

We would like to thank the reviewers for providing us with valuable comments and suggestions that improved the manuscript. A point-by-point reply to the comments of all the reviewers is provided below with the original comments shown in blue.

Reviewer #1 (Dr Nataliya Le Vine)

The work evaluates an alternative representation of soil hydraulic properties to estimate soil moisture, latent heat and runoff in a chalk catchment using the land surface model JULES. The Bulk Conductivity (BC) scheme is chosen to approximate the chalk dual permeability behavior, and is compared to the default JULES soil parameterisation. The scheme is assessed to reduce JULES soil moisture dry bias, and to improve ET and runoff estimates.

One of my largest concerns regarding this work is its novelty and contribution to knowledge. The abstract (l. 13-15) states the work significance as “it is hypothesized that explicit representation of chalk hydrology in a land surface model influences land surface processes by affecting water movement through the shallow subsurface”, and that the results corroborate the proposed hypothesis (l. 23). While being a very confusing statement (as our representation in a model does not actually affect any water movement or land surface processes), it is not clear why such a hypothesis is novel and/or requires another round of consideration, as it has been previously shown by others that explicitly accounting for the chalk behavior in the same land surface model and for the same location does have an effect on all the fluxes and states considered in the study, i.e. soil moisture, ET (latent heat), and runoff (see the cited Le Vine et al., HESS 2016, and Bakopoulou, PhD thesis 2015 found on <https://spiral.imperial.ac.uk:8443/handle/10044/1/28955>).

- In our study, we have introduced a new simple parameterization i.e., the Bulk Conductivity (BC) model to simulate the water flow through chalk unsaturated zone. The focus of our revised manuscript (*man_rev* hereafter) is to demonstrate the suitability of the BC parameterization for large scale land surface modelling applications given the simplicity of the approach, as emphasized by the other two reviewers. Hence, the objective of *man_rev* is different from the studies mentioned by the reviewer [e.g., Le Vine et al., 2016; Bakopoulou, 2015]. Therefore, we believe that our study is novel and contributes to the knowledge concerning chalk representation in land surface modelling. Note that the novelty and contribution of our work has also been appreciated by reviewer 2 (Dr. Andrew Ireson). Because it is important to refer to other studies that address similar challenges in the region, we have incorporated the PhD thesis by Bakopoulou (2015) in *man_rev* (L. 32).

In this light, it seems that the main development is the use of the previously proposed by others Bulk Conductivity model to represent chalk hydraulic properties in the land surface model. The BC model is given by eq. (1), which shows that the BC model is activated only when soils are wet (relative saturation above 0.8), and that drier soils are governed by a more traditional van Genuchten soil hydraulic representation with parameters given in Table 3 (note that the two out of four parameters for this model are taken from Le Vine et al., 2016; and the used third parameter K_s equals K_s in the same reference). Figure 9 shows that catchment average relative saturation (S) never exceeds 0.8 (a threshold when the BC model is activated), and there is no point scale characterisation of relative saturation provided to make a judgment about what happens at the application scale of eq. (1). Does this mean that the BC scheme is never activated, and the obtained results are based on a simple re-iteration of the van Genuchten parameterisation, which was used and evaluated by others previously? If not, then the instances when the BC model is activated have to be shown, as it appears to be what distinguishes the work from the work of others. Lastly on this point, the statement in the summary section (l. 373-374) that “BC model was able to reproduce the hydrological processes in chalk without model calibration” is confusing and incorrect, as 1) it is not clear

whether the BC portion of the model given in eq. (1) was ever activated, and 2) the chalk behavior for drier states – an inseparable part of the BC model to represent chalk - was governed by van Genuchten representation with parameters calibrated by others for the same application site.

- Figure 9 in the original manuscript (*man_org* hereafter) shows catchment average relative saturation for the top 100 cm of the profile (please refer to the caption of the figure). The BC model is applied at every grid cell of the model. Therefore, the catchment average root zone saturation (as shown in Figure 9 of *man_org*) is not an indicator of the activation of fracture flow through chalk. As an illustrative example, Figure R1 below shows the number of instances the BC model (with the updated chalk spatial distribution) was activated at 4th model layer (30-40 cm below surface, the first model layer with chalk) over the entire simulation period.

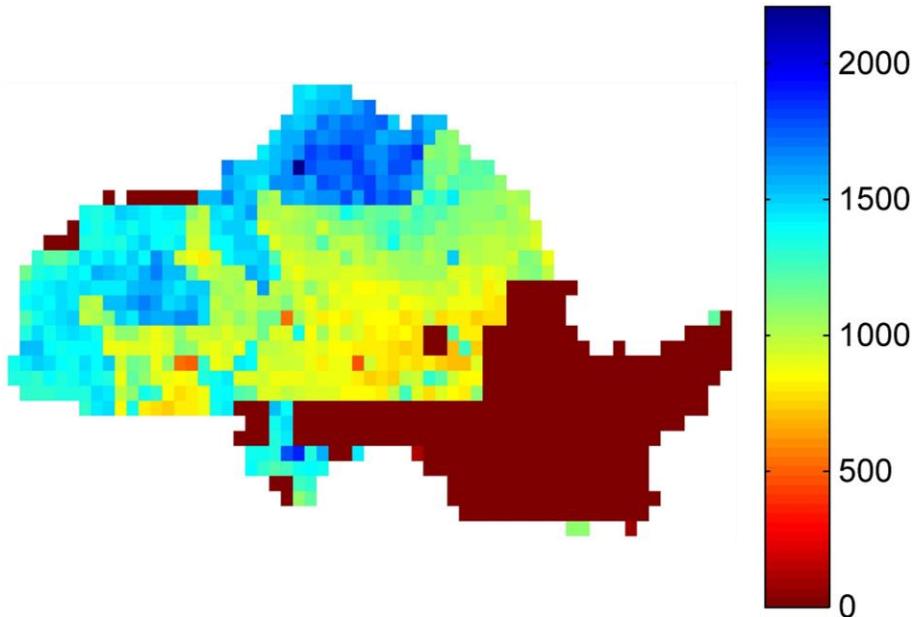


Figure R1. Number of instances of BC model activation for the 4th model layer (30-40 cm below surface).

In *man_rev*, we have estimated the soil hydraulic parameters of chalk in the BC model based on existing literature as a first step of model evaluation, which we believe is a common and expected approach in research practice. Subsequently, we have optimized the BC model parameters using soil moisture data from the Warren Farm site following the suggestions of Reviewer 2 and 3. Note that for the catchment scale simulations, we have used our optimized parameters in the BC model.

Furthermore, the work compares two setups: ‘default’ when the standard soil parameterisation is used in JULES, and ‘macro’ when soil is uniformly represented as a 30 cm topsoil, and as chalk from 30 cm to 5 m depth. And it is stated (l. 373-374) that based on the macro model simulations “BC model was able to reproduce the hydrological processes in chalk”. I find this statement surprising at the catchment scale, as macro is an incorrect model setup for the catchment, as approximately a third of the catchment hydrogeology is not chalk (see the BGS hydrogeology map, or Figure 1 in Le Vine et al., 2016), and thus the application of the chalk soil model uniformly throughout the catchment is erroneous.

- We would like to thank the reviewer for pointing out this important issue. We agree that a spatially uniform representation of chalk over the Kennet catchment is indeed incorrect.

Therefore, we have updated the spatial distribution of chalk in *man_rev* (Figure 1c) using the hydrogeology map provided by the British Geological Survey (<http://www.bgs.ac.uk/products/hydrogeology/maps.html>).

Lastly, could the authors comment on how river flows were estimated at the outlet when there is no groundwater model available while the catchment is groundwater dominated? It will be very interesting to see the flow hydrographs to compliment the provided flow statistics (given in Table 4).

- A description of surface and subsurface runoff routing to the river network in JULES is provided in *man_rev* (L. 175-181). Figure R2 below shows a comparison between observed and simulated discharge from the *macro_{opt}* configuration (please refer to *man_rev*) at the Theale gauging station (please refer to Figure 1a in *man_rev*). Note that Figure R2 compares 10-day average runoff to minimize the effect of routing in the model. Considering the lack of groundwater, the observed and simulated runoff at Theale shows quite reasonable agreement.

We agree that a groundwater representation is needed for an efficient estimate of river discharge at gauging stations in the area. However, such implementation is beyond the scope of this study. In this study, we aim to demonstrate that the newly proposed BC model improves the overall mass and energy balance components compared to the *default* configuration that represents a “completely naïve model” (as Dr. Andrew Ireson has pointed out in his review). We did not include the comparison between observed and simulated river discharge at gauging stations in *man_rev*. Nevertheless, the seasonal aspect of discharge is captured reasonably well in our proposed model (Figure R2). The analysis of overall water balance (Table 4 of *man_rev*) corroborates the fact that the overall magnitude of the hydrological fluxes in the catchment is consistent with observations.

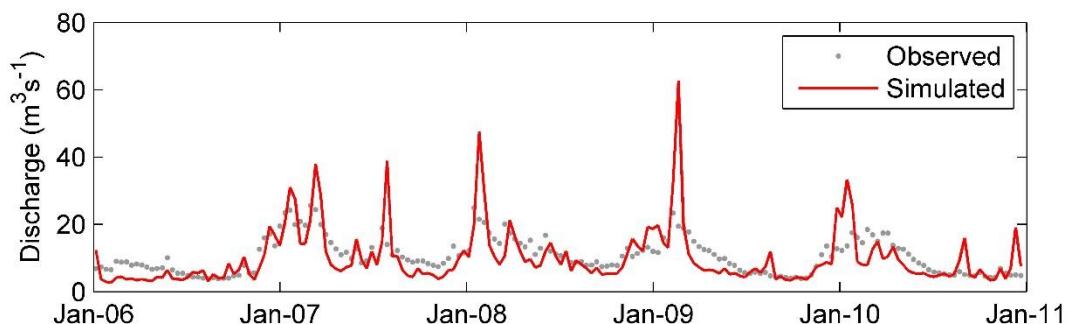


Figure R2. Comparison between observed and simulated discharge from the *macro_{opt}* configuration at the Theale gauging station.

Reviewer #2 (Dr Andrew Ireson)

The authors are to be congratulated for writing a paper on modelling flow in the Chalk unsaturated zone which includes only one equation - surely a record! In fact, this flippant comment underlies a more serious point, which is that the potential strength of this study lies in its simplicity. The authors are working in a field where others have proposed various different, highly complicated models. The authors have taken a very simple model configurations and applied it to the Chalk in a manner that goes beyond a completely naive model that might be used in routine large scale model applications (i.e. the default configuration shown here) in a manner that could be easily included within routine applications of large scale models. All of the data used to configure this model are readily available in soil databases and the Chalk literature. This is the potential contribution of this paper, in my view - it is a model for the Chalk that could be readily picked up and used by

almost anyone. I think that is the holy grail which I myself and others have been searching for in the Chalk.

- We would like to thank the reviewer for his encouraging comments.

However, that is the potential contribution. The fundamental problem with this study is that the default model outperforms the macro model in a number of important respects. The authors failed to recognize this because they focused on which model better fits the absolute water content. This is really not an important metric of model performance - far more important is the changes in water content and the groundwater recharge signal. The default model probably outperforms the macro model in simulating the changes in water content. The authors appear not to have thought critically about the simulated potential recharge flux in relation to the water table responses - again in this regard the default model seems much better, as I detailed further below.

- We agree with the reviewer that the change in soil moisture ($\Delta\theta$) is a very important metric that is connected to groundwater recharge. In *man_rev*, we have analysed the $\Delta\theta$ as suggested by the reviewer. The results (Figure 4 and 5 in *man_rev*) show that the *macro* configuration shows relatively better performance in simulating $\Delta\theta$ compared to *default*. However, both configurations show considerable discrepancies with observed $\Delta\theta$ in general. Therefore, we have optimized the model parameters to minimize the differences between observed and simulated $\Delta\theta$ in *man_rev* as suggested by the reviewer.

So, I think the authors are on the path to having a significant contribution, but not there yet. I suspect that it is the parameters they are using, specifically the matrix K is too low, that are to blame for the poor model performance. Model calibration, ideally combined with a parametric sensitivity/uncertainty analysis, is essential before this work can be published. I am therefore recommending major revisions.

- This is a very valuable suggestion and we thank the reviewer for pointing that out. In *man_rev*, we have optimized the BC model parameters (including the matrix K_s of chalk) following the suggestion of the reviewer. The sensitivity of the BC model parameters on simulated $\Delta\theta$ is illustrated in Figure S2 and the optimization results are shown Figure 4 in *man_rev*. Based on the sensitivity analysis results, we improved the BC parameterization further by optimizing both K_s of chalk matrix and S_0 to minimize the differences between observed and simulated $\Delta\theta$ as suggested by the reviewer.

Another issue in this paper is that the contributions are not well described. The abstract and conclusions in particular are poorly written. It is my own suggestion that the contribution here is the simplicity of the model - the authors do not say that. Instead, a very tepid and vague hypothesis about their parameterisation having some sort of influence on the model. This must be strengthened, since there is a potentially very nice piece of work here.

- We have re-written the abstract and conclusion sections in *man_rev*. We have focused on the simplicity of the BC model in the new version following the suggestions of the reviewer. We have also changed the title of the manuscript to "Towards a simple representation of chalk hydrology in land surface modelling" in order to emphasize the simplicity of our proposed approach.

Major comments

The abstract is poorly written. The hypothesis is not well phrased, and uninteresting as phrased. The conclusion in the abstract is vague and doesn't make me want to read the rest

of the paper. This can be improved with some more careful thinking about what the contribution of this study is, and highlighting this clearly for the reader.

- The abstract has been re-written in *man_rev*. Please, refer to comment above.

The premise of the paper, while poorly described, is good - that is to take a new conceptualization of the hydraulic properties of the Chalk, test it at a point scale against local observations, and then apply this at the catchment scale.

In Section 3, it feels like the description of how the soils and Chalk were parameterized is spread out and not well organized. Perhaps you should mention this parameterization at the begining of Section 3.4 before talking about the two different scales.

- We have re-written section 3.4 in the *man_rev* following the suggestions of the reviewer. In *man_rev*, the hydraulic properties of soil and chalk are discussed consecutively (L. 212-222, Table 2 and 3).

In Figures 3 and 4 you show the performance of the default and macro model, respectively, in reproducing observations of soil moisture. In the text (L. 223-245), your focus is the marked improvement in the macro model at simulating the absolute values of water content in the deeper soil layers. This is also the message of Figure 5 which uses relative bias as a model performance metric. This is valid but actually I'm more interested in how well the models capture changes in soil moisture, which is a more important metric from the perspective of the water balance and recharge estimates.

In this respect, it appears to me that the default model may actually be better than the macro model, and an optimal model might be somewhere between these two extremes.

To highlight this point, consider Figure 6 d), which shows the potential recharge flux (or the drainage flux, if you prefer that term) from the base of the 5m model. Consider the fact that this flux will ultimately drive water table fluctuations in the Chalk, 10s of meters below ground level. As is well documented elsewhere (e.g. Wellings and Bell, 1980, who put together the classic understanding of Chalk recharge in their excellent Figure

1.) the water table follows a clear seasonal pattern. Only the default model here could result in that pattern. (Note also that water table observations at this site are available, e.g. see Fig 12 in Ireson et al., 2009).

- We thank the reviewer for his valuable points. We have compared the performances of the *default* and *macro* configurations in simulating $\Delta\theta$ in *man_rev* (Figure 4 and 5). The results show that the *macro* configuration performs relatively better in this respect compared to *default*. Despite this relative improvement in model performance, we found considerable discrepancies between observed and simulated $\Delta\theta$ for both configurations. Therefore, we optimize the BC model parameters to minimize the differences between observed and simulated $\Delta\theta$. The results of the optimization show that *macro_{opt}* with optimized K_s and S_o parameters results in the best model performance in simulating $\Delta\theta$ (Figure 4 of *man_rev*).

Drainage through the bottom of the soil column (d_b) at Warren Farm is shown in Figure 7 in *man_rev*. This seasonal pattern of drainage is more consistent with the recharge pattern in chalk [Wellings and Bell, 1980; Ireson et al., 2009] compared to the default configuration that shows higher drainage in summer. In conclusion, the *macro_{opt}* configuration performs better compared to *default* in simulating θ , $\Delta\theta$ and the seasonal pattern of drainage through the bottom of the soil column at the Warren Farm site. Note that JULES considers a free-drainage lower boundary condition and does not represent groundwater dynamics.

Moreover, as discussed in Ireson et al. [2009] the variation in the water table elevation may not be the result of changes in the recharge flux over time at Warren Farm. Therefore, we did not incorporate groundwater table depth data in this study in relation to d_b .

In Figure 7 the differences in latent heat simulated by the two models are shown. Why aren't the actual values shown and compared with observations from the local flux tower that exists at this site through the NERC LOCAR program (e.g. see Roberts, J., Rosier, P., Smith, D.M., 2005. The impact of broadleaved woodland on water resources in lowland UK: II. Evaporation estimates from sensible heat flux measurements over beech woodland and grass on chalk sites in Hampshire. *Hydrology and Earth System Sciences* 9 (6), 607–613.)? We can infer that the macro configuration results in more evapotranspiration, but which configuration is more realistic? Again, this goes to the heart of whether or not the macro model is an improvement, though I can't comment on this since the results are not presented clearly.

- We thank the reviewer for his comments. We have made significant effort to acquire the flux data from Warren/Sheepdrove Farm (see below) even prior to the original version of the manuscript. However, despite our efforts, we could not access the actual data. We were also unsuccessful in requesting the dataset to CEH Wallingford directly.

List of visited databases:

1. LOCAR main database as listed on NERC website: <http://www.nwl.ac.uk/locar/main.htm>
2. Centre for Environmental Data Analysis: <http://www.ceda.ac.uk/>
3. NERC Earth Observation Data Centre: <http://neodc.nerc.ac.uk/>
4. Environmental Information Data Centre: <http://eidl.ceh.ac.uk/>
5. Fluxnet: <https://fluxnet.ornl.gov/site/784>
6. European Fluxes Database Cluster: <http://gaia.agraria.unitus.it/home/log-in/>
7. Fluxmet: <http://fluxmet.ceh.ac.uk/page/login.aspx>

In terms of the catchment scale model application, it is notable that the macro model improves the evaporation estimates, and apparently improves runoff, although it looks rather conspicuous that no runoff plots are included. Why is this?

- Figure R3 below shows a comparison between observed and simulated discharge from the $macro_{opt}$ configuration (please refer to *man_rev*) at the Theale gauging station (please refer to Figure 1a in *man_rev*). Note that Figure R2 compares 10-day average runoff to minimize the effect of routing in the model. Considering the lack of groundwater, the observed and simulated runoff at Theale shows quite reasonable agreement.

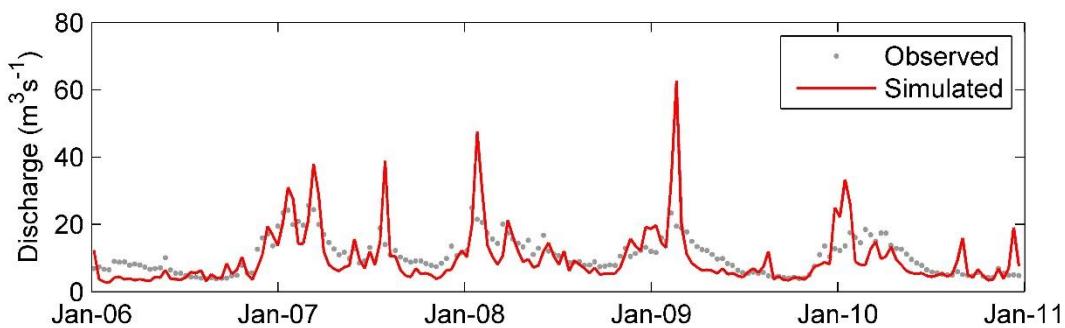


Figure R3. Comparison between observed and simulated discharge from the $macro_{opt}$ configuration at the Theale gauging station.

A groundwater representation is likely needed for further improve the estimates of river discharge at gauging stations in the area. However, such implementation is beyond the scope of this study. In this study, we aim to demonstrate that the newly proposed BC model improves the overall mass and energy balance components compared to the *default* configuration that represents a "completely naïve model" (as the reviewer pointed out). We did not include the comparison between observed and simulated river discharge at gauging

stations in *man_rev*. Nevertheless, the seasonal aspect of discharge is captured reasonably well in our proposed model (Figure R2). The analysis of overall water balance (Table 4 of *man_rev*) corroborates the fact that the overall magnitude of the hydrological fluxes in the catchment is consistent with observations.

Corrections to the text

L. 8 Is it really the 'efficiency' of simulations that is the critical limitation?

- We thank the reviewer for making this point. In order to clarify this point, we have re-written the sentence as (L. 9-12 in *man_rev*)

"However, incorporating the processes governing water movement through chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface."

L. 11 Poor grammar in this sentence, and the meaning is not completely clear. The mass and energy fluxes are influences regardless of whether the hydrology is complex or non-linear. Try to make this sentence more specific and meaningful.

- This sentence is removed from *man_rev*.

L. 13 I'm not sure this hypothesis is well phrased. It would be very surprising if there was no influence of this representation on the fluxes of water. As phrased, this suggests you are just looking at sensitivity, but I think it would be better to test whether or not this representation results in some sort of improvement? That is presumably what you're actually doing anyway.

- We have re-written the abstract following the comments of the reviewer in *man_rev*.

L. 17 Change "applied on" to "applied to"

- Corrected in *man_rev* (L. 18).

L. 28 "various processes" are there others, other than recharge?

- Re-written in *man_rev* as (L. 30-31):

"Previous studies showed that the unsaturated zone of the chalk aquifers plays an important role on groundwater recharge in the UK [e.g., *Lee et al.*, 2006; *Ireson et al.*, 2009]."

L. 36 The fracture porosity cited (10-4) seems much lower than other published estimates for the Chalk. I believe Price et al., 1993 actually cite a value of 10-2 (though I don't have this reference to hand, please check this).

- We have checked the values in *Price et al.* (1993) once again to confirm fracture porosity to be 10^{-4} as cited.

L. 42 Change "Mathuis" to "Mathias"

- Corrected in *man_rev* (L. 44).

L. 55 Change "curve was" to "curves were"

- Corrected in *man_rev* (L. 56).

L. 66 What is a "consistent representation ..."? Consistent with what? This sentence restates your hypothesis, which I repeat is very unexciting and somewhat vague. You need to be much more specific here.

- This sentence is removed from *man_rev*.

L. 100 It is possible, but not certain, that f_m is a sensitive parameter - in which case adopting this arbitrary value without sensitivity analysis or calibration would seem dubious. I'm also not convinced that it makes sense to make the fracture conductivity functionally dependent on the matrix conductivity - is there any physical reason to not to treat these two properties as independent?

- The results in Figure 4 and S2 in *man_rev* shows that S_o is the most influential parameter in the model when simulating $\Delta\theta$, followed by the K_s of chalk matrix while f_m showed low sensitivity. Therefore, we selected K_s and S_o parameters for the optimization to minimize the differences between observed and simulated $\Delta\theta$.

The BC model is based on the work by Zehe *et al.* [2011], who proposed a linear increment of matrix conductivity for a fractured system. That the proposed parameterization is based on a single continuum approach that treats preferential flow considering modified conductivity close to saturation [Beven and Germann, 2013], which is observed from Equation 1 of *man_rev*. Additionally, note that the f_m parameter that controls the increment of conductivity near saturation is based on the physical properties of chalk (i.e., the relative difference in permeability of fractured chalk and chalk matrix).

L. 167 Here you describe the hydraulic properties of the soil, but you don't described the properties of the Chalk until line 209. Would make sense to rearrange the text so that these are described in the same place in the text.

- In *man_rev*, the hydraulic properties of soil and chalk are consecutively discussed (L. 212-222).

L. 188 This is a little bit confusing - it reads like you are saying the hydraulic properties of the soil are uniform over the catchment? However, from Figure 1 and Table 2 this is not the case. Please clarify the text here.

- The soil hydraulic properties at the catchment scale are described in *man_rev* as (L. 213-218):

"At the catchment scale, the Harmonized World Soil Database (HWSD) from the Food and Agricultural Organization of UNO (FAO) is used to obtain the texture of different soil types over Kennet (Figure 1c). The saturation-pressure head relationship for different soil types is described using the Van Genuchten [Van Genuchten, 1980] model with parameter values (Table 2) obtained from Schaap and Leij [1998]."

L. 226 I think it is not particularly interesting that the model underestimates the absolute values of the observed soil moisture - I would be more interested in how well it reproduces the changes in soil moisture. It probably underestimates these, but it's not completely terrible. I'm surprised how well this simple default model with no calibration does!

- As discussed earlier, we have taken all steps to incorporate analysis of $\Delta\theta$ in the manuscript as proposed by the reviewer. We have also demonstrated that the *macro* configuration shows relatively better model performance in simulating $\Delta\theta$ compared to *default* (Figure 4 and 5 in *man_rev*).

L. 261 In the Ireson al al. (2009) paper referenced here (full disclosure - I am Ireson), Fig 13 shows the drainage flux at 5 m depth, which could be directly compared with Figure 5 in this paper. It can be seen in my paper there was negligible fracture flow at 5 m depth during this period, which is not consistent with the authors interpretation that "fracture flow dominates... during wet periods". So I'm afraid the result here is not consistent with my result - at least the macro model result is not - the default model might be!

- As mentioned by the reviewer, drainage flux at 5 m depth in Figure 13 of *Ireson et al.* [2009] may be compared to the drainage through bottom boundary (d_b , Figure 7 in *man_rev*). With regards to our results, the *macro* configuration (Figure 6 in *man_org*) shows very low drainage and no seasonal variability (also pointed out by Reviewer #3). With the optimized parameters, the *macro_{opt}* configuration shows significantly higher drainage (228 mm) compared to *macro* (112 mm). Additionally, the *macro_{opt}* configuration shows higher d_b during the colder months of the year compared to summer which is more consistent with the recharge pattern in chalk compared to the *default* configuration that shows higher drainage in summer [Wellings and Bell, 1980; *Ireson et al.*, 2009].

L. 311 Why use R² for this? RMSE or bias would be better - we are interested in the absolute values in this case.

- We have included bias in *man_rev* (Figure 8).

L. 336 Again we have references to this weak hypothesis that there is an "influence".

- We have removed this sentence from *man_rev*.

L. 362 Again the word "consistent" - consistent with what?

- We have removed this sentence from *man_rev*.

L. 372 You say these two parameters can be estimated from the matrix without calibration, but this is an assertion, since you haven't tested these parameters in this study. In fact, my central criticism of the findings in this paper are likely due to poor choices of parameter values in your model. If you were to increase your matrix K, I suspect the model would improve.

- In *man_rev*, we have carried out sensitivity analysis and parameter estimation (i.e., optimization) as recommended by the reviewer, which has been already discussed above.

L. 374 Overall, I cannot agree that the model was able to reproduce the hydrological processes in the Chalk successfully, or even to an acceptable degree. Groundwater recharge is completely wrong.

- We thank the reviewer for his valuable comment. We agree that simulating meaningful recharge is important because it drives the groundwater table dynamics. Therefore, in *man_rev* we have optimized the BC model parameters (i.e., the *macro_{opt}* configuration) to minimize the differences between observed and simulated $\Delta\theta$ (connected to recharge) following the suggestions of the reviewer. Figure 7 in *man_rev* demonstrates that the parameter optimization results in a more consistent seasonal variability of d_b compared to *default* when the recharge patterns through chalk unsaturated zone is concerned.

L. 376 Yes, good that you suggest calibration, but without doing this the model is not ready for publication, since it fundamentally fails to simulate convincing groundwater recharge

fluxes. Especially on the 1D model, calibration really is not that hard to do, so must be done before this paper can be accepted, in my view.

- As discussed earlier, parameter optimization for the BC model is performed in *man_rev* as suggested by the reviewer.

L. 401 Delete this final sentence saying you will address coupling with a groundwater model in the future. That is, by definition, outside the scope of this paper, hence irrelevant.

- This sentence is deleted from *man_rev*.

L. 385 + The last three paragraphs of the conclusions are very disjointed.

- The conclusion is completely re-written in *man_rev*. The last three paragraphs of *man_org* does not appear in *man_rev*.

Reviewer #3

This paper proposes the bulk conductivity (BC) model for improving the simulation of chalk hydrology in land surface models. The bulk conductivity model appears a simple approach for simulating both matrix and fracture flow in the Chalk according to the relative saturation. This approach is implemented in JULES (macro) and the results are compared with JULES (default) runs using a typical soil parameterisation, but neither model is calibrated. This is undertaken at the point and, subsequently, catchment scale. The authors suggest that the addition of the BC model in JULES improves soil moisture, evaporation, and runoff simulation.

Major comments

The default soil parameterisation is based on soil texture data from the surface (a loam) down to 5 m depth (Line 164 & Table 2) despite Figure 2 showing that this soil horizon is only 20-30 cm deep, with the remaining profile being chalk. Is it then any real surprise that this uncalibrated JULES model performs worse than a JULES model modified specifically for simulating chalk hydrology? This is not a valid comparison and the conclusions drawn are not valid.

To make any comparison valid the default model runs have to be calibrated, in particular, to achieve a more appropriate soil parameterisation. Currently the default run for the catchment is simulating more than twice the observed runoff for the Kennet, which is not acceptable. Consequently, evaporation is underestimated and soil moisture storage is insufficient. The River Kennet could be used for calibration at the catchment scale and soil moisture data for the point scale.

- We thank the reviewer for his/her valuable comments. We emphasize that in land surface model development, a common approach is to test/compare the proposed improvement against the current state of the model, possibly related to its operational configuration. We refer for instance to the work from reviewer #1 (Dr Le Vine) in which the standard JULES model is used as the baseline model to investigate a series of subsequent improvements (please, refer to Table 3 in Le Vine et al., 2016). In addition, Reviewer #2 (Dr Andrew Ireson) has highlighted that the default configuration represents a “completely naïve model” setup that might be used in large scale applications over chalk-dominated areas.

As also recommended by reviewer #2, in *man_rev*, we have used the soil moisture data from the Warren Farm site to optimize the BC model parameters as suggested by the reviewer. The results suggest that this optimization improves simulated θ and $\Delta\theta$ compared to the default configuration (Figure 4, 5 and 6 in *man_rev*).

The macro model appears to be performing reasonably well where described in the text and calibration may not be as essential. However, I would like to see a sensitivity analysis for the BC parameters, which would be very useful for anyone considering implementing this approach for chalk models in the future, particularly when there are so few parameters.

- This is a very important point raised by the reviewer. Sensitivity analysis of the BC model parameters is shown in Figures 4 and S2 of *man_rev*.

Although the macro model is performing well where explicitly described in the text, Figure 6d asks some serious questions. The macro model is simulating about 0.1 mm/d of potential recharge with the exception of the early 2003 event. This would equate to only c.35 mm of potential recharge a year on a grassland site, on outcrop chalk, in a temperate climate. This seems unrealistically low and the c.200 mm of potential recharge simulated by the default model is perhaps more realistic.

- As recommended during the revision of this manuscript, the BC model parameters are optimized to minimize the differences between observed and simulated soil moisture variability in *man_rev* to improve the potential recharge in the JULES (following the review by Dr Andrew Ireson). The results (Figure 7 in *man_rev*) show that the drainage from the *macro_{opt}* (228 mm) is substantially higher than that of the *macro* configuration (112 mm) shown in Figure 6 of the original manuscript (*man_org* hereafter).

The hypothesis that is proposed and maintained throughout the paper is a minor point, in my opinion, and takes away from the headline story: a simple approach for simulating matrix/fracture flow in the Chalk unsaturated zone, which could be implemented in LSMs. The abstract needs to be completely re-written and re-focussed on the above comment. There is currently only one sentence (lines 20-23) concerning the results and implications and this is very vague.

- We thank the reviewer for making this recommendation (in agreement with reviewer #2). We have re-written the abstract and conclusion sections in *man_rev* focusing on the suitability of the BC model for land surface modelling applications given the simplicity of the proposed approach, as proposed by both reviewers.

The last three paragraphs of the conclusions (lines 385-403) could easily all be deleted or at least only be summarised in a couple of paragraphs. Currently it dilutes the section.

- The last three paragraphs of *man_org* is deleted following the suggestion of the reviewer.

Minor comments

Lines 28-29 – consider rewording

- Modified in *man_rev* as (L. 30-31):

“Previous studies showed that the unsaturated zone of the chalk aquifers plays an important role on groundwater recharge in the UK [e.g., *Lee et al.*, 2006; *Ireson et al.*, 2009].”

Line 55 – this should be plural

- Modified in *man_rev* (L. 55-58).

Section 3.1 – the Kennet is a tributary of the Thames
Throughout the paper ‘the’ is frequently omitted, e.g. ‘River Kennet discharges’, ‘major tributarites of this river are Lambourn, etc

- We have improved the use of definite article in *man_rev*.

Line 122 – there are 3 years more soil moisture data available at Warren Farm, which CEH collected. These data extend into a wetter period when it would be interesting to see how the models compared.

- We thank the reviewer for this suggestion. We have made significant efforts to acquire additional in situ data from available databases and CEH. Despite our efforts, we were only able to obtain the soil moisture data used in the original manuscript. Please refer to a similar comment by reviewer #2 for additional detail on page 6.

Line 125 – suggests soil moisture observations only exist to 2.4 m depth but observations in Figure 3 suggest there are deeper data.

- We apologize for the misunderstanding. Please refer to L. 145-147 in *man_rev*:
“A Didcot neutron probe was used at these locations to measure fortnightly soil moisture at different depths below land surface (10 cm apart down to 0.8 m, 20 cm apart between 0.8-2.2 m, and 30 cm apart between 2.2-4.0 m) [Hewitt *et al.*, 2010].”

Liner 240 – change ‘dry’ to ‘drier’

- Modified in *man_rev* (L. 291).

Section 4.2 – r2 informs on the fit of the linear regression but perhaps a plot of RMSE over time would be more useful to inform on actual differences between observed and modelled.

- We have used bias to assess the *actual* differences between LE from the two model configurations in *man_rev* (Figure 8, L. 320-325).

Section 4.2 – there appears to be a lot more noise in the modelled LE during Summer?

- The highest temporal resolution of available MODIS data is 8-day. In comparison, the simulated 8-day and monthly averages are calculated using hourly data (model time step). This may be the reason of differences in high-frequency variability (i.e., noise) mentioned by the reviewer.

Figures – blue is not always very distinguishable from black on the comparison plots

- We have changed the colour scheme in the plots in *man_rev*.

Figure 5 – Are the default and macro results from the same depth interval here?

- The results are binned at the same depth interval for the two model configurations (Figure 6 in *man_rev*).

References

Bakopoulou, C. (2015), Critical assessment of structure and parameterization of JULES land surface model at different spatial scales in a UK Chalk catchment, PhD thesis, Imperial College London, UK, available at: <https://spiral.imperial.ac.uk:8443/handle/10044/1/28955>.

Beven, K., and P. Germann (2013), Macropores and water flow in soils revisited, *Water Resour. Res.*, 49, 3071–3092.

Ireson, A. M., S. A. Mathias, H. S. Wheater, A. P. Butler and J. Finch (2009), A model for flow in the chalk unsaturated zone incorporating progressive weathering, *J. Hydrol.*, 365, 244-260.

Le Vine, N., A . Butler, N. McIntyre, and C. Jackson (2016), Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin, *Hydrol. Earth Syst. Sc.*, 20, 143-159.

Price, A., R. A. Downing, and W.M. Edmunds (1993), The chalk as an aquifer. In: Downing, R. A., M. Price, and G. P. Jones *The hydrogeology of the chalk of north-west Europe*. Oxford: Clarendon Press, 35-58.

Wellings, S. R., and J. P. Bell (1980), Movement of water and nitrate in the unsaturated zone of upper chalk near Winchester, Hants., England, *J. Hydrol.*, 48, 119-136.