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Abstract. Temperature models that directly predict ecologically important thermal attributes across spatio-temporal scales 10 

are still poorly developed. This study developed an analytical method based on Fourier analysis to estimate seasonal and diel 

periodicities as well as irregularities in stream temperature at data-poor sites by extrapolating thermal attributes from highly 

resolved temperature data at a reference site on the assumption of spatial autocorrelation. We first quantified the thermal 

attributes of a glacier-fed stream in the Swiss Alps using 2-years of hourly-recorded temperature. Our approach decomposed 

stream temperature to an average 3.8 °C, diel periodicity spanning 4.9 °C, seasonal periodicity spanning 7.5 °C, and an 15 

irregularity having an average of 0.0 °C but spanning 9.7 °C. These thermal attributes then were used to estimate thermal 

attributes at spot-measured sites along the river, resulting in a different relative contribution (weighting) of attributes among 

sites. The result of the performance evaluation indicated that our approach can reasonably estimate periodic components and 

extremes, including the variability in irregularity that cannot be represented by linear regression focusing on an average 

estimate. The results confirm that the developed method, spatially extrapolating thermal attributes based on Fourier analysis, 20 

can infer stochastic behaviors in stream thermal attributes at a data poor site. Additional ways to further improve the 

methodological approach are discussed. The R scripts used in this study are available in the Supplement.  

1 Introduction 

Temperature is a fundamental determinant of physical and biogeochemical patterns and processes in ecosystems. Organisms 

respond to temperature via different adaptations and distinct life history strategies across various spatial and temporal 25 

dimensions (Cossins and Bowler, 1987). More broadly, global biodiversity has tracked external temperature transitions over 

millennia (Mayhew et al., 2012). In the Anthropocene, unprecedented rapid transitions in thermal regimes owing to climate 

change are a global concern (IPCC, 2014). Consequently, adequate characterization of thermal regimes is an important 

prerequisite for understanding the role of temperature in ecosystems and for ecological conservation. 
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Thermal attributes (seasonal and diel periodicity patterns and irregular extremes), as representations of variability, have 

attracted a growing interest in recent climate-relevant ecological studies (e.g., Thompson et al., 2013). The combination of 

seasonal and diel periodicity cycles in temperature promotes diverse behaviors and spatial distributions of exothermic 

organisms according to respective life history strategies and life cycle stages (e.g., Vannote et al., 1980). In contrast, 

irregular extremes such as heatwaves can induce physiological exposure and vulnerability (Paaijmans et al., 2013) as well as 5 

cause abrupt shifts in biogeochemical processes (Frank et al., 2015) and ecological assemblages (Thompson et al., 2013). 

Hence, the variability in thermal periodicities and irregular extremes need to be distinguished from average temperatures. 

In freshwaters, ecological responses to thermal regime shifts may be less understood than in marine and terrestrial 

ecosystems (Thompson et al., 2013), even though freshwater biodiversity has experienced major decreases in recent decades 

(WWF, 2014). Progress in understanding response patterns has been delayed partially because the quantification of thermal 10 

attributes is difficult for running waters. Physical disturbance in streams can be considerable due to periodic flow pulses 

(Poff et al., 1997). Particularly where flashy flows mobilize gravel riverbeds, e.g. braided rivers, the installation of data-

loggers for long-term time-series monitoring can be logistically difficult. For natural floodplains acting as biodiversity 

hotspots (Tockner and Stanford, 2002), frequent time-series temperature data (daily or sub-daily) recorded throughout a year 

or longer are difficult to acquire because the floodplain mosaic changes frequently and dramatically (Van der Nat et al., 15 

2003). Often in these cases, researchers rely on spot-measures of temperature at study sites lacking time-series temperature 

data or refer to temperature time-series data monitored at a nearby hydrological station along the streamline, although likely 

being biased in thermal attributes. Both datasets have caveats (a lack of time-series or bias in data) when estimating the 

thermal attributes at a data-poor site, thereby limiting understanding of the ecological consequences in freshwaters. 

Regardless, estimating thermal stream attributes from both spot-measurements at study sites and time-series measures at the 20 

nearest hydrological station would allow more robust estimates. 

Given this background, there is still much room towards improving statistical models to predict stream temperature (see 

review in Benyahya et al., 2007). For instance, regression models employ correlative relationships with air temperature (e.g., 

Pilgrim et al., 1998) and streamflow (Webb et al., 2003), while a correlative approach considering water temperature at a 

nearby hydrological station along the streamline have not been implemented to date. Autoregressive models take into 25 

account the autocorrelation structure within water temperature time-series data and also the correlation with external 

variables (Kothandaraman, 1971; Cluis, 1972; Long, 1972). To deal with seasonally changing parameters in regression and 

autoregressive models, periodic autoregressive models were introduced (Benyahya et al., 2007). However, temperature 

patterns at multiple temporal scales, particularly the combination of seasonal and diel periodicity patterns, are still rarely 

considered (Steel and Lange 2007). Moreover, temperature models that directly predict ecologically important thermal 30 

attributes do not exist presently, as many models focus solely on temperature numeric values at a given time. 

The “well-worn” Fourier analysis (Fourier, 1878) is well-suited for analyzing combined multi-temporal patterns and 

predicting thermal attributes. Unfortunately, the application of Fourier analysis for assessing stream temperature patterns has 

slowed since its early emergence in 1970 (Kothandaraman, 1971; Cluis, 1972; Long, 1972; but see Maheu et al., 2015). This 
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trend is surprising when considering its high potential for detecting periodicity patterns at multiple scales in time-series data, 

and water temperature data in particular. Therefore, we felt it timely to further investigate the methodological application of 

Fourier analysis for assessing thermal patterns in running waters with the intent to reintroduce its use in ecological field 

studies.  

Our primary aim was to develop an analytical method for estimating average, seasonal and diel periodicities as well as 5 

irregular extremes of stream temperature at data-poor sites (i.e., spot measures) based on Fourier analysis. As a case study, 

we first quantified these thermal attributes using 2-years of hourly-recorded time-series temperature data in an alpine glacial-

fed stream in Val Roseg, Switzerland (see Ward and Uehlinger (2003) for a synthesis of research conducted in this 

catchment). Using those results, we then estimated thermal patterns at sites along the same stream where monthly spot-

measures of temperature were taken during the same 2-years. 10 

2 Methods 

2.1 Compositional variables in stream temperature 

We assume that hourly stream temperature T(t) at a given time t is generally composed of the average value 𝑇̅, seasonal 

periodicity pattern S(t), and diel periodicity pattern D(t). The seasonal and diel periodicity patterns can be driven by 

meteorological (e.g., solar radiation and precipitation) and hydrological (e.g., discharge and snow-/ice-melt) conditions. The 15 

remaining component, which is unexplained by these three components, results from multiple external factors such as 

stochastic sub-daily changes in weather conditions: we call this component an irregularity ε(t). A distinctive high/low value 

in the irregularity indicates thermal extremes that strongly disturb the periodicity patterns in temperature. Thereby, hourly 

stream temperature is expressed as: 

𝑇(𝑡) = 𝑇̅ + 𝑆(𝑡) + 𝐷(𝑡) + 𝜀(𝑡) (1) 

2.2 Fourier analysis for temperature decomposition 20 

Fourier transformation converts a function of time T(t) into a function of frequency G(f) by transforming time-series data 

into a combination of trigonometric curves. Both functions are identically reversible: 

𝐺(𝑓) = ∫ 𝑇(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (2) 

 𝑇(𝑡) = ∫ 𝐺(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞

 (3) 

As measured stream temperature is a discrete variable, we applied the fast Fourier transformation algorithm. The algorithm 

searches for a single solution to identically explain a time-series variable T(t) by summing the trigonometric curves (ei2πft) of 

different frequency f amplified by a corresponding spectral intensity G(f): 25 
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𝐺(𝑓) = ∑ 𝑇(𝑡)𝑒−𝑖2𝜋𝑓𝑡
𝑁−1

𝑡=0
 

 

(4) 

𝑇(𝑡) =
1

𝑁
∑ 𝐺(𝑓)𝑒𝑖2𝜋𝑓𝑡

𝑁−1

𝑡=0
 (5) 

where N is the data length equivalent to the number of summed curves. As seen in Eq. (5), the time-series variable, hourly 

stream temperature T(t), is formulated with summed trigonometric curves (frequency f = 0, 1, 2, …, N–1) whose vibration 

magnitudes are amplified by a corresponding spectral intensity G(f). A strong spectral intensity indicates that the 

corresponding curve dominates the composed time-series variable. As a consequence, stable patterns of seasonal/diel 

periodicities in time-series temperature data are detected by trigonometric curves with remarkably strong spectral intensities. 5 

The mismatch between Eq. (1) and Eq. (5) needs to be solved to express time-series stream temperature as in Eq. (1). 

Although our intention is to explain time-series temperature by the four components above, Fourier analysis decomposes it 

into N components based on a series of trigonometric curves. This mismatch in the number of components requires summing 

some of the trigonometric curves to best represent seasonal and diel periodicity patterns. However, it is unknown which 

curves at what frequencies and spectral intensities are required to sufficiently express these periodicity patterns. For selecting 10 

curves to be summed, we considered the condition that the seasonal and diel periodicities consist of their period lengths 

(inverse of frequency, 1/f) within the ranges of 1–365 days and 1–24 hours, respectively. Moreover, we introduced a 

threshold value in spectral intensity for selecting only the dominant components as well as to avoid mixing noises with the 

periodicity patterns. In so doing, the shape of functions S(t) and D(t) are dependent on the spectral threshold value. We set 

the threshold value at 0.1 °C, a minimal unit of temperature measurement in the case study system (see sect. 2.4). The 15 

analysis was performed using the fast Fourier transform (fft) function of the “stats” library in R 3.1.2 (R Core Team, 2014).  

2.3 Extrapolation to spot-measured temperature data 

Assuming that thermal attributes auto-correlate along the river continuum, we can extrapolate the thermal attributes based on 

time-series data to spot-measured data at sites along the same stream. For simplicity, we do not include external information 

(e.g., discharge and air temperature). After decomposing the time-series temperature T0 as Eq. (1) at a reference site, the 20 

decomposed factors are used to estimate temperature Ta at spot-measured site A along the same stream network. We assume 

that the four temperature components in Eq. (1) are linearly correlated between sites when other factors (e.g., major tributary 

or groundwater inputs) affecting stream temperature along the network are low enough to maintain the spatial-

autocorrelation temperature patterns between sites. The temperature at site A is formulated as: 

𝑇𝑎(𝑡) = 𝑇̅𝑎 + 𝑆𝑎(𝑡) + 𝐷𝑎(𝑡) + 𝜀𝑎(𝑡) (6) 

= 𝛽1𝑇̅0 + 𝛽2𝑆0(𝑡) + 𝛽3𝐷0(𝑡) + 𝛽4𝜀0(𝑡)+𝛽5 (7) 

where coefficients β1–4 are the weighting parameters for each component (> 0), and β5 is a parameter to adjust systematic 25 

bias. The following procedures are performed to estimate each parameter. First, linear regression between Ta and T0 
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corresponding to temperatures at the measurement time of Ta is conducted to estimate β1 (slope) and β5 (intercept). Second, 

β2 and β3 are numerically estimated by minimizing the mean square error value based on the linear regression between an 

estimated 𝛽4𝜀0  = 𝑇𝑎 − {𝛽1𝑇̅0 + 𝛽2𝑆0(𝑡) + 𝛽3𝐷0(𝑡)+𝛽5}  and 𝜀𝑎  at the corresponding measurement times. Third, β4 is 

numerically estimated similarly as for the second step based on Ta and the estimated Ta. 

To highlight the benefits of the extrapolation method, we compared the component extrapolation approach to a linear 5 

regression model that simply extrapolates time-series temperature based on the linear regression between Ta and T0. 

Importantly, if the coefficients β1–4 have the same value as the slope of the linear regression and β5 is the intercept, the 

Fourier approach is equivalent to the linear regression model. The R scripts used in this study are available in the 

Supplement. 

2.4 The case study: an alpine glacier-fed stream (Val Roseg, Switzerland) 10 

The method was applied in the Roseg catchment, an alpine valley located in the Bernina massif of the Swiss Alps (Fig. 1). 

The catchment area is 66.5 km2 and ca. 30% glaciated (Swiss National Hydrological and Geological Survey (OFEV); year of 

record 2010). Elevations range from 1766 to 4049 m a.s.l. The Roseg River is fed by meltwaters of the Tschierva and Roseg 

glaciers. The Roseg glacial runoff first drains into the pro-glacial lake Roseg before merging with the flow from the 

Tschierva glacier (Fig. 1). Mean annual discharge at the end of the catchment was 2.8 m3 s–1 (discharge record averaged for 15 

1955–2013) and daily discharge ranged from 3.3 to 19.6 m3 s–1 in July and August and from 0.2 to 2.0 m3 s–1 between 

November and March 2013 (OFEV). The study system comprises (i) a long proglacial reach below the Tschierva glacier, 

exhibiting extremely low temperatures due to glacial runoff (kryal), (ii) a single-thread channel downstream of the 

confluence of the proglacial reach and the Roseg lake outlet, (iii) a complex braided floodplain, and (iv) a constrained reach 

extending to the end of the catchment where the Pontresina hydrological station is located (see Tockner et al., 1997; 20 

Uehlinger et al., 2003 for a detailed description).  

Hourly time-series temperature was recorded at a reference site, the Pontresina hydrological station (site R in Fig. 1: 

46°29'23.6"N, 09°53'53.3"E; 1766 m a.s.l.) in 2012 and 2013 (Fig. 2a: provided by OFEV). Spot-measured water 

temperature was taken monthly at two sites, one located within the proglacial reach (site A: 46°24'38.3"N, 09°51'31.2"E; 

2106 m a.s.l.) and one below the lake outlet confluence reach (site B: 46°25'05.9"N, 09°51'27.1"E; 2054 m a.s.l.) (Fig. 1). 25 

For both sites, stream temperature was measured using a conductivity meter (WTW LF323, Weilheim, Germany) at different 

daily times on each visit from April to October 2012 and 2013 (in total 14 times). 

3 Results 

3.1 Thermal attributes at the reference site 

By converting the time-series temperature data at the reference site R (Fig. 2a) to its frequency domain, some frequency 30 

ranges had strong spectral pulses (Fig. 3). Nine trigonometric curves exceeded the threshold of 0.1°C (Table 1). Regarding 



6 

 

period length (Table 1), the curves were allocated to seasonal and diel components: three curves for seasonal periodicity 

patterns (Fig. 2b); six curves for diel periodicity patterns (Fig 2c). Thereby, the time-series temperature at the reference site 

R (Fig. 2a) was decomposed into an average of 3.8 °C, a seasonal cycle spanning 7.5 °C (Fig. 2b), a diel cycle spanning 4.9 

°C (Fig. 2c), and an irregularity spanning 9.7 °C with an average of 0.0 °C and standard deviation of 0.92 °C (Fig. 2d). 

Hourly stream temperatures excluding the irregularity (i.e., 𝑇̅ + 𝑆(𝑡) + 𝐷(𝑡); Fig. 2e) explained 92% of the data variability 5 

(r2), indicating a successful decomposition of the time-series data and a high reliability of the approach to characterize 

stream temperature components. The irregularity had a normal distribution (no inferred bias), indicating that the seasonal and 

diel periodicity patterns were extracted accurately from the original time-series data. 

3.2 Estimating time-series temperature for spot-measured stream sites 

Temperature at site A was approximately twofold lower than at site B during the study period. Temperature at site A had an 10 

average of 2.3 °C and spanned 0.4–4.8 °C; temperature at site B had an average of 5.4 °C and spanned 0.8–9.2°C. 

Temperatures at site A and B were linearly correlated to temperature at the reference site R (r2 = 0.60 and 0.92, respectively; 

Fig. 4). This result indicates that spatial autocorrelation of the thermal attributes exists between them, even though a thermal 

influence from the pro-glacial lake differentiates the thermal patterns between sites A and B (Fig. 1).  

For Eq. (7), the proposed method estimated that the weighting parameters at site A (β1–4 = {0.32, 0.32, 0.50, 0.70}) showed 15 

higher heterogeneity in the relative contributions of the components than those at site B (β1–4 = {0.97, 0.97, 0.99, 0.93}). For 

site A, the relative contribution of diel variability and irregularity to the estimated temperature (β3 = 0.50, β4 = 0.70) was 

higher than the average and seasonal variability (β1 = β2 = 0.32). This result indicates that our approach can accurately 

estimate periodic components and extremes, including the variability in irregularity that cannot be represented by linear 

regression focusing on an average estimate. At site B, the parameter composition was less variable (0.93–0.99), and therefore 20 

the performance of the decomposition approach was similar to the performance of the linear model. Using the developed 

method, the temperature at site A was estimated better than the estimated temperature using linear regression (r2 = 0.66 and 

0.60, respectively). For site B, both approaches performed equivalently (r2 = 0.92). These differences between sites A and B 

indicate that the thermal attribute at site A was more different from the reference site R than that at site B.  

Based on the obtained parameters, time-series temperatures at sites A and B were inferred (Fig. 5). At site A, due to 25 

relatively high contributions of diel cycles and irregularities (β3 = 0.50, β4 = 0.70), higher hourly variability was estimated by 

the proposed approach than the linear regression (Fig. 5a). The maximum values estimated by the proposed approach and 

linear regression were clearly distinct at 5.9 °C and 4.0 °C, respectively, while an average of 1.1 °C was equivalent for both 

estimates. The linear model clearly underestimated (< 4.0°C) the high temperatures recorded at 4.4 °C on 30 May 2012 and 

4.8 °C on 5 June 2013. In contrast, the proposed approach inferred a possibility of temperature reaching 5.9 °C, having a 30 

97.5% percentile value of 4.0 °C. This difference between approaches indicates the ability of the proposed approach to 

estimate extreme thermal pulses and their occurrence probability. 
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4 Discussion 

Currently, no stream temperature models explicitly predict ecologically important thermal attributes (seasonal and diel 

periodicity patterns and irregular extremes) because of the difficulty in capturing the combined patterns at multiple temporal 

scales in stream environments (Benyahya et al., 2007). This study developed a Fourier transformation approach that predicts 

these thermal attributes at data-poor sites based on the pre-analysis of time-series temperature data at a data-rich reference 5 

site along the stream. The approach could estimate the relative composition of thermal attributes from a limited number of 

spot-measured data (see Eq. 7), while linear regression weighted the composition equally. The results emphasized the 

significance to develop further ecological-based thermal prediction models, aiming at deeper understandings in ecological 

responses to thermal attributes (Paaijmans et al., 2013; Thompson et al., 2013; Frank et al., 2015). 

The developed prediction method confirmed its potential to evaluate the relative contribution of thermal attributes at a data-10 

poor site. The method is somewhat comparable with multiple linear regressions (Y = β0 + β1X1 + …) in terms of the 

assumption that the thermal attributes are independent of each other and auto-correlated between sites, and their relative 

contributions change according to location. The unique difference is that the developed method can directly use the 

periodicity patterns and irregularities for prediction as Eq. (7). This type of model was not addressed in a recent review on 

temperature models (Benyahya et al., 2007). As the statistical expression of our approach is linear (Eqs. 1 and 6), it can be 15 

easily coupled with approaches in the review; i.e., using other regression models employing air temperature (e.g., Pilgrim et 

al., 1998) and streamflow (Webb et al., 2003). Adding such information has the potential to increase accuracy, especially if 

these factors contain unique information that is unexplained by the spatial correlation of water temperature between sites. 

For example, if discharge represents a volume of snowmelt water that can influence the correlative relationship of water 

temperature between sites, inclusion of discharge into the model’s structure would increase accuracy. 20 

The advantage of Fourier decomposition analysis at multiple temporal scales is the ability to evaluate the possible range 

maxima for each thermal attribute of time-series data (Fig. 2). Fourier analysis clearly detected strong periodicity patterns in 

time-series temperature data (Fig. 3) and represented them with a small number of trigonometric curves (Table 1). By doing 

so, we found that the irregularity had broader range (9.7 °C) than the spanning ranges of seasonal and diel periodicity 

patterns (7.5 °C and 4.9 °C, respectively) at the study stream. This high irregularity may be an important thermal attribute in 25 

glacier-fed streams. Further, our results clearly showed that seasonal trends existed in the amplitudes of diel periodicities and 

irregularities, both having lower variability in winter and greater variability in spring (Figs. 2c-d) (Hopkins, 1971). 

Importantly, these characteristics are difficult to detect without coupling the periodicity patterns at multiple temporal scales. 

By decomposing the time-series temperature data at the reference site as a pre-analysis for prediction, this decomposition 

method (see sect. 2.1 and 2.2) can be useful for quantifying thermal attributes in ecological studies.  30 

The proposed method is highly promising towards evaluating potential changes in thermal variability due to climate change 

or anthropogenic thermal effluents in rivers and streams (Caissie, 2006; Webb et al., 2008). For instance, environmental 

change could modify each component of stream temperature with a different degree of severity such as increasing the 
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average, shifting the peak timing in seasonality, reducing diel variability, or amplifying the irregularity. In addition, as 

thermal regimes play a key role in aquatic ecosystem structure and functioning (e.g., environmental niches determining 

community composition, biogeochemical cycles, Vannote et al., 1980), each component of stream temperature can be used 

to better understand ecosystem dynamics and responses (Thompson et al., 2013). 

While demonstrating the broad applicability of this approach, we caution over some of its limitations. First, the analysis 5 

connecting Eqs. (1) and (7) is threshold dependent. We first estimated an appropriate range of threshold value visually so as 

to capture a handful of trigonometric curves (i.e., the three major peaks were shown in Figure 3). Then, we compared the 

patterns modeled based on some threshold values. Too low threshold value results in high sensitivity to noise, while too high 

threshold value results in high insensitivity to periodic patterns. We compared the performance of the models based on a set 

of threshold values (0.05, 0.1, and 0.2 °C etc.) and determined graphically as the value 0.1 °C clearly separated periodicity 10 

patterns and irregularities (Figure S1; supplement). Therefore, a threshold value must be carefully chosen and needs to be 

evaluated whether the irregularity attribute is unbiased. Second, although the concept is feasible, complete validation was 

limited due to the low number of sample sites. To obtain more robust estimation, the model needs additional validation as 

well as calibration. Third, if a systematic shift in thermal pattern is observed during a target period, the method would need 

adjustment. Our target 2-year period was short enough to neglect long-term trends in temperature. For example, some studies 15 

using long-term records (>20 years) detected an inter-annual increasing trend in mean temperature due to anthropogenic 

thermal discharge and land-use change (Beschta and Taylor, 1988; Hostetler, 1991). In such cases, the proposed equation in 

Eq. (1) must be modified because it assumes constant average temperature over a target period for analysis; i.e., 𝑇̅ should be 

a function of time as 𝑇̅(𝑡). Last, the assumption of linearly-related components between the reference site and other sites is 

not always met in all cases. For instance, glacier-fed and groundwater-fed streams can be composed of different seasonal and 20 

diel periodicity patterns (Brown and Hannah, 2008). In our target system, flow from the Roseg pro-glacial lake differentiated 

thermal patterns of sites A and B (Fig. 1). Even though our analysis confirmed that the linear assumption was apparent in 

this system (r2 = 0.60; Fig. 4), incorporation of the thermal pattern at the lake outlet into the analysis would certainly 

increase estimation accuracy. 

 25 
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Table 1: Frequency f, period 1/f , and spectral intensity G(f) of trigonometric curves (threshold of G(f) >0.1) composing the thermal 

attributes: average , seasonal periodicity pattern S(t), and diel periodicity pattern D(t). 

 

Attribute f  1/f   G(f)  

 [Hz] [hrs] [days] [°C] 

 

0 –  3.78 

     

S(t) 2 8760 365 2.01 

 4 4380 183 0.11 

 6 2920 122 0.19 

     

D(t) 728 24.1 1 0.27 

 730 24 1 0.59 

 732 23.9 1 0.28 

 734 23.9 1 0.10 

 1458 12.0 0.5 0.12 

  1460 12 0.5 0.21 

  

T

T
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Figure 1: Location of the Val Roseg catchment in Switzerland. Study and reference (i.e., Pontresina hydrological station) 

sites are indicated by black dots and labeled A, B and R, respectively. Glaciers are shown as shaded areas with the pro-5 

glacial lake shown below the Roseg glacier (modified from Uehlinger et al. 2003). 
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Figure 2: Hourly time-series temperature at the reference site decomposed using Fourier decomposition analysis. (a) The 

observed record Ta in 2012–2013 is decomposed into an average value (a), seasonal periodicity pattern Sa (b), diel periodicity 

pattern Da (c), and the irregularity εa (d). The comparison between the observed and measured temperature excluding εa at the 

reference site (e). 5 
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Figure 3: Frequency and spectral intensity of trigonometric curves converted from the 2-year temperature data at the 

reference site. Trigonometric curves whose spectral intensity was higher than the threshold value are found in Table 1. 

 

 5 

 

 

 

 

Figure 4: Linear regression of stream temperature at site A and B with the reference site temperature R. 10 
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Figure 5: Hourly stream temperatures estimated using Fourier decomposition (red) and linear regression (purple) at site A 

and B (plots a and b, respectively) and temperature at the reference site (grey). Horizontal red line represents the maximum 

temperature recorded from the monthly spot measures (4.8 °C on 5 June 2013 at site A, and 7.9 °C on 9 July 2013 at site B). 5 

 

 


