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We would like to thank the reviewers for the valuable comments and suggestions that 
improved the manuscript. A point-by-point reply to the comments of both reviewers is 
provided below with the original comments shown in blue. 

 

Reviewer #1 (anonymous) 

The paper describes the addition of the bulk conductivity (BC) model into the JULES 
Land-surface model. The authors have implemented this very simple model in attempts to 
improve the simulation of chalk hydrology. The BC model is calibrated and shown to 
improve the simulated mass and energy fluxes over the Kennet catchment. The authors 
conclude by commenting on the potential suitability of this simple model for large scale 
land-surface modelling. 
 
It is clear that the authors have taken the time to properly implement the comments and 
suggestions from the first pass of reviews which have greatly improved the manuscript. The 
rewording of the title and abstract highlight the strength of the simplicity of the approach, 
and the calibration of the BC model parameters makes for a much cleaner and more 
convincing study. 
 
- We would like to thank the reviewer for the encouraging comments. 
 
I have found the paper clunky to read in places. Some restructuring could help improve the 
readability of the manuscript. 
 
- We have re-structured the manuscript as suggested by the reviewer in the “Minor 
Comments” section below to improve readability. 
 
Personally I feel that the calibration step needs to be clearer. The calibration step is not 
mentioned in the Abstract or Introduction of the paper. The word evaluation is used in 
places where ‘calibration’ would be more relevant. The BC model is first calibrated using soil 
moisture data at a point scale. The calibrated model performance is assessed and compared 
to the performance of the default JULES parameterization. Finally it is evaluated against 
independent data at a catchment scale. 
 
- We thank the reviewer for this valuable comment. We have incorporated the calibration 
step in the introduction of the revised manuscript (L. 75-82 in manuscript_revised.pdf): 
 
“At the point-scale, the proposed parameterization is calibrated using observed soil moisture 

profile data. This is achieved by randomly sampling the parameter space and extensively 

running the model in order to minimize the differences between observed and simulated soil 

moisture variability at different depths. Finally, the proposed model is applied to the Kennet 

catchment in the Southern England and the fluxes and states of the hydrological cycle are 

simulated for multiple years. The simulation results are evaluated using observed latent heat 

flux (LE) and runoff data to assess the performance of the BC model in simulating land 

surface processes at the catchment scale.” 
 
Minor Comments 
 
Introduction: It is worth mentioning in the introduction what default JULES does, this 
becomes clearer later but a sentence here to the effect: ‘JULES has nothing in place for chalk’ 
would be useful. 
 



2 
 

- We have incorporated this comment in the introduction of the revised manuscript (L. 71-74 
in manuscript_revised.pdf): 
 
“In order to test the proposed parameterization, the BC model is included in JULES (version 

4.2), which, by default (i.e., uniform soil column representation using general soil database as 

typically applied in land surface models), does not represent any chalk feature.” 
 
Pg 4 line 65: ‘…relatively large number of parameters’ could be worth stating how many to 
contrast with the three parameter model described in the paper. 
 
- We have mentioned the number of parameters used in relevant previous studies in the 
revised manuscript (L. 48-52 in manuscript_revised.pdf): 
 
“The physics-based models mentioned above were developed based on dual-continua 
approach and required relatively large numbers of parameters (i.e., on the order of 20-30 
parameters) that were calibrated via inverse modelling using observed soil moisture and 
matric potential data [e.g., Ireson et al., 2009; Mathias et al., 2006].” 
 
Pg 3 line 69: ‘At the point-scale the BC model is evaluated using observed soil moisture data. 
’ maybe use calibrated instead of evaluated. 
 
- Updated in the revised manuscript (L. 76 in manuscript_revised.pdf): 
 
“At the point-scale, the proposed parameterization is calibrated using observed soil moisture 
profile data.” 
 
Pg 4 line 87: the units for Ks are inconsistent with the units found in table 3. 
 
- We have used mmd-1 as the unit of Ks consistently in the revised manuscript (e.g., L. 97, L. 
248-250, Table 2 and Table 3 in manuscript_revised.pdf) 
 
Pg 5 line 105: it is not clear how Price et al.’s values of 3-5 mmd-1 for Ks imply a range of 0.8-
86 mmd-1 for calibration. 
 
- We thank the reviewer for pointing out this important issue. Note that we have chosen a 
different range of Ks is the revised manuscript following the suggestions of the other reviewer 
(Dr. Andrew Ireson). While Ireson et al. [2009] suggested a range of 0.2-2.0  
mmd-1, Price et al. [1993] argued that Ks is around 3-5 mmd-1 for most chalk soils. Therefore, 
we consider a range of 0.2-5.0 mmd-1 in the revised manuscript for Ks calibration. This 
updated range of Ks has been discussed in the revised manuscript (L. 248-250 in 
manuscript_revised.pdf): 
 
“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-1 for Ks. On the other hand, Price et 
al. [1993] argued that in general, Ks is around 3-5 mmd-1 for most chalk soils. Therefore, we 
consider a range of 0.2-5.0 mmd-1 in optimizing Ks.” 
 
Pg 5 lines 112-123: Please consider moving the calibration description into the methodology. 
 
- We have moved the description of calibration strategy to the “Methods” section (section 
3.5) in the revised manuscript (L. 236-260 in manuscript_revised.pdf). 
 
Pg 8 line 189 or Pg 10 line 223: Consider discussing the choice of using the default JULES 
parameters in the configuration. It is not too surprising that the calibrated parameterization 
of BC model would outperform an uncalibrated JULES model. The authors address this 
point in the first pass of reviews but I feel some of the text would benefit from being in the 
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text. Especially since it highlights the BC model’s application to a completely ‘naive’ model 
setup. 
 
- We have explained the choice of the parameters in the default configuration and the fact 
that it represents a naïve model configuration deprived of model calibration and chalk 
representation in the revised manuscript (L. 217-220 in manuscript_revised.pdf): 
 
“In this configuration, each soil column in JULES is considered to be vertically homogeneous 
with the soil properties defined in Table 2, which is motivated by the Met Office JULES 
Global Land 4.0 configuration described in Walters et al. [2014].” 
 
(L. 231-234 in manuscript_revised.pdf): 
 
“It should also be emphasized that default represents a “naïve” configuration deprived of 
model calibration. Moreover, this configuration does not represent chalk, which, according 
to previous studies [e.g., Le Vine et al., 2016], substantially affects the hydrology of the study 
area considered here.” 
 
FIg 1b): The ‘Bare soil’, ‘Needleleaf’ and ‘Broadleaf’ colours are very similar and hard to 
distinguish. 
 
- Figure 1b is updated in the revised manuscript of make the colours distinguishable.  
 
Fig 4 (panels (b) to (c)): It would help to shade the bars of the unchanged values differently 
so that the changes in parameter values becomes more obvious. These panels also don’t get 
discussed much in the main text. 
 
- We have shaded the bars representing uncalibrated and calibrated parameter values using 
blue and red colours, respectively in Figure 4 of the revised manuscript. We have also 
enhanced the discussion on Figure 4b, c and d in the revised manuscript (L. 300-313 in 
manuscript_revised.pdf). 
 
Pg 12 line 271-276: The sensitivity of S0 is particularly interesting and in turn the model 
doesn’t seem sensitive to fm . I feel the sensitivity of the parameters could be further 
discussed. Why is it advantageous to use the macro configuration with the two optimized 
parameters vs the three optimized parameters? 
 
- We have enhanced the discussion on the sensitivity of parameters on model performance in 
the revised manuscript (L. 282-299 in manuscript_revised.pdf). We have also discussed the 
benefit of reduced model complexity (i.e., reduced number of parameters for calibration) and 
our choice of parameters for calibration (i.e., Ks and S0) in the revised manuscript (L. 293-
299 in manuscript_revised.pdf): 
 

“Arguably, the BC model can be implemented in other chalk regions by constraining 
only S0 parameter. Such result could potentially be advantageous for transferability 
to other regions in the UK in order to assess chalk hydrology at large-scale. However 
since this is the first time the BC model is introduced, we decide to take a 
conservative approach and select the macro configuration with optimized Ks and S0 

(macroopt hereafter) to simulate chalk hydrology over the study area that ensures 
best overall model performance.” 
 
(L. 408-415 in manuscript_revised.pdf): 
 
“Our results indicated that S0 is by far the most influential parameter in the model when 
representing water movement through a soil-chalk column. This highlights the simplicity of 
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the proposed BC model for large-scale studies and potential ease in transferability. In 
comparison, Ks and fm showed secondary (low) sensitivity on the model performance. Since 
this study introduces the BC model, we decided however to take a conservative approach.  
We optimized Ks and S0 simultaneously for our catchment scale simulations since this 
combination resulted in the best overall model performance.” 
 
Table 3: there seems to be a lack of consistency between Figure 4 and Table 3. In the text 
(line 276) ‘. .. we select the macro configuration with optimized Ks and S 0 … ’ which should 
mean f m remains unchanged. However in Table 3, fm ’s optimized value differs for its 
unoptimized value. The value for f m in this table might be from optimising over this 
parameter alone, but then the other parameters have optimized values which differ from 
their single optimisation value (e.g. Ks ). What optimized values are shown in this table? 
Surely the values used in macro opt should be represented here. 
 
- We thank the reviewer for raising this important issue. We agree that the values presented 
in Table 3 of the previous manuscript were not consistent with our choice of parameters for 
calibration (i.e., Ks and S0). We have updated Table 3 in the revised manuscript (P. 27 in 
manuscript_revised.pdf). Note that in updated Table 3, calibrated value for Ks (0.31 mmd-1) 
and S0 (0.46) are presented, while fm (105) remains uncalibrated. 
 
A further comment on Fig.4 and Table 3: what are the units of Ks ? In figure they are of order 
x10 4, in the table units (md 1) and earlier in the text (mmd 1). 
 
- We have updated Figure 4 and added units of Ks (mmd-1) in the revised manuscript (P. 31 of 
manuscript_revised.pdf). The unit of Ks in Table 3 of the revised manuscript is also updated 
to mmd-1 (P. 27 in manuscript_revised.pdf). 
 
Table 3: Add ranges over which the parameters were allowed to vary in calibration stage. 
 
- Ranges are added in Table 3 of the revised manuscript (P. 27 in manuscript_revised.pdf).  
 
Pg 13 line 196: It is worth commenting that it is still an underestimate. 
 
- Note that this sentence along with the associated figure (i.e., Figure 6 in the previous 
manuscript) is removed from the revised manuscript. In manuscript_revised.pdf, we focus 
on the simplicity of the BC parameterization and the calibration of the model parameters to 
reduce the differences between observed and simulated soil moisture variability based on the 
comments by Dr. Andrew Ireson during the previous rounds of review. The results show that 
the calibrated model improves simulated key hydrological processes over the Kennet 
catchment compared to the default configuration. Therefore Figure 6 (previous manuscript) 
is no longer necessary because all the relevant information (i.e., the comparison between 
observed and simulated soil moisture variability) is shown in Figure 5 of 
manuscript_revised.pdf. 
 
Pg 16 line 375: Two parameters vs the three referenced in the rest of the paper… is K s no 
longer considered a parameter in the conclusion? 
 
- We would like to thank the reviewer for pointing out this issue. This discussion on the 
model parameters is clarified in the revised manuscript (L. 403-415 in 
manuscript_revised.pdf): 
 
“The proposed BC model is a single continuum approach of modelling preferential flow [e.g., 
Beven and Germann, 2013] that involves only 3 parameters, namely the saturated hydraulic 
conductivity of chalk matrix (Ks), macroporosity factor (fm) and relative saturation threshold 
(S0). Initially, these parameters were estimated from existing literature to assess the 
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performance of the uncalibrated BC model. Finally, the BC model parameters were 
optimized to minimize the differences between observed and simulated soil moisture 
variability. Our results indicated that S0 is by far the most influential parameter in the model 
when representing water movement through a soil-chalk column. This highlights the 
simplicity of the proposed BC model for large-scale studies and potential ease in 
transferability. In comparison, Ks and fm showed secondary (low) sensitivity on the model 
performance. Since this study introduces the BC model, we decided however to take a 
conservative approach.  We optimized Ks and S0 simultaneously for our catchment scale 
simulations since this combination resulted in the best overall model performance.” 
 
Fig 6: Consider adding vertical lines between the bins to highlight the fact the boxplots are of 
the same depth. This is not immediately clear and I’ve noticed that reviewer 3 also 
mentioned the slight confusion caused by this figure. 
 
- As mentioned above, this figure is removed from the revised manuscript. 
 
 
Reviewer #2 (Dr. Andrew Ireson) 

The paper is much improved, and I think that this is a useful contribution. However, there is 
a lingering problem that really should be addressed before the paper can be published. The 
authors have misinterpretted the hydraulic conductivity in the LeVine Paper (cited in the 
manuscript), which was a bulk hydraulic conductivity and not a matrix conductivity. 
Moreover, in the optimisation of K, the authors have not sampled K on a log-scale (unless 
they have and have neglected to say this), meaning that the optimized K is biased towards 
higher values. As a result, I believe the authors still have a matrix K which is unrealistically 
large compared with other published estimates. In my opinion, this is important and should 
be corrected before this paper can be published, which unfortunately means re-running the 
models.  

- We would like to thank the reviewer for his valuable suggestions. In the revised manuscript, 
we have selected a different range for Ks calibration based on relevant previous studies. 
While Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-1, Price et al. [1993] argued that 
Ks is around 3-5 mmd-1 for most chalk soils. Therefore, we consider a range of 0.2-5.0 mmd-1 

in the revised manuscript for Ks calibration. This updated range of Ks has been discussed in 
the revised manuscript (L. 248-250 in manuscript_revised.pdf): 
 
“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-1 for Ks. On the other hand, Price et 
al. [1993] argued that in general, Ks is around 3-5 mmd-1 for most chalk soils. Therefore, we 
consider a range of 0.2-5.0 mmd-1 in optimizing Ks.” 
 
Another significant error, though easily fixed, is that the revised manuscript still does not 
include a plot of runoff for the catchment scale application. Such a plot was included in the 
response to reviewers (Figure R2 in the response), so should be incorporated into the 
manuscript. I think that the performance in this figure was reasonable. They should also 
show the default model performance. 

- We thank the reviewer for highlighting this positive result from our study. As suggested, we 
have incorporated the comparison between observed and simulated runoff (for both default 
and macroopt) in the revised manuscript (Figure 8b, L. 360-368 in manuscript_revised.pdf). 
 
If this can be quickly addressed, this will be a nice paper. 
 
I have also identified some minor errors to be corrected, below: 
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L 65 - "numbers of parameters" 

- Corrected in the revised manuscript (L. 50 in manuscript_revised.pdf): 

L 80 - to be rigorous you should also show what "K_sb" is when S <= S_0. 

- Updated in the revised manuscript (L. 90 in manuscript_revised.pdf) 
 
L 87 - I believe the authors have misinterpretted the LeVine paper, which has a bulk 
saturated hydraulic conductivity of 16 mm/d, and not a matrix hydraulic conductivity. This 
number is at least an order of magnitude too high (see e.g. Ireson et al 2009, Price et al 1993, 
Price et al 2000, Brouyere 2006, all cited in the manuscript).  

- As discussed earlier, we have selected a different range for Ks calibration (0.2-5.0 mmd-1) 
based on relevant previous studies as suggested by the reviewer (L. 248-250 in 
manuscript_revised.pdf): 
 
“Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-1 for Ks. On the other hand, Price et 
al. [1993] argued that in general, Ks is around 3-5 mmd-1 for most chalk soils. Therefore, we 
consider a range of 0.2-5.0 mmd-1 in optimizing Ks.”. 
 
Table 2 & 3 should probably use the same units for hydraulic conductivity - m/d is good. 

- Updated in the revised manuscript (P. 27 in manuscript_revised.pdf). 
 
Figure 1 c) has 5 colours, while only 3 legend items. 

- Updated in the revised manuscript (Figure 1 in manuscript_revised.pdf). 
 
Figure 4 - Need to label the units of K - and what are these? Not mm/d or m/s as far as I can 
tell - maybe mm/s? Better to use m/d. 

- Unit (mmd-1) is added in the revised manuscript (Figure 4 in manuscript_revised.pdf). 
 
L 106 - the range in Ks considered is good, though I would expect the true value to be right at 
the bottom of this range. Did you sample Ks in log-space? I assume not - which is a problem 
as it will bias your sampling to the higher values. This is important - you need to sample in 
log-space. I think your default and optimized Ks are still too high (i.e. values in Figure 4). 
Other than this, the optimization approach is good. 

- We have sampled Ks in log space in the revised manuscript (L. 256-257 in 
manuscript_revised.pdf): 
 
“Note that for the Ks parameter, the random sampling was performed from a logarithmic 
distribution [Ireson et al., 2009].” 
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Towards a simple representation of chalk hydrology in land 1 

surface modelling  2 
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Abstract 6 

Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a 7 

porous medium with fractures, is important to optimize water resources assessment and 8 

management practices in the United Kingdom (UK). However, incorporating the processes 9 

governing water movement through chalk unsaturated zone in a numerical model is 10 

complicated mainly due to the fractured nature of chalk that creates high-velocity preferential 11 

flow paths in the subsurface. In general, flow through chalk unsaturated zone is simulated 12 

using dual-porosity concept, which often involves calibration of relatively large number of 13 

model parameters, potentially undermining applications to large regions. Therefore, this 14 

approach may be not be suitable for large-scale land surface modelling applications. In this 15 

study, a simplified parameterization, namely the Bulk Conductivity (BC) model is proposed 16 

for simulating hydrology in chalk unsaturated zone. This new parameterization introduces 17 

only two additional parameters (namely the macroporosity factor and the soil wetness 18 

threshold parameter for fracture flow activation) and uses the saturated hydraulic 19 

conductivity from chalk matrix. The BC model is implemented in the Joint UK Land 20 

Environment Simulator (JULES) and applied to a study area encompassing the Kennet 21 

catchment in the Southern UK. This parameterization is further calibrated at a point-scale 22 

using soil moisture profile observations. The performance of calibrated BC model in JULES 23 

is assessed and compared against the performance of both the default JULES 24 
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parameterization and the uncalibrated version of BC model implemented in JULES. Finally, 25 

the model performance at the catchment-scale is evaluated against independent data sets The 26 

simulation results are evaluated using field measurements and satellite remote sensing 27 

observations of various fluxes and states of the hydrological cycle (e.g., soil moisture, runoff 28 

and latent heat flux) at two distinct spatial scales (i.e., point and catchment).. The results 29 

demonstrate that the inclusion of the BC model in JULES improves simulated land surface 30 

mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple 31 

approach described in this study may be used to incorporate the flow processes through chalk 32 

unsaturated zone in large- scale land surface modelling applications. 33 

Keywords: Chalk hydrology, macroporosity, land surface model, bulk conductivity model. 34 

1. Introduction 35 

Chalk can be described as a fine-grained porous medium traversed by fractures [Price et al., 36 

1993]. Previous studies showed that the unsaturated zone of the chalk aquifers plays an 37 

important role on groundwater recharge in the UK [e.g., Lee et al., 2006; Ireson et al., 2009]. 38 

Therefore, both monitoring [e.g., Bloomfield, 1997; Ireson et al., 2006] and modelling [e.g., 39 

Bakopoulou, 2015; Brouyère, 2006; Ireson and Butler, 2011, 2013; Sorensen et al., 2014] 40 

strategies have been adapted previously to understand the governing hydrological processes 41 

in the chalk unsaturated zone. 42 

In chalk, the matrix provides porosity and storage capacity, while the fractures greatly 43 

enhance permeability [Van den Daele et al., 2007]. Water movement through chalk matrix is 44 

slow due to its relatively high porosity (0.3-0.4) and low permeability (10-9-10-8 ms-1). A 45 

fractured chalk system, in contrast, conducts water at a considerably higher velocity because 46 

of relatively high permeability (10-5-10-3 ms-1) and low porosity (of the order 10-4) of 47 

fractures [Price et al., 1993].  48 
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Simulating water flow through the matrix-fracture system of chalk has been the subject of 49 

research for some time. Both conceptual [e.g., Price et al., 2000; Haria et al., 2003] and 50 

physics-based [e.g., Mathias et al., 2006; Ireson et al., 2009] models have been proposed 51 

previously to describe water flow through chalk unsaturated zone. The physics-based models 52 

mentioned above were developed based on dual-continua approach and required relatively 53 

large numbers of parameters (i.e., on the order of 20-30 parameters) that were calibrated via 54 

inverse modelling using observed soil moisture and matric potential data [e.g., Ireson et al., 55 

2009; Mathias et al., 2006]. 56 

In recent years, representation of chalk has gained attention in land surface modelling. For 57 

example, Gascoin et al. [2009] applied the Catchment Land Surface Model (CLSM) over the 58 

Somme River basin in northern France. A linear reservoir was included in the TOPMODEL 59 

based runoff formulation of CLSM to account for the contribution of chalk aquifers to river 60 

discharge. Le Vine et al. [2016] applied the Joint UK Land Environment Simulator (JULES 61 

[Best et al., 2011]) over the Kennet catchment in southern England to evaluate the 62 

hydrological limitations of land surface models. In that study, two intersecting Brooks and 63 

Corey curves were proposed, which allowed a dual curve soil moisture retention 64 

representation for the two distinct flow domains of chalk (i.e., matrix and fracture) in the 65 

model. Considering this dual Brooks and Corey curve, a three-dimensional groundwater flow 66 

model (ZOOMQ3D [Jackson and Spink, 2004]) was coupled to JULES to demonstrate the 67 

strong influence of representing chalk hydrology and groundwater dynamics on simulated 68 

soil moisture and runoff.  69 

The above mentioned studies illustrate the importance of representing chalk in land surface 70 

modelling. However, including chalk hydrology in large-scale land surface modelling using 71 

the contemporary dual-porosity concept can be complicated due to because this approach 72 

generally involves relatively large numbers of additional parameters. In this context, we 73 
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propose a new parameterization, namely the Bulk Conductivity (BC) model as a first step 74 

towards a simple chalk representation suitable for land surface modelling. In order to test the 75 

proposed parameterization, the The BC model is included in JULES (version 4.2), which, by 76 

default (i.e., uniform soil column representation using general soil database as typically 77 

applied in land surface models), does not represent any chalk feature. In this study, the BC 78 

model (included in JULES) is and applied evaluated at two distinct spatial scales (i.e., point 79 

and catchment). At the point-scale, the proposed BC model parameterization is calibrated 80 

evaluated using observed soil moisture profile data. This is achieved by randomly sampling 81 

the parameter space and extensively running the model in order to minimize the differences 82 

between observed and simulated soil moisture variability at different depths. Finally, the The 83 

proposed model is then applied to the Kennet catchment in the Southern England and the 84 

fluxes and states of the hydrological cycle are simulated for multiple years. The simulation 85 

results are evaluated using observed latent heat flux (LE) and runoff data to assess the 86 

performance of the BC model in simulating land surface processes at the catchment scale.  87 

2. A model of flow through chalk unsaturated zone 88 

In this study, the Bulk Conductivity (BC) model based on the work by Zehe et al. [2001] is 89 

incorporated in JULES to represent the flow of water through the fractured chalk unsaturated 90 

zone. According to this approach, if the relative saturation (S) exceeds a certain threshold (S0) 91 

at a soil grid, the saturated hydraulic conductivity of chalk matrix (Ks) is increased to a bulk 92 

saturated hydraulic conductivity (Ksb) as follows 93 

𝐾𝑠𝑏 = 𝐾𝑠 + 𝐾𝑠𝑓𝑚
𝑆−𝑆0

1−𝑆0
                             if S > S0                                                                    (1) 94 

𝐾𝑠𝑏 = 𝐾𝑠                                                 if S<= S0                                                                                                     (2) 95 

with     𝑆 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
                                                                                                                       96 
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where fm is a macroporosity factor (-), θ is soil moisture (m3m-3), θs is soil moisture at 97 

saturation (m3m-3), and θr is the residual soil moisture (m3m-3). Note that S ranges from zero 98 

in case of completely dry soils to one for fully wet soils. 99 

At the first step of evaluation, the Ks, S0 and fm parameters are estimated based on existing 100 

literature to assess the performance of the uncalibrated BC model. In this uncalibrated BC 101 

model, Ks for chalk matrix is 16 mmd-1 according to Le Vine et al. [2016] for the catchment 102 

investigated in this study (Figure 1) For the matrix saturated hydraulic conductivity (Ks), we 103 

use Ks = 1.0 mmd-1 following Mathias et al. [2006]. In addition, Equation 1 indicates that the 104 

onset of water flow through the fracture system of chalk is controlled by the threshold S0. 105 

According to Wellings and Bell [1980], water flow through fractures dominates over matrix 106 

flow in chalk when the pressure head in soil becomes higher than -0.50 mH2O. We consider a 107 

value of S0 = 0.80 for the uncalibrated BC model, which is based on observed soil moisture-108 

matric potential relationship in the study area (Figure S1).  109 

Finally, In Zehe et al. [2001], fm was defined as the ratio of the saturated water flow rate in all 110 

macropores in a model element to the corresponding value in soil matrix, which can be 111 

determined based on the density and length of fractures at small scales. In addition, fm has 112 

also been considered as a calibration parameter previously [e.g., Blume, 2008; Zehe et al., 113 

2013]. In this study, we define fm as a characteristic soil property reflecting the influence of 114 

fractures on soil water movement [Zehe and Blӧschl, 2004], and estimate it from the relative 115 

difference of permeability between chalk matrix and fractured chalk system that can be of the 116 

order 104-106 according to Price et al. [19939]. Consequently, we consider a macroporosity 117 

factor of fm = 105 for the uncalibrated BC model. In the following step, the BC model is 118 

calibrated to minimize the differences between the variability of observed and simulated soil 119 

moisture at individual depths. The calibration strategy will be discussed elaborately in section 120 

3.5. 121 



6 
 

In the following step, the BC model parameters are optimized to minimize the differences 122 

between the variability of observed and simulated soil moisture. Price et al. [1999] argued 123 

that the Ks for chalk matrix is generally around 3-5 mmd-1 (3.5-5.8x10-5 mms-1). In order to 124 

optimize the BC model performance, we consider a range of Ks = 0.8-86 mmd-1 (10-5-10-3 125 

mms-1) for chalk matrix in this study. As mentioned earlier, S is zero for completely dry soils 126 

and one in case of fully wet soils. Therefore, we consider a range of 0-1.0 for S0 to optimize 127 

the BC model. For fm, a range of 104-106 is considered, which, as discussed earlier, is 128 

consistent with the relative difference between the permeability of fractured chalk and chalk 129 

matrix according to Price et al [1999]. 130 

We use the Root Mean Squared Error (RMSE) as the objective function to optimize the BC 131 

model parameters [e.g., Ireson et al., 2009] 132 

𝑅𝑀𝑆𝐸 =
1

𝑛𝑑
∑ √(

1

𝑛𝑡−1
∑ (∆𝜃𝑑,𝑡

𝑜𝑏𝑠 −  ∆𝜃𝑑,𝑡
𝑠𝑖𝑚)

2𝑛𝑡
2 )𝑛𝑑

1                                                                   (2) 133 

where nd is the number of soil layers, nt is the number of soil moisture observations available 134 

for a layer d, Δθobs is the observed variability of soil moisture and Δθsim is the simulated 135 

variability of soil moisture. Note that we consider Δθ for this optimization because of its 136 

relevance to the water flux and recharge through chalk unsaturated zone [e.g., Ireson and 137 

Butler, 2011]. Latin hypercube technique [e.g., McKay et al., 2016] is used to generate 2000 138 

random samples for each BC model parameter within the respective range discussed above. 139 

We perform simulations using these random samples and calculate model performance 140 

(Equation 2) to select the optimum parameter values for the BC model (discussed in section 141 

4.1). 142 

3. Methods 143 

3.1. Study area 144 
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The study area encompasses the Kennet catchment located in the Southern England with an 145 

area of about 1033 km2 (Figure 1a). Generally, Kennet is rural in nature with scattered 146 

settlements and has a maximum altitude of approximately 297 m (Above Ordnance Level). 147 

The River Kennet discharges into the North Sea through London. The major tributaries of 148 

this river are Lambourn, Dun, Enborne, and Foudry Brook. An average annual rainfall of 149 

approximately 760 mm was recorded in the catchment over a 40 year period from 1961-1990. 150 

Solid geology of the Kennet catchment is dominated by chalk, which is overlain by thin soil 151 

layer. While lower chalk outcrops along the northern catchment boundary, progressively 152 

younger rocks are found in the southern part. In general, surface runoff production is very 153 

limited over the regions of the catchment where chalk outcrops. The flow regime shows a 154 

distinct characteristics of slow response to groundwater held within the chalk aquifer [Le 155 

Vine et al., 2016]. According to Ireson and Butler [2013], the unsaturated zone of chalk 156 

shows slow drainage over summer and bypass flow during wet periods in this catchment. 157 

3.2. Field measurements and remotely sensed data 158 

Table 1 summarizes the field measurements and remote sensing data used in this study. We 159 

use in-situ soil moisture and runoff measurements along with remotely sensed LE data to 160 

assess model performance in simulating the mass and energy balance components of the 161 

hydrological cycle. Point scale soil moisture measurements at two adjacent sites (~20 m 162 

apart) at the Warren Farm (Figure 1) were provided by Centre for Ecology and Hydrology 163 

(CEH). A Didcot neutron probe was used at these locations to measure fortnightly soil 164 

moisture at different depths below land surface (10 cm apart down to 0.8 m, 20 cm apart 165 

between 0.8-2.2 m, and 30 cm apart between 2.2-4.0 m) [Hewitt et al., 2010]. 166 

The National River Flow Archive (NRFA) coordinates discharge measurements from the 167 

gauging station networks across UK. These networks are operated by the Environmental 168 
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Agency (England), Natural Resources Wales, Scottish Environment Protection Agency, and 169 

Rivers Agency (Northern Ireland). We use discharge measurements provided by NRFA to 170 

calculate the runoff ratio over the Kennet catchment in this study assess model performance 171 

in simulating runoff over the Kennet catchment in this study.  172 

The MOD16 product of the Moderate Resolution Imaging Spectroradiometer (MODIS) is a 173 

part of NASA/EOS project that provides estimation of global terrestrial LE. The LE 174 

estimation from MOD16 is based on remotely sensed land surface data [e.g., Mu et al., 2007]. 175 

In this study, the 8-day and monthly LE data products from MODIS is used to evaluate the 176 

model performance in simulating land surface energy fluxes. 177 

3.3. Land surface model 178 

In this study, we use the Joint UK Land Environment Simulator (JULES [e.g., Best et al., 179 

2011; Clark et al., 2011]) version 4.2. JULES is a flexible modelling platform with a modular 180 

structure aligned to various physical processes developed based on the Met Office Surface 181 

Exchange Scheme (MOSES [e.g., Cox et al., 1999; Essery et al., 2003]). Meteorological data 182 

including precipitation, incoming short- and longwave radiation, temperature, specific 183 

humidity, surface pressure, and wind speed are required to drive JULES. Each grid box in 184 

JULES can comprise nine surface types (broadleaf trees, needle leaf trees, C3 grass, C4 grass, 185 

shrubs, inland water, bare soil, and ice) represented by respective fractional coverage. Each 186 

surface type is represented by a tile and a separate energy balance is calculated for each tile. 187 

Subsurface heat and water transport equations are solved based on finite difference 188 

approximation in JULES as described in Cox et al. [1999]. Moisture transport in the 189 

subsurface is described by the finite difference form of Richards’ equation. The vertical soil 190 

moisture flux is calculated using the Darcy’s law. While the top boundary condition to solve 191 
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the Richards’ equation is infiltration at soil surface, the bottom boundary condition in JULES 192 

is free drainage that contributes to subsurface runoff.  193 

Surface runoff is calculated by combining the equations of throughfall and grid box average 194 

infiltration in JULES. In order to direct the generated runoff to a channel network, river 195 

routing is implemented based on the discrete approximation of one-dimensional kinematic 196 

wave equation [e.g., Bell et al., 2007]. In this approach, river network is derived from the 197 

digital elevation model (DEM) of the study area and different wave speeds are applied to 198 

surface and subsurface runoff components and channel flows [e.g., Bell and Moore, 1998]. A 199 

return flow term accounts for the transfer of water between subsurface and land surface [e.g., 200 

Dadson et al., 2010, 2011]. 201 

3.4. Model configurations and input data 202 

In this study, simulations are performed at two distinct spatial scales, namely point and 203 

catchment. At the point scale, JULES is configured to simulate the mass and energy fluxes at 204 

the Warren Farm site (Figure 1a). A total subsurface depth of 5 m is considered in the model 205 

with a vertical discretization ranging from 10 cm at the land surface to 50 cm at the bottom of 206 

the model domain.  Note that this discretization is consistent with the soil moisture 207 

measurement depths mentioned in section 3.2. The vegetation type is implemented as C3 208 

grass using the default parameters in JULES. Point scale simulations were performed over 2 209 

consecutive years from 2003-2005 at an hourly time step. Except for precipitation, hourly 210 

atmospheric forcing data to drive JULES was obtained from an automatic weather station 211 

operated by the CEH at Warren Farm. In order to estimate hourly precipitation data to run 212 

JULES, rain gauge measurements from the Met Office [Met Office, 2006] were used. Inverse 213 

distance interpolation technique [e.g. Garcia et al., 2008; Ly et al., 2013] was applied on 214 
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rainfall measurements from 13 gauges closest to Warren Farm (distance varies from 25-60 215 

km) to obtain hourly precipitation for the point scale simulations. 216 

At the catchment scale, JULES is configured over a study area encompassing the Kennet 217 

catchment (Figure 1a) considering a uniform lateral grid resolution of 1 km with 70 x 40 cells 218 

in x and y dimensions, respectively. The total subsurface depth and vertical discretization are 219 

identical to those of the point scale simulations. Spatially distributed vegetation type 220 

information for the study area (Figure 1b) is obtained from the Land Cover Map 2007 221 

(LCM2007) dataset [Morton et al., 2011]. Simulations were performed over 5 consecutive 222 

years from 2006-2011 at the catchment scale. Note that the simulation periods of catchment 223 

and point scale (2003-2005) does not coincide due to the availability of soil moisture 224 

measurements described in section 3.2. Spatially distributed meteorological data from the 225 

Climate, Hydrology and Ecology research Support System (CHESS) was used to obtain the 226 

atmospheric forcing to drive JULES at the catchment scale. The CHESS data includes 1 km 227 

resolution gridded daily meteorological variables [Robinson et al., 2015]. This daily data is 228 

downscaled using a disaggregation technique described in Williams and Clark [2014] to 229 

obtain hourly atmospheric forcing. The flow direction required for river routing is extracted 230 

from the USGS HydroSHEDS digital elevation data [Lehner et al., 2008]. 231 

We estimate the soil hydraulic properties based on texture (Table 2). At the point scale, loam 232 

soil is dominant at the Warren Farm site. At the catchment scale, the Harmonized World Soil 233 

Database (HWSD) from the Food and Agricultural Organization of UNO (FAO) is used to 234 

obtain the texture of different soil types over Kennet (Figure 1c). The saturation-pressure 235 

head relationship for different soil types is described using the Van Genuchten [Van 236 

Genuchten, 1980] model with parameter values (Table 2) obtained from Schaap and Leij 237 

[1998].  238 
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Table 3 summarizes tThe hydraulic properties for chalk used in this study are summarized in 239 

Table 3. These properties are obtained based on existing literature as a first step when 240 

evaluating the uncalibrated BC model. The BC model parameters are subsequently optimized 241 

calibrated to minimize the differences between observed and simulated Δθ (section 3.5) at 242 

various soil depths. 243 

In this study, we consider two different model configurations, namely default and macro 244 

(Figure 2). The default configuration corresponds to the standard parameterizations of JULES 245 

that does not represent chalk hydrology in the model. In this configuration, each soil column 246 

in JULES is considered to be vertically homogeneous with the soil properties defined in 247 

Table 2, which is motivated by the Met Office JULES Global Land 4.0 configuration 248 

described in Walters et al. [2014]. The macro configuration, in contrast, explicitly represents 249 

chalk by applying the BC model starting at 30 cm below land surface to the bottom of the 250 

model domain (i.e. 500 cm). Therefore, the soil column in the macro configuration can be 251 

divided into topsoil (0-30 cm) and chalk (30-500 cm) in macro. The topsoil depth of 30 cm in 252 

the macro configuration is defined based on several augured soil samples collected during a 253 

field campaign at Warren Farm in 2015 (Figure 2). This depth is corroborated by additional 254 

information from the British Geological Survey (BGS) operated borehole records 255 

(http://www.ukso.org/pmm/soil_depth_samples_points.html), which show that topsoil depths 256 

vary from 10-40 cm over the study area. We therefore apply the macro configuration 257 

assuming a spatially homogeneous topsoil depth of 30 cm for both point and catchment scale 258 

simulations. Note that except for this inclusion of chalk, default and macro configurations are 259 

identical in terms of model set up and input data. It should also be emphasized that default 260 

represents a “naïve” configuration deprived of model calibration. Moreover, this 261 

configuration does not represent chalk, which, according to previous studies [e.g., Le Vine et 262 

al., 2016], substantially affects the hydrology of the study area considered here. 263 
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3.5. Calibration of the BC model 264 

We calibrate the BC model at the point-scale to minimize the differences between observed 265 

and simulated soil moisture variability (Δθ) at different depths. The Root Mean Squared 266 

Error (RMSE) is used as the objective function to optimize the BC model parameters [e.g., 267 

Ireson et al., 2009] 268 

𝑅𝑀𝑆𝐸 =
1

𝑛𝑑
∑ √(

1

𝑛𝑡−1
∑ (∆𝜃𝑑,𝑡

𝑜𝑏𝑠 −  ∆𝜃𝑑,𝑡
𝑠𝑖𝑚)

2𝑛𝑡
2 )𝑛𝑑

1                                                                (3) 269 

where nd is the number of soil layers, nt is the number of soil moisture observations available 270 

for a layer d, Δθobs is the observed variability of soil moisture and Δθsim is the simulated 271 

variability of soil moisture. Note that we consider Δθ for this optimization because of its 272 

relevance to the water flux and recharge through chalk unsaturated zone [e.g., Ireson and 273 

Butler, 2011].  274 

Equation (1) reveals that the calibration of the BC model involves optimizing 3 parameters, 275 

namely the saturated hydraulic conductivity of chalk matrix (Ks), saturation threshold (S0) 276 

and macroporosity factor (fm). Ireson et al. [2009] suggested a range of 0.2-2.0 mmd-1 for Ks. 277 

On the other hand, Price et al. [1993] argued that in general, Ks is around 3-5 mmd-1 for most 278 

chalk soils. Therefore, we consider a range of 0.2-5.0 mmd-1 in optimizing Ks. We consider S0 279 

range 0-1, representing the entire physical domain for soil wetness from fully dry to fully 280 

wet, respectively. As mentioned earlier, S is zero for completely dry soils and one in case of 281 

fully wet soils. Consequently, we consider S0 = 0.0-1.0 in the optimization. For fm, a range of 282 

104-106 is considered, which, as discussed earlier, is consistent with the relative difference 283 

between the permeability of fractured chalk and chalk matrix according to Price et al [1993]. 284 

Latin hypercube sampling technique [e.g., McKay et al., 2016] is used to generate 2,000 285 

random samples for each BC model parameter within the ranges discussed above. Note that 286 

for the Ks parameter, the random sampling was performed from a logarithmic distribution 287 
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[Ireson et al., 2009]. We perform simulations using these random samples and calculate 288 

model performance (Equation 3) to select the optimum parameter values for the BC model 289 

for each possible parameter combination as discussed in details in the following section. 290 

4. Results and discussion 291 

4.1. Point scale simulations 292 

At the point scale, the simulation results are evaluated using soil moisture observations at the 293 

Warren Farm site. Figure 3a compares observed and simulated soil moisture (θ) from the 294 

default and macro configurations at 2 m below land surface. Note that the macro 295 

configuration uses the chalk hydraulic parameters collected from existing literature (Table 3). 296 

This figure shows that the default configuration considerably underestimates θ throughout the 297 

simulation period, which is improved remarkably in case of macro. Figure 3b plots observed 298 

and simulated soil moisture variability (Δθ) from the default and macro configurations 299 

(Δθdefault and Δθmacro, respectively) at the Warren Farm site. In general, both configurations 300 

show discrepancies with observed Δθ with macro showing relatively better model 301 

performance. 302 

The results show that despite the macro configuration improves simulated θ, it shows 303 

considerable discrepancies with observed Δθ, which is consistent throughout the whole chalk 304 

profile (results from other model layers are not shown). In order to minimize the differences 305 

between observed and modelled Δθ from the macro configuration, we calibrate optimize the 306 

BC model following the methodology described in section 3.52. The optimization results are 307 

summarized in Figure 4. Note that for each combination considered in the optimization, 2,000 308 

model runs were performed using randomly sampled parameters as discussed in section 3.52. 309 

In addition to the default and macro cases, the calibrated cases in Figure 4 presents 310 
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correspond to the results from the model runs yielding the lowest RMSE for each parameter 311 

combination evaluated.  312 

The RMSE between observed and simulated Δθ for the model configurations considered in 313 

the optimization is shown in Figure 4a. This figure illustrates that the RMSE of the default 314 

configuration is larger than that of macro, indicating better model performance in 315 

reproducing Δθ for the latter (corresponding to a reduction of 15% in RMSE compared to the 316 

default case). Therefore, it appears that the uncalibrated BC model (i.e., the macro 317 

configuration) is better in reproducing reproduces the soil moisture variability compared to 318 

default. Figure 4b, c and d presents the BC model parameter values from the model run 319 

producing the lowest RMSE for each configuration. Concerning the calibration of single BC 320 

model parameters, Figure 4a shows that optimizing S0 results in a 46% 16% reduction of 321 

RMSE compared to the macro configuration. Calibrating Optimizing Ks marginally improves 322 

model performance, which is observed from a slightly lower (4%) RMSE than macro or fm 323 

individually yields only about 25% reduction of RMSE compared to macro.  324 

Optimizing both Ks and S0 simultaneously shows results in the largest reduction (5024%) of 325 

RMSE compared to macro which coincides with the total RMSE reduction found when all 326 

parameters are calibrated. Arguably, the BC model can be implemented in other chalk 327 

regions by constraining only S0 parameter. Such result could potentially be advantageous for 328 

transferability to other regions in the UK in order to assess chalk hydrology at large-scale. 329 

However since this is the first time the BC model is introduced, we decide to take a 330 

conservative approach and select the macro configuration with optimized Ks and S0 (macroopt 331 

hereafter) to simulate chalk hydrology over the study area that ensures best overall model 332 

performance. 333 
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The lower three panels in Figure 4 presents the BC model parameter values for the default 334 

and uncalibrated macro cases as well as for different combinations of parameters calibrated. 335 

The red bars in Figure 4a, b and c highlight the cases in which a given parameter is 336 

constrained by optimization. In those cases, the calibrated parameter values are obtained from 337 

model runs producing the lowest RMSE. An interesting feature in Figure 4b (calibrating Ks 338 

individually) is that the optimization suggests a compensation mechanism in which Ks is 339 

increased remarkably in order to physically represent the “effective” flow through the chalk 340 

fractures in the BC model. This is not surprising and arguably the simplest way to attempt to 341 

improve model performance. For macroopt, the values used for Ks is relatively lower than that 342 

of uncalibrated macro case nevertheless consistent with previous estimates [e.g., Ireson et al., 343 

2009]. Figure 4c clearly shows the dominance of S0 in the BC model as all the relatively low 344 

RMSE bars in Figure 4a are associated with S0 calibration (see red bars in Figure 4c). In 345 

addition, calibrated S0 values for all cases show a consistent constraint around 0.50. Finally, 346 

Figure 4d indicates the lack of influence for fm parameter on model performance. 347 

Additionally, Figure 4 suggests that the sensitivity of S0 on the model performance in 348 

simulating Δθ is substantially higher compared to Ks and fm, which is corroborated by the 349 

sensitivity of the individual model parameters (Figure S2). Figure 4a also reveals the 350 

interesting fact that the RMSE from the configuration with optimized Ks and S0 is identical to 351 

that of the one with all 3 parameters optimized simultaneously (i.e., Ks, S0 and fm). Therefore, 352 

we select the macro configuration with optimized Ks and S0 (macroopt hereafter) to simulate 353 

chalk hydrology over the study area.  354 

Figure 5 compares Δθdefault, Δθmacro and Δθ from the macroopt configuration (Δθopt) with 355 

observed soil moisture variability (Δθobs). As mentioned earlier, Δθdefault and Δθmacro show 356 

considerable discrepancies with Δθobs while the macro configuration exhibits relatively better 357 

performance (Figure 3). Figure 5 illustrates that the overall agreement between observed and 358 
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simulated Δθ improves substantially in case of macroopt compared to default and macro, 359 

which is pronounced especially in the deeper chalk layers. Therefore, this figure indicates 360 

that the performance of the BC model in simulating Δθ is further improved by optimizing the 361 

Ks and S0 parameters simultaneously at the Warren Farm site.  362 

In order to assess the model performance in simulating soil moisture over the entire column, 363 

the relative bias (Δμ, see Appendix) of simulated θ from the default and macroopt 364 

configurations at Warren Farm for various depth ranges are shown in Figure 6. In the soil 365 

layers (0-30 cm), θ from the two configurations are comparable with the default showsing 366 

slightly lower mean relative bias (Δμmean) of -0.03 than macroopt (Δμmean = -0.12 -0.09). 367 

However, in the chalk layers (30-500 cm), default simulates substantially drier conditions, 368 

corresponding to Δμmean ≤ -0.28. In contrast, the macroopt configuration considerably 369 

improves the agreement between the simulated and observed θ in the chalk layers with Δμmean 370 

Δμmean ≥ -0.240.05. Therefore, the results indicate that the inclusion of the BC model in 371 

JULES improves the performance of overall soil moisture simulation (both θ and Δθ) at 372 

Warren Farm especially in the chalk layers although underestimation of θ compared to 373 

measurements was observed for both default and macroopt configurations. 374 

As mentioned earlier, efficiently reproducing soil moisture variability over the profile is 375 

important due to the fact that Δθ significantly affects water flux and recharge through chalk 376 

unsaturated zone. The drainage flux through the bottom of soil column (db) of a land surface 377 

model can be considered as the potential recharge flux to groundwater [e.g., Sorensen et al., 378 

2014]. Figure 7 6 compares the daily sum of db from the default and macroopt configurations 379 

at the Warren Farm site. Daily The rainfall at this site characteristics over the simulation 380 

study period is shown in Figure 7a6a. In Figure 76b, the macroopt configuration shows 381 

considerable db during the colder months, while relatively slow drainage is observed in 382 

summerprevails throughout the rest of the year. In contrast, the default configuration shows 383 
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relatively high db in summer compared to the colder months. In general, the recharge rate 384 

through chalk unsaturated zone during the warmer periods of the year is lower than that in the 385 

winter months [Wellings and Bell, 1980; Ireson et al., 2009]. Therefore, the macroopt 386 

configuration appears to be more consistent with the recharge mechanism in chalk compared 387 

to default. 388 

In this section, the BC model was evaluated at the point scale. The results showed that in 389 

general, the macro configuration outperforms the default case relatively better in in 390 

simulating θ and Δθ compared to default. In order to improve the model performance even 391 

further, model parameter calibration parameter optimization was performed to minimize the 392 

differences between observed and simulated Δθ at the point scale. In the next sections, the 393 

optimized model (macroopt) is evaluated at the catchment scale. 394 

4.2. Catchment scale simulations 395 

In the previous section, it was observed that the default configuration generally 396 

underestimates θ compared to macroopt. Previous studies have demonstrated the 397 

interconnections between shallow soil moisture and LE [e.g., Chen and Hu, 2004]. At the 398 

catchment scale, simulation results from the default and macroopt configurations are 399 

compared with the observations over the Kennet catchment. In order to assess the differences 400 

between the LE from the default and macroopt configurations at the catchment scale, Figure 8 401 

7 plots spatially averaged 8-day composites of LE from MODIS (LEMOD) against the LE from 402 

these configurations (LEdefault and LEopt, respectively) over Kennet. The agreement between 403 

simulated LE and LEMOD is evaluated using the coefficient of determination (R2, see 404 

Appendix) and mean bias. Comparison between LEdefault and LEMOD shows a coefficient of 405 

determination of R2
default = 0.78 and a mean bias of biasdefault = 10.5 Wm-2. The agreement 406 

between simulated LE and LEMOD improves in case of the macroopt configuration, which is 407 
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reflected by an increased coefficient of determination of R2
opt = 0.800.81 and a reduced mean 408 

bias of biasopt = 7.13 Wm-2. 409 

Figure 78 shows considerable differences between LEdefault and LEopt especially for relatively 410 

high LE, indicating discrepancies especially during the warmer months of the year. Figure 9a 411 

presents sSpatially averaged time series of monthly LEMOD, LEdefault and LEopt is presented in 412 

Figure 8a. . This figure shows that the differences between LEdefault and LEopt increases 413 

substantially in summer compared to the colder months of the year, which is consistent with 414 

Figure 87. Consequently, the default configuration underestimates LE in summer compared 415 

to LEMOD, which is improved in case of the macroopt configuration. In contrast, the 416 

differences between LEdefault and LEopt are negligible during the colder months of the year.  417 

In addition, Figure 98b compares the observed and simulated monthly average discharge 418 

from the two model configurations at the “Kennet at Theale” gauging station (Figure 1a). 419 

This figure depicts that the default configuration generally overestimates discharge at this 420 

gauging station, which is improved considerably in the case of macroopt. We use the Kling-421 

Gupta Efficiency criteriaon (KGE [Gupta et al., 2009]) to compare the performance of the 422 

two model configurations in reproducing observed discharge variability. As mentioned 423 

above, the default configuration overestimates discharge with KGEdefault = -0.17. On the other 424 

hand, the macroopt configuration improves the agreement between observed and simulated 425 

discharge, which is reflected by KGEopt = 0.51. 426 

In order to summarize the results at catchment scale, Table 4 compares observed and 427 

simulated daily average runoff from the two model configurations over the Kennet catchment 428 

from 2006-2011. The runoff ratio (RR, see Appendix), which is equal to the mean volume of 429 

flow divided by the volume of precipitation [e.g., Kelleher et al., 2015], assesses the 430 

partitioning of precipitation into runoff over the catchment. The default configuration (RR = 431 
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0.82) shows considerably higher RR compared to observation (RR = 0.40), indicating 432 

overestimation of runoff by the model that is consistent with Figure 98b. Including chalk 433 

hydrology in the model remarkably improves the agreement between observed and simulated 434 

mean runoff over the Kennet catchment, which is assessed from a runoff ratio of RR = 0.46 435 

0.37 for the macroopt configuration which is much closer to the observed RR value than 436 

default. 437 

In Table 4, the relative bias (Δμ) of 1.04 between observed and simulated runoff from the 438 

default configuration again indicates the overestimation by the model. In comparison, 439 

macroopt shows a smaller relative bias of( Δμ = 0.12-0.05), indicating improvedment 440 

agreement between observed and simulated mean runoff volume compared to default. The 441 

relative difference in standard deviation (Δσ, see Appendix) compares the variability of 442 

observed and simulated flow runoff in Table 4 relating directly to the seasonal change in 443 

runoff. This comparison shows that the default configuration overestimates the variability of 444 

runoff over the Kennet catchment (Δσ = 2.04), which is improved in case of macro (Δσ = 445 

0.650.70). This improvement in reproducing flow variability is also clearly observed in 446 

Figure 8b. 447 

It was demonstrated previously that the default configuration predicts lower 448 

evapotranspiration (ET) compared to macroopt over the Kennet catchment due to the 449 

differences in simulated θ. In JULES, moisture from soil and canopy is depleted to meet the 450 

ET demand. Additionally, surface runoff generation depends on canopy water storage in the 451 

model [Best et al., 2011]. Because of this connection between ET and surface runoff 452 

generation via canopy water storage, the differences in runoff demonstrated in Table 4 can be 453 

attributed to the disagreements between LEdefault and LEmacro (Figure 8) due to the relatively 454 

drier conditions simulated by default.  455 
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In this section, the BC model is evaluated using observed mass and energy fluxes over the 456 

Kennet catchment. The default configuration showed considerably suggested relatively low 457 

summertime LE over the catchment, which was pronounced during the warmer period of the 458 

year. The agreement between observed and simulated LE was improved in case of the 459 

macroopt configuration compared to default. It was also observed that the overall runoff 460 

prediction was considerably improved by macroopt compared to default. Given its simplicity, 461 

our results indicate that the proposed parameterization is suitable for use in land surface 462 

modelling applications.  463 

5. Summary and Conclusions 464 

In this study, we proposed a simple parameterization, namely the Bulk Conductivity (BC) 465 

model to simulate water flow through the matrix-fracture system of chalk in large scale land 466 

surface modelling applications. This parameterization was implemented in the Joint UK Land 467 

Environment Simulator (JULES) and applied to the Kennet catchment located in the southern 468 

UK to simulate the mass and energy fluxes of the hydrological cycle for multiple years. Two 469 

model configurations, namely default and macro were considered with the latter using the BC 470 

model to simulate chalk hydrology. 471 

The proposed BC model is a single continuum approach of modelling preferential flow [e.g., 472 

Beven and Germann, 2013] that involves only 32 parameters, namely the saturated hydraulic 473 

conductivity of chalk matrix (Ks), macroporosity factor (fm) and relative saturation threshold 474 

(S0). Initially, these parameters along with the saturated hydraulic conductivity of the chalk 475 

matrix were estimated from existing literature to assess the performance of the uncalibrated 476 

BC model. Finally, the BC model parameters were optimized to minimize the differences 477 

between observed and simulated soil moisture variability. Our results indicated that S0 is by 478 

far the most influential parameter in the model when representing water movement through a 479 
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soil-chalk column. This highlights the simplicity of the proposed BC model for large-scale 480 

studies and potential ease in transferability. followed by In comparison, Parameters Ks the 481 

saturated hydraulic conductivity of chalk matrix while and fm showed secondary (low) 482 

sensitivity on the model performance. Since this study introduces the BC model, we decided 483 

however to take a conservative approach. Motivated by the sensitivity analysis, we  We 484 

optimized Ks and S0 simultaneously for our catchment scale simulations since this 485 

combination resulted in the best overall model performancein the next step that considerably 486 

improved the agreements between observed and simulated soil moisture variability. Note that 487 

calibrating the BC model involves optimizing only 2 out of 3 parameters. This reduced 488 

complexity may add considerable benefits in applying the proposed model over large areas.  489 

Hence, the parameterization is further improved by optimizing both saturated hydraulic 490 

conductivity of chalk matrix and S0 to minimize the differences between observed and 491 

simulated soil moisture variability.  492 

  493 

The simulation results were evaluated using observed mass and energy fluxes both at point 494 

and catchment scales. The results demonstrated that the inclusion of the BC model in JULES 495 

improves simulated soil moisture variability at the point scale compared to a model 496 

configuration that does not represent chalk in the subsurface (i.e., the default configuration). 497 

At the catchment scale, it was illustrated that the proposed BC parameterization improveds 498 

simulated latent heat flux (especially in summer)  and the overall runoff compared to the 499 

default configuration.  500 

Note that the complexity (i.e., number of parameters) of the BC model for simulating water 501 

flow through chalk unsaturated zone is substantially lower compared to more commonly used 502 

models for this purpose (e.g., dual-porosity models). Despite its simplicity, it appears that the 503 
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proposed parameterization considerably improves the key hydrological mass and energy 504 

fluxes simulated by JULES over the Kennet at the catchment- scale. As mentioned 505 

previously, representing chalk hydrology in land surface models using the dual-porosity 506 

concept is complicated mainly due to the relatively large number of parameters involved in 507 

such approach. Therefore, the simplified aspect of the BC model parameterization proposed 508 

in this study may can potentially be useful for large-scale land surface modelling applications 509 

over large-scale chalk-dominated areas. 510 
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Appendix 523 

Definition of Statistical Metrics  524 

Coefficient of determination (R2) for observation y = y1, …, yn and prediction f = f1, …, fn 525 

is defined as 526 
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R2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 527 

where SSres is the residual sum of square and SStot is the total sum of square. SSres and SStot 528 

are defined as 529 

SSres = ∑ (𝑦𝑖 − 𝑓𝑖)
2𝑛

𝑖=1        and 530 

SStot = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1         with 𝑦̅ being the mean of y. 531 

Runoff ratio (RR) assesses the portion of precipitation that generates runoff over the 532 

catchment. RR is defined as 533 

RR = 
μ𝑟𝑢𝑛𝑜𝑓𝑓

μ𝑟𝑎𝑖𝑛
 534 

where μrunoff is mean runoff and μrain is mean precipitation [e.g., Kelleher et al., 2015]. 535 

Relative bias (Δμ) between observed and simulated time series can be defined as 536 

Δμ = 
μ𝑚𝑜𝑑−μ𝑜𝑏𝑠

μ𝑜𝑏𝑠
 537 

where μobs and μmod are the mean of observed and simulated time series, respectively. While 538 

the optimal value of Δμ is zero, negative (positive) values indicate an underestimation 539 

(overestimation) by the model [e.g., Gudmundsson et al., 2012]. 540 

Relative difference in standard deviation (Δσ) between observed and simulated time series 541 

can be defined as 542 

Δσ = 
σ𝑚𝑜𝑑−𝜎𝑜𝑏𝑠

σ𝑜𝑏𝑠
 543 

where σobs and σmod are the standard deviation of observed and simulated time series, 544 

respectively [e.g., Gudmundsson et al., 2012]. 545 

 546 
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 695 

Tables 696 

Table 1. Field measurements and remote sensing data. 697 

Data Spatial scale Temporal extent Frequency Source 

Soil moisture Pointa 2003-2005 15 day N. Hewitt (CEH) 

Latent heat flux Global 2006-2011 8 day, 1 month MODIS 

Discharge Pointb 2006-2011 1 day NRFA 
aMeasured at Warren Farm. 698 
bLocations are shown in Figure 1a. 699 

Table 2. Hydraulic properties for different soil types (refer to Figure 1c). Saturated hydraulic 700 

conductivity (Ks) and porosity data are obtained from Rawls et al. [1982]. The Van Genuchten 701 

parameters are acquired from Schaap and Leij [1998].  702 

Texture Ks (mm d-1) Porosity (-) α (m-1) n (-) 

Loam 320 0.463 3.33 1.56 

Silt loam 172 0.50 1.2 1.39 

Clay 15 0.475 2.12 1.2 

 703 

Table 3. Hydraulic properties of chalk 704 

Properties Uncalibrated Range for 

calibration 

Calibrated 

value Value Source 

Ks (mm d-1) 1.0 Price et al., 1993 0.2 - 25.0 0.31 

S0 (-) 0.8 Observations 0.0 - 1.0 0.46 

fm (-) 1x105 Price et al., 1993 1x104 - 1x106 1x105* 

α (m-1) 3.0 Le Vine et al., 2016 - - 

n (-) 1.4 Le Vine et al., 2016 - - 
* fm parameter not calibrated 705 

Table 4. Comparison between observed and simulated daily average runoff from the two 706 

configurations over the Kennet catchment. Metrics include the Runoff Ratio (RR), relative bias (Δμ), 707 

and relative difference in standard deviation (Δσ) (refer to appendix for further information). 708 

Metric Observed Simulated (default) Simulated (macro) 

RR 0.40 0.82 0.460.37 

Δμ - 1.04 0.12-0.05 

Δσ - 2.04 0.650.70 

 709 
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 710 

 711 

Figures 712 

Figure 1. (a) Location (a), (b) vegetation cover (b), and (c) soil texture (c) over the study area. 713 

The red line in (a) outlines the Kennet catchment boundary, while the river network is shown 714 

in blue. The black triangle in (a) shows the location of the discharge gauging station at the 715 

catchment outlet and while the black square corresponds to Warren Farm location where 716 

point-scale simulations are carried out. The black line in (c) encloses the area of the 717 

catchment where chalk is present. The shaded area in (c) represents the location of chalk in 718 

the catchment.  719 

 720 



33 
 

 721 

 722 

 723 

 724 

Figure 2. (a) Example of soil profiles collected at Warren Farm during a field campaign in 725 

2015 (a), and (b) the two model configurations (b). 726 

 727 
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 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

Figure 3. Comparison between observed and simulated (a) soil moisture (θ) and (b) change in 740 

soil moisture (Δθ) from the default and macro configurations at a depth of 2 m below land 741 



35 
 

surface at the Warren Farm site. The shaded areas constructed from 2 soil moisture probes at 742 

the Warren Farm site denote the range of observed data in these plots. 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 
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 752 

 753 

 754 

 755 

Figure 4. (a) Model performance in reproducing observed and simulated Δθ, (b) Ks, (c) S0 and 756 

(d) fm for various different parameter combinations considered in the optimization. For each 757 

parameter (i.e., panels b, c, and d), red bars show cases in which the relevant parameter is 758 

calibrated (either individually or in combination with others); while the blue bars correspond 759 

to cases in which the selected parameter is not calibrated (i.e., fixed value according to 760 

literature as in the macro case)The uncalibrated model parameter values are shown in blue 761 

while red shows the calibrated values in b, c and d. Note that except for the default and 762 

macro, the simulation yielding the lowest RMSE (out of 2,000 model runs) is presented in 763 

this plot. 764 
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 767 

Figure 5. Comparison between observed and simulated Δθ from default, macro and macroopt 768 

configurations at various depths below land surface. The shaded areas, which are is 769 

constructed from 2 soil moisture probes at the Warren Farm site, denotes the range of Δθ. 770 
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 774 

 775 

 776 

Figure 6. Box plot of relative bias (Δμ) of simulated soil moisture from default and macro 777 

configurations at different depth ranges shown in individual intervals (e.g., 0-30 cm, 30-100 778 

cm, and so on). 779 
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 791 

 792 

Figure 76. (a) Daily pPrecipitation and (b) daily sum of drainage through the bottom of the 793 

soil column at Warren Farm over the two simulated years (2003-2005). 794 
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 806 

 807 

 808 

Figure 87. Catchment average 8 day composites of MODIS estimated LE (LEMOD) against 809 

simulated LE from default and macro configurations (LEdefault and LEmacro, respectively) along 810 

with the linear models fitted for LEdefault (black line) and LEmacro (red line). The 1:1 line is 811 

shown in grey, which represents the perfect fit between LEMOD and simulated LE. 812 
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 815 

 816 

 817 

Figure 98. (a) Spatially averaged monthly latent heat flux (LE) from MODIS, default and 818 

macroopt configurations over the Kennet catchment and (b) monthly average observed and 819 

simulated discharge from the default and macroopt configurations at the “Kennet at Theale” 820 

gauging station. 821 
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 834 

Supplementary materials 835 

Figure S1. Saturation-pressure head relationship (May 2003 - December 2005) at Warren 836 

Farm measured fortnightly at 40 cm below land surface. (Source: Ned Hewett, CEH, personal 837 

communication). 838 
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 847 

Figure S2. Sensitivity of the BC model parameters on the model performance in simulating 848 

Δθ. Note that the parameters are considered one-at-a-time (OAT), and the vertical axis have 849 

different RMSE ranges. 850 
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