indicates the overestimation by the model. In comparison, macro shows a relative bias ($\Delta \mu = -0.07$), indicating improvement between observed and simulated mean runoff volume compared to default. The relative difference in standard deviation ($\Delta \sigma$, see Appendix) compares the magnitude of observed and simulated runoff in Table 3. This comparison shows that the default configuration overestimates the variability of runoff over the Kennet catchment ($\Delta \sigma = 2.04$), which is improved in case of macro ($\Delta \sigma = 0.56$).

In JULES, moisture from soil and canopy water storage is depleted to meet the ET demand. Additionally, surface runoff generation depends on canopy water storage in the model [Best et al., 2011]. Because of this connection between ET and surface runoff generation via canopy water storage, the differences in runoff demonstrated in Table 4 can be attributed to the disagreement between LE_{default} and LE_{macro} demonstrated in Figure 9a. Therefore, it appears that LE in JULES is affected by the inclusion of chalk hydrology, which consequently influences surface runoff generation corroborating our hypothesis.

5. Summary and Conclusions
In this study, we hypothesized that a consistent representation of chalk hydrology affects land surface mass and energy balance components via subsurface hydrodynamics simulated by a land surface model. In order to support this hypothesis, the Bulk Conductivity (BC) model that simulates water flow through the matrix-fracture system of chalk was implemented in the Joint UK Land Environment Simulator (JULES). This model was applied on the Kennet catchment located in the southern UK to simulate the mass and energy fluxes of the hydrological cycle for multiple years. Two model configurations, namely default and macro were considered with the latter representing chalk hydrology in JULES using the BC model. The proposed BC model is a single continuum approach of modelling preferential flow [e.g., Beven and Germann, 2013] that involves only 2 parameters, namely macroporosity factor (f_m) and relative saturation threshold (S_0). In addition, these parameters can be estimated from the physical properties of chalk in this study. Despite its simplicity, the BC model was able to reproduce the hydrological processes in chalk without model calibration, which was assessed by comparing the model results with observations. The discrepancies between the measured and simulated fluxes and states can be improved by a comprehensive model calibration, which is out of the scope of this study and should be the subject of future research. The results showed that JULES generally underestimates root zone soil moisture without a consistent representation of chalk hydrology. Consequently, LE is underestimated by the model without chalk representation. The effect of chalk hydrology was also observed on runoff, which was attributed to the interconnection between LE and runoff generation in the model. Therefore, representing the matrix-fracture flow nature of chalk in a land surface model affects land surface processes via shallow soil moisture dynamics, which supports the proposed hypothesis.
Habtes et al. [2010] argued that flood flow in chalky catchments is influenced by the hydrological processes in the unsaturated zone. Implementing the BC model in JULES, this study showed that representing chalk hydrology significantly affects subsurface and land surface mass and energy fluxes. Therefore, the matrix-fracture flow nature of the aquifer may be important to consider in flood forecasting in chalk-dominated catchments.

Leeper et al. [2011] discussed the influence of shallow soil moisture on simulated atmospheric processes over karst landscapes because of the subsurface-land surface connection in the terrestrial system. In this study, we demonstrated that considering chalk hydrology considerably affects land surface mass and energy fluxes via subsurface hydrodynamics. This effect may be important to consider in numerical weather prediction models over the regions dominated by chalk because of the karst behaviour of chalk aquifers [e.g., MacDonald et al., 1998; Hartmann et al., 2014].

Le Vine et al. [2016] argued that the deep-groundwater system in a chalk-dominated catchment may influence the mass and energy balance components of the hydrological cycle, which is not considered in this study. The reason for that is JULES simulates water flow at shallow subsurface considering free drainage lower boundary condition and does not allow lateral movement of water between the soil columns. The effect of groundwater dynamics can be represented in JULES by coupling a three-dimensional groundwater flow model [e.g., Le Vine et al., 2016; Maxwell and Miller, 2005], which will be addressed in future.

Acknowledgements

We gratefully acknowledge the support by the “A Multi-scale Soil moisture Evapotranspiration Dynamics study – AMUSED” project funded by Natural Environment Research Council (NERC) grant number NE/M003086/1. The authors would also like to
thank Ned Hewitt and Jonathan Evans from the Centre for Ecology and Hydrology (CEH) for providing the data for the point-scale analyses at the Warren Farm. Finally, we would like to thank Miguel Rico Ramirez (University of Bristol) for helping preparing the precipitation data from the rain gauge network used for the point-scale simulations, Thorsten Wagener (University of Bristol) for his valuable suggestions on model diagnostics, and Joost Iwema (University of Bristol) for helping with the soil samples collected during the 2015 field work campaign.

Appendix

Definition of Statistical Metrics

Coefficient of determination (R^2) for observation $y = y_1, \ldots, y_n$ and prediction $f = f_1, \ldots, f_n$ is defined as

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where, SS_{res} is the residual sum of square and SS_{tot} is the total sum of square. SS_{res} and SS_{tot} are defined as

$$SS_{res} = \sum_{i=1}^{n}(y_i - f_i)^2$$

and

$$SS_{tot} = \sum_{i=1}^{n}(y_i - \bar{y})^2$$

with \bar{y} being the mean of y.

Runoff ratio (RR) assesses the portion of precipitation that generates runoff over the catchment. RR is defined as

$$RR = \frac{\mu_{runoff}}{\mu_{rain}}$$

where μ_{runoff} is mean runoff and μ_{rain} is mean precipitation [e.g., Kelleher et al., 2015].
Relative bias (∆µ) between observed and simulated time series can be defined as

$$\Delta \mu = \frac{\mu_{\text{mod}} - \mu_{\text{obs}}}{\mu_{\text{obs}}}$$

where μ_{obs} and μ_{mod} are the mean of observed and simulated time series, respectively. While the optimal value of $\Delta \mu$ is zero, negative (positive) values indicate an underestimation (overestimation) by the model [e.g., Gudmundsson et al., 2012].

Relative difference in standard deviation (∆σ) between observed and simulated time series can be defined as

$$\Delta \sigma = \frac{\sigma_{\text{mod}} - \sigma_{\text{obs}}}{\sigma_{\text{obs}}}$$

where σ_{obs} and σ_{mod} are the standard deviation of observed and simulated time series, respectively [e.g., Gudmundsson et al., 2012].
References

Essery, R., M. Best, and P. Cox (2001), MOSES 2.2 technical documentation (Hadley Centre technical note 30), Hadley Centre, Met Office, UK.

Lehner, B., K. Verdin, and A. Jarvis (2008), New global hydrography derives from spaceborne elevation data, EOS, Transactions, AGU, 89(10), 93-94.

Williams, K., and D. Clark (2014), Disaggregation of daily data in JULES (Hadley Centre technical note 96), Hadley Centre, Met Office, UK.

Tables

Table 1. Field measurements and remote sensing data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Spatial scale</th>
<th>Temporal extent</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil moisture</td>
<td>Point<sup>a</sup></td>
<td>2003-2005</td>
<td>15 day</td>
<td>N. Hewitt (CEH)</td>
</tr>
<tr>
<td>Latent heat flux</td>
<td>Global</td>
<td>2006-2011</td>
<td>8 day, 1 month</td>
<td>MODIS</td>
</tr>
<tr>
<td>Discharge</td>
<td>Point<sup>b</sup></td>
<td>2006-2011</td>
<td>1 day</td>
<td>NRFA</td>
</tr>
</tbody>
</table>

^aMeasured at Warren Farm.
^bLocations are shown in Figure 1a.

Table 2. Hydraulic properties for different soil types (refer to Figure 1c). Saturated hydraulic conductivity (K_s) and porosity data are obtained from Rawls et al. [1982]. The Van Genuchten parameters are acquired from Schaap and Leij [1998].

<table>
<thead>
<tr>
<th>Texture</th>
<th>K_s (m s$^{-1}$)</th>
<th>Porosity (-)</th>
<th>α (m$^{-1}$)</th>
<th>n (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>3.7x10$^{-6}$</td>
<td>0.463</td>
<td>3.33</td>
<td>1.56</td>
</tr>
<tr>
<td>Silt loam</td>
<td>2.0x10$^{-6}$</td>
<td>0.50</td>
<td>1.2</td>
<td>1.39</td>
</tr>
<tr>
<td>Clay</td>
<td>1.7x10$^{-7}$</td>
<td>0.475</td>
<td>2.12</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 3. Hydraulic properties of chalk.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s (m s$^{-1}$)</td>
<td>1.85x10$^{-7}$</td>
<td>Price et al., 1993</td>
</tr>
<tr>
<td>Porosity (-)</td>
<td>0.40</td>
<td>Price et al., 1993</td>
</tr>
<tr>
<td>α (m$^{-1}$)</td>
<td>3.4</td>
<td>Le Vine et al., 2016</td>
</tr>
<tr>
<td>n (-)</td>
<td>1.4</td>
<td>Le Vine et al., 2016</td>
</tr>
</tbody>
</table>

Table 4. Comparison between observed and simulated daily average runoff from the two configurations over the Kennet catchment.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Observed</th>
<th>Simulated (default)</th>
<th>Simulated (macro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>0.40</td>
<td>0.82</td>
<td>0.38</td>
</tr>
<tr>
<td>$\Delta \mu$</td>
<td>-</td>
<td>1.04</td>
<td>-0.07</td>
</tr>
<tr>
<td>$\Delta \sigma$</td>
<td>-</td>
<td>2.04</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Location (a), vegetation cover (b), and soil texture (c) over the study area. The red line in (a) outlines the Kennet catchment boundary, while the river network is shown in blue. The black triangle in (a) shows the location of the discharge gauging station at the catchment outlet.
Figure 2. Example of soil profiles collected at Warren Farm during a field campaign in 2015 (a), and the two model configurations (b).
Figure 3. Observed and simulated (*default configuration*) volumetric soil moisture from Warren Farm.
Figure 4. Observed and simulated (macro configuration) volumetric soil moisture from Warren Farm.
Figure 5. Box plot of relative bias ($\Delta\mu$) of simulated soil moisture from default and macro configurations at different depth ranges shown in individual intervals (e.g., 0-30 cm, 30-100 cm, and so on).
Figure 6. Precipitation (a), daily accumulated downward water flux (w_f, contour lines) plotted over relative saturation (S, coloured shading) for \textit{macro} (b), daily accumulated downward water flux plotted over relative saturation for \textit{default} (c), and daily accumulated drainage flux through the bottom boundary simulated by the two model configurations (d) at Warren Farm over the two simulated years (2003-2005).
Figure 7. Differences between daily average latent heat flux time series simulated by *default* and *macro* configurations (LE_{default} and LE_{macro}, respectively) at Warren Farm.
Figure 8. Catchment average 8 day composites of MODIS estimated LE (LE_{MOD}) against simulated LE from default and macro configurations ($LE_{default}$ and LE_{macro}, respectively) along with the linear models fitted for $LE_{default}$ (black line) and LE_{macro} (blue line). The 1:1 line is shown in red, which represents the perfect fit between LE_{MOD} and simulated LE.

![Graph showing scatter plot with regression lines for $LE_{default}$ and LE_{macro}]
Figure 9. Spatially averaged monthly latent heat flux (LE) from MODIS, default, and macro configurations (a), and average (0-100 cm below land surface) daily relative saturation (S) from default and macro configurations (b) over the Kennet catchment.
Supplementary materials

Figure S1. Saturation-pressure head relationship (May 2003 - December 2005) at Warren Farm measured fortnightly at 40 cm below land surface. (Source: Ned Hewett, CEH, personal communication).