We would like to thank the reviewers for the valuable comments and suggestions that
improved the manuscript. A point-by-point reply to the comments of both reviewers is
provided below with the original comments shown in blue.

Reviewer #1 (anonymous)

The paper describes the addition of the bulk conductivity (BC) model into the JULES
Land-surface model. The authors have implemented this very simple model in attempts to
improve the simulation of chalk hydrology. The BC model is calibrated and shown to
improve the simulated mass and energy fluxes over the Kennet catchment. The authors
conclude by commenting on the potential suitability of this simple model for large scale
land-surface modelling.

It is clear that the authors have taken the time to properly implement the comments and
suggestions from the first pass of reviews which have greatly improved the manuscript. The
rewording of the title and abstract highlight the strength of the simplicity of the approach,
and the calibration of the BC model parameters makes for a much cleaner and more
convincing study.

- We would like to thank the reviewer for the encouraging comments.

I have found the paper clunky to read in places. Some restructuring could help improve the
readability of the manuscript.

- We have re-structured the manuscript as suggested by the reviewer in the “Minor
Comments” section below to improve readability.

Personally I feel that the calibration step needs to be clearer. The calibration step is not
mentioned in the Abstract or Introduction of the paper. The word evaluation is used in
places where ‘calibration’ would be more relevant. The BC model is first calibrated using soil
moisture data at a point scale. The calibrated model performance is assessed and compared
to the performance of the default JULES parameterization. Finally it is evaluated against
independent data at a catchment scale.

- We thank the reviewer for this valuable comment. We have incorporated the calibration
step in the introduction of the revised manuscript (L. 75-82 in manuscript_revised.pdf):

“At the point-scale, the proposed parameterization is calibrated using observed soil moisture
profile data. This is achieved by randomly sampling the parameter space and extensively
running the model in order to minimize the differences between observed and simulated soil
moisture variability at different depths. Finally, the proposed model is applied to the Kennet
catchment in the Southern England and the fluxes and states of the hydrological cycle are
simulated for multiple years. The simulation results are evaluated using observed latent heat
flux (LE) and runoff data to assess the performance of the BC model in simulating land
surface processes at the catchment scale.”

Minor Comments
Introduction: It is worth mentioning in the introduction what default JULES does, this

becomes clearer later but a sentence here to the effect: ‘JULES has nothing in place for chalk’
would be useful.



- We have incorporated this comment in the introduction of the revised manuscript (L. 71-74
in manuscript_revised.pdf):

“In order to test the proposed parameterization, the BC model is included in JULES (version
4.2), which, by default (i.e., uniform soil column representation using general soil database as
typically applied in land surface models), does not represent any chalk feature.”

Pg 4 line 65: “...relatively large number of parameters’ could be worth stating how many to
contrast with the three parameter model described in the paper.

- We have mentioned the number of parameters used in relevant previous studies in the
revised manuscript (L. 48-52 in manuscript_revised.pdf):

“The physics-based models mentioned above were developed based on dual-continua
approach and required relatively large numbers of parameters (i.e., on the order of 20-30
parameters) that were calibrated via inverse modelling using observed soil moisture and
matric potential data [e.g., Ireson et al., 2009; Mathias et al., 2006].”

Pg 3 line 69: ‘At the point-scale the BC model is evaluated using observed soil moisture data.
’maybe use calibrated instead of evaluated.

- Updated in the revised manuscript (L. 76 in manuscript_revised.pdf):

“At the point-scale, the proposed parameterization is calibrated using observed soil moisture
profile data.”

Pg 4 line 87: the units for Ks are inconsistent with the units found in table 3.

- We have used mmd+ as the unit of K; consistently in the revised manuscript (e.g., L. 97, L.
248-250, Table 2 and Table 3 in manuscript_revised.pdf)

Pg 5 line 105: it is not clear how Price et al.’s values of 3-5 mmd-1 for Ks imply a range of 0.8-
86 mmd-1 for calibration.

- We thank the reviewer for pointing out this important issue. Note that we have chosen a
different range of K; is the revised manuscript following the suggestions of the other reviewer
(Dr. Andrew Ireson). While Ireson et al. [2009] suggested a range of 0.2-2.0

mmd-, Price et al. [1993] argued that K; is around 3-5 mmd-* for most chalk soils. Therefore,
we consider a range of 0.2-5.0 mmdin the revised manuscript for K;calibration. This
updated range of K; has been discussed in the revised manuscript (L. 248-250 in
manuscript_revised.pdf):

“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd- for K;. On the other hand, Price et
al. [1993] argued that in general, K is around 3-5 mmd- for most chalk soils. Therefore, we
consider a range of 0.2-5.0 mmdin optimizing K;.”

Pg 5 lines 112-123: Please consider moving the calibration description into the methodology.

- We have moved the description of calibration strategy to the “Methods” section (section
3.5) in the revised manuscript (L. 236-260 in manuscript_revised.pdf).

Pg 8 line 189 or Pg 10 line 223: Consider discussing the choice of using the default JULES
parameters in the configuration. It is not too surprising that the calibrated parameterization
of BC model would outperform an uncalibrated JULES model. The authors address this
point in the first pass of reviews but I feel some of the text would benefit from being in the



text. Especially since it highlights the BC model’s application to a completely ‘naive’ model
setup.

- We have explained the choice of the parameters in the default configuration and the fact
that it represents a naive model configuration deprived of model calibration and chalk
representation in the revised manuscript (L. 217-220 in manuscript_revised.pdf):

“In this configuration, each soil column in JULES is considered to be vertically homogeneous
with the soil properties defined in Table 2, which is motivated by the Met Office JULES
Global Land 4.0 configuration described in Walters et al. [2014].”

(L. 231-234 in manuscript_revised.pdf):

“It should also be emphasized that default represents a “naive” configuration deprived of
model calibration. Moreover, this configuration does not represent chalk, which, according
to previous studies [e.g., Le Vine et al., 2016], substantially affects the hydrology of the study
area considered here.”

FIg 1b): The ‘Bare soil’, ‘Needleleaf’ and ‘Broadleaf’ colours are very similar and hard to
distinguish.

- Figure 1b is updated in the revised manuscript of make the colours distinguishable.

Fig 4 (panels (b) to (c¢)): It would help to shade the bars of the unchanged values differently
so that the changes in parameter values becomes more obvious. These panels also don’t get
discussed much in the main text.

- We have shaded the bars representing uncalibrated and calibrated parameter values using
blue and red colours, respectively in Figure 4 of the revised manuscript. We have also
enhanced the discussion on Figure 4b, ¢c and d in the revised manuscript (L. 300-313 in
manuscript_revised.pdf).

Pg 12 line 271-276: The sensitivity of So is particularly interesting and in turn the model
doesn’t seem sensitive to fm . I feel the sensitivity of the parameters could be further
discussed. Why is it advantageous to use the macro configuration with the two optimized
parameters vs the three optimized parameters?

- We have enhanced the discussion on the sensitivity of parameters on model performance in
the revised manuscript (L. 282-299 in manuscript_revised.pdf). We have also discussed the
benefit of reduced model complexity (i.e., reduced number of parameters for calibration) and
our choice of parameters for calibration (i.e., Ks; and S,) in the revised manuscript (L. 293-
299 in manuscript_revised.pdf):

“Arguably, the BC model can be implemented in other chalk regions by constraining
only So parameter. Such result could potentially be advantageous for transferability
to other regions in the UK in order to assess chalk hydrology at large-scale. However
since this is the first time the BC model is introduced, we decide to take a
conservative approach and select the macro configuration with optimized Ks and So
(macroopt hereafter) to simulate chalk hydrology over the study area that ensures
best overall model performance.”

(L. 408-415 in manuscript_revised.pdf):

“Our results indicated that S, is by far the most influential parameter in the model when
representing water movement through a soil-chalk column. This highlights the simplicity of

3



the proposed BC model for large-scale studies and potential ease in transferability. In
comparison, K and f;» showed secondary (low) sensitivity on the model performance. Since
this study introduces the BC model, we decided however to take a conservative approach.
We optimized K; and S, simultaneously for our catchment scale simulations since this
combination resulted in the best overall model performance.”

Table 3: there seems to be a lack of consistency between Figure 4 and Table 3. In the text
(line 276) “. .. we select the macro configuration with optimized Ks and S 0 ... " which should
mean f m remains unchanged. However in Table 3, fm ’s optimized value differs for its
unoptimized value. The value for f m in this table might be from optimising over this
parameter alone, but then the other parameters have optimized values which differ from
their single optimisation value (e.g. Ks ). What optimized values are shown in this table?
Surely the values used in macro opt should be represented here.

- We thank the reviewer for raising this important issue. We agree that the values presented
in Table 3 of the previous manuscript were not consistent with our choice of parameters for
calibration (i.e., Ks and S,). We have updated Table 3 in the revised manuscript (P. 27 in
manuscript_revised.pdf). Note that in updated Table 3, calibrated value for K; (0.31 mmd-™)
and S, (0.46) are presented, while f;, (105) remains uncalibrated.

A further comment on Fig.4 and Table 3: what are the units of Ks ? In figure they are of order
X10 4, in the table units (md 1) and earlier in the text (mmd 1).

- We have updated Figure 4 and added units of K; (mmd-) in the revised manuscript (P. 31 of
manuscript_revised.pdf). The unit of K, in Table 3 of the revised manuscript is also updated
to mmd- (P. 27 in manuscript_revised.pdf).

Table 3: Add ranges over which the parameters were allowed to vary in calibration stage.
- Ranges are added in Table 3 of the revised manuscript (P. 27 in manuscript_revised.pdf).
Pg 13 line 196: It is worth commenting that it is still an underestimate.

- Note that this sentence along with the associated figure (i.e., Figure 6 in the previous
manuscript) is removed from the revised manuscript. In manuscript_revised.pdf, we focus
on the simplicity of the BC parameterization and the calibration of the model parameters to
reduce the differences between observed and simulated soil moisture variability based on the
comments by Dr. Andrew Ireson during the previous rounds of review. The results show that
the calibrated model improves simulated key hydrological processes over the Kennet
catchment compared to the default configuration. Therefore Figure 6 (previous manuscript)
is no longer necessary because all the relevant information (i.e., the comparison between
observed and simulated soil moisture variability) is shown in Figure 5 of
manuscript_revised.pdf.

Pg 16 line 375: Two parameters vs the three referenced in the rest of the paper... is K s no
longer considered a parameter in the conclusion?

- We would like to thank the reviewer for pointing out this issue. This discussion on the
model parameters is clarified in the revised manuscript (L. 403-415 in
manuscript_revised.pdf):

“The proposed BC model is a single continuum approach of modelling preferential flow [e.g.,
Beven and Germann, 2013] that involves only 3 parameters, namely the saturated hydraulic
conductivity of chalk matrix (K;), macroporosity factor (f,;) and relative saturation threshold
(So). Initially, these parameters were estimated from existing literature to assess the



performance of the uncalibrated BC model. Finally, the BC model parameters were
optimized to minimize the differences between observed and simulated soil moisture
variability. Our results indicated that S, is by far the most influential parameter in the model
when representing water movement through a soil-chalk column. This highlights the
simplicity of the proposed BC model for large-scale studies and potential ease in
transferability. In comparison, K; and f,» showed secondary (low) sensitivity on the model
performance. Since this study introduces the BC model, we decided however to take a
conservative approach. We optimized K; and S, simultaneously for our catchment scale
simulations since this combination resulted in the best overall model performance.”

Fig 6: Consider adding vertical lines between the bins to highlight the fact the boxplots are of
the same depth. This is not immediately clear and I've noticed that reviewer 3 also
mentioned the slight confusion caused by this figure.

- As mentioned above, this figure is removed from the revised manuscript.

Reviewer #2 (Dr. Andrew Ireson)

The paper is much improved, and I think that this is a useful contribution. However, there is
a lingering problem that really should be addressed before the paper can be published. The
authors have misinterpretted the hydraulic conductivity in the LeVine Paper (cited in the
manuscript), which was a bulk hydraulic conductivity and not a matrix conductivity.
Moreover, in the optimisation of K, the authors have not sampled K on a log-scale (unless
they have and have neglected to say this), meaning that the optimized K is biased towards
higher values. As a result, I believe the authors still have a matrix K which is unrealistically
large compared with other published estimates. In my opinion, this is important and should
be corrected before this paper can be published, which unfortunately means re-running the
models.

- We would like to thank the reviewer for his valuable suggestions. In the revised manuscript,
we have selected a different range for K; calibration based on relevant previous studies.
While Ireson et al. [2009] suggested a range of 0.2-2.0 mmd*, Price et al. [1993] argued that
K is around 3-5 mmd- for most chalk soils. Therefore, we consider a range of 0.2-5.0 mmd-!
in the revised manuscript for K calibration. This updated range of K; has been discussed in
the revised manuscript (L. 248-250 in manuscript_revised.pdf):

“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-! for K;. On the other hand, Price et
al. [1993] argued that in general, K is around 3-5 mmd- for most chalk soils. Therefore, we
consider a range of 0.2-5.0 mmd-in optimizing K.”

Another significant error, though easily fixed, is that the revised manuscript still does not
include a plot of runoff for the catchment scale application. Such a plot was included in the
response to reviewers (Figure R2 in the response), so should be incorporated into the
manuscript. I think that the performance in this figure was reasonable. They should also
show the default model performance.

- We thank the reviewer for highlighting this positive result from our study. As suggested, we
have incorporated the comparison between observed and simulated runoff (for both default

and macro.y) in the revised manuscript (Figure 8b, L. 360-368 in manuscript_revised.pdf).

If this can be quickly addressed, this will be a nice paper.

I have also identified some minor errors to be corrected, below:



L 65 - "numbers of parameters"
- Corrected in the revised manuscript (L. 50 in manuscript_revised.pdf):
L 80 - to be rigorous you should also show what "K_sb" is when S <= S_o.

- Updated in the revised manuscript (L. 90 in manuscript_revised.pdf)

L 87 - I believe the authors have misinterpretted the LeVine paper, which has a bulk
saturated hydraulic conductivity of 16 mm/d, and not a matrix hydraulic conductivity. This
number is at least an order of magnitude too high (see e.g. Ireson et al 2009, Price et al 1993,
Price et al 2000, Brouyere 2006, all cited in the manuscript).

- As discussed earlier, we have selected a different range for K; calibration (0.2-5.0 mmd)
based on relevant previous studies as suggested by the reviewer (L. 248-250 in
manuscript_revised.pdf):

“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd- for K;. On the other hand, Price et
al. [1993] argued that in general, K; is around 3-5 mmd- for most chalk soils. Therefore, we
consider a range of 0.2-5.0 mmd-in optimizing K;.”.

Table 2 & 3 should probably use the same units for hydraulic conductivity - m/d is good.

- Updated in the revised manuscript (P. 27 in manuscript_revised.pdf).

Figure 1 ¢) has 5 colours, while only 3 legend items.

- Updated in the revised manuscript (Figure 1 in manuscript_revised.pdf).

Figure 4 - Need to label the units of K - and what are these? Not mm/d or m/s as far as I can
tell - maybe mm/s? Better to use m/d.

- Unit (mmd™) is added in the revised manuscript (Figure 4 in manuscript_revised.pdf).

L 106 - the range in Ks considered is good, though I would expect the true value to be right at
the bottom of this range. Did you sample Ks in log-space? I assume not - which is a problem
as it will bias your sampling to the higher values. This is important - you need to sample in
log-space. I think your default and optimized Ks are still too high (i.e. values in Figure 4).
Other than this, the optimization approach is good.

- We have sampled K; in log space in the revised manuscript (L. 256-257 in
manuscript_revised.pdf):

“Note that for the K, parameter, the random sampling was performed from a logarithmic
distribution [Ireson et al., 2009].”
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Towards a simple representation of chalk hydrology in land

surface modelling

Mostaquimur Rahman?, Rafael Rosolem?2

1Department of Civil Engineering, University of Bristol, Bristol, UK

2Cabot Institute, University of Bristol, Bristol, UK

Abstract

Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a
porous medium with fractures, is important to optimize water resources assessment and
management practices in the United Kingdom (UK). However, incorporating the processes
governing water movement through chalk unsaturated zone in a numerical model is
complicated mainly due to the fractured nature of chalk that creates high-velocity preferential
flow paths in the subsurface. In general, flow through chalk unsaturated zone is simulated

using dual-porosity concept, which often involves calibration of relatively large number of

model parameters, potentially undermining applications to large regions. Fherefore this

study, a simplified parameterization, namely the Bulk Conductivity (BC) model is proposed
for simulating hydrology in chalk unsaturated zone. This new parameterization introduces

only two additional parameters (namely the macroporosity factor and the soil wetness

threshold parameter for fracture flow activation) and uses the saturated hydraulic

conductivity from chalk matrix. The BC model is implemented in the Joint UK Land

Environment Simulator (JULES) and applied to a study area encompassing the Kennet

catchment in the Southern UK. This parameterization is further calibrated at a point-scale

using soil moisture profile observations. The performance of calibrated BC model in JULES

is assessed and compared against the performance of both the default JULES
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parameterization and the uncalibrated version of BC model implemented in JULES. Finally,

the model performance at the catchment-scale is evaluated against independent data sets Fhe

ebservatbions-obraraus— s and-shdes-o Hhe-hydrologlenloyvele-(e.g., selbmeishe—runoff
and latent heat flux)-at-two-distinct-spatial-scales-{i-epointand-catchment).. The results
demonstrate that the inclusion of the BC model in JULES improves simulated land surface
mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple
approach described in this study may be used to incorporate the flow processes through chalk
unsaturated zone in large--scale land surface modelling applications.

Keywords: Chalk hydrology, macroporosity, land surface model, bulk conductivity model.
1. Introduction

Chalk can be described as a fine-grained porous medium traversed by fractures [Price et al.,
1993]. Previous studies showed that the unsaturated zone of the chalk aquifers plays an
important role on groundwater recharge in the UK [e.g., Lee et al., 2006; Ireson et al., 2009].
Therefore, both monitoring [e.g., Bloomfield, 1997; Ireson et al., 2006] and modelling [e.g.,
Bakopoulou, 2015; Brouyere, 2006; Ireson and Butler, 2011, 2013; Sorensen et al., 2014]
strategies have been adapted previously to understand the governing hydrological processes

in the chalk unsaturated zone.

In chalk, the matrix provides porosity and storage capacity, while the fractures greatly
enhance permeability [Van den Daele et al., 2007]. Water movement through chalk matrix is
slow due to its relatively high porosity (0.3-0.4) and low permeability (10°-10%ms™). A
fractured chalk system, in contrast, conducts water at a considerably higher velocity because
of relatively high permeability (10-5-10 ms™) and low porosity (of the order 104) of

fractures [Price et al., 1993].
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Simulating water flow through the matrix-fracture system of chalk has been the subject of
research for some time. Both conceptual [e.g., Price et al., 2000; Haria et al., 2003] and
physics-based [e.g., Mathias et al., 2006; Ireson et al., 2009] models have been proposed
previously to describe water flow through chalk unsaturated zone. The physics-based models
mentioned above were developed based on dual-continua approach and required relatively

large numbers of parameters (i.e., on the order of 20-30 parameters) that were calibrated via

inverse modelling using observed soil moisture and matric potential data [e.g., Ireson et al.,

2009; Mathias et al., 2006].

In recent years, representation of chalk has gained attention in land surface modelling. For
example, Gascoin et al. [2009] applied the Catchment Land Surface Model (CLSM) over the
Somme River basin in northern France. A linear reservoir was included in the TOPMODEL
based runoff formulation of CLSM to account for the contribution of chalk aquifers to river
discharge. Le Vine et al. [2016] applied the Joint UK Land Environment Simulator (JULES
[Best et al., 2011]) over the Kennet catchment in southern England to evaluate the
hydrological limitations of land surface models. In that study, two intersecting Brooks and
Corey curves were proposed, which allowed a dual curve soil moisture retention
representation for the two distinct flow domains of chalk (i.e., matrix and fracture) in the
model. Considering this dual Brooks and Corey curve, a three-dimensional groundwater flow
model (ZOOMQ3D [Jackson and Spink, 2004]) was coupled to JULES to demonstrate the
strong influence of representing chalk hydrology and groundwater dynamics on simulated

soil moisture and runoff.

The above mentioned studies illustrate the importance of representing chalk in land surface
modelling. However, including chalk hydrology in large-scale land surface modelling using
the contemporary dual-porosity concept can be complicated due to because-thisapproach

generathy-nvolvesrelatively-large numbers of additional parameters. In this context, we

3
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propose a new parameterization, namely the Bulk Conductivity (BC) model as a first step

towards a simple chalk representation suitable for land surface modelling. In order to test the

proposed parameterization, the Fhe-BC model is included in JULES (version 4.2), which, by

default (i.e., uniform soil column representation using general soil database as typically

applied in land surface models), does not represent any chalk feature. In this study, the BC

model (included in JULES) is and-applied evaluated-at two distinct spatial scales (i.e., point

and catchment). At the point-scale, the proposed BE-+edel-parameterization is calibrated

evaluated-using observed soil moisture profile data. This is achieved by randomly sampling

the parameter space and extensively running the model in order to minimize the differences

between observed and simulated soil moisture variability at different depths. Finally, the Fhe

proposed model is then-applied to the Kennet catchment in the Southern England and the
fluxes and states of the hydrological cycle are simulated for multiple years. The simulation
results are evaluated using observed latent heat flux (LE) and runoff data to assess the

performance of the BC model in simulating land surface processes at the catchment scale.

2. A model of flow through chalk unsaturated zone

In this study, the Bulk Conductivity (BC) model based on the work by Zehe et al. [2001] is
incorporated in JULES to represent the flow of water through the fractured chalk unsaturated
zone. According to this approach, if the relative saturation (S) exceeds a certain threshold (So)

at a soil grid, the saturated hydraulic conductivity of chalk matrix (Ks) is increased to a bulk

saturated hydraulic conductivity (Ksb) as follows

5-So

Ksp = Ks + Ksfon 1=, if $> S (1)

Kgp = K if S<=Sp (2)
. 6-6,

with S = s
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where fn is a macroporosity factor (-), € is soil moisture (m®m=3), 6s is soil moisture at
saturation (m3m3); and 6 is the residual soil moisture (m®m=3). Note that S ranges from zero

in case of completely dry soils to one for fully wet soils.

At the first step of evaluation, the Ks, So and fm parameters are estimated based on existing

literature to assess the performance of the uncalibrated BC model.-tn-this-unealibrated BC
IGdel, I;S |9| € a”( ot i)( -|S 16 H d_l aeeeldi g te I:e Vi e-et al- |2916| |9| E“e catenment

nvestigated-in-this-study-(Figure-1) For the matrix saturated hydraulic conductivity (Ks), we

use Ks = 1.0 mmd™ following Mathias et al. [2006]. In addition, Equation 1 indicates that the

onset of water flow through the fracture system of chalk is controlled by the threshold So.
According to Wellings and Bell [1980], water flow through fractures dominates over matrix
flow in chalk when the pressure head in soil becomes higher than -0.50 mH.O. We consider a
value of So=0.80 for the uncalibrated BC model, which is based on observed soil moisture-

matric potential relationship in the study area-(Figure-S1}.

Finally, In Zehe et al. [2001], fm was defined as the ratio of the saturated water flow rate in all
macropores in a model element to the corresponding value in soil matrix, which can be
determined based on the density and length of fractures at small scales. In addition, fm has
also been considered as a calibration parameter previously [e.g., Blume, 2008; Zehe et al.,
2013]. In this study, we define fm as a characteristic soil property reflecting the influence of
fractures on soil water movement [Zehe and Bloschl, 2004]; and estimate it from the relative
difference of permeability between chalk matrix and fractured chalk system that can be of the
order 10%-108 according to Price et al. [19939]. Consequently, we consider a macroporosity

factor of fn = 10° for the uncalibrated BC model. In the following step, the BC model is

calibrated to minimize the differences between the variability of observed and simulated soil

moisture at individual depths. The calibration strategy will be discussed elaborately in section

3.5.
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3. Methods

3.1. Study area



145  The study area encompasses the Kennet catchment located in the Southern England with an
146  area of about 1033 km? (Figure 1a). Generally, Kennet is rural in nature with scattered

147  settlements and has a maximum altitude of approximately 297 m (Above Ordnance Level).
148  The River Kennet discharges into the North Sea through London. The major tributaries of
149  this river are Lambourn, Dun, Enborne, and Foudry Brook. An average annual rainfall of

150  approximately 760 mm was recorded in the catchment over a 40 year period from 1961-1990.

151  Solid geology of the Kennet catchment is dominated by chalk, which is overlain by thin soil
152 layer. While lower chalk outcrops along the northern catchment boundary, progressively
153  younger rocks are found in the southern part. In general, surface runoff production is very
154  limited over the regions of the catchment where chalk outcrops. The flow regime shows a
155  distinct characteristics of slow response to groundwater held within the chalk aquifer [Le
156 Vine et al., 2016]. According to Ireson and Butler [2013], the unsaturated zone of chalk

157  shows slow drainage over summer and bypass flow during wet periods in this catchment.
158  3.2. Field measurements and remotely sensed data

159  Table 1 summarizes the field measurements and remote sensing data used in this study. We
160  use in-situ soil moisture and runoff measurements along with remotely sensed LE data to
161  assess model performance in simulating the mass and energy balance components of the
162  hydrological cycle. Point scale soil moisture measurements at two adjacent sites (~20 m
163  apart) at the Warren Farm (Figure 1) were provided by Centre for Ecology and Hydrology
164  (CEH). A Didcot neutron probe was used at these locations to measure fortnightly soil

165  moisture at different depths below land surface (10 cm apart down to 0.8 m, 20 cm apart

166  between 0.8-2.2 m, and 30 cm apart between 2.2-4.0 m) [Hewitt et al., 2010].

167  The National River Flow Archive (NRFA) coordinates discharge measurements from the

168  gauging station networks across UK. These networks are operated by the Environmental
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Agency (England), Natural Resources Wales, Scottish Environment Protection Agency, and

Rivers Agency (Northern Ireland). We use discharge measurements provided by NRFA to

caleulate-therunoffratio-overthe-Kennetcatehmentin-this-stady assess model performance

in simulating runoff over the Kennet catchment in this study.

The MOD16 product of the Moderate Resolution Imaging Spectroradiometer (MODIS) is a
part of NASA/EQS project that provides estimation of global terrestrial LE. The LE
estimation from MOD16 is based on remotely sensed land surface data [e.g., Mu et al., 2007].
In this study, the 8-day and monthly LE data products from MODIS is used to evaluate the

model performance in simulating land surface energy fluxes.

3.3. Land surface model

In this study, we use the Joint UK Land Environment Simulator (JULES [e.g., Best et al.,
2011; Clark et al., 2011]) version 4.2. JULES is a flexible modelling platform with a modular
structure aligned to various physical processes developed based on the Met Office Surface
Exchange Scheme (MOSES [e.g., Cox et al., 1999; Essery et al., 2003]). Meteorological data
including precipitation, incoming short- and longwave radiation, temperature, specific
humidity, surface pressure, and wind speed are required to drive JULES. Each grid box in
JULES can comprise nine surface types (broadleaf trees, needle leaf trees, C3 grass, C4 grass,
shrubs, inland water, bare soil, and ice) represented by respective fractional coverage. Each

surface type is represented by a tile and a separate energy balance is calculated for each tile.

Subsurface heat and water transport equations are solved based on finite difference
approximation in JULES as described in Cox et al. [1999]. Moisture transport in the
subsurface is described by the finite difference form of Richards’ equation. The vertical soil

moisture flux is calculated using the Darcy’s law. While the top boundary condition to solve
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the Richards’ equation is infiltration at soil surface, the bottom boundary condition in JULES

is free drainage that contributes to subsurface runoff.

Surface runoff is calculated by combining the equations of throughfall and grid box average
infiltration in JULES. In order to direct the generated runoff to a channel network, river
routing is implemented based on the discrete approximation of one-dimensional kinematic
wave equation [e.g., Bell et al., 2007]. In this approach, river network is derived from the
digital elevation model (DEM) of the study area and different wave speeds are applied to
surface and subsurface runoff components and channel flows [e.g., Bell and Moore, 1998]. A
return flow term accounts for the transfer of water between subsurface and land surface [e.g.,

Dadson et al., 2010, 2011].

3.4. Model configurations and input data

In this study, simulations are performed at two distinct spatial scales, namely point and
catchment. At the point scale, JULES is configured to simulate the mass and energy fluxes at
the Warren Farm site (Figure 1a). A total subsurface depth of 5 m is considered in the model
with a vertical discretization ranging from 10 cm at the land surface to 50 cm at the bottom of
the model domain. Note that this discretization is consistent with the soil moisture
measurement depths mentioned in section 3.2. The vegetation type is implemented as C3
grass using the default parameters in JULES. Point scale simulations were performed over 2
consecutive years from 2003-2005 at an hourly time step. Except for precipitation, hourly
atmospheric forcing data to drive JULES was obtained from an automatic weather station
operated by the CEH at Warren Farm. In order to estimate hourly precipitation data to run
JULES, rain gauge measurements from the Met Office [Met Office, 2006] were used. Inverse

distance interpolation technique [e.g. Garcia et al., 2008; Ly et al., 2013] was applied on
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rainfall measurements from 13 gauges closest to Warren Farm (distance varies from 25-60

km) to obtain hourly precipitation for the point scale simulations.

At the catchment scale, JULES is configured over a study area encompassing the Kennet
catchment (Figure 1a) considering a uniform lateral grid resolution of 1 km with 70 x 40 cells
in x and y dimensions, respectively. The total subsurface depth and vertical discretization are
identical to those of the point scale simulations. Spatially distributed vegetation type
information for the study area (Figure 1b) is obtained from the Land Cover Map 2007
(LCM2007) dataset [Morton et al., 2011]. Simulations were performed over 5 consecutive
years from 2006-2011 at the catchment scale. Note that the simulation periods of catchment
and point scale (2003-2005) does not coincide due to the availability of soil moisture
measurements described in section 3.2. Spatially distributed meteorological data from the
Climate, Hydrology and Ecology research Support System (CHESS) was used to obtain the
atmospheric forcing to drive JULES at the catchment scale. The CHESS data includes 1 km
resolution gridded daily meteorological variables [Robinson et al., 2015]. This daily data is
downscaled using a disaggregation technique described in Williams and Clark [2014] to
obtain hourly atmospheric forcing. The flow direction required for river routing is extracted

from the USGS HydroSHEDS digital elevation data [Lehner et al., 2008].

We estimate the soil hydraulic properties based on texture (Table 2). At the point scale, loam
soil is dominant at the Warren Farm site. At the catchment scale, the Harmonized World Soil
Database (HWSD) from the Food and Agricultural Organization of UNO (FAO) is used to
obtain the texture of different soil types over Kennet (Figure 1c). The saturation-pressure
head relationship for different soil types is described using the Van Genuchten [Van
Genuchten, 1980] model with parameter values (Table 2) obtained from Schaap and Leij

[1998].
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Fable-3-summarizestThe hydraulic properties for chalk used in this study are summarized in

Table 3. These properties are obtained based on existing literature as a first step when
evaluating the uncalibrated BC model. The BC model parameters are subsequently eptimized

calibrated to minimize the differences between observed and simulated A@ (section 3.5) at

various soil depths.

In this study, we consider two different model configurations, namely default and macro
(Figure 2). The default configuration corresponds to the standard parameterizations of JULES
that does not represent chalk hydrology in the model. In this configuration, each soil column
in JULES is considered to be vertically homogeneous with the soil properties defined in
Table 2, which is motivated by the Met Office JULES Global Land 4.0 configuration
described in Walters et al. [2014]. The macro configuration, in contrast, explicitly represents
chalk by applying the BC model starting at 30 cm below land surface to the bottom of the
model domain (i.e. 500 cm). Therefore, the soil column in the macro configuration can be
divided into topsoil (0-30 cm) and chalk (30-500 cm)-#+-macre. The topsoil depth of 30 cm in
the-macro-configuration-is defined based on several augured soil samples collected during a
field campaign at Warren Farm in 2015 (Figure 2). This depth is corroborated by additional
information from the British Geological Survey (BGS) operated borehole records
(http://www.ukso.org/pmm/soil_depth_samples_points.html), which show that topsoil depths
vary from 10-40 cm over the study area. We therefere-apply the macro configuration
assuming a spatially homogeneous topsoil depth of 30 cm for both point and catchment scale
simulations. Note that except for this inclusion of chalk, default and macro configurations are

identical in terms of model set up and input data. It should also be emphasized that default

represents a “naive” configuration deprived of model calibration. Moreover, this

configuration does not represent chalk, which, according to previous studies [e.qd., Le Vine et

al., 2016], substantially affects the hydrology of the study area considered here.
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3.5. Calibration of the BC model

We calibrate the BC model at the point-scale to minimize the differences between observed

and simulated soil moisture variability (A8) at different depths. The Root Mean Squared

Error (RMSE) is used as the objective function to optimize the BC model parameters [e.q.,

Ireson et al., 2009]

1 1 im\ 2
RMSE = — ¥4 \/ (= 2n(a0gk — aggim)”) (3)

where nd is the number of soil layers, nt is the number of soil moisture observations available

for a layer d, A@°™ is the observed variability of soil moisture and A¢*™ is the simulated

variability of soil moisture. Note that we consider A@ for this optimization because of its

relevance to the water flux and recharge through chalk unsaturated zone [e.q., lreson and

Butler, 2011].

Equation (1) reveals that the calibration of the BC model involves optimizing 3 parameters,

namely the saturated hydraulic conductivity of chalk matrix (Ks), saturation threshold (So)

and macroporosity factor (fn). Ireson et al. [2009] suggested a range of 0.2-2.0 mmd* for K.

On the other hand, Price et al. [1993] arqued that in general, Ks is around 3-5 mmd for most

chalk soils. Therefore, we consider a range of 0.2-5.0 mmd-! in optimizing Ks. We consider Sg

range 0-1, representing the entire physical domain for soil wetness from fully dry to fully

wet, respectively. A

fully-wet sols—Consegquently—weconsiderSo =0-0-1-0-inthe-optimization—For fm, a range of

10*-10° is considered, which, as discussed earlier, is consistent with the relative difference

between the permeability of fractured chalk and chalk matrix according to Price et al [1993].

Latin hypercube sampling technigue [e.q., McKay et al., 2016] is used to generate 2,000

random samples for each BC model parameter within the ranges discussed above. Note that

for the Ks parameter, the random sampling was performed from a logarithmic distribution
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[lreson et al., 2009]. We perform simulations using these random samples and calculate

model performance (Equation 3) to select the optimum parameter values for the BC model

for each possible parameter combination as discussed in details in the following section.

4. Results and discussion

4.1. Point scale simulations

At the point scale, the simulation results are evaluated using soil moisture observations at the
Warren Farm site. Figure 3a compares observed and simulated soil moisture (6) from the
default and macro configurations at 2 m below land surface. Note that the macro
configuration uses the chalk hydraulic parameters collected from existing literature (Table 3).
This figure shows that the default configuration considerably underestimates & throughout the
simulation period, which is improved remarkably in case of macro. Figure 3b plots observed
and simulated soil moisture variability (A#) from the default and macro configurations

(AOdetault and Almacro, respectively) at the Warren Farm site. In general, both configurations

show discrepancies with observed A9 with macro showing relatively better model

performance.

The results show that despite the macro configuration improves simulated 6, it shows
considerable discrepancies with observed A#, which is consistent throughout the whole chalk
profile (results from other model layers are not shown). In order to minimize the differences
between observed and modelled A8 from the macro configuration, we calibrate eptimize-the
BC model following the methodology described in section 3.52. The optimization results are
summarized in Figure 4. Note that for each combination considered in the optimization, 2,000
model runs were performed using randomly sampled parameters as discussed in section 3.52.

In addition to the default and macro cases, the calibrated cases in Figure 4 presents
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correspond to the results from the model runs yielding the lowest RMSE for each parameter

combination evaluated.

The RMSE between observed and simulated A& for the model configurations considered in
the optimization is shown in Figure 4a. This figure illustrates that the RMSE of the default
configuration is larger than that of macro, indicating better model performance in

reproducing A@ for the latter (corresponding to a reduction of 15% in RMSE compared to the

default case). Therefore, i-appears-that-the uncalibrated BC model (i.e., the-macro

configuration) is-better in-repreducing-reproduces the soil moisture variability compared to

default.

producing-the-towest RMSE-for-each-configuration—Concerning the calibration of single BC

model parameters, Figure 4a shows that eptinizing-So results in a 46% 16% reduction of

RMSE compared to the macro configuration. Calibrating Optimizing Ks marginathy-improves

individually vields only about 25% reduction of RMSE compared to macro.

Optimizing both Ks and So simultaneously shows resuts-in-the largest reduction (5024%) of

RMSE compared to macro which coincides with the total RMSE reduction found when all

parameters are calibrated. Arquably, the BC model can be implemented in other chalk

regions by constraining only So parameter. Such result could potentially be advantageous for

transferability to other regions in the UK in order to assess chalk hydrology at large-scale.

However since this is the first time the BC model is introduced, we decide to take a

conservative approach and select the macro configuration with optimized Ks and So (macrogpt

hereafter) to simulate chalk hydrology over the study area that ensures best overall model

performance.
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The lower three panels in Figure 4 presents the BC model parameter values for the default

and uncalibrated macro cases as well as for different combinations of parameters calibrated.

The red bars in Figure 4a, b and ¢ highlight the cases in which a given parameter is

constrained by optimization. In those cases, the calibrated parameter values are obtained from

model runs producing the lowest RMSE. An interesting feature in Figure 4b (calibrating Ks

individually) is that the optimization suggests a compensation mechanism in which Ks is

increased remarkably in order to physically represent the “effective” flow through the chalk

fractures in the BC model. This is not surprising and arqguably the simplest way to attempt to

improve model performance. For macrogt, the values used for Ks is relatively lower than that

of uncalibrated macro case nevertheless consistent with previous estimates [e.q., Ireson et al.,

2009]. Figure 4c clearly shows the dominance of So in the BC model as all the relatively low

RMSE bars in Figure 4a are associated with So calibration (see red bars in Figure 4c). In

addition, calibrated Sp values for all cases show a consistent constraint around 0.50. Finally,

Figure 4d indicates the lack of influence for fn parameter on model performance.

Figure 5 compares Aberault, Almacro and A6 from the macroept configuration (Abopt) With

observed soil moisture variability (Afobs). As mentioned earlier, ABgefaut and A&macro ShOwW
considerable discrepancies with Afobs While the macro configuration exhibits relatively better
performance (Figure 3). Figure 5 illustrates that the overall agreement between observed and
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simulated A@ improves substantially in case of macroopt compared to default and macro,
which is pronounced especially in the deeper chalk layers. Therefore, this figure indicates

that the performance of the BC model in simulating A# is further improved by optimizing the

Ks and So parameters simultaneously at the Warren Farm site.

As mentioned earlier, efficiently reproducing soil moisture variability over the profile is

important due to the fact that A8 significantly affects water flux and recharge through chalk

unsaturated zone. The drainage flux through the bottom of soil column (dy) of a land surface

model can be considered as the potential recharge flux to groundwater [e.g., Sorensen et al.,
2014]. Figure 76 compares the daily sum of dy from the default and macroopt configurations
at the Warren Farm site. Daily Fhe-rainfall at this site eharacteristies-over the simulation
studhy-period is shown in Figure Za6a. In Figure 76b, the macroopt configuration shows
considerable dyp during the colder months, while relatively slow drainage is observed in

summerprevats-througheuttherest-of the-year. In contrast, the default configuration shows

16



384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

relatively high d» in summer compared to the colder months. In general, the recharge rate
through chalk unsaturated zone during the warmer periods of the year is lower than that in the
winter months [Wellings and Bell, 1980; Ireson et al., 2009]. Therefore, the macroept
configuration appears to be more consistent with the recharge mechanism in chalk compared

to default.

In this section, the BC model was evaluated at the point scale. The results showed that in

general, the macro configuration outperforms the default case relatively-better-in-in

simulating #-and-Af-compared-te-default. In order to improve the model performance even

further, model parameter calibration parametereoptimization-was performed to minimize the

differences between observed and simulated Af at the point scale. In the next sections, the

optimized model (macroopt) is evaluated at the catchment scale.

4.2. Catchment scale simulations

catchment scale, simulation results from the default and macroo,: configurations are

compared with the observations over the Kennet catchment. In order to assess the differences

between the-LE from the default and macroop: configurations at the catchment scale, Figure 8
7 plots spatially averaged 8-day composites of LE from MODIS (LEwmop) against the LE from
these configurations (LEgefaut and LEopt, respectively) over Kennet. The agreement between
simulated LE and LEwop is evaluated using the coefficient of determination (R?, see
Appendix) and mean bias. Comparison between LEgefauit and LEmop shows a coefficient of
determination of R?%efaurt = 0.78 and a mean bias of biasgefaurt = 10.5 Wm. The agreement

between simulated LE and LEmop improves in case of the macroop: configuration, which is

17



408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

reflected by an increased coefficient of determination of R%p: = 0.800-8% and a reduced mean

bias of biasep: = 7.13 Wm,

Figure 78 shows considerable differences between LEgefauit and LEopt especiathy-for relatively
high LE, indicating discrepancies especially during the warmer months of the year. Figure Sa

presents-sSpatially averaged time series of monthly LEmop, LEdefautt and LEopt is presented in

Figure 8a. —This figure shows that the differences between LEgefauit and LEqpt increases
substantiathy-in summer compared to the colder months of the year, which is consistent with
Figure 87. Consequently, the default configuration underestimates LE in summer compared
to LEmob, which is improved in case of the macroopt configuration. In contrast, the

differences between LEgefauit and LEqpt are negligible during the colder months of the year.

In addition, Figure 98b compares the observed and simulated monthly average discharge

from the two model configurations at the “Kennet at Theale” gauging station (Figure 1a).

This figure depicts that the default configuration generally overestimates discharge at this

gauging station, which is improved considerably in the case of macroopt. We use the Kling-

Gupta Efficiency criteriaon (KGE [Gupta et al., 20091]) to compare the performance of the

two model configurations in reproducing observed discharge variability. As mentioned

above, the default configuration overestimates discharge with KGEgefaut = -0.17. On the other

hand, the macroopt configuration improves the agreement between observed and simulated

discharge, which is reflected by KGEgpt = 0.51.

In order to summarize the results at catchment scale, Table 4 compares observed and

simulated dathy-average-runoff from the two model configurations over the Kennet catchment
from 2006-2011. The runoff ratio (RR, see Appendix), which is equal to the mean volume of
flow divided by the volume of precipitation [e.g., Kelleher et al., 2015], assesses the

partitioning of precipitation into runoff over the catchment. The default configuration (RR =
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0.82) shows considerably higher RR compared to observation (RR = 0.40), indicating

overestimation of runoff by the model that is consistent with Figure 98b. Including chalk

hydrology in the model remarkably improves the agreement between observed and simulated
mean runoff over the Kennet catchment, which is assessed from a runoff ratio of RR = 0.46

0-37-for the macroopt configuration which is much closer to the observed RR value than

default.

In Table 4, the relative bias (Ap) of 1.04 between observed and simulated runoff from the
default configuration again indicates the overestimation by the model. In comparison,

macroopt Shows a smaller relative bias of{ A= 0.12-8.65}, indicating improvedsment

agreement between observed and simulated mean runoff volume compared to default. The
relative difference in standard deviation (Ao, see Appendix) compares the variability of

observed and simulated flow runeftin Table 4 relating directly to the seasonal change in

runoff. This comparison shows that the default configuration overestimates the variability of

runoff over the Kennet catchment (Ac = 2.04), which is improved in case of macro (Ac =

0.656-70). This improvement in reproducing flow variability is also clearly observed in

Figure 8b.
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In this section, the BC model is evaluated using observed mass and energy fluxes over the

Kennet catchment. The default configuration showed-considerabhy-suggested relatively low

summertime LE over the catchment—w

year. The agreement between observed and simulated LE was improved in case of the
macroept configuration compared to default. It was also observed that the overall runoff
prediction was considerably improved by macroops: compared to default. Given its simplicity,
our results indicate that the proposed parameterization is suitable for use in land surface

modelling applications.
5. Summary and Conclusions

In this study, we proposed a simple parameterization, namely the Bulk Conductivity (BC)
model to simulate water flow through the matrix-fracture system of chalk in large scale land
surface modelling applications. This parameterization was implemented in the Joint UK Land
Environment Simulator (JULES) and applied to the Kennet catchment located in the southern
UK to simulate the mass and energy fluxes of the hydrological cycle for multiple years. Two
model configurations, namely default and macro were considered with the latter using the BC

model to simulate chalk hydrology.

The proposed BC model is a single continuum approach of modelling preferential flow [e.g.,

Beven and Germann, 2013] that involves only 32 parameters, namely the saturated hydraulic

conductivity of chalk matrix (Ks), macroporosity factor (fm) and relative saturation threshold

(So). Initially, these parameters along-with-the-saturated-hydravhic-conductivity-of the-chalk

matrb-were estimated from existing literature to assess the performance of the uncalibrated

BC model. Finally, the BC model parameters were optimized to minimize the differences
between observed and simulated soil moisture variability. Our results indicated that Sg is by

far the most influential parameter in the model when representing water movement through a
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soil-chalk column. This highlights the simplicity of the proposed BC model for large-scale

studies and potential ease in transferability. fellowed-by-In comparison, Parameters-Ks the

saturated-hydrautic-conduetivity-of chatk-matrix-whie-and f, showed secondary (low)

sensitivity on the model performance. Since this study introduces the BC model, we decided

however to take a conservative approach. Metivated-by-the sensitivity-analysis—we- We

optimized Ks and Sp simultaneously for our catchment scale simulations since this

combination resulted in the best overall model performancein-thenextstep-thatconsiderably

At the catchment scale, H-was-Hlustrated-that-the proposed BC parameterization improveds

simulated latent heat flux (especially in summer) -and the overall runoff compared to the

default-configuration.

Note that the complexity (i.e., number of parameters) of the BC model for simulating water

flow through chalk unsaturated zone is substantially lower compared to more commonly used

models for this purpose (e.g., dual-porosity models). Despite its simplicity, H-appears-that-the
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proposed parameterization considerably improves the key hydrological mass-and-energy

fluxes simulated by JULES ever-the-Kennet-at the catchment--scale. As-mentioned

sueh-approach-Therefore, the simphified-aspeckolthe-BC model parameterizationproposed
in-this-study-may-can potentially be useful for large-seale-land surface modelling applications

over large-scale chalk-dominated areas.
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Appendix

Definition of Statistical Metrics

Coefficient of determination (R?) for observation y = y1, ..., yn and prediction f=f1, ..., fn

is defined as
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R2 =1-— SSres
SStot

where SSres Is the residual sum of square and SSiot is the total sum of square. SSres and SSiot

are defined as
SSres= X1 (yi — f)?  and
SStot= YN, (v — ¥)? with ¥ being the mean of y.

Runoff ratio (RR) assesses the portion of precipitation that generates runoff over the

catchment. RR is defined as

RR = Hrunoff

Hrain

where prunoff is mean runoff and prain iS mean precipitation [e.g., Kelleher et al., 2015].

Relative bias (Ap) between observed and simulated time series can be defined as

AM _ HWmod~Hobs
Hobs

where pobs and pmog are the mean of observed and simulated time series, respectively. While
the optimal value of Ap is zero, negative (positive) values indicate an underestimation

(overestimation) by the model [e.g., Gudmundsson et al., 2012].

Relative difference in standard deviation (Ac) between observed and simulated time series

can be defined as

AG = Omod—%0bs
Oobs

where oobs and omeg are the standard deviation of observed and simulated time series,

respectively [e.g., Gudmundsson et al., 2012].
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Tables

Table 1. Field measurements and remote sensing data.

Data Spatial scale  Temporal extent Frequency Source

Soil moisture Point? 2003-2005 15 day N. Hewitt (CEH)
Latent heat flux Global 2006-2011 8 day, 1 month MODIS
Discharge Point® 2006-2011 1 day NRFA

8Measured at Warren Farm.
bLocations are shown in Figure 1a.

Table 2. Hydraulic properties for different soil types (refer to Figure 1c). Saturated hydraulic
conductivity (Ks) and porosity data are obtained from Rawls et al. [1982]. The Van Genuchten

parameters are acquired from Schaap and Leij [1998].

Texture Ks (mm-d?) Porosity (-) a (m?) n(-)
Loam 320 0.463 3.33 1.56
Silt loam 172 0.50 1.2 1.39
Clay 15 0.475 2.12 12
Table 3. Hydraulic properties of chalk
Properties Uncalibrated Range for Calibrated
Value Source calibration value
Ks (mm-d?) 1.0 Price et al., 1993 0.2-25.0 0.31
So (-) 0.8 Observations 0.0-1.0 0.46
fm () 1x10° Price et al., 1993 3x10% - 1x10° 1x10%"
a (m?) 3.0 Le Vine et al., 2016 - -
n(-) 14 Le Vine et al., 2016 - -

" fm parameter not calibrated

Table 4. Comparison between observed and simulated daily average runoff from the two

configurations over the Kennet catchment. Metrics include the Runoff Ratio (RR), relative bias (Ap),

and relative difference in standard deviation (Ac) (refer to appendix for further information).

Metric Observed Simulated (default) Simulated (macro)
RR 0.40 0.82 0.460-37
Ap - 1.04 0.12-0-05
Ac - 2.04 0.650+40
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711
712 Figures
713 Figure 1. (a) Location-{a}, (b) vegetation cover-(b}; and (c) soil texture {c)-over the study area.
714  The red line in (a) outlines the Kennet catchment boundary, while the river network is shown
715 in blue. The black triangle in (a) shows the location of the discharge gauging station at the
716  catchment outlet and while-the black square corresponds to Warren Farm location where
717  point-scale simulations are carried out. The black line in (c) encloses the area of the
718  catchment where chalk is present. Fhe-shaded-area-tn{c)represents-the-location-of chalkin
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Figure 2. (a) Example of soil profiles collected at Warren Farm during a field campaign in

2015 (&), and (b) the two model configurations-{5).
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742  surface at the Warren Farm site. The shaded areas constructed from 2 soil moisture probes at

743 the Warren Farm site denote the range of observed data in these plots.
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Figure 4. (a) Model performance in reproducing observed and simulated A8, (b) Ks, (c) So and
(d) fm for varieus-different parameter combinations considered in the optimization. For each

parameter (i.e., panels b, ¢, and d), red bars show cases in which the relevant parameter is

calibrated (either individually or in combination with others); while the blue bars correspond

to cases in which the selected parameter is not calibrated (i.e., fixed value according to

literature as in the macro case)Fhe-uncalibrated-model parametervalues-are shown-in-blue

whilered shows the ealibrated-valuesin-b,cand-d. Note that except for the default and
macro, the simulation yielding the lowest RMSE (out of 2,000 model runs) is presented in

this plot.
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Figure 87. Catchment average 8 day composites of MODIS estimated LE (LEmop) against
simulated LE from default and macro configurations (LEgefauit and LEmacro, respectively) along
with the linear models fitted for LEgetaur (black line) and LEmacro (red line). The 1:1 line is

shown in grey, which represents the perfect fit between LEmop and simulated LE.
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