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Abstract. Current global precipitation (P ) datasets do not take full advantage of the complementary nature of satellite and

reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP), a global P dataset for the period

1979–2015 with a 3-hourly temporal and 0.25◦ spatial resolution, specifically designed for hydrological modeling. The design

philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of time scale and

location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets5

where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P

from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by

weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified

and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model

reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated10

from the gauge network density, while the weights assigned to the satellite- and reanalysis-based estimates were calculated

from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-

the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from

125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five

P datasets for 60.0 % of the stations and a median R of 0.67 versus 0.44–0.59 for the other datasets. We further evaluated15

the performance of MSWEP using hydrological modeling for 9011 catchments (< 50000 km2) across the globe. Specifically,

we calibrated the simple conceptual hydrological model HBV against daily Q observations with P from each of the different

datasets. For the 1058 sparsely-gauged catchments, representative of 83.9 % of the global land surface (excluding Antarctica),

MSWEP obtained a median calibration NSE of 0.52 versus 0.29–0.39 for the other P datasets. MSWEP is available via

http://www.gloh2o.org.20
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1 Introduction

A quantitative appraisal of precipitation (P ) amount and of its spatio-temporal distribution is essential for many scientific

and operational applications, including, but not limited to: increasing our understanding of the hydrological cycle; assessing

the hydrological impacts of human activities; assessing water resources; irrigation planning; and forecasting of droughts and

floods (Golding, 2009; Kucera et al., 2013; Pozzi et al., 2013; Serrat-Capdevila et al., 2013; Lettenmaier et al., 2015). However,5

P is also one of the meteorological variables that is most difficult to estimate, due to its high spatio-temporal heterogeneity

(Daly et al., 1994; Herold et al., 2015). There are currently four principal measurement or modeling sources to determine P

(Michaelides et al., 2009): (i) ground-based gauge observations; (ii) ground-based radar remote sensing, (iii) satellite remote

sensing; and (iv) atmospheric retrospective-analysis models.

Due to the highly localized nature of gauge observations, the accuracy of interpolation-based spatial P estimates is highly10

dependent on gauge network density and the degree of spatial coherence, both of which are highly variable globally (Krajewski

et al., 2003; Hijmans et al., 2005; Chen et al., 2008). In addition, gauge observations are typically affected by systematic biases

in mountainous environments due to the elevation bias in gauge placement and in snow-dominated regions due to wind-

induced under-catch (Groisman and Legates, 1994; Rasmussen et al., 2012). Ground based radars offer high temporal and

spatial resolution but their coverage is limited to developed regions (Koistinen, 1991; Kitchen and Blackall, 1992; Kitchen15

et al., 1994; Krajewski and Smith, 2002; Martens et al., 2013). Moreover, very few merged radar data products are readily

available.

Satellites are capable of observing large areas instantaneously at a high resolution. They are particularly suitable for rainfall

estimation in the tropics, which exhibit highly heterogeneous rainfall patterns due to the importance of convective storms (Smith

et al., 2005). However, satellite retrieval approaches are susceptible to systematic biases, relatively insensitive to light rainfall20

events, and tend to fail over snow- and ice-covered surfaces (Ferraro et al., 1998; Ebert et al., 2007; Kidd and Levizzani, 2011;

Kidd et al., 2012; Laviola et al., 2013). Finally, atmospheric reanalysis models are ideally suited for simulating the evolution

of large-scale (synoptic) weather systems, but poorly represent the variability associated with convection due mainly to their

relatively low resolution and deficiencies in the parameterizations of sub-grid processes (Roads, 2003; Ebert et al., 2007; Kidd

et al., 2013). Only recently cloud-resolving models have started to tackle the convection-P link (e.g., Petch, 2004; Li and Gao,25

2012). Although only available regionally, ground-based gauges and radars are generally regarded as the most reliable way of

estimating P and thus have frequently been used for evaluation and improvement of satellite- and reanalysis-based P estimates

(Maggioni et al., 2016).

Table 1 lists a selection of 21 publicly available gridded P datasets suitable for (quasi-)global hydrological studies (for more

exhaustive overviews, see http://ipwg.isac.cnr.it and http://reanalyses.org). The datasets vary in terms of spatial resolution (from30

0.05◦ to 2.5◦), spatial coverage (from < 50◦N/S to global), temporal resolution (from 30 minutes to monthly), temporal span

(from 1 to 114 years), and data sources employed (gauge, satellite, and reanalysis, and combinations thereof). TMPA 3B42RT,

for example, combines P estimates derived from passive microwave (PMW) and thermal infrared (IR) observations from

multiple satellite sensors with radar data from the Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007), while
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CMORPH propagates PMW-based P estimates using motion vectors derived from IR data (Joyce et al., 2004). Conversely,

CHIRPS (Funk et al., 2015a) and TMPA 3B43 (Huffman et al., 2007) combine satellite and gauge P estimates using inverse-

error weighted averaging. PFD (Sheffield et al., 2006) and WFDEI (Weedon et al., 2014) rescale reanalysis P estimates to force

agreement with gauge-interpolated P estimates on a monthly basis (although such rescaling is unlikely to yield improvements

in regions with sparse gauge networks). Other merging techniques include multivariate analysis (e.g., Funk et al., 2015b),5

probability distribution analysis (e.g., Anagnostou et al., 1999), geostatistical estimators (e.g., Seo, 1998; Grimes et al., 1999),

wavelet analysis (e.g., Heidinger et al., 2012), and Bayesian methods (e.g., Todini, 2001).

The datasets have been designed for different applications and provide sometimes widely varying P estimates (Adler et al.,

2001; Bosilovich et al., 2008; Kucera et al., 2013; Skok et al., 2015; Prein and Gobiet, 2016), even among gauge-adjusted

datasets (Herold et al., 2015). Despite several studies that intercompared and evaluated these P datasets in different regions10

(for non-exhaustive overviews, see Serrat-Capdevila et al., 2013 and Maggioni et al., 2016), so far no clear consensus has

emerged on which estimation approach is superior overall. Indeed, each approach comes with potential disadvantages that may

restrict its usefulness for global hydrological modeling. Common issues include:

1. With the exception of CMAP, all datasets listed in Table 1 employ only one or two of the main data sources—either gauge

and satellite, or gauge and reanalysis—and thus no not take full advantage of the complementary nature of satellite and15

reanalysis data identified in previous studies (e.g., Janowiak, 1992; Huffman et al., 1995; Xie and Arkin, 1996, 1997;

Adler et al., 2001; Ebert et al., 2007; Serrat-Capdevila et al., 2013; Peña Arancibia et al., 2013; Xie and Joyce, 2014).

2. Many of the listed datasets do not explicitly and fully account for gauge under-catch and/or orographic effects, and

consequently underestimate P in many regions around the globe (e.g., Zaitchik et al., 2010; Kauffeldt et al., 2013; Beck

et al., 2015, 2016a; Prein and Gobiet, 2016).20

3. Many datasets (numbered 6-12 and 14–21 in Table 1) do not incorporate gauge observations or do so on a monthly basis,

and hence may not make optimal use of valuable information on the daily P variability provided by gauges.

4. Some datasets (1–5, 8, 13, 16, 18, 20, and 21) have a spatial resolution that is much coarser (≥ 0.5◦) than desirable for

hydrological applications, given the importance of non-linear responses to rainfall.

5. Several datasets (6, 7, 9–12, and 19–20) have a quasi-global spatial coverage, precluding truly global terrestrial applica-25

tions.

6. A few of the datasets (2–5 and 21) have a monthly temporal resolution which is insufficient for most dynamic hydrolog-

ical modeling applications.

7. Finally, several datasets (7, 9, 10, 12, 19, and 20) cover a relatively short period (< 20 years), which is problematic when

assessing hydrological changes in a long-term context.30

This research was motivated by the opportunity to develop a global gridded P dataset with a 3-hourly temporal and 0.25◦

spatial resolution for the period 1979–2015, characteristics that make it more suitable for hydrological applications for the
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above-mentioned reasons. The dataset has been named Multi-Source Weighted-Ensemble Precipitation (MSWEP) as it seeks

optimally combine data from various gauge, satellite, and reanalysis data sources.

2 MSWEP methodology

Figure 1 presents a flow chart summarizing the main steps carried out to produce MSWEP. The methodology described here

corresponds to version 1.1 of the dataset. In brief, we first derived a long-term bias-corrected climatic mean (explained in5

Section 2.1). Next, several gridded satellite and reanalysis P datasets were evaluated in terms of temporal variability to asses

their potential inclusion in MSWEP (explained in Section 2.2). The long-term climatic mean was subsequently temporally

downscaled in a stepwise manner first to the monthly, then to the daily, and finally to the 3-hourly time scale using weighted

averages of P anomalies derived from gauge, satellite, and reanalysis datasets to yield the final MSWEP dataset (explained in

Section 2.3). This method was used since it: (i) is relatively easy to understand and implement; (ii) accommodates the inclusion10

of datasets with 3-hourly, daily, as well as monthly temporal resolutions; (iii) is largely data-driven (i.e., the weights are based

on gauge observations); (iv) accounts for cross-correlation among datasets of the same type (satellite or reanalysis); (v) treats

random (i.e., temporally variable) and systematic (i.e., long-term) errors separately; (vi) accounts for gauge under-catch and

orographic bias; and (vii) yields reliable estimates (as the comparative performance evaluation described in Section 3 will

demonstrate).15

2.1 Bias correction of CHPclim

The long-term mean of MSWEP was based on the recently released Climate Hazards Group Precipitation Climatology (CH-

Pclim) dataset (0.05◦ resolution; version 1.0; Funk et al., 2015b), a global P climatology based on gauge observations and

satellite data. The CHPclim data were replaced with more accurate Parameter-elevation Relationships on Independent Slopes

Model (PRISM) data for the conterminous USA (1-km resolution; Daly et al., 1994) and Tait et al. (2006) data for New20

Zealand (0.05◦ resolution). For brevity we refer to this combination of gauge-analysis products as CHPclim however. Al-

though CHPclim has been corrected for orographic effects it has not been adjusted for gauge under-catch, and is thus expected

to underestimate the actual P , especially in snow-dominated regions. Two approaches were tested to correct for this.

2.1.1 Bias correction using catch-ratio equations

The first approach uses country-specific catch-ratio (CR) equations for snowfall from Goodison et al. (1998), as summarized25

by Adam and Lettenmaier (2003), and the rainfall CR equation for unshielded gauges from Yang et al. (1998). The mean wind

speed data required as input were derived from a global 5-km map of mean wind speed at 80-m height based on atmospheric

reanalysis model output (Vaisala, 2015). To estimate the wind speed value at 5-m height we used the wind profile power-law

relationship defined as:

v = vr (z/zr)
a
, (1)30
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Figure 1. Flow chart summarizing the main steps carried out to produce MSWEP. The different colors represent different time scales. Pn

refers to normalized P (i.e., P anomalies). 6



where v (m/s) represents the wind speed at height z (m), and vr (m/s) represents the wind speed at reference height zr (m).

The exponent a (unitless) is an empirical coefficient that depends on surface roughness and atmospheric stability and was set

to 0.3 following Irwin (1979). A global map of the snowfall fraction of P was computed based on air temperature (Ta) data

from the gauge-based WorldClim monthly climatic dataset (1-km resolution; version 1.4 release 3; Hijmans et al., 2005) using

a Ta threshold of 1◦C to distinguish between rain and snow. It is noted that the CR equations were not designed for application5

at monthly time scales. However, the necessary daily station observations of P , Ta, and wind speed are unfortunately generally

not available in mountainous regions where they are needed the most (Viviroli et al., 2007).

2.1.2 Bias correction based on Q observations

The second approach tested to bias correct CHPclim involves the use of observation-based estimates of long-term streamflow

(Q) and potential evaporation (Ep) to infer the ‘true’ P (cf. Adam et al., 2006; Henn et al., 2015). For this purpose we10

employed the Zhang et al. (2001) relationship, which has been frequently used to estimate long-term actual evaporation (E)

from long-term P and Ep values. Here we use it in an inverse manner to estimate, only for regions with snowfall and/or

complex topography, the underestimation of long-term P from long-term Q and Ep data under the assumption that the long-

term E equals the difference between long-term P and Q and that changes in water storage are negligible. The Zhang et al.

(2001) relationship was chosen over several other similar relationships (Ol’dekop, 1911; Pike, 1964; Budyko, 1974; Porporato15

et al., 2004) because it includes an empirical parameter related to the plant-available water capacity termed w (unitless). This

parameter was set to the “shortgrass and crops” value of 0.5 to produce a conservative correction of P . The Zhang et al. (2001)

relationship is given by:

E

P
=

1+w
Ep

P

1+w
Ep

P +
(

Ep

P

)−1 , (2)

where P , Ep, and Q are in units mm yr−1. Assuming that E = P −Q, the Zhang et al. (2001) relationship reformulated to20

yield P is given by:

P =
Q

3
+

3

√
− b
2
+

√
b2

4
+
a3

27
+

3

√
− b
2
−
√
b2

4
+
a3

27
, (3)

where a and b are defined as:

a=−Q
2

3
−QEp and (4)

b=
2Q3

27
−
Q2Ep

3
−wE2

pQ, (5)25

respectively.

Following this method, we inferred long-term P fromQ records for 13 762 regions (12 233 catchments and 1529 interstation

catchment areas) across the globe. Long-term Q estimates for these catchments were computed from the same three sources as

those used by Beck et al. (2015), namely (i) the US Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating
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Streamflow (GAGES)-II database (Falcone et al., 2010), (ii) the Global Runoff Data Centre (GRDC; http://www.bafg.de/

GRDC/), and (iii) the Australian Peel et al. (2000) database. We only used catchments < 10000 km2 with a Q record length

> 3 year (not necessarily consecutive). The long-term Q estimates for the interstation catchment areas were obtained from

a map of long-term Q based on observations from 1651 large catchments (10003–4691000 km2) worldwide (Beck, 2016;

version 1.2).5

To assess the sensitivity of the P values inferred using Equation 3 to biases in Ep, we used Ep estimates derived using three

formulations: (i) the temperature-based Hargreaves and Samani (1982) equation, (ii) the radiation-based Priestley and Taylor

(1972) approach, and (iii) the FAO-56 Penman-Monteith combination equation (Allen et al., 1998). TheEp data were produced

by Sperna Weiland et al. (2015) using meteorological inputs from the WFDEI dataset. Since the resulting P values generally

differed by < 10 % depending on the Ep formulation the mean of the three estimates was adopted.10

Next, we computed bias correction values for each catchment area as the ratio of P inferred from Equation 3 over the original,

unadjusted P . The resulting values were subsequently interpolated to produce a continuous global map by calculating, for each

0.25◦ grid cell with snowfall and/or complex topography, the median bias correction factor of the 10 ‘closest’ catchments. Note

that in calculating the median we also included catchments with bias correction factors < 1. An empirical distance measure

was developed as:15

d=
√
x2 + y2 + z2, (6)

where y (km) is the longitudinal distance to the catchment centroid, x (km) the latitudinal distance to the catchment centroid,

and z (m) the difference between the grid-cell mean elevation and the catchment-mean elevation (note the different horizontal

and vertical length units). By including z, the bias correction factors obtained for mountainous catchments exert less influence

on the adjacent flat terrain. By using the median the impact of potential outlier errors in the Q observations, Ep estimates,20

and catchment boundary data is limited. Bias correction factors were only calculated for regions with snowfall, defined by a

snowfall fraction > 0.25, and/or complex topography, defined by an “effective terrain height” < 100 m (Daly et al., 2008).

The snowfall fraction was computed using WorldClim Ta data using a threshold of 1◦C, while the elevation data necessary

for calculating z and the effective terrain height were derived from Consultative Group for International Agricultural Research

(CGIAR) Shuttle Radar Topography Mission (SRTM) data (90-m resolution; version 4.1; Farr et al., 2007) for latitudes< 60◦N25

and GTOPO30 (1◦ resolution; http://lta.cr.usgs.gov/GTOPO30) for latitudes > 60◦N.

2.2 Gauge-based evaluation of gridded P datasets

Eight non-gauge adjusted satellite and reanalysis P datasets were evaluated in terms of temporal variability to asses their

potential inclusion in MSWEP (see Table 2). These datasets were specifically chosen for their lack of gauge adjustments,

allowing us to evaluate their performance using gauge observations. For the evaluation, we considered daily P data from30

99 444 gauges included in the Global Historical Climatology Network-Daily (GHCN-D) database (Gleason, 2002) and 16 912

gauges included in the Global Summary of the Day (GSOD) database (amounting to 116 356 stations in total). All gridded P

data were resampled to 0.5◦ for consistency, and if there were multiple gauges located within a single 0.5◦ grid cell the mean

8
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Table 2. Overview of the (quasi-)global P datasets considered for inclusion in MSWEP.

Short name Full name and details Data source Spatial Temporal Spatial Temporal span Reference

resolution resolution coverage

CMORPH∗ CPC MORPHing technique (CMORPH) ver-

sion 1.0

Satellite 0.25◦ 3 hourly 60◦N–60◦S Jan-1998 to Jan-2015 Joyce et al. (2004)

GSMaP-MVK∗ Global Satellite Mapping of Precipitation

(GSMaP) Moving Vector with Kalman

(MVK) standard versions 5 and 6

Satellite 0.1◦ Hourly 60◦N–60◦S Mar-2000 to Dec-2010;

Mar-2014 to Oct-2015

Iguchi et al. (2009)

TMPA 3B42RT∗ TRMM Multi-satellite Precipitation Analysis

(TMPA) 3B42RT version 7

Satellite 0.25◦ 3 hourly 50◦N–50◦S Jan-2000 to Oct-2015 Huffman et al. (2007)

PERSIANN Precipitation Estimation from Remotely

Sensed Information using Artificial Neural

Networks (PERSIANN)

Satellite 0.25◦ 3 hourly 60◦N–60◦S Mar-2000 to Feb-2015 Sorooshian et al. (2000)

SM2RAIN-ASCAT Based on ASCAT data (Brocca et al., 2016) Satellite 0.5◦ Daily Global 2007–2015 Brocca et al. (2014)

NCEP-CFSR National Centers for Environmental Predic-

tion (NCEP) Climate Forecast System Re-

analysis (CFSR)

Reanalysis 0.31◦ Hourly Global Jan-1979 to Mar-2011 Saha et al. (2010)

ERA-Interim∗ European Centre for Medium-range Weather

Forecasts ReAnalysis Interim (ERA-Interim)

Reanalysis 0.25◦ a 3 hourly Global Jan-1979 to Dec-2014 Dee et al. (2011)

JRA-55∗ Japanese 55-year ReAnalysis (JRA-55) Reanalysis 1.25◦ 3 hourly Global Jan-1959 to present Kobayashi et al. (2015)

CPC Unified∗ Climate Prediction Center (CPC) Unified

version 1.0 and real time

Gauge 0.5◦b Global Daily 1979–present Xie et al. (2007); Chen et al. (2008)

GPCC∗ Global Precipitation Climatology Centre

(GPCC) Full Data Reanalysis and First

Guess version 7

Gauge 0.5◦c Global Monthly 1901–present Schneider et al. (2014)

*Selected to be included in MSWEP.
a∼80 km effective spatial resolution (i.e., the resolution of the employed atmospheric model).
b0.25◦ spatial resolution for the conterminous USA.
c1◦ spatial resolution for 2014–present.

gauged P was calculated. Only stations with > 4 months of data (not necessarily consecutive) between March 2000 (marking

the start of GSMaP-MVK and PERSIANN) and December 2010 (marking the end of GSMaP-MVK version 5) were used, and

if a particular station was included in both databases we only kept the one in the GHCN-D.

Previous P evaluation studies have used a large variety of evaluation metrics (see the overview by Gebremichael, 2010).

Here we use Pearson correlation coefficients computed between 3-day mean rainfall and snowfall time series from the gauges5

and the gridded datasets. Correlation coefficients are highly sensitive to large P events, which is a desirable feature since large

P events are more important in the context of hydrological modeling. We used 3-day averages instead of daily averages to

account for mismatches in the 24-hour measurement period between the datasets and the gauges and to reduce the influence

of erroneous measurements. Snowfall and rainfall were evaluated separately, and were distinguished using a Ta threshold of

1◦C based on daily mean Ta data from the ERA-Interim atmospheric reanalysis dataset (Dee et al., 2011) resampled to 0.5◦10

using nearest neighbor and offset to match the long-term mean of WorldClim. Gauges with correlation coefficients < 0.4 for

all datasets were deemed unreliable and excluded from the analysis (cf. Collischonn et al., 2008). The performance of each P

dataset in terms of bias was not evaluated since MSWEP relies on CHPclim for its long-term average.
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2.3 Merging procedure

The procedure to generate the MSWEP dataset involves four distinct stages of merging (see Figure 1). In the first, we produced

a 0.25◦ global map of long-term mean P based on the CHPclim dataset replaced with more accurate regional datasets for the

USA and New Zealand and corrected for bias (see Section 2.1).

In the second merging stage (see Figure 1), for the monthly, daily, and 3-hourly time scales separately, and for the satellite5

and reanalysis datasets separately, we merged P anomalies from the different datasets by weighted averaging to yield one P

anomaly estimate at each time scale for each data source. The weight maps for each dataset were derived for rainfall and snow-

fall separately from the 3-day correlation coefficients obtained in the evaluation using gauge observations (see Section 2.2).

The resulting 3-day correlation coefficients were first squared to yield the explained variance and subsequently interpolated

to produce continuous global weight maps by calculating, for each 0.25◦ grid cell, the median of the 10 most nearby gauges.10

The rainfall interpolated weight was used for grid cells with Ta > 3◦C, while the snowfall interpolated weight was used for

grid cells with Ta < 3◦C. The weights for satellite data were set to 0 for grid cells with Ta < 3◦C. Ta data were taken from

ERA-Interim resampled to 0.25◦ using nearest neighbor and offset to match the long-term means of WorldClim.

In the third merging stage (see Figure 1), for the monthly, daily, and 3-hourly time scales separately, we merged the P

anomalies from the different data sources by weighted averaging to yield one P anomaly estimate at each time scale. For the15

satellite and reanalysis data sources, the weights were set to the maximum of the weights assigned to the individual datasets in

the second merging stage. For example, if for a particular grid cell the GSMaP-MVK dataset was assigned the highest weight

in the second merging stage, we used the GSMaP-MVK weight for the satellite data source in the third merging stage. Weights

for the gauge data were empirically calculated as a function of gauge density by means of the expression:

wj =

√√√√ n∑
i=1

exp(−Di/D0)
√
si, (7)20

where wj (unitless) represents the weight for grid cell j, Di (km) the distance to grid cell i, D0 (km) the range of influence,

and si the number of stations for grid cell i. The summation is over all grid cells i= 1,2, . . . ,n within a 1000 km radius of grid

cell j. D0 was set to 25 km using trial and error. Typical values for w range from 0 in completely ungauged regions to 1 for

grid cells containing only one isolated station and approximately 2.5 in densely gauged regions (e.g., in southeast Australia).

As the available gauge observations vary over time, the associated weight maps vary accordingly.25

In the fourth and final merging stage (see Figure 1), the long-term mean P was downscaled in a step wise manner using

the P anomalies first to the monthly time scale, then to the daily time scale, and finally to the 3-hourly time scale to yield the

MSWEP dataset.
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3 MSWEP performance evaluation

3.1 Evaluation using FLUXNET gauge observations

Observed P data from 125 tower sites included in the FLUXNET dataset (Baldocchi et al., 2001; Baldocchi, 2008) were used to

evaluate eight P datasets: (i) the final MSWEP, (ii) the gauge-only MSWEP, (iii) the satellite-only MSWEP, (iv) the reanalysis-

only MSWEP, (v) WFDEI (adjusted using CRU TS3.1), (vi) GPCP-1DD (version 1.2), (vii) TMPA 3B42 (version 7), and5

(viii) CPC Unified (version 1.0 and real time; see Table 1 for details). The FLUXNET data were used for this purpose because

they are completely independent; they have not been used in the development of any of the P datasets. The different MSWEP

variants were obtained by setting the weights of the other two sources to zero (e.g., for obtaining the gauge-only MSWEP, the

satellite and reanalysis weights were set to zero). All P data with a resolution < 0.5◦ were resampled to 0.5◦ using averaging

for consistency. Only stations with > 120 days of data (not necessarily consecutive) during the period 1998–2015 for all10

datasets were used. The list of stations is provided in the Appendix.

Three performance metrics were considered. The first is the Pearson correlation coefficient (R), which ranges from −1
to 1, with higher values corresponding to better performance. The second is the root-mean-square error (RMSE), which ranges

from 0 to∞, with lower values corresponding to better performance. The third is the absolute bias (B), defined as:

B =

∣∣∣∣Pe−Pr

Pe +Pr

∣∣∣∣ , (8)15

where Pe is the long-term mean of the gridded estimates and Pr the long-term mean of the station record. Bias values range

from 0 to 1, with lower values corresponding to better performance. The R and RMSE values were computed based on daily

(rather than 3-day mean) P data.

3.2 Evaluation using hydrological modeling

The performance of the previously mentioned eight P datasets (see Section 3.1) was further evaluated using hydrological20

modeling for 9011 catchments (< 50000 km2), by calibrating the simple conceptual hydrological model HBV (Bergström,

1992; Seibert and Vis, 2012) using P from each of the different datasets. For the calibration, we used the common Nash and

Sutcliffe (1970) Efficiency (NSE) objective function computed between simulated and observed Q time series. All P data with

a resolution < 0.5◦ were resampled to 0.5◦ using averaging for consistency. The observed daily Q and associated catchment

boundary data were obtained from the same three sources as those used for the CHPclim bias correction (see Section 2.1).25

Catchments were required to have an area < 50000 km2 and a Q record length > 1 year between 1998–2015 (not necessarily

consecutive).

HBV operates at a daily time step, has two groundwater stores and one unsaturated-zone store, and uses a triangular weight-

ing function to simulate channel routing delays. The model was chosen because of its flexibility, low computational cost, and

successful application under a large variety of climatic and physiographic conditions (e.g., Te Linde et al., 2008; Deelstra et al.,30

2010; Plesca et al., 2012; Beck et al., 2013; Vetter et al., 2015; Valéry et al., 2014; Beck et al., 2016a). Besides daily P time

series, the model requires daily time series of Ep and Ta as inputs. Ep was calculated using the Penman (1948) equation as

11



Table 3. HBV model parameter descriptions and calibration ranges.

Parameter (units) Description Minimum Maximum

TT (◦C) Threshold temperature when P is simulated as snowfall −2.5 2.5

CWH (−) Water-holding capacity of snow 0 0.2

CFMAX (mm ◦C−1 d−1) Melt rate of the snowpack 0.5 5

CFR (−) Refreezing coefficient 0 0.1

FC (mm) Maximum water storage in the unsaturated-zone store 50 700

LP (−) Soil moisture value above which E reaches Ep 0.3 1

BETA (−) Shape coefficient of recharge function 1 6

UZL (mm) Threshold parameter for extra outflow from upper zone 0 100

PERC (mm d−1) Maximum percolation to lower zone 0 6

K0 (d−1) Additional recession coefficient of upper groundwater store 0.05 0.99

K1 (d−1) Recession coefficient of upper groundwater store 0.01 0.8

K2 (d−1) Recession coefficient of lower groundwater store 0.001 0.15

MAXBAS (d) Length of equilateral triangular weighting function 1 5

given by Shuttleworth (1993) with daily net radiation, Ta, atmospheric pressure, wind speed, and relative humidity derived

from WFDEI, and surface albedo from monthly climatic data derived from the European Space Agency (ESA) GlobAlbedo

dataset (Muller et al., 2011). Ta data were also taken from WFDEI. Only a single “elevation-vegetation zone” (Seibert and Vis,

2012) was considered for each catchment. Table 3 lists the model parameters including their calibration range. The stores were

initialized by running the model for the first 10 years of the record if the record length was≥ 10 years, or by running the model5

multiple times for the entire record if the record length was < 10 years.

The model was recalibrated for each P dataset for the period with simultaneous observed Q and input data in a lumped

fashion to minimize the computational time. For the calibration we used the (µ+λ) evolutionary algorithm (Ashlock, 2010)

implemented using the Distributed Evolutionary Algorithms in Python (DEAP) toolkit (Fortin et al., 2012). The calibration

procedure was almost the same as in Beck et al. (2016b); however, to limit the computational time we reduced the population10

size (µ) to 12 (from 24), the recombination pool size (λ) to 24 (from 48), and the number of generations to 10 (from 25).

4 Results and discussion

4.1 Bias correction of CHPclim

The CHPclim dataset is used to determine the long-term mean of MSWEP. Although CHPclim has been adjusted for orographic

effects, it does not explicitly account for wind-induced gauge under-catch and is thus likely to underestimate P , particularly in15

snow-dominated regions. We tested two approaches to bias correct CHPclim. Figure 2a shows bias correction factors computed

using country-specific CR equations and a global 5-km map of mean wind speed. The spatial patterns agree reasonably well

with those from three previous studies based on interpolation of CR values computed from daily station observations of P , Ta,

and wind speed (Legates and Willmott, 1990; Adam and Lettenmaier, 2003; Yang et al., 2005). Figure 2b shows bias correction
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factors inferred for the 13 762 regions using the Zhang et al. (2001) relationship in combination with Q observations and Ep

estimates (see Section 2.1 and Equation 3). These values were subsequently interpolated to obtain a continuous global map (see

Figure 2c). The resulting bias correction factors are highest in Alaska, northern Canada, the Andes, Scandinavia, the Central

Asian mountain ranges, and northeastern Russia (Figure 2c).

There is little agreement between Figures 2a and 2c, particularly in western Russia where the use of P corrected using the5

country-specific equations to force a hydrological model would probably result in appreciable Q overestimation. Although

further research is needed to ascertain the exact cause of this discrepancy, these results suggest firstly that the country-specific

CR equations are unsuitable for global application; and secondly, that there is probably still a substantial amount of orographic

P unaccounted for in CHPclim. Indeed, almost all regions with high bias correction values (> 1.25) in Figure 2c exhibit

a low density of P gauges predominantly located at low elevations in regions with complex topography which might have10

confounded the estimation of orographic P in CHPclim. The global patterns of Figure 2c agree reasonably well with those

from Adam et al. (2006), who estimated the bias in P due to orographic effects at global scale using a similar approach based

on Q observations from 357 (mountainous) catchments (> 10000 km2).

Figure 2d presents the CHPclim P adjusted using the interpolated bias correction factors shown in Figure 2c. The bias

correction of CHPclim resulted in an increase in global terrestrial mean annual P (Antarctica excluded) from 817 mm yr−115

to 877 mm yr−1, amounting to an increase of 7.4 %. This number is lower than the 17.9 % increase reported by Adam et al.

(2006), possibly because CHPclim has already been corrected for orographic effects. Our estimate is close to the 850 mm yr−1

cited by Schneider et al. (2014) based on the GPCC dataset, which includes orographic corrections and accounts for gauge

under-catch using Legates and Willmott (1990).

4.2 Gauge-based evaluation of gridded P datasets20

We evaluated eight non-gauge adjusted gridded P datasets in terms of temporal variability using observations from thousands

of gauges around the world, to assess their value for inclusion in MSWEP (see Table 2). All datasets with a resolution < 0.5◦

were resampled to 0.5◦ for this exercise for consistency. Figure 3 shows 3-day temporal correlation coefficients calculated

between rainfall derived from the datasets and the gauges for 0.5◦ grid cells containing at least one gauge. The satellite datasets

CMORPH, GSMaP-MVK, and TMPA 3B42RT exhibit very similar performance at global scale (Figure 3a-c). In agreement25

with previous regional studies (e.g., Brown, 2006; Hirpa et al., 2010; Thiemig et al., 2012; Peña Arancibia et al., 2013; Cattani

et al., 2016), PERSIANN performed rather poorly (Figure 3d), possibly because it is predominantly based on cloud-top IR

observations. SM2RAIN-ASCAT performed similarly to PERSIANN (Figure 3e). Conversely, Brocca et al. (2014) found

SM2RAIN-ASCAT to perform similarly to TMPA 3B42RT based on 5-day correlations. The lower performance obtained here

for SM2RAIN-ASCAT could be due to the use of only 4 years of data for SM2RAIN-ASCAT (2007–2010) versus 11 years30

for TMPA 3B42RT (2000–2010). However, the performance of SM2RAIN-ASCAT appears to be somewhat complementary

to the other satellite datasets in that it performs best in the western USA where the other satellite datasets perform rather poorly

(Figure 3). Better results could potentially be obtained by applying the SM2RAIN technique to a multi-satellite soil moisture

product, for example the Essential Climate Variable Soil Moisture (ECV-SM) dataset (Liu et al., 2011).
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(a) Correction factors based on country-specific equations (b) Correction factors inferred using Zhang et al. (2001)

(c) Correction factors estimated by interpolation

(d) Bias-corrected CHPclim mean annual P (mm yr−1) used for MSWEP

Figure 2. Global maps of (a) bias correction factors estimated using country-specific equations, (b) bias correction factors inferred using the

Zhang et al. (2001) relationship from Q observations and Ep estimates, (c) bias correction factors computed by interpolating the Zhang et al.

(2001)-based values, and (d) mean annual P (mm yr−1) from CHPclim bias adjusted using the interpolated bias correction factors and used

for MSWEP. The data points in (b) represent the centroids of the catchments (n= 12493) and the interstation regions (n= 1651). Note that

there are many values in (b) < 1, but these are not of interest here and thus are shown as 1.
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The three reanalysis datasets exhibited very similar performance patterns overall, although ERA-Interim consistently per-

formed slightly better than the other reanalysis datasets, in line with several earlier regional studies evaluating different atmo-

spheric variables (e.g., Bromwich et al., 2011; Bracegirdle and Marshall, 2012; Jin-Huan et al., 2014). Although NCEP-CFSR

performed reasonably well, it was not incorporated in MSWEP due to the presence of wave-like artifacts around mountain

ranges (cf. Seguinot et al., 2014). Patterns of temporal correlations obtained for the USA for the satellite and reanalysis datasets5

(Figure 3) correspond well with those obtained by Tian et al. (2007) and Ebert et al. (2007). Figure 4 presents the difference in

3-day rainfall correlation coefficients between TMPA 3B42RT and ERA-Interim, highlighting the complementary performance

of satellite and reanalysis P datasets reported in previous large-scale studies (Janowiak, 1992; Huffman et al., 1995; Xie and

Arkin, 1996, 1997; Adler et al., 2001; Ebert et al., 2007; Serrat-Capdevila et al., 2013; Peña Arancibia et al., 2013; Xie and

Joyce, 2014). Based on these results, we decided to use CMORPH, GSMaP-MVK, TMPA 3B42RT, ERA-Interim, and JRA-5510

for determining the rainfall variability for ungauged regions in MSWEP.

Figure 5 shows the 3-day temporal correlation between snowfall derived from the P datasets and the gauges for 0.5◦ grid

cells containing at least one gauge. All five satellite datasets consistently exhibit very low correlation coefficients (Figures 5a–

e), due to the well-documented failure of retrieval techniques over snow- and ice-covered surfaces, and more generally their

inability to detect snowfall in all conditions (e.g., Ferraro et al., 1998; Levizzani et al., 2011; Ebert et al., 2007; Yong et al., 2013;15

Peng et al., 2014). Conversely, the reanalysis datasets showed high correlation coefficients for most grid cells (Figure 5f–h),

even exceeding those obtained for rainfall estimation (Figure 3f–h), possibly because almost all snow originates from (non-

convective) large-scale synoptic weather systems which tend to be represented well by atmospheric models. Based on these

results, we decided to use ERA-Interim and JRA-55 for determining the snowfall variability for ungauged regions in MSWEP.

Weight maps for MSWEP were calculated for each of the selected P datasets based on the 3-day correlation coefficients.20

The weight maps for the satellite and reanalysis datasets are static in time, although we used the rainfall weight for grid cells

with Ta > 3◦C and the snowfall weight for grid cells Ta < 3◦C. Conversely, the weight maps for the gauges were computed

based on gauge density and thus vary daily depending on the available gauge observations. Figure 6a shows the sum of the

weights used to merge the gauge, satellite, and reanalysis components of MSWEP during merging stage 3 (see Figure 1) at the

daily time scale on an arbitrarily chosen day (April 25, 2006). The relative contributions of the gauge, satellite, and reanalysis25

components to the total weight are shown in Figures 6b, 6c, and 6d, respectively.

4.3 Evaluation of MSWEP using FLUXNET gauge observations

Observed P data from 125 FLUXNET stations were used to evaluate the final MSWEP, the MSWEP gauge, satellite, and

reanalysis components, and four existing state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42,

and CPC Unified). Figure 7 presents box plots of the distribution of R, RMSE, and B values obtained for each dataset. The30

merged MSWEP performed better than the individual MSWEP components in terms of both R and RMSE (Figure 7a and 7b,

respectively), confirming the effectiveness of the employed merging scheme. The merged MSWEP also appears to perform

better overall than all four existing P datasets in terms of both R and RMSE (Figures 7a and 7b, respectively), providing

the best estimates in terms of R for 60.0 % of the stations and in terms of RMSE for 68.8 % of the stations. Interestingly,
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(a) CMORPH (n= 8051) (b) GSMaP-MVK (n= 8084)

(c) TMPA 3B42RT (n= 6668) (d) PERSIANN (n= 8020)

(e) SM2RAIN-ASCAT (n= 5548) (f) NCEP-CFSR (n= 8923)

(g) ERA-Interim (n= 8937) (h) JRA-55 (n= 8937)

Figure 3. Correlation coefficients calculated between 3-day mean rainfall derived from the datasets and the gauges. Each data point represents

a 0.5◦ grid cell containing at least one gauge.
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Figure 4. The difference in 3-day rainfall correlation coefficients between TMPA 3B42RT and ERA-Interim. Each data point represents a

0.5◦ grid cell containing at least one gauge (n= 6668). Red and yellow indicate TMPA 3B42RT performs better, whereas blue indicates

ERA-Interim performs better.

MSWEP performed average in terms of absolute bias (Figure 7c), obtaining the best B value for only 9.6 % of the stations,

which is somewhat unexpected given the sophisticated interpolation techniques employed in producing the CHPclim dataset

(Funk et al., 2015b). A possible reason for this is that the FLUXNET P data are generally not corrected for gauge under-catch.

Moreover, some of the P records may be subject to measurement bias—at the Chokurdakh station in northeastern Russia (site

code RU-Cok; 70.82◦N, 147.49◦E), for example, snowfall was not measured at all (A. Budishchev, pers. comm.). The relatively5

good performance of the reanalysis-only MSWEP and WFDEI-CRU datasets (Figures 7a and 7b) confirms the usefulness of

ERA-Interim for gap-filling of FLUXNET P records (Vuichard and Papale, 2015).

4.4 Evaluation of MSWEP using hydrological modeling

We further evaluated the performance of MSWEP based on hydrological modeling for 9011 catchments (< 50000 km2). Fig-

ure 8 presents daily NSE scores obtained after the calibration of HBV using daily P data from the final MSWEP, the gauge-only10

MSWEP, the satellite-only MSWEP, and the reanalysis-only MSWEP. The respective datasets attained the highest calibration

NSE for 28.7 %, 53.1 %, 6.7 %, and 11.5 % of the catchments. The good results for the gauge-only MSWEP are, however,

somewhat misleading since the large majority of the catchments are located in regions with very dense P measurement net-

works (the USA, Europe, and Australia; cf. Figures 6b and 8a). Figure 8b shows median calibration NSE values for 5◦ latitude

bands. These results once again confirm the complementary nature of satellite and reanalysis data clearly demonstrated in the15

previous evaluation of P datasets using gauge observations (see Section 2.2). For most latitudes, the final MSWEP performs

either better or only slightly worse than the best performing single-source MSWEP (Figure 8b), confirming the efficacy of the

merging scheme. The final MSWEP performs particularly good at latitudes < 17.5◦N/S and > 67.5◦N (Figure 8b) where P

gauge densities are relatively low. The reanalysis-only MSWEP exhibits especially low scores for the 17.5–22.5◦N latitude

band (Figure 8b), mainly reflecting the low performance achieved for Puerto Rico, perhaps due to the coarse resolution of the20

atmospheric models used to produce the reanalysis datasets.

To examine in more detail how the final MSWEP, the gauge-only MSWEP, the satellite-only MSWEP, and the reanalysis-

only MSWEP perform in regions with dense versus sparse P gauge networks, Figure 9a plots the median calibration NSE
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(a) CMORPH (n= 3212) (b) GSMaP-MVK (n= 2774)

(c) TMPA 3B42RT (n= 2121) (d) PERSIANN (n= 3205)

(e) SM2RAIN-ASCAT (n= 2625) (f) NCEP-CFSR (n= 4012)

(g) ERA-Interim (n= 4088) (h) JRA-55 (n= 4088)

Figure 5. Correlation coefficients calculated between 3-day mean snowfall derived from the datasets and the gauges. Each data point repre-

sents a 0.5◦ grid cell containing at least one gauge.
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(a) Total weight (−) (b) Relative weight of gauge component (%)

(c) Relative weight of satellite component (%) (d) Relative weight of reanalysis component (%)

Figure 6. Map (a) shows the sum of the gauge weight (see Equation 7) and the satellite and reanalysis weights (derived from 3-day correlation

coefficients at surrounding gauges) used during merging stage 3 (see Figure 1) at the daily time scale on an arbitrarily chosen day (April 25,

2006; note the non-linear color scale). The contributions of the gauge, satellite, and reanalysis components to the total weight on the same

day are shown in (a), (b), and (c), respectively.

for the P datasets as a function of catchment-mean distance to the closest gauge. For the 7953 well-gauged catchments,

defined here by catchment-mean distance to the closest P gauge < 25 km, the final MSWEP performed slightly worse than

the gauge-only MSWEP. However, only 16.1 % of the global land surface (excluding Antarctica) has a P gauge located at

< 25-km distance. For the 1058 sparsely gauged catchments, defined here by catchment-mean distance to the closest P gauge

> 25 km, MSWEP performs overall considerably better than the gauge-only MSWEP. Contrary to expectations, the median5

NSE scores increase with increasing distance to the closest P gauge for several of the P datasets, which is primarily because

the more sparsely gauged groups contain less (semi-)arid catchments, which tend to exhibit lower NSE scores. The overall low

performance of the satellite-only MSWEP reflects the lack of tropical catchments in our catchment set.

Figure 10 presents daily NSE scores obtained after calibration of HBV using daily P data from MSWEP and four existing

state-of-the-art gauge-corrected datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified). MSWEP obtained the10

highest calibration NSE for 40.4 % of the catchments, while the other datasets obtained the highest calibration NSE for 12.2 %,

4.1 %, 11.3 %, and 32.1 % of the catchments, respectively (noting that the spatial coverage of TMPA 3B42 is limited to

< 50◦N/S). The median calibration NSE score obtained by MSWEP is 0.49 versus 0.30, 0.22, 0.35, and 0.45 for the other

datasets, respectively. However, similar to the gauge-only MSWEP (see Figure 8), the scores for CPC Unified are probably

somewhat inflated since most catchments are located in regions with very high P gauge densities. Indeed, the picture changes15
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(a) (b) (c)

(d)

Figure 7. Box plots of the distribution of (a) daily correlation (R), (b) root-mean-square error (RMSE), and (c) absolute bias (B) values

computed between observed and estimated P at the 125 FLUXNET sites. Note that for the satellite-only MSWEP only the 113 stations

located < 60◦N/S were used, while for TMPA 3B42 only the 87 stations located < 50◦N/S were used. The locations of the 125 FLUXNET

stations and the R values obtained by MSWEP are shown in (d). The list of stations is provided in the Appendix.
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(a) (b)

Figure 9. The change in median calibration NSE for the P datasets as a function of catchment-mean distance to the closest P gauge. The

distance to the closest P gauge was computed using the GPCC and CPC Unified datasets. The NSE scores have been computed between

simulated and observed Q time series.

somewhat when we examine median calibration NSE scores for 5◦ latitude bands; MSWEP performs either similar to or

substantially better than the other P datasets for all latitudes (Figure 10b). The good performance of WFDEI-CRU for the

central Interior Plains of North America (Figure 10a) appears to be attributable to P overestimation by the other datasets

including MSWEP.

Figure 9b plots the median calibration NSE for the five P datasets (MSWEP, WFDEI-CRU, GPCP-1DD, TMPA 3B42, and5

CPC Unified) as a function of catchment-mean distance to the closest gauge. For the 7953 well-gauged catchments (defined by

catchment-mean distance to the closest P gauge < 25 km), MSWEP obtained a median NSE of 0.49 versus 0.30, 0.21, 0.35,

0.47 for the other P datasets, respectively, with MSWEP obtaining the best NSE in 39.0 % of these catchments. However,

as mentioned previously, only 16.1 % of the global land surface (excluding Antarctica) has a P gauge located at < 25-km

distance. For the 1058 sparsely gauged catchments (defined by catchment-mean distance to the closest P gauge > 25 km),10

MSWEP obtained a median NSE of 0.52 versus 0.30, 0.32, 0.39, 0.29 for the other P datasets, respectively, with MSWEP

obtaining the best NSE in 51.6 % of these catchments. Thus, MSWEP performs slightly better than CPC Unified in well-

monitored regions, whereas it performs considerably better than all other datasets in sparsely gauged regions which comprise

most (83.9 %) of the global land surface.
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Figure 11. Daily NSE scores obtained after calibration of HBV forced by MSWEP. The NSE scores have been computed between simulated

and observed Q time series. Each data point represents a catchment centroid (N = 9011).

Figure 11 presents daily NSE scores obtained after calibration of HBV forced with MSWEP. The patterns obtained for the

USA exhibit good agreement with those obtained in six previous studies using different hydrological models and forcing data

(Lohmann et al., 2004; Xia et al., 2012; Newman et al., 2015; Bock et al., 2015; Essou et al., 2016; Beck et al., 2016b). The

NSE values are consistently lower in (semi-)arid regions in North America, Africa, and Australia, likely due to the highly

non-linear rainfall-runoff response, the high transmission losses, and the flashy nature of the Q under these conditions (Pilgrim5

et al., 1988; Ye et al., 1997; Lidén and Harlin, 2000). The lower scores obtained for polar catchments in North America and

Iceland are attributable to P underestimation, suggesting that there is still some P unaccounted for. Note that a low score for a

particular catchment does not necessarily mean that MSWEP is unreliable as errors in the Q, Ep, or catchment boundary data

or flow regulation could also be responsible.

Hydrological modeling has been used in numerous previous studies to evaluate the quality of P datasets (e.g., Su et al.,10

2008; Collischonn et al., 2008; Voisin et al., 2008; Bitew et al., 2012; Li et al., 2013; Falck et al., 2015; Tang et al., 2016).

However, these previous studies were generally regional in nature and used Q observations from a relatively small number

of stations (7, 23, 9, 1, 22, 300, and 1, respectively, for the cited studies), which may have led to conclusions with limited

global-scale applicability. Moreover, some of these studies did not recalibrate the hydrological model for each P dataset (Su

et al., 2008; Voisin et al., 2008; Li et al., 2013), which may have led to additional uncertainty since hydrological models15

are inevitably imperfect representations of reality and thus produce uncertain estimates even with ‘perfect’ meteorological
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forcing. Conversely, we used Q observations from a large set of 9011 stations around the globe spanning all terrestrial latitudes

and covering a broad range of physiographic and climatic conditions, which allowed us to examine how P -gauge proximity

influences the calibration NSE. Furthermore, we recalibrated the model for each catchment and P dataset, thereby minimizing

the uncertainty in model parameters.

One could argue that the evaluation of MSWEP using hydrological modeling presented here is not completely independent,5

since the Q observations used for the evaluation have also been used in the development of MSWEP for the bias correction of

CHPclim (see Section 2.1). However, the evaluation is in fact nearly completely independent since the results for a particular

catchment will not change much, if at all, if that catchment was excluded from the bias adjustment exercise, since the bias

correction factors were computed for each grid cell as the median of the 10 closest catchments. Moreover, the large majority

of catchments are located in regions not affected by the bias correction (81.7 % of the catchments have an interpolated bias10

correction factor between 1 and 1.02; see Figure 2c). Furthermore, it is noted that all P data were resampled to 0.5◦ for

consistency; both MSWEP and TMPA 3B42 may produce better calibration scores if the original 0.25◦ resolution data are

used.

4.5 Caveats and future work

Although MSWEP overall performed better than existing state-of-the-art gauge-adjusted P datasets, some caveats need men-15

tioning:

1. As with many P datasets, spurious temporal discontinuities can occur due to (i) the introduction of the satellite data

source in 1998, (ii) satellite sensor degradation and instrument changes, (iii) differences in time coverage among stations,

and (iv) changes in the observations assimilated in the reanalysis datasets (e.g., Kang and Ahn, 2015). Thus, care should

be exercised when using MSWEP for trend analysis.20

2. Sub-daily temporal variability in tropical regions should be interpreted with caution prior to the launch of TRMM in

1998, since atmospheric models poorly represent the diurnal cycle in (sub-)tropical regions (Kidd et al., 2013).

3. The estimated bias correction factors are influenced by uncertainties in the Q, Ep, and catchment boundary data and

particularly the interpolation. The spatial bias correction factors are available along with the data, so the original, non-

corrected long-term averages can be reconstructed.25

4. The use of PRISM data for the conterminous USA and the restriction of the bias correction to regions with snowfall

and/or complex topography may result in spatial discontinuities in the long-term average of MSWEP.

5. Although MSWEP has a 0.25◦ spatial resolution (corresponding to∼25 km at the equator), the effective spatial resolution

reflects the gauge density in regions where the gauge component dominates (Figure 6b), while it reflects the resolution

of the atmospheric models (∼80–125 km) in regions where the reanalysis component dominates (Figure 6d). In regions30

where the satellite component dominates the effective resolution can be assumed to be 0.25◦ (Figure 6c).
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Future updates and improvements of MSWEP are intended to take advantage of new and improved data sources. For exam-

ple, MSWEP may be updated with ERA5, the planned successor to ERA-Interim, while the TMPA dataset may be replaced

by the Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset (Huffman et al., 2014) once it has been extended back-

wards to the start of the Tropical Rainfall Measuring Mission (TRMM) era. Given the promising complementary information

from SM2RAIN-ASCAT (Figure 3), any such dataset ingesting soil moisture retrievals from multiple satellites should also be5

considered for inclusion in MSWEP, if available. Moreover, the gauge component of MSWEP may be improved by accounting

for the variable correlation length in the interpolation (cf. Funk et al., 2015a), while the biases at high northern latitudes may

be improved using Gravity Recovery and Climate Experiment (GRACE) data (cf. Behrangi et al., 2016; Wang et al., 2016).

Finally, we hope to explore the possibility of producing a near-real time variant of MSWEP. Many of the datasets incorporated

in MSWEP are available in near-real time, suggesting this is feasible.10

5 Conclusions

We developed a global gridded P dataset (1979–2015) with several novel features: (i) it takes advantage of a wide range of data

sources, including gauge, satellite, and reanalysis data, to provide reliable P estimates at global scale; (ii) it accounts for gauge

under-catch and orographic effects using Q observations from an unprecedentedly large set of 13 762 stations worldwide;

and (iii) it has a high 3-hourly temporal and 0.25◦ spatial resolution. The P estimates and ancillary data are available via15

http://www.gloh2o.org. We summarize our findings as follows:

1. The high-resolution global CHPclim climatic P dataset, which explicitly accounts for orographic effects, still appears

to contain widespread P biases. These biases could not be satisfactorily corrected using country-specific equations that

account for gauge under-catch, suggesting that CHPclim still underestimates orographic P in some regions, probably

mainly due to the topographic bias in gauge placement. We used the Zhang et al. (2001) relationship in combination with20

Q observations from 13 762 stations around the globe to produce a bias adjusted variant of CHPclim for use in MSWEP.

2. Eight non-gauge adjusted P datasets were evaluated in terms of 3-day temporal variability using observed P data from

thousands of gauges around the globe to assess their value for inclusion in MSWEP. For rainfall, CMORPH, GSMaP-

MVK, and TMPA 3B42RT performed equally well, while PERSIANN and SM2RAIN-ASCAT performed less well. The

satellite datasets consistently performed better in the tropics, while the reanalysis datasets consistently performed better25

at mid to high latitudes. For snowfall, all satellite datasets performed poorly, while the reanalysis datasets performed

even better than for rainfall. The obtained correlation coefficients were interpolated to produce global weight maps for

the merging scheme of MSWEP.

3. Independent observedP data from 125 FLUXNET tower stations around the globe were used to evaluate the performance

of MSWEP as well as four existing state-of-the-art global P datasets (GPCP-1DD, WFDEI-CRU, TMPA 3B42, and CPC30

Unified). The median R value obtained by MSWEP was 0.67 versus 0.44–0.59 for the other P datasets, with MSWEP
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obtaining the best R score for 60.0 % of the stations. MSWEP also performed best in terms of RMSE, but performed

average in terms of absolute bias.

4. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (< 50000 km2)

around the globe. Specifically, we calibrated the HBV hydrological model against daily Q observations using P from

MSWEP and the four previously mentioned existing P datasets. For the 1058 sparsely gauged catchments (defined by5

catchment-mean distance to the closest P gauge> 25 km), representative of 83.9 % of the global land surface (excluding

Antarctica), MSWEP obtained a median NSE of 0.52 versus 0.29–0.39 for the other P datasets.

Appendix: FLUXNET stations used in this study

The 125 FLUXNET sites used in this study including the primary reference, where available, are: AR-SLu, AR-Vir, AT-Neu,

AU-ASM (Cleverly et al., 2013), AU-Ade, AU-Cpr, AU-Cum, AU-DaP, AU-DaS, AU-Dry, AU-Emr, AU-Fog, AU-RDF, AU-10

Rig, AU-Tum, AU-Whr, BE-Bra, BE-Lon, BE-Vie, BR-Sa3, CA-Gro (McCaughey et al., 2006), CA-NS1 (Goulden et al.,

2006), CA-NS3 (Goulden et al., 2006), CA-NS4, CA-NS5 (Wang et al., 2002), CA-NS6 (Bond-Lamberty et al., 2004), CA-

NS7 (Bond-Lamberty et al., 2004), CA-Qfo (Chen et al., 2006), CA-SF1 (Amiro et al., 2006), CA-SF2 (Amiro, 2009), CA-SF3

(Amiro, 2009), CA-TP2 (Arain and Restrepo-Coupe, 2005), CG-Tch, CH-Cha (Zeeman et al., 2010), CH-Fru (Zeeman et al.,

2010), CH-Oe1 (Zeeman et al., 2010), CN-Cha, CN-Cng, CN-Dan, CN-Din, CN-Du2, CN-Du3, CN-Ha2, CN-HaM, CN-Qia,15

CN-Sw2, CZ-BK1, CZ-BK2, DE-Akm, DE-Gri, DE-Hai, DE-Kli, DE-Lkb, DE-Obe, DE-RuS, DE-Spw, DE-Tha, DK-Eng,

DK-NuF (Westergaard-Nielsen et al., 2013), DK-Sor, DK-ZaH (Lund et al., 2012), ES-LJu, ES-LgS, ES-Ln2, FI-Hyy, FI-

Jok, FR-Gri, FR-Pue, GH-Ank, IT-CA1, IT-CA2, IT-CA3, IT-La2, IT-Lav, IT-PT1, IT-Ren, IT-Ro1, IT-Ro2, IT-Tor, JP-MBF,

JP-SMF, MY-PSO, NL-Hor, NL-Loo, NO-Adv, PA-SPn, PA-SPs, RU-Che, RU-Cok, RU-Fyo, RU-Ha1, RU-Sam, RU-SkP,

RU-Vrk, SD-Dem (Ardö et al., 2008), SE-St1, US-AR1, US-AR2, US-ARM (Fischer et al., 2007), US-Blo (Lunden et al.,20

2006), US-CRT (Chu et al., 2014), US-Goo, US-Ha1 (Goulden et al., 1996), US-IB2 (Jastrow, 1997), US-Ivo (Epstein et al.,

2004), US-Lin, US-Los (Bakwin et al., 2004), US-MMS (Schmid et al., 2000), US-Me6 (Ruehr et al., 2012), US-Myb, US-Ne1

(Simbahan et al., 2006), US-Ne2 (Amos et al., 2005), US-Ne3 (Verma et al., 2005), US-Oho (Noormets et al., 2008), US-SRM

(Scott et al., 2009), US-Syv (Desai et al., 2005), US-Ton (Chen et al., 2007), US-UMd (Nave et al., 2011), US-Var (Ma et al.,

2007), US-WCr (Cook et al., 2004), US-WPT (Chu et al., 2014), US-Whs (Scott, 2010), and US-Wkg (Scott et al., 2010),25

ZA-Kru, and ZM-Mon.
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