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Abstract. Availability of in situ river monitoring data, especially of data shared across boundaries, is decreasing, despite 

growing challenges for water resource management across the entire globe. This is especially valid for the case study of this 10 

work, the Brahmaputra Basin in South Asia. Commonly, satellite altimeters are used in various ways to provide information 

about such river basins. Most missions provide virtual station time series of water levels at locations where their repeat orbits 

cross rivers. CryoSat-2 is equipped with a new type of altimeter, providing estimates of the actual ground location seen in the 

reflected signal. It also uses a drifting orbit, challenging conventional ways of processing altimetry data to river water levels 

and their incorporation in hydrologic-hydrodynamic models. However, CryoSat-2 altimetry data provides an 15 

unprecedentedly high spatial resolution. This paper suggests a procedure to i) filter CryoSat-2 observations over rivers to 

extract water level profiles along the river, and ii) use this information in combination with a hydrologic-hydrodynamic 

model to fit the simulated water levels at an accuracy that cannot be reached using information from globally available 

DEMs such as SRTM only. The filtering was done based on dynamic river masks extracted from Landsat imagery, providing 

high enough spatial and temporal resolution to map the braided river channels and their dynamic morphology. This allowed 20 

extraction of river water levels over previously unmonitored narrow stretches of the river. In the Assam Valley section of the 

Brahmaputra River, CryoSat-2 data and Envisat virtual station data were combined to calibrate cross sections in a 1D 

hydrodynamic model of the river. The hydrologic-hydrodynamic model setup and calibration are almost exclusively based 

on openly available remote sensing data and other global data sources, ensuring transferability of the developed methods. 

They provide an opportunity to achieve forecasts of both discharge and water levels in a poorly gauged river system. 25 

1 Introduction and background 

This study shows how river water level measurements from the drifting-orbit radar altimetry mission CryoSat-2 can be used 

in combination with hydrodynamic river models. This new type of satellite altimetry data, providing river water level 

profiles with unprecedented spatial resolution was used in combination with conventional data from Envisat, providing water 

level time series at virtual stations. The combination of these two datasets allowed accurate calibration of water level 30 
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dynamics – both absolute water levels as well as water level amplitudes – along a continuous stretch of a 1D hydrodynamic 

model of the Brahmaputra River. This is obtained without precise knowledge of topography or bathymetry. 

1.1 Satellite altimetry over rivers 

Satellite altimetry is often used in data scarce river basins such as the Brahmaputra Basin. Numerous studies combining 

satellite altimetry with hydrologic river models have been carried out using data from repeat orbit satellites such as Envisat, 5 

ERS-2, TOPEX/Poseidon or Jason-1 and 2. Those satellites are on repeat orbits with a repeat cycle of 10 to 35 days (see for 

example Schwatke et al. (2015) for an overview of the main characteristics of current satellite altimetry missions). The laser 

altimeter mission ICESat, in operation from 2003 to 2009, has an unusually long repeat cycle of 91 days, resulting in a 

higher across track resolution. Processed ICESat data over inland waters though only became freely available recently 

(O’Loughlin et al., 2016). Repeat orbits simplify application in hydrologic studies, especially for rivers. First, observations 10 

occur only at a few locations along a river. This eases filtering of the data, as water masks which are commonly used to 

distinguish relevant points over the river from non-relevant points over land, only have to be applied to limited areas. 

Second, repeat orbits result in water level time series at certain points in the river – so-called virtual stations – a format 

commonly used in hydrology. Both does not apply to CryoSat-2: its drifting orbit results in water level measurements along 

the entire river, and the long repeat cycle of 369 days does not allow for direct derivation of water level time series (see the 15 

map inset in Figure 1 for a comparison of the Envisat and CryoSat-2 ground tracks). A good example for the focus of the 

hydrologic community on time series is the choice of Schwatke et al. (2015) to merge satellite altimetry from missions with 

differing orbits into common virtual stations for their satellite altimetry database DAHITI. Another effort to obtain a 

densified altimetry dataset is the work by Tourian et al. (2016): They merged multi-mission altimetry data over several 

rivers, linking the data between different virtual stations statistically and hydraulically, including data from CryoSat-2. The 20 

hydraulic link, however, is not a model but a simple time lag. They also found that the inclusion of CryoSat-2 data gives a 

more accurate representation of the river’s water level profile. In our study, CryoSat-2 data were handled by filtering its 

Level 2 altimetry data over a dynamic river mask based on Landsat imagery and using the resulting spatially distributed data 

to calibrate the water level profile along a continuous stretch of a river model. 

1.2 Combining satellite altimetry with river models 25 

Many of the studies using satellite altimetry over rivers have been done for the Amazon River due to its large width and 

favourable direction of flow – predominantly west to east – in relation to altimetry satellite orbits (for example Yamazaki et 

al. 2012b and Paiva et al., 2013). Other examples include other big rivers, such as the Mekong and Ob in the work of 

Birkinshaw et al. (2014) where daily discharge data were estimated from Envisat and ERS-2 altimetry. A combination of 

MODIS data of river velocity and Envisat water levels was used by Tarpanelli et al. (2014) to estimate discharge in the Po 30 

River. Becker et al. (2014) used Envisat altimetry data to obtain a comprehensive dataset of water levels over the Congo 

Basin, a poorly gauged river system. The dense sampling pattern of ICESat was used by O’Loughlin et al. (2013) to derive 
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water level slopes along the Congo River. ICESat river water levels were also used to evaluate the output of different 

hydraulic models (Jarihani et al., 2015 and Neal et al., 2012). Moreover, applications of data from the wide-swath drifting 

orbit mission Surface Water Ocean Topography (SWOT) have been considered (for example Biancamaria et al., 2011a or 

Yoon et al., 2012), however only with synthetically generated data: the SWOT mission is expected to be launched in 2020 

(NASA, 2016). Calibration of hydrodynamic model parameters has been explored as well: Domeneghetti et al. (2014) 5 

calibrated channel roughness for a part of the Po River using multi-year Envisat and ERS-2 altimetry data. Their work relied 

on the availability of cross section surveys. A method using the 2D hydrodynamic model LISFLOOD-FP based on SRTM 

topography was suggested by Yan et al. (2014). They used Envisat altimetry to calibrate channel roughness and a parameter 

estimating channel bed elevation below the SRTM elevations representing the water surface. Similar is the work by 

Biancamaria et al. (2009). They assumed fixed-width rectangular cross sections and estimated channel roughness and river 10 

depth by comparing model results to in situ discharge data and altimetry from Topex/POSEIDON. Cross section parameters 

were calibrated using ICESat altimetry in the lower Zambezi River (Schumann et al., 2013). 

Also the chosen study area for this work, the Brahmaputra Basin in South Asia, has already been used to show the value of 

Envisat altimetry data (Michailovsky et al., 2013). Furthermore, for example the work of Biancamaria et al. (2011b) 

provided forecasts of water levels in the high-flow season for the Ganges and Brahmaputra River near the Bangladeshi 15 

border with the aid of TOPEX/Poseidon satellite altimetry. Based on the ideas from that study, Hossain et al. (2014) 

developed an operational flood forecasting system for Bangladesh using Jason-2 water level observations from the upstream 

parts of the Ganges and Brahmaputra River in India. Also basin water storage can be estimated from satellite altimetry, see 

the work of Papa et al. (2015) where a combination of Envisat altimetry and GRACE time-lapse gravimetry has been used to 

estimate surface and sub-surface water storage in the Ganges-Brahmaputra Basin. 20 

Obviously, using satellite altimetry is particularly attractive over poorly gauged basins where in situ data are scarce. Satellite 

altimetry for river monitoring has recently become even more important: on the one hand, inland water altimetry is 

progressing with new satellites and sensors and improved data processing. On the other hand, despite growing challenges in 

managing our freshwater resources due to climate change, economic growth and population growth, the availability of in situ 

river level or discharge data is decreasing in recent years. This can be seen amongst others in the amount of data that is 25 

archived in the Global Runoff Database (Global Runoff Data Center (GRDC), 2015). Robert Brakenridge et al. (2012) for 

example discuss that this is not only an issue of lacking in situ gauging stations, but often also a political decision to not 

share river monitoring data. In both cases, remote sensing data for example in the form of satellite altimetry as used in this 

work can help water resource management and flood prediction. 

1.3 Hydrodynamic river models 30 

If a river model is used to make predictions about water levels, a physically based discharge routing model has to be used. 

There exist 1D hydrodynamic models based on the Saint-Venant equations for unsteady flow, like the MIKE 11 model used 

in this study (Havnø et al., 1995). More complex 2D or coupled 1D-2D models also include the river flood plain and 
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interactions between channel and flood plain. The increased complexity of a 2D model compared to a 1D model obviously 

leads to higher computational demand. Furthermore, a meaningful setup of a 2D model requires more input data. Especially 

for large models in data scarce regions like the Brahmaputra Basin, a compromise between computational efficiency and 

realistic simulation of water flow has to be made. Even though 2D models nowadays are successfully applied also to basin-

scale models (Biancamaria et al., 2009, Biancamaria et al., 2011a and Schumann et al., 2013) their computational demand 5 

still puts limits to the number of possible model runs (García-Pintado et al., 2013). For model calibration or data assimilation 

many model runs are required. Moreover, the setup of a 2D river model requires precise DEMs. Globally available datasets 

such as the SRTM DEM might not always be accurate enough, even if corrected specifically for their application in a river 

model (Yamazaki et al., 2012a). In such cases, a less complex 1D model is more robust. 

2 Study area 10 

The Brahmaputra basin in South Asia and its main river are being monitored closely by India and China, however almost 

none of this in situ hydrologic monitoring data are publicly available. The basin, for example, is considered a “classified 

basin” by the Indian government (Central Water Commission, 2009). This shows the importance of remote sensing data to 

aid any hydrologic modelling of the basin, such as flood forecasting in Bangladesh, the downstream neighbour of India. 

Bangladesh, a low lying country at the Bay of Bengal in the estuary region of the three large rivers Ganges, Brahmaputra and 15 

Meghna is often hit by devastating floods. More than 90 % of its surface water originates from outside the country, i.e. 

mainly India, but still little data are shared between Bangladesh and India (Biancamaria et al., 2011b). Because of the 

absence of trans-boundary data sharing, the region’s dynamic hydrology, and the considerable size of the rivers in the 

Ganges-Brahmaputra-Meghna system, the area has repeatedly been in focus of river altimetry studies. These are also the 

main reasons why the Brahmaputra Basin has been chosen as a study area, despite making it hard to validate the altimetry 20 

data against in situ observations. As already mentioned, the Amazon River is another common study area for this kind of 

studies, but the river is exceptionally wide, making transferability of the applied methods hard. 

Figure 1 shows a map of the hydrologic-hydrodynamic model of the entire Brahmaputra Basin, which was set up in the DHI 

MIKE HYDRO River software (DHI, 2015). The course of the Brahmaputra River can be roughly divided into two parts: the 

upstream part in the Tibetan Plateau and through the Himalaya into India, where the river is often flowing in steep valleys in 25 

a narrow river bed. River morphology changes in the downstream part as soon as the river leaves the Himalayan Mountains 

and enters the Assam Valley in India: here the Brahmaputra River is a wide, braided river with a low gradient and 

dynamically changing river channels (Sarkar et al., 2012). Finally, the Brahmaputra River merges with the Ganges and 

Meghna rivers (outside the area modelled in this study) and flows into the Bay of Bengal. 

Calibration of the hydrodynamic model’s channel roughness was performed using discharge data from Bahadurabad station. 30 

River cross section calibration, however, proves more challenging as no accurate digital elevation model (DEM), river 

bathymetry, or other topographic information is available for the study area. Cross sections have to be calibrated along the 
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entire river, to allow realistic simulation of water levels. For this, a combination of conventional satellite altimetry from 

Envisat with the new data from CryoSat-2 was used. Envisat data, like other data from repeat orbit missions, enable 

derivation of water level time series at so-called virtual stations where the satellite ground track intersects the river. Cross 

section calibration had to be limited to the Assam Valley, as this is the only part of the river where sufficient data from both 

CryoSat-2 and Envisat exist. 5 

3 Data and methods 

3.1 CryoSat-2 satellite altimetry data for rivers 

In April 2010, the European Space Agency (ESA) launched CryoSat-2, a Synthetic Aperture Rader (SAR) satellite mainly 

designed to observe the cryosphere. However, it also proved useful to observe water levels over oceans and inland waters. 

The data from CryoSat-2 are unique due to i) the satellite’s drifting orbit and ii) its SAR Interferometric Radar Altimeter 10 

(SIRAL) sensor, making it possible to use a second antenna and then determine off-nadir positions of the radar reflections 

(European Space Agency and Mullar Space Science Laboratory, 2012). As will be shown in this work, this opens up for new 

applications of the data compared to conventional altimeters on a repeat orbit. CryoSat-2 is operating in three modes in 

different regions of the world determined by a geographical mode mask (European Space Agency 2016): In Low Resolution 

Mode (LRM) as a conventional altimeter over the interior of ice sheets or regions of low interest to the cryosphere 15 

community; in SAR mode with an along-track footprint of only 300m (Wingham et al., 2006) for example over regions 

where sea ice is of interest; and in SAR Interferometric (SARIn) mode using a second antenna and other additional signal 

processing steps over areas with challenging terrain. Because of the two antennas used in SARIn mode, the signal’s main 

reflectance location can be determined. This gives an estimate of the exact location of the measurement, instead of the 

assumption that the measurement is placed directly at nadir as with conventional LRM and SAR altimetry data. 20 

The data used for this study are Level 2 CryoSat-2 altimetry provided by the National Space Institute, Technical University 

of Denmark (DTU Space). These data were based on the ESA baseline-b Level 1b 20 Hz product, and retracked with an 

empirical retracker. For details of the processing please refer to Villadsen et al. (2015). Villadsen et al. also describe the 

application of the data over the Ganges and Brahmaputra rivers. Furthermore, Nielsen et al. (2015) were able to use these 

data to extract water levels over lakes as small as 9 km2 at unprecedented accuracy. Some of these data over lakes can be 25 

accessed via the Altimetry for inland Water (AltWater) service at http://altwater.dtu.space/ of DTU Space. For this work, 

data from CryoSat-2 are used from the beginning of its operation in 2010 until the end of 2013. Most of the Brahmaputra 

River is covered in SARIn mode, from its origin to the downstream end of the SARIn mask indicated in Figure 1, 

approximately 100 km upstream of the gauging station Bahadurabad. 
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3.1.1 Filtering of CryoSat-2 data – river mask 

In the case of small inland water bodies, CryoSat-2 data, like any SAR altimeter data, currently do not deliver reliable 

information on whether it was acquired over water or over land surface. One relevant metadata item of satellite altimetry is 

the backscatter coefficient (also referred to as Sigma0). This value however, over small and often turbid water surfaces such 

as rivers does not allow a reliable discrimination between water and land surface points. In an effort of processing multi-5 

mission data over inland waters, Schwatke et al. (2015) found backscatter only useful to deliver information about potential 

ice cover. This applies to both the Level 1b and Level 2 data. These challenges are also reflected in the processing of 

altimetry data developed for databases providing global inland water altimetry data that are described below. 

Commonly, to filter relevant altimetry observations that represent river or lake surfaces, water masks derived from other 

remote sensing data are used. Existing global products include the MODIS river mask from the Moderate Resolution 10 

Imaging Spectroradiometer on board of the Terra and Aqua satellites. Those multi-spectral instruments can provide a mask 

with a high temporal resolution, however only at 250 m spatial resolution (Enjolras and Rodriguez, 2009). Often, those 

masks are also only used as static masks, see for example the MOD44W product (Carroll et al., 2009) used with CryoSat-2 

data over the Brahmaputra and Ganges by Villadsen et al. (2015). Also the River&Lake dataset, an ESA project providing 

water level time series over inland water bodies globally from altimeters on board of ERS-2, Envisat and Jason-2, used a 15 

static water mask (Berry and Wheeler, 2009). Another database for satellite altimetry with global coverage, HydroWeb, uses 

simple rectangular masks at virtual stations where the satellites’ repeat orbits intersect with the river (Rosmorduc, 2016), and 

then applies some outlier filtering based on single transects (Santos da Silva et al., 2010). Such a procedure cannot easily be 

applied to CryoSat-2 because of its drifting orbit. For the DAHITI database (Schwatke et al., 2015), which combines multi-

mission data into common water level time series, a river mask is only applied via a simple latitude threshold (as all satellite 20 

tracks run in predominantly north-southerly direction). Then, further outlier criteria are applied to the data, including 

expected water height thresholds, height error thresholds, and along-track outlier tests. This procedure however also requires 

manual, individual inspection of river transects to tune the respective parameters. 

The Brahmaputra in the Assam Valley has a braided river bed with river channels continuously changing their location and 

shape. Often, relevant changes can be seen from one year to another. Hence, for this work a high resolution, dynamic river 25 

mask was necessary for correct filtering of the CryoSat-2 altimetry data. This river mask was extracted from Landsat 7 and 

Landsat 8 NDVI imagery. Landsat imagery has been used repeatedly as a more finely resolved alternative to the global water 

masks discussed above, see for example the use with Envisat data over the Zambezi river by Michailovsky et al. (2012), with 

Envisat and ERS-2 data over the Mekong and Ob rivers by Birkinshaw et al. (2014), or the work by O’Loughlin et al. (2013) 

using river widths etc. extracted from Landsat NDVI imagery for a hydraulic characterisation of the Congo River. 30 

32-day composites of Landsat 7 and 8 NDVI imagery, as available online from the EarthEngine (NASA Landsat Program, 

2016) have been used to extract binary water masks over the entire Brahmaputra River covered in CryoSat-2’s SARIn mode, 

where all areas with a NDVI value greater than zero were considered land surface, and the remaining parts water surface. 
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Because of optical imagery being unable to penetrate cloud cover, in this region it is not possible to acquire a complete river 

mask during each of these 32-day windows. The water mask extraction was done differently for the upstream and 

downstream portions of the river: upstream of the Assam Valley the Brahmaputra River bed is less dynamic, because the 

river is usually contained by a steep valley. For this part, available, i.e. cloud cover-free imagery from the years 2012 and 

2013 was combined into one river mask. For the more dynamic Assam Valley, one river mask for each year was created 5 

from all available imagery for this year, resulting in four river masks for the relevant years 2010 to 2013. Only pixels that 

were water-covered in all usable 32-day composites of each year were considered water in the resulting mask. This means 

that the river masks represent an estimate of minimum water extent during each year. Manual inspection of Landsat imagery 

from different years has shown that most dramatic changes to the river’s morphology become visible after each high-flow 

season, i.e. each year in late autumn. Hence, from the beginning of each calendar year a new river mask was used. 10 

3.1.2 Projecting CryoSat-2 data into model space 

In order to filter CryoSat-2 data for use in combination with the 1D hydrodynamic model used in this work, the points of 

CryoSat-2 observations have to be projected onto the model river line. 

This procedure is displayed in Figure 2. CryoSat-2 observations are first filtered over the river mask of the respective year, 

and then projected onto their nearest neighbouring point on the model river line. The model river line is static over the entire 15 

simulation time. This is due to technical challenges in setting up and calibrating a model with a changing river line in MIKE 

HYDRO River. In addition, the hydrodynamic model’s simulation results are relatively insensitive to the exact course of the 

river line as long as the 1D approximation adequately represents river conveyance. However, the model river line affects 

where the CryoSat-2 observations are mapped to the model. 

3.2 Envisat virtual station data 20 

The Envisat virtual station data to extract the water level amplitudes in the Brahmaputra River were taken from 13 virtual 

stations along the Assam Valley for the years 2002 to 2010. The data were taken from the River&Lake project database 

(Berry and Wheeler, 2009). 

3.3 Hydrologic-hydrodynamic model 

3.3.1 Hydrodynamic model 25 

A model of the Brahmaputra Basin from the origin of the river to Bahadurabad station, close to the river’s confluence with 

the Ganges River was set up in the DHI MIKE HYDRO River software. The Brahmaputra River was modelled over a length 

of overall 3090 km. See Figure 1 for an overview. River flow in MIKE HYDRO River (previously referred to as MIKE 11) 

is modelled using a 1D dynamic wave routing based on the Saint-Venant equations for unsteady flow (Havnø et al., 1995). 

The governing equations are solved using a 6-point implicit finite difference scheme (Abbott and Ionescu, 1967). The 30 



8 
 

solution is computed on a staggered grid of alternating Q and h points. Simulated discharge is available at Q points only, 

while simulated water level is available only at h points. Cross sections can be placed anywhere along the river, but in the 

model they are always placed at h points. If necessary, cross section datums and shapes are linearly interpolated to achieve 

this. In our setup, the default distance between each Q and h point is 2.5 km The delineation of the river was based on the 

SRTM DEM. However, it should be noted that a river line based on the relatively coarse SRTM DEM can deviate from the 5 

natural river’s course (or its centre line), see Figure 2. Inaccuracies in the used DEM also explain the slight disagreements 

between the river’s course, the location of the discharge station and the actual basin outline in the very flat part of the river 

valley around Bahadurabad station. Discharge routing in the 1D hydrodynamic model however is insensitive to the exact 

location of the river line. Furthermore, despite considerable changes to the river channel, the general discharge-water level 

relationship in the Brahmaputra River seems to be fairly stable (Mirza, 2003). The hydrodynamic model was forced by 10 

simulated runoff from subcatchments. Applying this forcing, Manning’s number was calibrated to a uniform value along the 

entire river (see also Figure 3) by minimizing RMSE between simulated and observed discharge at Bahadurabad station. 

3.3.2 Rainfall-runoff forcing of the hydrodynamic model 

Simulated runoff was derived from a larger hydrologic-hydrodynamic model of the Ganges and Brahmaputra basins 

developed  in a consultancy project of DHI and the International Centre for Integrated Mountain Development (ICIMOD). In 15 

this model, the runoff was simulated in 86 subcatchments (33 in the Brahmaputra Basin, indicated in Figure 1, and 53 in the 

Ganges Basin) using NAM rainfall-runoff models (Nielsen and Hansen, 1973). NAM is a lumped, conceptual rainfall-runoff 

model and can, as in this work, include snow melt processes. Due to restricted access to in situ data, the hydrologic model 

was based almost entirely on freely available remote sensing and other global data sources. For subcatchment delineation 

and elevation zoning of the NAM snow melt module the SRTM DEM was used. Precipitation forcing was derived from 20 

TRMM v7 3B42 data (Tropical Rainfall Measurement Mission Project (TRMM), 2011). Temperature and evaporation 

forcings were derived from the ERA-Interim reanalysis products from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Dee et al., 2011 and Berrisford et al., 2011). 

In situ discharge data were available for only 11 of the 86 subcatchments. Most of these are located in the Nepalese 

Himalaya and are part of the Ganges Basin. Only two of the available in situ discharge stations are located in the 25 

Brahmaputra Basin. Furthermore, in situ discharge data exist for both main rivers, the Ganges and Brahmaputra rivers, close 

to their confluence with each other, at Hardinge Bridge station and Bahadurabad station respectively. The existing 

subcatchment in situ discharge was used to calibrate parameters controlling the size of the surface and root zone storage, 

thresholds between overland runoff, interflow and groundwater recharge, and time constants for overland flow, interflow and 

baseflow routing. For details please refer to the reference manual, chapter 4.8 (DHI, 2015). Parameters for the 11 30 

subcatchments were calibrated individually and then transferred to the remaining subcatchments, using simple heuristics. 

Parameters in the NAM model have some physical meaning, so for example differences in topography or land use can guide 

in how to transfer parameters from one catchment to another. So, even though only the Brahmaputra Basin was part of this 
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study, information on NAM parameters gained from the larger Ganges-Brahmaputra model was used. The overall 

performance evaluation of the model, and a calibration of the Manning’s number of the hydrodynamic model was done by 

evaluating the model output at Bahadurabad station at the outlet. Aggregated information at the outlet however could not 

directly provide information about subcatchment parameters. The calibration period included the years 2002 to 2007. 

3.3.3 Boundary and initial conditions of the model 5 

The hydrodynamic model was initialized from arbitrary initial conditions and warmed up for a sufficiently long period prior 

to the start of the actual simulation period. More relevant, however, are the initial conditions of the hydrologic model: some 

of the NAM model storages, such as groundwater and snow storage, have long residence times. Hence, the NAM models 

have been run for 30 iterations of the calibration period, until model states reached equilibrium. The resulting model states 

were then used as initial conditions for the simulation period. Furthermore, water level data from Aricha available for the 10 

years 2001 to 2009 was used as a downstream boundary condition of the hydrodynamic model. Outside this period, a daily 

water level climatology derived from the available observations has been used. Due to the location of Aricha approximately 

180 km downstream of Bahadurabad station this has a negligible effect on results. 

3.4 Cross section calibration 

In the absence of in situ or precise local remote sensing data of the Brahmaputra River’s cross sections or bathymetry, we 15 

used the SRTM DEM to derive the river’s course with DEM hydroprocessing routines. The SRTM DEM, in combination 

with satellite imagery, was also used for a first guess of cross section datums and shapes along the Brahmaputra. These cross 

sections are a result of the DHI/ICIMOD project. Already here, due to the use of a 1D hydrodynamic model, the multi-

channel river was simplified into one channel only. Due to the low spatial resolution of the SRTM DEM (90 m) and the 

vertical standard error in the range of a few metres (Rodríguez et al., 2006), this provides a rough estimate of cross section 20 

datum. Furthermore, the SRTM DEM does not retrieve the submerged part of the river cross section, which has to be 

estimated or guessed. Hence, a hydrodynamic model with cross sectional data derived from such a DEM cannot be expected 

to accurately simulate water levels. As CryoSat-2 observations will occur along the entire river, and not only limited to 

virtual station locations, water levels have to be reproduced accurately by the model along the entire river, if the (or any) 

altimetry data were to be combined with the model. 25 

The cross section calibration described in the following, fitting simulated water levels to observed water levels from 

altimetry, could only be performed for the downstream part of the Brahmaputra River, the Assam Valley. This is due to 

insufficient altimetry data from CryoSat-2 and Envisat available for the upstream part of the Brahmaputra River. Cross 

section calibration was performed after calibration of the Manning’s number as described in the previous section. 

For the hydrodynamic model, conceptual cross sections in triangular shape were placed at regular 50 km or 12.5 km intervals 30 

along the river; with information from the SRTM DEM as a first guess. This generic, simple shape was chosen to ease the 

calibration process. Cross section parameters (datum and opening angle) were then calibrated using information obtained 
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from both satellite altimeter data sources mentioned above to fit i) the average absolute water level along the river and ii) the 

water level amplitudes in the river. In combination, the two altimeter missions proved to provide very useful insight into all 

relevant dynamics of water levels in the river (profiles of average absolute water levels and water level amplitudes) due to 

their different orbits. 

Figure 3 summarises the entire calibration process of the hydrologic-hydrodynamic model. It is assumed that the cross 5 

section calibration has negligible influence on (the timing of) discharge. With the used hydrodynamic model this holds true 

if a reasonable first guess for the cross sections was made. 

3.4.1 Step 1: cross section calibration using average water levels 

The drifting orbit of CryoSat-2 allows derivation of average water level profiles along the river with high spatial resolution if 

several years of data are taken into account. These water level profiles are of higher accuracy than what can be extracted 10 

from SRTM DEM because of the lower standard error of CryoSat-2 altimetry data. Besides that, the CryoSat-2 data are 

filtered specifically to include only data of the actual water surface, unlike the SRTM DEM that averages different landcover 

and terrain types within one 90 m pixel. Also the dynamic river morphology requires use of current water level observations, 

instead of historic SRTM data which was acquired in 2000. This means that in the first step, as displayed in Figure 4, the 

cross sections’ datums were calibrated to fit the average simulated water level profile along the river to the average water 15 

level profile observed by CryoSat-2. 

3.4.2 Step 2: cross section calibration using water level amplitudes 

In the second step, the Envisat virtual station water level time series were used to calibrate cross section shapes to fit the 

water level amplitudes at the locations of the 13 virtual stations (see Figure 1) along the Assam Valley. The information used 

here was the relative water levels, i.e. simulated yearly water level amplitudes were fitted to the observed ones from Envisat. 20 

To account for the coarse temporal resolution of Envisat data of 35 days and the resulting risk of losing a peak, simulated 

data were only extracted at the exact times of Envisat observations to determine the simulated water level amplitudes. 

To perform the calibration, the MIKE HYDRO River model was coupled with a genetic search algorithm implemented in 

Matlab for numerical optimisation. Table 1 gives an overview over calibration parameters and objective functions used for 

both steps. 25 

As cross sections were placed every 12.5 km or 50 km, i.e. at finer intervals than virtual station observations were available, 

cross section angles were interpolated linearly for cross sections without any neighbouring virtual station. By doing so, 27 

cross sections (Table 1) could be calibrated with information from 13 virtual stations. The change of the cross section shape 

in calibration step 2 has a relevant effect not only on the water level amplitudes but, at some points in the model, also on the 

absolute average water levels. Consequently, step 1 of the water level calibration procedure has to be repeated with the cross 30 

section shapes that resulted from step 2. This leads to an iterative process displayed in Figure 3. It usually can be ended after 

few iterations at step 1, as simulated water level amplitudes are insensitive to moderate changes in the cross section datums. 
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4 Results and discussion 

4.1 Water level from CryoSat-2 data 

The filtering of CryoSat-2 data over the Landsat river masks for 2010 to 2013 resulted in 4806 single observations. A 

filtering of obvious outliers was performed, excluding CryoSat-2 values which deviate more than 20 m from the SRTM 5 

elevations along the model river line. After outlier filtering, 3868 CryoSat-2 observations remain. Figure 5 displays 

longitudinal profiles of outliers and outlier-filtered values, as well as mapped outlier-filtered values along the course of the 

Brahmaputra River. The value of 20 m was chosen after inspection of the data. It ensures removal of all obvious outliers, 

maybe due to issues with the closed-loop control of CryoSat-2. 2710 of the outlier-filtered measurements lie in the Assam 

Valley of the Brahmaputra River, which were used for the cross section calibration. The number of data points and outliers 10 

are summarized in Table 2. 

In the upstream part of the Brahmaputra, from river km 0 to approximately km 2100, there is a considerable amount of 

outliers. This is the part characterised by a steep or even gorge-like river valley (Jain et al., 2007). All the CryoSat-2 data 

used here are acquired in SARIn mode which allows determining the true ground location of the observation. However, the 

applied off-nadir ranging is also connected with uncertainties (Armitage and Davidson, 2014). This could be one reason for 15 

the large amount of outliers in this part of the river. Furthermore, these outliers – most of them are clear outliers, with 

elevations hundreds of metres off – can be related to the steep valley making it impossible for the altimeter’s signals to reach 

the valley bottom, i.e. the river water surface. Note in this context that CryoSat-2’s measurement footprint area is 0.5 km2 

(Scagliola, 2013) with an along-track resolution of about 300 m (European Space Agency and Mullar Space Science 

Laboratory, 2012) in SARIn mode. Envisat, for example, has a measurement footprint diameter of 2 to 10 km (Chelton et al., 20 

2001) and an along-track resolution of 369 m (Berry et al., 2008), making it more likely for CryoSat-2, especially over 

challenging terrain, to lock onto the target of interest. Another issue with steep terrain is that the range window, in which an 

altimeter actually records potential reflections from the surface, constantly has to be adjusted according to the terrain. 

CryoSat-2’s closed-loop control in SARIn mode means that it often misses to reach valley bottoms in mountainous regions 

(Dehecq et al., 2013). It can be seen in the graph in Figure 5 that the steepest parts of the river (around river km 500, 900, 25 

1250, and between km 1600 and 2000) contain almost no usable data at all. These steepest parts of the river often coincide 

with the most narrow parts of the river valley. The Assam Valley however requires almost no outlier filtering at all. 

Furthermore, it can be seen that CryoSat-2 captures some details in the river bed level that the SRTM data are not showing – 

see for example the detail around river km 1200 in Figure 5. And the CryoSat-2 data give an idea of the seasonal variability 

of water levels along the river. 30 

It can be concluded that CryoSat-2 altimetry data can be used over the parts of the Brahmaputra River with moderate 

topography. In the areas with extreme topography, a large amount of outliers can be found, however still leaving a relevant 
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amount of usable observations. This is important as none of the existing inland water altimetry databases (River&Lake, 

HydroWeb, DAHITI) provides data over the upstream part of the Brahmaputra River. 

The use of a better river mask would likely improve the data yield. Such river masks should have a high temporal resolution 

(at least seasonal), and a high spatial resolution (well below the widths of the river channels of a few hundred metres). Using 

SAR imagery should give better results than the optical Landsat imagery used here: SAR imagery penetrates cloud cover, 5 

also giving results in the high-flow season of the Brahmaputra River where it was never possible to get consistent optical 

imagery. Since the start of Sentinel-1A as part of the Copernicus programme in April 2014, a freely available source for high 

resolution SAR imagery exists (Sentinel-1 Team, 2013) that could largely improve the river masks used for this work. 

4.2 Hydrologic-hydrodynamic model calibration of discharge 

After the calibration of the rainfall-runoff models the hydrodynamic model was calibrated to in situ observations at its outlet, 10 

Bahadurabad station (see Figure 1). This was done by adjusting Manning’s number, affecting the timing of the discharge 

routing. The optimal Manning’s number was found to be 0.029 s m-1/3, which is considered plausible (compare Chow (1959), 

Table 5-6). Furthermore it was observed, both for the single catchments and the entire Brahmaputra River at Bahadurabad, 

that the precipitation forcing is likely underestimating the real precipitation. It was necessary to scale the TRMM 

precipitation data with a factor of 1.4 to obtain a good water balance. An underestimation of precipitation by remote sensing 15 

data can be observed sometimes, especially in regions with a large share of small-scale convective rainfall events. Also 

Michailovsky et al. (2013) observed in their work that the TRMM 3B42 had to be scaled by a factor of 1.25 to give good 

results in a hydrologic model of the Brahmaputra Basin. Moreover, given the large size of the subcatchments, spatial 

variation of precipitation due to topography (which is present in the Himalaya, see for example Bookhagen & Burbank, 

2006) cannot be fully accounted for. Figure 6 shows simulated and observed discharge at Bahadurabad station. 20 

Table 3 gives an overview over performance criteria, comparing observed and simulated discharge at Bahadurabad station 

for the calibration and validation period. For the validation period 2010 to 2013 data were usually only available during the 

high-flow season April to October. Hence, for comparability Table 3 also lists values for the calibration period taking only 

April to October into account. The good performance for the calibration period with a Nash-Sutcliffe coefficient (NSE) of 

0.93, or 0.89 respectively, is reduced for the validation period to a NSE of 0.81. Also, the low water balance bias of around -25 

2 % in the calibration period increases to +11 % for the validation period, meaning that the model is overestimating the 

discharge at Bahadurabad station. It is noticeable that the rainfall-runoff model performance on the subcatchment level is 

poorer than the performance of the aggregated model at the basin outlet (see Table 4). For subcatchments with available 

discharge observations the average NSE is 0.47. The poor subcatchment-level performance can maybe be explained by small 

scale precipitation patterns not properly represented by the TRMM precipitation product. The errors on the subcatchment 30 

level are almost uncorrelated to each other: the average Pearson coefficient of cross correlation of the subcatchments’ runoff 

residuals is only 0.16. When these runoffs then are aggregated in the hydrodynamic model the uncertainties from the 
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individual subcatchments cancel each other out to some degree, leading to a much better performance on the basin level than 

on the subcatchment level. This can also be seen as an indicator that the NAM model parameter transfer was successful. 

4.3 Cross section calibration 

Figure 7 shows the results of step 1 of the water level calibration. For better visibility, the results are all shown in elevations 

relative to the reference model’s cross section datums instead of absolute elevations. The reference model was run with the 5 

first-guess cross sections derived from the SRTM DEM described in Sect. 3.4. It can be seen that the average simulated 

water levels from the reference model do not accurately represent the CryoSat-2 observations. After calibrating the cross 

section datums – which meant adjusting their datum by up to 4 m – the simulated average water level follows the CryoSat-2 

observations more closely. The calibration reduced the RMSE between average simulated water level and CryoSat-2 

observations from 3.1 m for the reference model to 2.5 m. The remaining deviation can mainly be explained by the seasonal 10 

water level variations in the river. 

While studying first results from this calibration step, we realized that between river km 2050 and 2150 the river bed slope is 

changing multiple times and finer cross section spacing is needed to accurately represent river morphology. Hence, in this 

part additional cross sections were added reducing the cross section spacing from 50 km to 12.5 km. 

For one of the virtual stations, the results of step 2 of the cross section calibration can be seen in Figure 8. The average 15 

RMSE between simulated and observed yearly water level amplitudes for all 13 virtual stations was 0.83 m after the 

calibration. 

It has to be noted that CryoSat-2 data was used approximately from river km 1950 to 2800, whilst Envisat data was available 

from river km 2050 to 3050. Hence, only the overlapping stretch from river km 2050 to 2800, spanning a total of 22 cross 

sections in the chosen setup, can be considered fully calibrated. 20 

The cross section calibration procedure developed offers a way to obtain a rather simple 1D hydrodynamic model accurately 

representing water levels, without precise knowledge of topography or bathymetry. Synthetic cross sections allow the use of 

practically any shape, however for the sake of reducing the number of fitting parameters in the calibration algorithm a simple 

triangular shape was chosen. These simple cross section shapes proved to be able to reproduce the observed water level 

amplitudes. Also, other physical properties of the hydrodynamic model are in a plausible range: For the calibrated stretch of 25 

the Brahmaputra River, the average Froude number at the model’s individual grid points varies from 0.086 to 0.415 in the 

high flow season, and from 0.070 to 0.399 in the low flow season. The average simulated water depth varies from 1.80 m to 

9.77 m in the high flow season, and from 1.02 m to 6.08 m in the low flow season. This means that the modelled flow is well 

in the subcritical range, as expected for the given river section. Still it has to be stressed that properties other than discharge 

and water level will not be represented realistically. Trigg et al. (2009) had similar success with simplistic cross section 30 

geometries: They introduced only marginal errors in water levels from a hydrodynamic model of the Amazon River when 

switching from surveyed cross sections to rectangular representations. However, for some rivers, it might be impossible to 
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model the observed discharge-water level relationships with such simplistic cross sections. The approach can be adapted for 

a slightly more complex representation of cross section geometry, as for example suggested by Neal et al. (2015). 

5 Conclusion 

This is one of the first studies demonstrating how to use Cryosat-2 type radar altimetry data in connection with river models. 

There have been other suggestions on how to use spatially distributed satellite altimetry in combination with hydrologic 5 

models. Often, however, they still rely on the concept of virtual stations; see the review in the introduction. Other studies fall 

back on data from in situ gauging stations such as the work by Getirana (2010) using Envisat data to calibrate a model of the 

Negro River in the Amazon Basin, where data from a network of in situ gauging stations was used to estimate the water 

level-discharge relationships in a hydrologic model. 

The method developed in this study, combining altimetry data from two missions with different orbits with a hydrologic-10 

hydrodynamic model allows the calibration of cross sections in a 1D hydrodynamic river model without precise knowledge 

of topography or bathymetry. This results in a model accurately simulating water levels, which is an important achievement 

if poorly gauged river basins are to be modelled. Globally available DEMs such as the SRTM product are used to create 

hydrodynamic models, though they do not always provide enough information to reproduce water levels or inundations areas 

at high accuracy. Jarihani et al. (2015) used cross sections derived from the SRTM DEM and different hydraulically and 15 

vegetation corrected versions of it, and compared to elevations from ICESat and surveyed points. Even correcting the SRTM 

for vegetation and submerged parts, a relevant error remained. Similar work was done by Md Ali et al. (2015), who 

compared water levels in a hydrodynamic model based on the SRTM DEM with those from a model based on more accurate 

lidar data. The resulting simulated water levels showed relevant differences. Similar conclusions can be drawn from this 

study. 20 

Envisat data – similar to data from other conventional altimeters such as ERS-2, Jason-2 or TOPEX/Poseidon – were used as 

a virtual station time series to extract water level time series. This kind of water level data are directly accessible from inland 

water satellite altimetry databases such as River&Lake, HydroWeb, or DAHITI. DAHITI started incorporating CryoSat-2 

data in their multi-mission product. Still, CryoSat-2 data as river water levels currently cannot be accessed directly through 

any of those sources. Hence, for this work a filtering procedure based on dynamic Landsat river masks was developed and 25 

applied to the CryoSat-2 data. This procedure took the dynamic nature of the Brahmaputra River’s morphology into account 

and allowed to extract river water levels also over narrow parts of the river in extreme terrains, where existing global 

databases of inland altimetry do not offer any data. These data cannot be used to directly extract water level time series, but 

they display longitudinal water level profiles. 

The hydrologic-hydrodynamic model of Brahmaputra River basin that was used in conjunction with the satellite data, has 30 

been set up almost exclusively using openly accessible remote sensing and other global data sources. Thus, the methodology 

developed is transferrable to other case studies. The applicability of the suggested cross section calibration is only limited by 
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the availability of a sufficient amount of (satellite) altimetry observations, which mainly depends on river width and 

topography. The resulting calibrated model can be used for operational river discharge or water level forecasting, and be 

further informed by assimilating discharge measurements or water level measurements from various sources such as 

different altimetry missions. 

Acknowledgements 5 

The work presented in this paper was partly funded by the LOTUS – Preparing Sentinel-3 SAR Altimetry Processing for 

Ocean and Land project, part of the European Union’s Seventh Framework Programme for research, technological 

development and demonstration under grant agreement no. 313238; and the ESA Cryosat2 Success over Inland Water and 

Land (CRUCIAL) project, awarded under ITT ESRIN/AO/1-6827/11/I-NB. The setup and calibration of the Brahmaputra 

model used in this study was carried out in collaboration with the International Centre for Integrated Mountain Development 10 

(ICIMOD). 

References 

Abbott, M. B. and Ionescu, F.: On The Numerical Computation Of Nearly Horizontal Flows, J. Hydraul. Res., 5(2), 97–117, 

doi:10.1080/00221686709500195, 1967. 

Armitage, T. W. K. and Davidson, M. W. J.: Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to 15 

Improve the Accuracy of Sea Ice Freeboard Retrievals, IEEE Trans. Geosci. Remote Sens., 42(1–2), 529–536, 

doi:10.1109/TGRS.2013.2242082, 2014. 

Becker, M., da Silva, J., Calmant, S., Robinet, V., Linguet, L. and Seyler, F.: Water Level Fluctuations in the Congo Basin 

Derived from ENVISAT Satellite Altimetry, Remote Sens., 6(10), 9340–9358, doi:10.3390/rs6109340, 2014. 

Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S. and Uppala, S.: The ERA-Interim Archive - 20 

Version 2.0., 2011. 

Berry, P. A. M. and Wheeler, J. L.: JASON2-ENVISAT Exploitation - Development of Algorithms for the Exploitation of 

JASON2-ENVISAT Altimetry for the Generation of a River and Lake Product. Product Handbook v3.5., 2009. 

Berry, P. A. M., Smith, R. G. and Benveniste, J.: ACE2: The New Global Digital Elevation Model, in Gravity, Geoid and 

Earth Observation, vol. 135, edited by S. P. Mertikas, Springer., 2008. 25 

Biancamaria, S., Bates, P. D., Boone, A. and Mognard, N. M.: Large-scale coupled hydrologic and hydraulic modelling of 

the Ob river in Siberia, J. Hydrol., 379(1–2), 136–150, doi:10.1016/j.jhydrol.2009.09.054, 2009. 

Biancamaria, S., Durand, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodríguez, E., Alsdorf, D. E., 

Lettenmaier, D. P. and Clark, E. A.: Assimilation of virtual wide swath altimetry to improve Arctic river modeling, Remote 

Sens. Environ., 115(2), 373–381, doi:10.1016/j.rse.2010.09.008, 2011a. 30 



16 
 

Biancamaria, S., Hossain, F. and Lettenmaier, D. P.: Forecasting transboundary river water elevations from space, Geophys. 

Res. Lett., 38, L11401, doi:10.1029/2011GL047290, 2011b. 

Birkinshaw, S. J., Moore, P., Kilsby, C. G., O’Donnell, G. M., Hardy, A. J. and Berry, P. A. M.: Daily discharge estimation 

at ungauged river sites using remote sensing, Hydrol. Process., 28(3), 1043–1054, doi:10.1002/hyp.9647, 2014. 

Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along the Himalaya, 5 

Geophys. Res. Lett., 33(8), L08405, doi:10.1029/2006GL026037, 2006. 

Brakenridge, G. R., Cohen, S., Kettner, A. J., De Groeve, T., Nghiem, S. V., Syvitski, J. P. M. and Fekete, B. M.: Calibration 

of satellite measurements of river discharge using a global hydrology model, J. Hydrol., 475, 123–136, 

doi:10.1016/j.jhydrol.2012.09.035, 2012. 

Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. and Sohlberg, R. A.: A new global raster water mask at 250 10 

m resolution, Int. J. Digit. Earth, 2(4), 291–308, doi:10.1080/17538940902951401, 2009. 

Central Water Commission: Integrated Hydrological Data Book (non-classified river basins), New Delhi., 2009. 

Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L. and Callahan, P. S.: Satellite Altimetry, in Satellite Altimetry and Earth 

Sciences: A Handbook of Techniques and Applications, vol. 69, edited by L. Fu and A. Cazenave, pp. 2504–2510, Academic 

Press., 2001. 15 

Chow, V. T.: Open Channel Hydraulics, McGraw-Hill., 1959. 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, 

G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., 

Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., 

Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N. and 20 

Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. 

Soc., 137(656), 553–597, doi:10.1002/qj.828, 2011. 

Dehecq, A., Gourmelen, N., Shepherd, A., Cullen, R. and Trouvé, E.: Evaluation of CryoSat-2 for height retrieval over the 

Himalayan range, in CryoSat-2 third user workshop, March 2013, Dresden, Germany., 2013. 

DHI: MIKE 11 - A Modelling System for Rivers and Channels - Reference Manual, Hørsholm, Denmark., 2015. 25 

Domeneghetti, A., Tarpanelli, A., Brocca, L., Barbetta, S., Moramarco, T., Castellarin, A. and Brath, A.: The use of remote 

sensing-derived water surface data for hydraulic model calibration, Remote Sens. Environ., 149, 130–141, 

doi:10.1016/j.rse.2014.04.007, 2014. 

Enjolras, V. M. and Rodriguez, E.: Using Altimetry Waveform Data and Ancillary Information From SRTM, Landsat, and 

MODIS to Retrieve River Characteristics, IEEE Trans. Geosci. Remote Sens., 47(6), 1869–1881, 30 

doi:10.1109/TGRS.2008.2006365, 2009. 

European Space Agency and Mullar Space Science Laboratory: CryoSat Product Handbook., 2012. 

European Space Agency (ESA): Geographical Mode Mask, [online] Available from: https://earth.esa.int/web/guest/-

/geographical-mode-mask-7107, 2016. 



17 
 

García-Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L. and Bates, P. D.: Scheduling satellite-based SAR acquisition for 

sequential assimilation of water level observations into flood modelling, J. Hydrol., (495), 252–266, 

doi:10.1016/j.jhydrol.2013.03.050, 2013. 

Getirana, A. C. V.: Integrating spatial altimetry data into the automatic calibration of hydrological models, J. Hydrol., 

387(3–4), 244–255, doi:10.1016/j.jhydrol.2010.04.013, 2010. 5 

Global Runoff Data Center (GRDC): Global Runoff Database, 2015. 

Havnø, K., Madsen, M. N. and Dørge, J.: MIKE 11 - A Generalized River Modelling Package, in Computer Models of 

Watershed Hydrology, edited by V. P. Singh, pp. 733–782, Water Resource Publications., 1995. 

Hossain, F., Maswood, M., Siddique-E-Akbor, A. H., Yigzaw, W., Mazumdar, L. C., Ahmed, T., Hossain, M., Shah-Newaz, 

S. M., Limaye, A., Lee, H., Pradhan, S., Shrestha, B., Bajracahrya, B., Biancamaria, S., Shum, C. K. and Turk, F. J.: A 10 

promising radar altimetry satellite system for operational flood forecasting in flood-prone bangladesh, IEEE Geosci. Remote 

Sens. Mag., 2(3), 27–36, doi:10.1109/MGRS.2014.2345414, 2014. 

Jain, S. K., Agarwal, P. K. and Singh, V. P.: Brahmaputra and Barak Basin, in Hydrology and Water Resources of India, vol. 

57, pp. 419–472, Springer Netherlands, Dordrecht., 2007. 

Jarihani, A. A., Callow, J. N., McVicar, T. R., Van Niel, T. G. and Larsen, J. R.: Satellite-derived Digital Elevation Model 15 

(DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments, 

J. Hydrol., 524, 489–506, doi:10.1016/j.jhydrol.2015.02.049, 2015. 

Md Ali, A., Solomatine, D. P. and Di Baldassarre, G.: Assessing the impact of different sources of topographic data on 1-D 

hydraulic modelling of floods, Hydrol. Earth Syst. Sci., 19, 631–643, doi:10.5194/hess-19-631-2015, 2015. 

Michailovsky, C. I., McEnnis, S., Berry, P. A. M., Smith, R. and Bauer-Gottwein, P.: River monitoring from satellite radar 20 

altimetry in the Zambezi River Basin, Hydrol. Earth Syst. Sci., 16(7), 2181–2192, doi:10.5194/hess-16-2181-2012, 2012. 

Michailovsky, C. I., Milzow, C. and Bauer-Gottwein, P.: Assimilation of radar altimetry to a routing model of the 

Brahmaputra River, Water Resour. Res., 49(8), 4807–4816, doi:10.1002/wrcr.20345, 2013. 

Mirza, M. M. Q.: The Choice of Stage-Discharge Relationship for the Ganges and Brahmaputra Rivers in Bangladesh, Nord. 

Hydrol., 34(4), 321–342, doi:10.2166/nh.2003.019, 2003. 25 

NASA: NASA Science Missions - SWOT, [online] Available from: http://science.nasa.gov/missions/swot/ (Accessed 1 May 

2016), 2016. 

NASA Landsat Program: Landsat 7 and 8 NDVI 32-day composites, as available at https://earthengine.google.com/, [online] 

Available from: https://explorer.earthengine.google.com/#detail/LANDSAT%252FLE7_L1T_ANNUAL_NDVI (Accessed 

1 May 2016), 2016. 30 

Neal, J., Schumann, G. and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain inundation 

over large and data sparse areas, Water Resour. Res., 48, W11506, doi:10.1029/2012WR012514, 2012. 

Neal, J. C., Odoni, N. A., Trigg, M. A., Freer, J. E., Garcia-Pintado, J., Mason, D. C., Wood, M. and Bates, P. D.: Efficient 

incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models, J. 



18 
 

Hydrol., 529, 169–183, doi:10.1016/j.jhydrol.2015.07.026, 2015. 

Nielsen, K., Stenseng, L., Andersen, O. B., Villadsen, H. and Knudsen, P.: Validation of CryoSat-2 SAR mode based lake 

levels, Remote Sens. Environ., 171, 162–170, doi:10.1016/j.rse.2015.10.023, 2015. 

Nielsen, S. A. and Hansen, E.: Numerical simulation of the rainfall runoff process on a daily basis, Nord. Hydrol., 4, 171–

190, 1973. 5 

O’Loughlin, F., Trigg, M. A., Schumann, G. J. P. and Bates, P. D.: Hydraulic characterization of the middle reach of the 

Congo River, Water Resour. Res., 49(8), 5059–5070, doi:10.1002/wrcr.20398, 2013. 

O’Loughlin, F. E., Neal, J., Yamazaki, D. and Bates, P. D.: ICESat-derived inland water surface spot heights, Water Resour. 

Res., 52(4), 3276–3284, doi:10.1002/2015WR018237, 2016. 

Paiva, R. C. D., Collischonn, W., Bonnet, M.-P., de Gonçalves, L. G. G., Calmant, S., Getirana, A. and Santos da Silva, J.: 10 

Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in 

the Amazon, Hydrol. Earth Syst. Sci., 10(3), 2879–2925, doi:10.5194/hess-17-2929-2013, 2013. 

Papa, F., Frappart, F., Malbeteau, Y., Shamsudduha, M., Vuruputur, V., Sekhar, M., Ramillien, G., Prigent, C., Aires, F., 

Pandey, R. K., Bala, S. and Calmant, S.: Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra 

River Basin, J. Hydrol. Reg. Stud., 4, 15–35, doi:10.1016/j.ejrh.2015.03.004, 2015. 15 

Rodríguez, E., Morris, C. S. and Beiz, E. J.: A Global Assessment of the SRTM Performance, Photogramm. Eng. Remote 

Sens., 72(3), 249–260, doi:10.14358/PERS.72.3.249, 2006. 

Rosmorduc, V.: Hydroweb Product User Manual V1.0., 2016. 

Santos da Silva, J., Calmant, S., Seyler, F., Rotunno Filho, O. C., Cochonneau, G. and Mansur, W. J.: Water levels in the 

Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions, Remote Sens. Environ., 114(10), 2160–20 

2181, doi:10.1016/j.rse.2010.04.020, 2010. 

Sarkar, A., Gard, R. D. and Sharma, N.: RS-GIS Based Assessment of River Dynamics of Brahmaputra River in India, J. 

Water Resour. Prot., 4(2), 63–72, doi:10.4236/jwarp.2012.42008, 2012. 

Scagliola, M.: CryoSat footprints - Aresys Technical Note., 2013. 

Schumann, G. J. P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., Hall, A. C. and 25 

Bates, P. D.: A first large-scale flood inundation forecasting model, Water Resour. Res., 49(10), 6248–6257, 

doi:10.1002/wrcr.20521, 2013. 

Schwatke, C., Dettmering, D., Bosch, W. and Seitz, F.: DAHITI – an innovative approach for estimating water level time 

series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, doi:10.5194/hess-

19-4345-2015, 2015. 30 

Sentinel-1 Team: Sentinel-1 User Handbook., 2013. 

Tarpanelli, A., Brocca, L., Barbetta, S., Faruolo, M., Lacava, T. and Moramarco, T.: Coupling MODIS and Radar Altimetry 

Data for Discharge Estimation in Poorly Gauged River Basins, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8(1), 141–

148, doi:10.1109/JSTARS.2014.2320582, 2015. 



19 
 

Tourian, M. J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T. and Sneeuw, N.: Spatiotemporal densification of 

river water level time series by multimission satellite altimetry, Water Resour. Res., 52, 1140–1159, 

doi:10.1002/2015WR017654, 2016. 

Trigg, M. A., Wilson, M. D., Bates, P. D., Horritt, M. S., Alsdorf, D. E., Forsberg, B. R. and Vega, M. C.: Amazon flood 

wave hydraulics, J. Hydrol., 374, 92–105, doi:10.1016/j.jhydrol.2009.06.004, 2009. 5 

Tropical Rainfall Measurement Mission Project (TRMM): Tropical Rainfall Measurement Mission Project (TRMM) 3-

Hourly 0.25 deg. TRMM and Others Rainfall Estimate Data, 2011. 

Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K. and Knudsen, P.: CryoSat-2 altimetry for river level monitoring - 

Evaluation in the Ganges-Brahmaputra basin, Remote Sens. Environ., 168, 80–89, doi:10.1016/j.rse.2015.05.025, 2015. 

Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., 10 

Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P. and Wallis, D. W.: CryoSat: A 

mission to determine the fluctuations in Earth’s land and marine ice fields, Adv. Sp. Res., 37(4), 841–871, 

doi:10.1016/j.asr.2005.07.027, 2006. 

Yamazaki, D., Baugh, C. A., Bates, P. D., Kanae, S., Alsdorf, D. E. and Oki, T.: Adjustment of a spaceborne DEM for use in 

floodplain hydrodynamic modeling, J. Hydrol., 436–437, 81–91, doi:10.1016/j.jhydrol.2012.02.045, 2012a. 15 

Yamazaki, D., Lee, H., Alsdorf, D. E., Dutra, E., Kim, H., Kanae, S. and Oki, T.: Analysis of the water level dynamics 

simulated by a global river model: A case study in the Amazon River, Water Resour. Res., 48(9), W09508, 

doi:10.1029/2012WR011869, 2012b. 

Yan, K., Tarpanelli, A., Balint, G., Moramarco, T. and Di Baldassarre, G.: Exploring the Potential of SRTM Topography 

and Radar Altimetry to Support Flood Propagation Modeling: Danube Case Study, J. Hydrol. Eng., 20(2), 20 

doi:10.1061/(ASCE)HE.1943-5584.0001018, 2014. 

Yoon, Y., Durand, M., Merry, C. J., Clark, E. a., Andreadis, K. M. and Alsdorf, D. E.: Estimating river bathymetry from data 

assimilation of synthetic SWOT measurements, J. Hydrol., 464–465, 363–375, doi:10.1016/j.jhydrol.2012.07.028, 2012. 

 



20 
 

Figures and tables 

 

Figure 1: Brahmaputra Basin model base map, showing the altimetry data used for the water level calibration (the entire 
upstream part of the Brahmaputra is also covered by the SARIn mode of CryoSat-2). Map inset: Ground tracks of CryoSat-2 
(yellow) and Envisat (red). The Brahmputra River originates in the Tibetean Plateau, flows eastwards, then bends towards south 5 
to cross the Himalayan Mountains and afterwards flows westwards through the Assam Valley into Bangladesh. 
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Figure 2: Section of the Brahmaputra in the Assam Valley showing the Landsat river mask, the CryoSat-2 observations and their 
mapping to the 1D river model, all for 2013 

 

 5 

Figure 3: Flow chart showing the hydrological and hydrodynamic model calibration. 
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Figure 4: Sketch of the two-step cross section calibration with their calibration parameters. 
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Figure 5: CryoSat-2 observations along the Brahmaputra River from 2010 to 2013. The map only displays the outlier-filtered 
observations, the longitudinal profiles show both outliers and the outlier-filtered data. 
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Figure 6: Observed vs. simulated discharge from the hydrologic-hydrodynamic model at Bahadurabad station. 2002 – 2007: 
calibration period. 2010 – 2013: validation period. 

 

 5 

Figure 7: Result of cross section calibration step 1 for the Assam Valley for the period 2010 to 2013. All levels are shown relative to 
the reference model's cross section datums based on the SRTM DEM. 
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Figure 8: Result of cross section calibration step 2 for one virtual station. All levels are relative to the water levels at the time of the 
first Envisat observation 

 

Table 1: Decision variables, constraints, and objective functions of the genetic algorithm used for the two-step cross-section 5 
calibration 

 Calibration parameters Constraints Objective function 

Step 1: fitting absolute 
average water levels to 
CryoSat-2 observations 

24 cross section datums, 
from river km 1950 to 2800 

Cross section datums 
continuously decreasing 

from upstream to 
downstream 

RMSE between CryoSat-2 
observations and average 

simulated water levels from 
2010 to 2013 

Step 2: fitting amplitude of 
water levels to Envisat 
virtual station data 

27 cross section angles,  
from river km 2050 to 1800 

Cross section datums 
without neighbouring virtual 
stations linearly interpolated 

from their neighbours 

RMSE between yearly 
amplitudes of Envisat virtual 
station data and of simulated 

water levels from 2002 to 
2010 

 

Table 2: Number of CryoSat-2 observations and outliers over the river mask of the Brahmaputra River from 2010 to 2013. River 
km 2100 and downstream is also referred to as Assam Valley. 

 entire Brahmaputra river km 0 – 2100 river km 2100 – 2820 
all CryoSat-2 observations 4806 2092 2714 

outliers 938 934 4 

filtered CryoSat-2 observations 3868 1158 2710 

 10 
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Table 3: Performance criteria for simulated discharge Qsim at Bahadurabad station. Bias is given as (Qsim – Qobs)/Qsim. 

 RMSE [m3 s-1] NSE [-] bias [%] 
Calibration period 2002 – 2007 4329 0.93 -2.1 

Calibration period, high-flow only 5323 0.89 -2.3 

Validation period 2010 – 2013 6873 0.81 11.2 

 

Table 4: Performance criteria for simulated discharge in the calibration subcatchments. 2002 - 2007. * indicates subcatchments in 
the Brahmaputra Basin. 

 Qsim, mean Qobs, mean RMSE [m3 s-1] NSE [-] 
Arun 437 529 259 0.65 

Bagmati 254 110 364 -0.18 

Bheri 252 307 115 0.88 

Gandhak 1 720 955 535 0.80 

Kaligandaki 236 403 264 0.69 

Karnali 398 513 281 0.68 

Lohit* 453 919 1045 0.03 

Rapti 1 241 115 212 0.12 

Sankosh 1* 184 348 246 0.40 

Sunkoshi 517 745 426 0.75 

Tamor 201 416 392 0.39 

mean 354 487 376 0.47 

 5 


