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Abstract.

Travel-time
✿✿✿✿✿

Travel
✿✿✿✿✿

time distributions are a comprehensive tool for the characterization of hydrological system dynam-

ics. Unlike stream�ow hydrographs
✿✿

the
✿✿✿✿✿✿✿✿✿✿

stream�ow
✿✿✿✿✿✿✿✿✿✿

hydrograph, they describe the movement and storage of water inside

and through
✿✿✿✿✿

within
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

throughout the hydrological system. Until recently, studies using such travel-time
✿✿✿✿✿

travel
✿✿✿✿

time
✿

dis-

tributions have generally either been applied to simple (arti�cial toy)
✿✿✿✿✿✿

lumped
✿

models or to real-world catchments using5

available time series, e.g., stable isotopes. Whereas the former are limited in their realism
✿✿✿

and
✿✿✿✿

lack
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

spatial

✿✿✿✿✿✿✿✿✿✿✿

arrangements
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

quantities, the latter are limited in their use of available data sets. In our study, we employ

a middle ground by using the
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed mesoscale Hydrological Model (mHM) and apply it to a catchment

in Central Germany. Being able to draw on multiple large data sets for calibration and veri�cation, we generate a large

array of spatially distributed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed states and �uxes. These hydrological outputs are then used to compute10

the travel-time
✿✿✿✿✿

travel
✿✿✿✿

time
✿

distributions for every grid cell in the modeling domain. A statistical analysis shows
✿✿✿✿✿✿✿✿

indicates

the general soundness of the upscaling scheme employed in mHM and reveal
✿✿✿✿✿✿

reveals precipitation, saturated soil moisture

and potential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In

addition, we demonstrate and discuss the high information content of mean travel times for characterization of internal

hydrological processes.15

Keywords

Travel-time
✿✿✿✿✿✿

Travel
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time
✿

distributions,mesoscale Hydrological Model (mHM), multiscale modeling, catchment hydrology,

stochastic hydrology, model calibration

1 Introduction

The description of storage and transport of both water and dissolved contaminants in catchments is a challenging subject20

due to the high heterogeneity of the subsurface properties that govern their fate (Dagan, 1989). This heterogeneity, com-

bined with a limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods

are often applied, where the relevant processes are modeled as being random (Dagan, 1986; Rubin, 2003). Amongst
✿✿✿✿✿✿

Among
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these methods, a powerful tool is the use of travel-time distributions (TTD’s
✿✿✿✿✿

travel
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿✿✿

(TTDs), where storage

and transport inside
✿✿

in the catchment are modeled from a Lagrangian perspective (Rinaldo and Marani, 1987; Rinaldo et al.,

1989). This means that the catchment itself
✿

, or meaningful parts of it
✿

, is treated as a control volume (CV). The spatially

complex array of di�erent �ow paths inside such a CV is consequently
✿✿✿

this
✿✿✿

CV
✿✿

is
✿

ignored and only inlet and outlet �uxes

are used for the analysis (Botter et al., 2010; Rinaldo et al., 2011; Botter , 2012). This observation-based description of catch-5

ment dynamics makes TTD’s
✿✿✿✿

TTDs
✿

a very robust tool. Although the application of TTD’s
✿✿✿✿✿

TTDs goes back many decades

(Danckwerts, 1953;Niemi, 1977), recent developments have strongly improved their theoretical foundations turning them into

a versatile and coherent tool to characterize catchment dynamics (Bertuzzo et al., 2013; Benettin et al., 2015a; Rinaldo et al.,

2015; Porporato and Calabrese, 2015). Owing to this progress, McMillan et al. (2012) and McDonnell and Beven (2014) have

opined that TTD’s
✿✿✿✿

TTDs
✿

should be used routinely for hydrological model calibration, a notion that has been picked up with10

tremendous speed (Windhorst et al., 2014; Vereecken et al., 2015;McGuire and McDonnell, 2015). Independently but somewhat

parallel
✿✿✿✿✿✿

Parallel to that, Kitanidis (2015) has recently pointed out , that the key to subsurface characterization is to use all

available information. From this information-centered perspective, using TTD’s have
✿✿✿✿✿

TTDs
✿✿✿

has
✿

several advantages. First,

the travel-time behavior is controlled by di�erent factors than the hydrograph response. Whereas the latter is relating rain-

fall–runo� events the former is relating rainfall–runo� water (McDonnell and Beven, 2014; Birkel and Soulsby, 2015). Second,15

spatially distributed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed tracer experiments may dramatically increase the information content available for

catchment characterization (Birkel and Soulsby, 2015).

This range of
✿✿✿✿✿

These advantages have lead to a steady increase in both applied and theoretical studies using TTD’s
✿✿✿✿✿

TTDs for

the description of catchment dynamics. Applied studies here means that data from real-world sites are used (McGuire et al.,

2005; Cardenas, 2007; Broxton et al., 2009; Tetzla� et al., 2011; Dunn et al., 2012; Hrachowitz et al., 2013, 2015; Harman, 2015).20

Here the advantage is that the data used for the analysis
✿✿✿✿✿✿✿✿✿

Compared
✿✿

to
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿✿

studies,
✿✿✿

the
✿✿✿✿

data do not su�er from model

errors or other conceptual limitations. However, such data are generally ,
✿✿✿✿

but
✿✿✿

are
✿✿✿✿✿

often limited in amount (e.g., tracer or

isotope time series
✿✿✿✿✿✿✿

typically limited to a few years only, although Hrachowitz et al. (2009) used time series of up to 17 years)

and variety (only a limited number of data types are available). As a result, such studies might fail to �nd long-term trends,

establish connections between travel-time behavior and speci�c catchment properties or to investigate the impact of cer-25

tain hydraulic regimes that are only rarely occurring (e.g., drought or extremely rainy months). In the second category , we

�nd
✿✿✿✿✿✿

extreme
✿✿✿✿✿✿✿✿

drought
✿✿

or
✿✿✿✿✿

storm
✿✿✿✿✿✿✿

events).
✿✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿

category
✿✿✿

are
✿

theoretical studies, that either use a very simpli�ed com-

putational model to focus on speci�c questions (Rinaldo et al., 2006; Du�y, 2010; Botter et al., 2010; van der Velde et al., 2012;

Benettin et al., 2015a; Porporato and Calabrese, 2015) or employ more realistic hydrological models that provide a large data

set typically not available in real-world sites Sayama and McDonnell (2009); Fenicia et al. (2010); McMillan et al. (2012). Such30

theoretical studies allow a more thorough and detailed analysis of the involved processes and their interdependence but may

su�er from an oversimpli�ed model setup for in- and out�ux generation.

Our study falls into the latter category such that
✿✿✿✿

since
✿

we use a hydrological model, i.e., the mesoscale Hydrological

Model (mHM) (Samaniego et al., 2010a; Kumar et al., 2013a), to generate the �uxes and states for the analysis. Using detailed

data of precipitation, land cover, morphology and soil type as inputs, mHM is able to provide continuous simulations of35
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spatially distributed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed �uxes (e.g., groundwater recharge or evapotranspiration) and states (e.g., soil mois-

ture) as outputs. By employing mHM, which is a spatially-distributed hydrological model, we are, however, able to extend

these
✿✿

go
✿✿✿✿✿✿

beyond
✿

prior studies to a spatially-distributed travel-time analysis. This makes it possible to address several types

of investigation. First, it allows for a comprehensive description of the �ow and transport dynamics taking place in the

catchment. The spatial distribution of such dynamics can then be related to e.g., land cover and physical properties of the soil5

aswell as todriving forces like precipitation todetermine dominant predictive factors. Inaddition, it allows to investigate how

certain parametrizations of the mHMmodel are related to the travel-time behavior of the catchment. This opens the way for a

more robustmodel calibration ofhydrologicalmodels using additional datasets (McDonnell and Beven, 2014; Birkel and Soulsby, 2015; Kitanidis

As a case study, we use a ca. 1000 km2 catchment in Central Germany for which detailed morphological and climato-10

logical data are available to parametrize mHM. In addition, the chosen catchment is the location of
✿✿✿✿✿✿

located
✿✿

in
✿

the Hainich

Critical Zone Exploratory, a comprehensive monitoring network used within the Collaborative Research Center AquaDiva

(Küsel et al., 2016). AquaDiva seeks to elucidate the critical role of water �uxes connecting surface conditions with biogeo-

chemical functions in the subsurface. One of the goals of this project is to understand how far signal
✿✿✿✿✿✿

signals
✿

of surface

properties, like land cover or land management, can be traced into the subsurface water and solute dynamics. Spatially15

explicit travel-time
✿✿✿✿✿

travel
✿✿✿✿

time distributions are the perfect
✿✿✿✿✿✿✿✿✿

appropriate
✿

analytical tool to investigate such questions.

By virtue of using themodeled data frommHM,we are able to address several questions that have not been investigated be-

fore. First, how are spatially-distributed quantities, in particular land-cover, precipitation and soil type, impacting travel-time

behavior in the soil? Unlike earlier model-based studies, mHM is a spatially-distributed hydrological model. We can therefore

add to prior
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿

current knowledge by investigating the travel-time behavior for every mHM grid cell and relate it to20

its geo-physical
✿✿✿✿✿✿✿✿✿✿

geophysical and climatic properties. Next, how do di�erent hydrological regimes (wet vs
✿✿✿✿✿

versus dry) impact

travel-time behavior in the soil? Here
✿

, we investigate the impact of changing external conditions (meteorological factors) us-

ing the long time-series of modeled �uxes and states. Finally, what is the inter-connection between travel-time behavior and

speci�c conceptualization of di�erent hydrological processes, and how may these connections be used for further improve-

ment of model parameterization? Investigating the impact of model-speci�c conceptualizations on the predicted travel-time25

behavior can provide a better understanding on how actual measurement may be connected to certain model parameters.

For the quantitative analysis, we focus on soil moisture , only, i.e., we exclude groundwater. This was necessary ,
✿

is
✿✿✿✿✿✿✿✿✿

necessary

due to the implementation of groundwater in mHM as a linear reservoir. Although variations, i.e., �uxes, of the groundwater

level can be represented well (Rakovec et al., 2016)the total amount remains elusive,
✿✿✿

the
✿✿✿✿✿

total
✿✿✿✿✿✿

storage
✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿✿

uncertain. This

is a common feature of hydrological models (Fan, 2015) and mHM is no exception. Furthermore, we consider this restriction30

to be acceptable within the scope of our study, i.e., elucidation of the spatio-temporal dynamics of TTD’s
✿✿✿✿✿

TTDs. Groundwater

by de�nition is far less impacted by the spatial distribution of precipitation or land cover. In addition, Benettin et al. (2015b)

recently showed that TTD’s
✿✿✿✿✿

TTDs
✿

show little temporal variability compared to soil moisture.

To present our results on such
✿✿✿

the
✿✿✿✿✿

above
✿

questions, the rest of the paper is organized as follows: In Section 2 we describe

the numerical and analytical tools used in this study. Thus
✿✿✿

This
✿

comprises the framework of travel-time distributions ,
✿✿✿✿✿

travel35
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✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿

distributions
✿

as applied in this study , as well as the relevant features of mHM. In Section 3, we present the results of our

study and demonstrate how they relate to the questions raised above. Finally , in Section 4
✿

, we summarize our main �ndings

in light
✿✿

of
✿

these questions and draw some conclusions.

2 Methods

In the following, we provide a short overview of the analytical and numerical tools and methods used in this study. We start5

by introducing the concept of travel-time distributions. In the following
✿✿✿✿✿

travel
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿

distributions.
✿✿✿

To
✿✿✿✿

that
✿✿✿✿

end, we use the

nomenclature as given by Benettin et al. (2015a) and the theoretical framework by Botter et al. (2010). In addition to that
✿✿✿✿

Then,

we give a short overview of the numerical model (mHM) which was used for the calculation of the states and �uxes. Finally,

we introduce the catchment used in our study.

2.1 Travel-time
✿✿✿✿✿✿

Travel
✿✿✿✿

time
✿

distributions for a single control volume10

Travel-time
✿✿✿✿✿

Travel
✿✿✿✿

time
✿

distributions are a stochastic description of the dynamic of a water parcel moving through a given

control volume (CV). The de�nition of such a control volume for real-world situation is often arbitrary to some extent (see

e.g., the schematic in Figure 1). Within the context of this study, we used a spatially distributed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed
✿

model

where the catchment is partitioned in regular grid cells (for more details see Section 2.2 below). Consequently, the boundaries

of our CV were given by the grid cells of the model.15

Q(t)

TET

TQ

ET (t)

watertable

TET

TQ

S(t)
ET (t)

Qin(t)

Q(t)

Figure 1. Water movement inside a hill slope (physical schematic on the left and conceptual schematic on the right).

Given that such a CV can be reasonably de�ned, it is clear that the dynamics of a water parcel is
✿✿

are
✿

determined by the

in- and out-�uxes,
✿✿✿✿✿✿✿✿

out�uxes that are changing the water content inside it
✿✿

or
✿✿✿✿✿✿

storage. The time evolution of the water content

✿✿✿

this
✿✿✿✿✿✿✿

storage S inside such a CV is then given by the following balance equation

d

dt
S(t) =Qin(t)−Qout(t) = J(t)− (ET (t)+Q(t)). (1)

Equation (1) is a simple initial-value problemwith the in-�ux
✿✿✿✿✿

in�uxQin(t) given by the e�ective precipitation J(t)whereas20

the out-�ux
✿✿✿✿✿✿

out�ux Qout(t) is given by evapotranspiration ET (t) and runo� per grid cell Q(t).
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t

travel time TT

age TA life expectancy TE

tin text′

Figure 2. Schematic of di�erent times associated with the travel-time dynamics of a water parcel. Age TA is the time elapsed at t′ since

the water parcel entered the CV at tin, whereas life expectancy TE is the time remaining at t′ until the water parcel leaves at tex.

To denote the di�erent times involved in the dynamic of a water parcel, we followed the notation of Benettin et al. (2015a).

Chronological time was accordingly denoted with t, whereas the water parcel entered the CV at tin and left at tex. At any

given time t′ in between these two points, any
✿

a water parcel can therefore be characterized by two di�erent properties; :
✿

its

age TA as well as its (remaining) life expectancy TE (see Figure 2).

In their paper, Benettin et al. (2015a) emphasize the two interpretations that originate from these two points of view. Age5

is a backwards concept referring to the time passed since the beginning. The associated travel time distribution is therefore

called the backward TTD. The concept of backward TTD’s
✿✿✿✿✿

TTDs is of particular interest for the characterization of,
✿

e.g., a

water sample, since its composition is determined by the age of the water in the CV. Life expectancy, on the other hand,

is a forward concept since it is referring to the time still left until exit from the CV. The associated travel time distribution

is therefore called the forward TTD. Such forward TTD’s are relevant
✿✿✿✿

TTDs
✿✿✿

are
✿✿✿✿✿✿✿✿

relevant,
✿

e.g., for tracer test
✿✿✿

tests, since the10

concentration of an ideal tracer at the outlet is given by the TTD of its associated water parcel.

In order to derive the TTD’s
✿✿

To
✿✿✿✿✿✿

derive
✿✿✿

the
✿✿✿✿✿

TTDs
✿

associated with the forward and backward formulation, Botter et al.

(2011) presented a derivation using only the states and �uxes inside the CV as well as what they call an age function (for

more information on their derivation we also refer to Botter et al. (2010) and the references therein). In the following, we

assume a uniform age function only. This means that the age distribution of the water leaving the CV is the same as the age15

distribution of the water inside the CV, i.e., no age preference of the out�ow generating processes (discharge and ET) exists.

This decision became necessary , since we could not yet draw on any data for the age distribution of water at the outlet of

the catchment. As a result, we were not able to compare the predictions of di�erent age functions to any measurements and

therefore determine the most adequate description. In absence of such data, the most appropriate choice is the one involving

the least amount of information, which is given by the assumption of uniform sampling. Using this assumption, we can state20

the following for the forward formulation

−→p Q(TE , tin) =
Q(t)

θ(tin)S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



 (2)

5



with TE = t− tin, t > tin, i.e., the time from the moment the water parcel entered the reservoir until now. The function θ

in Equation (2) is called the partition function (Botter et al., 2010, 2011) and can be derived using the following formula

θ(tin) =

∞
∫

tin

Q(t)

S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



dt. (3)

This partition function describes the portion of the water parcel, entering the CV at tin, that is contributing eventually to

discharge
✿✿✿✿✿✿

leaving
✿✿✿✿✿✿✿✿✿

eventually
✿✿

as
✿✿✿✿✿✿✿✿

discharge
✿

(as opposed to evapotranspiration
✿✿✿✿✿✿

leaving
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration). It is consequently5

a dimensionless number between 0 and 1.

For the backward formulation, we can state the following

←−p Q(TA, tex) =
J(t)

S(t)
exp



−

∫

TA

Q(t′)+ET (t′)

S(t′)
dt′



 (4)

with TA = tex− t, t < tex, i.e., the time from now until the moment the water parcel leaves the reservoir.

Both these formulations determine the travel time of the water leaving as discharge. The TTD’s
✿✿✿✿✿

TTDs for the water leaving10

as evapotranspiration can be determined in an analogous way
✿✿✿

and
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

repeated
✿✿✿✿

here.

2.2 Numerical model

We used a spatially distributed
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed, grid-based mesoscale Hydrological Model (mHM; Samaniego et al.

(2010a); Kumar et al. (2013a)) to generate the states and �uxes needed for the TDD
✿✿✿✿

TTD analysis described above. The model

uses the grid cell as a primary hydrological unit and models the following dominant hydrological process: interception,15

snow accumulation and melting, root zone soil moisture dynamics, evapotranspiration, surface �ow, inter�ows, recharge

and base�ow. The total runo� generated at each grid cell is routed to the neighboring downstream cell following the river

network using the Muskingum-Cunge routing algorithm. Interested reader
✿✿✿✿✿✿

readers
✿

may refer to (Samaniego et al., 2010a) for

further details on the model components. The model code is open source and can be downloaded from www.ufz.de/mhm.

The model has been successfully applied to a number of river basins across Germany, USA and Europe (Samaniego et al.,20

2010a, b; Kumar et al., 2010, 2013a, b; Samaniego et al., 2013; Livneh et al., 2015; Thober et al., 2015; Rakovec et al., 2016).

An important and unique feature of mHM is its Multiscale Parameter Regionalization (MPR
✿✿✿✿

RPM), that explicitly accounts

for subgrid
✿✿✿✿✿✿✿

sub-grid variability of basin physical characteristics such as terrain, soil, vegetation, and geological properties

(Samaniego et al., 2010a; Kumar et al., 2013a). The model considers di�erent levels of spatial resolution to better account for

spatial heterogeneity of inputs, forcings and the modeled hydrological processes (see schematic in Figure 3). The smallest25

scale (called l0 within the mHM nomenclature) is representing morphological factors, like elevation, soil type, land cover etc.

On the other hand, meteorological inputs can be represented on a larger scale (called l2 within mHM). The modeling of the

hydrology is done on a third scale (called l1 within mHM) that can vary depending, e.g., on catchment size or computational

6



Figure 3. Schematic of the mesocale
✿✿✿✿✿✿✿

mesoscale
✿

hydrological model used in the study, depicting the di�erent scales as well as the states

and �uxes represented in a single cell.

resources. Based on the MPR technique, morphological inputs are linked to internal model parameters (e.g., through the

use of pedo-transfer functions) and a set of regional coe�cients (or global parameters , γ). In a second step, the internal

parameters are upscaled to the resolution of the hydrological processes, i.e., l1, using parameter speci�c upscaling operators.

Thus, MPR takes indirectly subgrid
✿✿✿✿✿✿

sub-grid
✿

variabilities into account
✿✿✿✿✿✿✿✿

indirectly. The global parameters (γ) are space and time

invariant
✿✿✿

are
✿✿✿✿✿

space-
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

time-invariant
✿

and are inferred via a calibration procedure. mHM has 66 global parameters, which5

is a reasonable number for an optimization problem and is therefore able to avoid overparameterization. Further details on

MPR can be found in Samaniego et al. (2010a); Kumar et al. (2013a).

Relevant to this study is
✿✿

are near-surface and root-zone hydrological process
✿✿✿✿✿✿✿✿

processes, which are computed using di�erent

conceptualizations. In the upmost
✿✿

top
✿

layer (x3 in Figure 3),
✿

water content is estimated using the in�ltration excess approach

similar to the HBV model (Bergström, 1995), but enhanced to account for multiple
✿✿✿

sub
✿

layers. Within these
✿✿✿

sub layers, the10

water is either percolating into deeper layers or evapotranspirates
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspirating
✿

to the atmosphere. Therefore, the

root zone is characterized by e�ective parameters for porosity, saturated hydraulic conductivity and the permanent wilting

point, which are estimated based on the pedotransfer functions of Zacharias and Wessolek (2007). These e�ective parameters

are estimated due to transfer functions from the global parameters, which are determined during the calibration process.

Evapotranspiration is estimated based on potential evapotranspiration, root water uptake and water availability in layer x3.15
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In the second layer (x5 in Figure 3)
✿

, two di�erent types of inter�ow take place. Slow inter�ow q3 is implemented using a

power-law model, whereas fast inter�ow q2 is triggered when a threshold value γTV is reached, i.e
✿

.,

q3 = γsx
(1+α)
5 , (5a)

q2 =











γf (x5− γTV ), if x5 > γTV

0, otherwise
. (5b)

In the third level (x5 in Figure 3) base�ow q4 is generated using a simple reservoir model, i.e.,5

q4 = γbx6. (6)

These runo� generation processes are represented at every grid cell of mHM. The sum of direct runo� q1 (not used for the

analyis
✿✿✿✿✿✿

analysis), inter�ows and base�ow constitutes
✿✿✿✿✿✿✿✿

constitute
✿

the grid speci�c total runo� which is then routed through a

river network. Interested readers may refer to Samaniego et al. (2010a) or www.ufz.de/mhm (user manual) for further details

on mHM.10

As motivated in the Introduction, we followed the concept of,
✿

e.g., Botter et al. (2010) and Benettin et al. (2015b) and di-

vided the subsurface into two distinct zones;
✿

: the soil zone (called root zone by Botter et al. (2010) and shallow storage by

Benettin et al. (2015b)) and the saturated zone (called called groundwater region by Botter et al. (2010) and deep storage by

Benettin et al. (2015b)). All analysis in our study was performed with respect to the former. This was seen necessary due to

the large uncertainties associated with storage estimation of the deeper regions. Whereas mHM has been demonstrated to15

provide good estimates for soil moisture (Rakovec et al., 2016), storage estimates for groundwater (x6 in Figure 3) are far less

reliable. Focusing on the soil zone , only , was seen
✿✿✿

only
✿✿✿✿

was
✿✿✿✿

seen
✿✿

as
✿

justi�ed since the focus of our study was the investiga-

tion of spatially distributed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed
✿

factors like precipitation, land cover and soil type, which have comparably

little impact on groundwater dynamics. Furthermore, Benettin et al. (2015b)
✿✿✿✿✿✿

recently
✿

demonstrated that travel-time behavior

in the deeper zone has comparably little temporal variability, too.20

x3(t)+ x5(t)
ET (t)

q2(t)+ q3(t)+C(t)

Qin(t)

TQ

TET

Figure 4. States and �uxes as computed by mHM (see Figure 3) for the derivation of TTD’s
✿✿✿✿

TTDs using Equations 2 to (3) (see Figure 1).

For computation of the TTD’s
✿✿✿✿✿

TTDs
✿

according to Equations (2) to
✿✿✿✿✿✿✿

through (4), we used for the storage S the combined

estimates of layer x3 and x5 of mHM
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿

storage
✿✿

S
✿

(see Figures 3 and 4). For ETwe used �uxes the evapotranspiration
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from ,
✿✿✿

we
✿✿✿✿

used
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿✿✿✿

�uxes
✿✿✿✿

from
✿✿✿✿

the
✿✿✿

sub
✿✿✿✿✿

layers
✿✿✿

of x3 and for Q we used q2, q3 and C . Conceptually
✿

, the

inter�ow is generated in the unsaturated zone (reservoirs x3 and x5) within mHM. Thus, using the inter�ow as the out�ow

from the unsaturated zone for deriving the travel times is a valid assumption. Our delineation of shallow and deeper storage

was therefore more similar to Benettin et al. (2015b) than to Botter et al. (2010).

2.3 Study area and model set-up5

In this study, we used a mesoscale catchment in Central Germany with a drainage area of approximately 1000 km2 to the

gauging station at Nägelstedt (see Figure 5). The catchment is
✿✿✿✿✿✿✿✿✿

comprises the headwaters of the Unstrut river basin , and

was selected in this study for its relevance to the Collaborative Research Center AquaDiva (Küsel et al., 2016). The terrain

elevation within the catchment ranges between 170 m and 520 m with the higher regions in the west and south being

the forested hill chain of the Hainich (see Figure 5). The forested area covers approximately 17% of the catchment , while10

78% of the area is covered by crop/grassland. The remaining 5% is urban /build up
✿✿✿✿✿✿

built-up
✿

area. The area is characterized

by continental climatic conditions with a mean annual precipitation of approximately 660 mm and a mean temperature of

approximately 8 ◦C.

We established mHM over the study catchment and performed numerical simulations on several resolutions ranging from

200 m to 2 km. The model was forced using daily gridded �elds of precipitation, air temperature and potential evapo-15

transpiration. The point datasets for the precipitation and air temperature at several raingauges
✿✿✿✿

rain
✿✿✿✿✿✿

gauges and weather

stations located in and around the catchment were acquired from the German Meteorological Service (DWD). These point

stations were then interpolated on regular grids using an external drift kriging interpolation procedure wherein the terrain

elevation was used as an external drift (Samaniego et al., 2013). The potential evapotranspiration was estimated using the

Hargreaves and Samani (1985) method. Other datasets required to set-up
✿✿✿✿

setup
✿

the model include digital elevation model20

(DEM) and derived terrain properties like slope, aspect, �ow direction, catchment boundary; soil and geological maps were

provided by the Federal Institute for Geosciences and Natural Resources (BGR) and meta data such as sand and clay contents,

bulk density, horizon depths, dominant hydrogeological classes; CORINE land cover information for the years 1990, 2000

and 2005 available from the European Environment Agency (EEA); and runo� data for the catchment outlet provided by the

European Water Agency (EWA) and the Global Runo� Data Centre (GRDC).25

The model simulations were performed for the period 1950 to 2005. The �rst �ve years of the data were used to warm-up

the model to acquire plausible initial conditions. We therefore discarded the �rst �ve years of simulations and the further

analyses were performed using model outputs for the period 1955− 2005. The model showed quite good performance with

NSE > 0.8 for the daily discharge simulations at the Nägelstedt station. Other statistics like
✿✿✿✿

such
✿✿

as
✿

bias and correlations

were also within a satisfactory range. To further validate our model prediction, we used measurements from a single Eddy30

Covariancemeasurement station inside the study area (see Figure 5). This comparison also showed a good agreement between

both measurements and model prediction (see Figure 6).
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Figure 5. Left: Catchment (highlighted) used in the study shown within the larger con�nes of the Unstrut catchment (area enclosed by

continuous line). The larger rivers of the catchment are shown in blue. The colorbar shows the elevation (in m) of the study catchment.

Right: Unstrut catchment within the larger con�nes of Germany. The axis descriptions denote the latitude and longitude values.

3 Results and discussion

In this section, we present and discuss the results which have been derived using the methods described above. We will begin

in the following by demonstrating and exemplify
✿✿✿✿✿✿✿✿✿✿✿

exemplifying our general research procedure by virtue of a singly
✿✿✿✿✿

single

yet representative example.

The starting point for the derivation of soil travel times were the states and �uxes as computed through mHM. Using5

the time series of soil moisture, evapotranspiration, inter�ow and recharge, we used Equation (2) to compute
✿✿

as
✿✿✿✿✿✿✿✿✿

computed

✿✿

by
✿✿✿✿✿✿

mHM,
✿✿✿

we
✿✿✿✿✿✿✿✿

computed
✿

the travel time distribution (see
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿

for
✿✿✿✿✿

every
✿✿✿✿

grid
✿✿✿

cell
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

(see
✿✿✿✿✿✿✿✿

Equation
✿✿✿

(2)

✿✿✿

and
✿

Figure 7 a). One of the problems when computing forward TTD’s
✿✿✿✿✿

TTDs
✿

by virtue of Equation (2) is that all the water

entering the CV at time tin must leave until
✿✿

by the end of the computing period
✿✿✿✿✿✿✿✿

available
✿✿✿✿

time
✿✿✿✿✿

series. This means that a certain

amount
✿

of
✿✿✿✿✿✿

water at the end of the available
✿✿✿✿✿

these time series could not be used for the analysis. To determine this period, we10

computed θin with respect to discharge as well as to evapotranspiration. Adding up both values for a given tin should add

10
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Figure 6. Comparison between monthly measured and modeled evapotranspiration (ET) at the eddy-covariance station Mehrsted (see

Figure 5).

up to one, i.e., all water that entered at tin has left
✿✿✿✿✿✿

should
✿✿✿✿

leave
✿

within the available time frame. A value smaller that
✿✿✿

than
✿✿

1

therefore indicates that some amount of the water is still inside the CV with possible error inducing
✿✿✿✿✿✿✿✿✿✿✿✿

error-inducing e�ects on

the calculation of the TTD’s
✿✿✿✿

TTDs. Analyzing this behavior, we concluded that close to 2 years at the end of the available time

series had to be excluded for the calculations of the TTD’s
✿✿✿✿✿

TTDs (data not shown). The shape of the resulting time-dependent

distributions varied strongly, depending in particular
✿✿✿✿✿✿✿✿✿

particularly
✿

on rainfall events that triggered the mobilization of older5

water stored within the soil. Another factor, although not apparent from Figure 7, was the water content, i.e., the state of the

soil itself. As
✿✿✿

has been demonstrated by Niemi (1977), soil response to rain events is strongly di�erent between wet or dry

conditions.

To disentangle this
✿✿✿✿

these event-driven as well as state-dependent e�ects from other factors that in�uence the water move-

ment in the soil, we averaged these time dependent
✿✿✿✿✿✿✿✿✿✿✿✿✿

time-dependent distributions. As a result, we got the stationary TTD’s10

✿✿✿✿✿

TTDs for every cell

−→p Q(TE) =

∫

Q(t)

θ(tin)S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



dtin (7)

with TE = t− tin, t > tin.

In all investigated cases, these stationary TTD’s
✿✿✿✿✿

TTDs could bewell approximated by an exponential-like
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

exponential-esque

behavior (see Figure 7 b). Behavior as seen for stationary TTD’s
✿✿✿✿

Such
✿✿✿✿✿✿✿✿

behavior is often assumed to be valid for TTD’s in15

general and
✿✿✿✿

TTDs
✿✿

in
✿✿✿✿✿✿✿

general
✿✿✿✿

such
✿✿✿

that
✿✿✿✿

they
✿

are consequentlymodeledusing exponential or gammadistributions (Małoszewski and Zuber,

1982). Recentworks
✿

, however, have questioned this generalization by emphasizing the time-dependent nature of TTD’s
✿✿✿✿✿

TTDs

(Du�y, 2010; Botter et al., 2011). The examples given in Figure 7 exemplify these concerns by illustrating their respective ori-
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Figure 7. Forward TTD of soil moisture with respect to mean travel time (in months) for a single cell in the Nägelstedt catchment. Panel

(a) shows the time-dependent TTD derived using Equation (2) for a given tin. Panel (b) shows the stationary TTD derived using Equation

(7).

gins. Consequently, we acknowledged the inherent di�erences between these two TTD’s
✿✿✿✿✿

TTDs. Furthermore, the study area

falls within a humid region with soils being generally wet and rainfall being evenly distributed throughout the year. Under

these conditions the assumption of (quasi) stationary TDDs
✿✿✿✿✿

TTDs is reasonable (Tetzla� et al., 2007; Hrachowitz et al., 2009).

These stationary TTD’s
✿✿✿✿

TTDs
✿

provided the basis for all following analysis , due to allowing
✿✿✿✿

since
✿✿✿✿

they
✿✿✿✿✿

allow
✿

the description

of the average hydrological response of the catchment. In addition, we also focused on travel-time behavior under speci�c5

hydrological regimes, i.e., wet and dry conditions, providing a more detailed understanding of the catchment.

For our statistical analysis, we used these stationary TTD’s
✿✿✿✿✿

TTDs, which, due to their exponential-like
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

exponential-esque

behavior, can be characterized by its
✿✿✿

their
✿

expected value τ . We will call this value mean life expectancy (or mean age

respectively) in the following
✿

in
✿✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿✿

backward
✿✿✿✿✿✿

TTDs)
✿✿✿✿✿✿✿✿

hereafter. Estimating this value for every mHM cell provided

✿✿✿✿✿✿✿

therefore
✿

a single measure for the travel-time behavior in the soil without the otherwise dominating impact of single precip-10
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Figure 8. Mean life expectancy (in months) of soil moisture derived by Equation 7 for the Nägelstedt catchment (see also Figure 1 for

comparison) once for all mHM cells (left) and for all non-urban cells.

itation events (see Figure 8). One feature that became immediately apparent were
✿✿✿

was the long travel times in urban areas

(see Figure 8 a). This can be explained by the fact that these areas are largely sealed, resulting in low in�ltration rates and

consequently low turnover rates inside the soil. To disentangle this sealing e�ect from the soil behavior, we discarded cells
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inside urban regions from our analysis (see Figure 8 b). This allowed us to investigate the interplay between soil properties

and travel-time behavior apart from such arti�cial in�uences.

3.1 Impact of modeling resolution

Due to its multiscale parameterization, mHM is able to model catchment dynamics at di�erent spatial resolution
✿✿✿✿✿✿✿✿✿

resolutions

with the same set of calibration parameters (see,
✿

e.g., Samaniego et al. (2010a) or Kumar et al. (2013a)). Within the context of5

TTD’s
✿✿✿✿✿

TTDs, this feature may be used to investigate the potential in�uence of age-dependent out�ow generation. The math-

ematical theory for including such age dependency has been developed independently by di�erent groups and recently been

uni�ed using the umbrella term of StorAge Selection (SAS) functions (Rinaldo et al., 2015; Harman, 2015). These functions

fully describe the sampling behavior of the catchment with respect to the age distribution of the stored water when discharge

is generated. Discharge from a catchment may,
✿

e.g., be primarily composed of younger or older water or it may show no10

preference to age whatsoever. SAS functions are therefore a concise mathematical representation of this behavior.

On a physical basis, such preference for di�erent water age should be interpreted as the result of complex mixing processes

taking place in the subsurface of the catchment (Botter , 2012; Benettin et al., 2013; van der Velde et al., 2012). In order to
✿✿

To

determine the appropriate SAS function for a given catchment, predictions using di�erent functions could
✿✿✿✿✿

would
✿✿✿✿

have
✿✿

to
✿

be

compared with measurements. Alternatively, the form of the SAS function can be determined by using a physically based15

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physically-based catchment model (Cornaton and Perrochet , 2006a, b). As already mentioned above, we could not directly

infer , which form of a SAS function would be the most appropriate choice for our catchment. Instead
✿

, we calculated the

mean life expectancy for our catchment on di�erent scales using the uniform SAS function. We motivated this choice by the

principle of least information (or principle of maximum entropy) stating thatamongst ,
✿✿✿✿✿✿

among
✿

di�erent alternatives, the one

with the least amount of information should be chosen. Without any additional constraints, a uniform distribution is usually20

associated with maximum ignorance, therefore, motivating the use of the uniform SAS function.

To estimate the possible in�uence of this decision, we reasoned that a scale-dependent bias in the estimation of travel-time

behavior would indicate the existence and possible strength of such an error. This is due to the multi-scale
✿✿✿✿✿✿✿✿

multiscale nature

of mHM, where subgrid
✿✿✿✿✿✿✿

sub-grid heterogeneity is taken into account by virtue of the Multiscale Parameter Regionalization.

Using a smaller grid size would make this heterogeneity explicit and therefore reveal any possible unaccounted subgrid25

✿✿✿✿✿✿✿

sub-grid in�uence. Results from our simulations showed no discernible di�erences in the statistical distribution of mean life

expectancy (see Figure 9). Using a smaller
✿✿✿✿✿✿

higher resolution had positive e�ect on
✿✿✿

the statistical estimation procedure due

to the increase in data points. In addition, we saw more extreme values due to small scale features that were smeared out on

coarser resolutions. Other than these two changes, we noted only minor changes in the statistics of mean life expectancy.

We therefore concluded that, within the limits of the spatial scales tested here, mixing processes inside our catchment have30

✿✿✿

had
✿

no major impact on mean life expectancy. We are aware , that this assessment is only covering one possible source of

age-dependent out�ow behavior and that other unresolved heterogeneity (at even smaller scales or due to other subsurface

properties not accounted for in mHM) would in�uence the out�ow generation as well. We therefore regard our conclusions

as tentative and open to revision once actual measurements become available.
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Figure 9. Kernel density estimate of themean life expectancy (in months) of soil moisture for several grid sizes in the Nägelstedt catchment.

However, our investigation gave us the ability to �nd a good trade-o� between computational costs and data amount for

the following statistical analyses. We therefore used a data set from simulations using a grid size of 500m.

3.2 Statistical analysis of mean life expectancy

The mean life expectancy τ of a water parcel inside a catchment is the result of a complex interplay of morphological and

climatological factors. Several recent studies have therefore tried to determine their relative importance under varying condi-5

tions (McGuire et al., 2005; Cardenas, 2007; Broxton et al., 2009; Tetzla� et al., 2009, 2011). Contrary to these studies where �eld

measurements were used, we used results from computational simulations only. This gave us a much larger dataset, both in

time and space, fromwhich we could infer the relative impact of di�erent factors, in particular meteorological (precipitation),

land surface (land cover, leaf-are index) and subsurface (soil) properties. Notably, our approach di�ers from Hrachowitz et al.

(2009) such that our analysis is based on model-derived gridded simulations of TDDs
✿✿✿✿✿

TTDs
✿

as compared to the observation-10

based basin-wise quanti�cation of TDDs
✿✿✿✿✿

TTDs.
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In the �rst step, we determined for every cell the statistical relationship between the mean life expectancy τ and a number

of potential predictors like average precipitation, soil depth, soil type or leaf-area index (LAI). Similar to Hrachowitz et al.

(2009), we used the coe�cient of determinationR2 to quantify the strength of the statistical relationship. This quantity equals

to one minus the ratio of the remaining variance vs.
✿✿✿✿✿

versus
✿

the total variance of the data themselves. It is therefore a measure

of the variance explained by the
✿✿✿✿✿✿✿

statistical
✿

model (which was always assumed to be linear in our study).5

3.2.1 Precipitation

The analysis above showed the strong impact of precipitation on the event-based TTD’s
✿✿✿✿

TTDs
✿

(see Figure 7). It is therefore

to be expected
✿✿✿

We
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿

expected
✿✿✿

this
✿✿✿✿✿✿✿

quantity
✿

to exert strong control
✿✿✿✿✿✿

controls
✿

on the steady-state TTD’s
✿✿✿✿

TTDs
✿

as well.

In our model,
✿

two di�erent quantities can be distinguished: �rst, the precipitation itself as well as, second, the e�ective

precipitation. The latter value is here de�ned as the water �ux that is actually entering the soil, i.e., corrected by surface10

runo� (through sealing), canopy interception and snowmelt. While the precipitation can be measured with high accuracy, it

is the e�ective precipitation that directly impacts the soil-moisture dynamics.

The scatterplot
✿✿✿✿✿✿✿✿✿

scatterplots of both data sets against
✿✿✿✿✿

versus themean life expectancy show a signi�cant negative correlation

between them (see Figure 10). This negative relationship can be explained such that precipitation events apply pressure to the

water already stored in the soil. Instead of immediately traveling through the soil, the water from these events rather pushes15

older water out. Strong precipitation events therefore lead to a ’�ushing out’ of the soil and cause a shorter life expectancy.

3.2.2 Terrain elevation

In our next analysis, we used the physical elevation as a variable for our regression model. The height can simply be de-

rived from the digital elevation model (DEM), which, in mHM, is represented using data obtained from the Shuttle Radar

Topography Mission.20

Using a scatter plot for visualizing the statistical relationship between mean life expectancy and the DEM showed a neg-

ative correlation (see Figure 11 a), i.e., longer life expectancy correlated with lower heights of the terrain, and with a linear

coe�cient of determination of R2 = 0.668. Since no direct causal connection can be drawn between physical elevation and

travel-time behavior, such a high value is indicative of underlying mechanisms. One of these is the aforementioned precip-

itation, since higher altitudes are correlated with stronger mean precipitation levels (linear coe�cient of determination of25

R2 = 0.812). Performing a multiple linear regression, including precipitation and saturated soil moisture (discussed below),

showed strong correlation between these variables (data not shown). It therefore stands to reason to attribute potential causal

e�ects to these covariates , only.

3.2.3 Evapotranspiration

Evapotranspiration is directly in�uencing the form of a TTD (see e.g., Equation 2). Consequently, we anticipated a strong30

correlation between mean evapotranspiration rates and mean life expectancy.
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Figure 10. Scatterplot of mean life expectancy (in months) of soil moisture vs.
✿✿✿✿✿

versus
✿

monthly values (inmm) for precipitation (Panel (a))

and e�ective precipitation (Panel (b)).

With respect to evapotranspiration, two di�erent de�nitions are typically distinguished: potential evapotranspiration

(PET) and actual evapotranspiration (AET). As implied by its name, PET describes the maximum possible rate of evapo-

transpiration at a given site. This value is dependent on quantities like solar radiation and temperature that can generally be

measured with good accuracy (Samani, 2000). Using theoretical models, good estimates can therefore be provided for PET at

a given site (Almorox et al., 2015). On the other side, AET is a real quantity that can be measured. In principle, in situ measure-5

ments can therefore provide good estimates (e.g., the eddy-covariance method). In practice, however, exact measurements

are hampered by a series of factors (Wang and Dickinson, 2012). As a consequence, PET can often be estimated with higher

accuracy than AET.
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Figure 11. Scatterplot of mean life expectancy (in months) of soil moisture vs.
✿✿✿✿✿

versus elevation (in m).

Scatterplots of both PET and AET show a positive correlation between evapotranspiration and mean life expectancy in

general (see Figure 12). This correlation is more pronounced for AET with a coe�cient of determination of R2 = 0.496 vs.

✿✿✿✿✿

versus
✿

only R2 = 0.259 for PET.

Contrary to precipitation, which is an in�ow mechanism, ET is an out�ow mechanism. It is not pushing but rather sucking

✿✿✿✿✿✿

pulling the water out of the CV, which explains the di�erence in behavior of precipitation and ET. The lower relative strength5

of the correlation (compared to precipitation) can be explained such that ET is only one of the two out�ow mechanisms (the

other being discharge). The relative stronger impact of AET compared to PET was also anticipated. AET is directly used in

Equation (2) for the calculation of TTD’s
✿✿✿✿✿

TTDs, whereas PET is only coupled by virtue of an additional function.

As explained above, for real-world situations, better estimates can often be provided for PET. The higher explanatory

power of AET has therefore to
✿

to
✿✿✿✿✿✿✿✿

therefore
✿

be balanced with its often less accurate estimate. Depending on the accuracy of10

measurements of AET, PET estimates may be a better predictor of mean life expectancy.

3.2.4 Land cover properties

Land cover is an important interface controlling the strength of incoming �uxes through arti�cial and natural sealing. In

mHM, three di�erent land-cover types are distinguished: forest, crop/grassland and urban area. As explained above, we ex-

cluded mHM cells inside urban area
✿✿✿✿✿

areas from our analysis in order to better focus on the soil properties themselves. To fur-15

ther elucidate possible in�uence of the remaining land cover types, we separated the catchment into forest and crop/grassland

and calculated the mean travel times separately.

Estimating the PDF of the mean life expectancy for both land cover types separately , revealed strong di�erences between

them both in shape of the respective PDF and the range of values (see Figure 13). As shown above, results for the combined

data set showed a distinct bimodal behavior (see Figure 9). In contrast to that, the PDF for both land cover types were almost20

unimodal. The most dominant peaks of every singly
✿✿✿✿✿

single
✿

PDF coincided with the two peaks of the combined PDF. The

behavior of the latter can therefore – to some degree – be considered to be a superposition of the former.
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Figure 12. Scatterplot of mean life expectancy (in months) of soil moisture vs.
✿✿✿✿✿

versus monthly evapotranspiration values (in mm). Dis-

played are both potential evapotranspiration (Panel (a)) and actual evapotranspiration (Panel (b)).

The relationship between these two land cover types was such that forest resulted in much shorter mean travel times

compared to crop/grassland. This pronounced di�erence may be partially due to a correlation with precipitation patters that

have already been shown to exert a strong in�uence on travel-time behavior. Forest in the study catchment (as well as in

Germany in general) is disproportionately found
✿✿✿✿✿

found
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

disproportionately in hilly and mountainous regions. These regions

in turn show stronger precipitation values. The tendency depicted in Figure 13 may therefore be also caused by this covariate.5

However, this correlation between forested and high-precipitation area would not explain the distinct di�erences between

both land-cover types. Another factor, overlapping with the former, may be due to the di�erences in water uptake. Trees

are rooted into deeper soil layers compared to crop and grass and are therefore able to access a larger part of the subsurface

water body. This larger access combinedwith the higher precipitation values as well as other factors would explain the almost

non-overlapping travel-time behavior demonstrated in Figure 13.10
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Figure 13. Land cover in the Nägelstedt catchment (blue = forest, green = urban, red = crop/grassland). Panel (a) shows the spatial distri-

bution of land cover in the highest resolution l0 and Panel (b) shows the kernel density estimates of the mean life expectancy (in months)

of soil moisture for the land cover types.

In addition to this classi�cation scheme, mHM uses the leaf area index (LAI) to describe land cover properties. The LAI

describes the ratio of the cell that is e�ectively covered by plant canopy. Due to the already established in�uence on evapo-

transpiration (see above), it stands to reason to expect
✿✿✿✿

that an in�uence on the mean life expectancy
✿✿✿✿✿

exists as well. Comparing

LAI class and land cover reveals a strong overlap between both (see Figure 13 (a) and Figure 14 (a)). Roughly, forest land cover

corresponds with LAI class 1− 4, urban land cover
✿✿✿

area
✿

corresponds with LAI class 5 and grassland corresponds with LAI5

class 6− 10.
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Figure 14. Leaf area index (LAI) in the Nägelstedt catchment. Panel (a) shows the spatial distribution and Panel (b) shows the scatter plot

of mean life expectancy (in months) of soil moisture vs.
✿✿✿✿✿

versus LAI.

Using the same approach as above, i.e., investigating themean life expectancy for every LAI class independently, consequently

revealed the same overall tendency for LAI classes compared to land cover types (data not shown). This was anticipated due

to the aforementioned overlap between the two classi�cation schemes. In addition, we saw little diversity for LAI classes

within the same land cover class (data not shown).

However, this tendency was not present when using the actual leaf-area values associated with every LAI class. These5

values could be constant over the year
✿

(e.g., in case of coniferous forest)
✿

or vary strongly (e.g., in case of deciduous forest).

To make values from di�erent LAI classes comparable, we averaged the respective values year-wise. A scatter plot of leaf
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area index vs.
✿✿✿✿✿

versus
✿

mean life expectancy does not show any strong correlation between the two with similar ranges of

values being found for almost all LAI values (see Figure 14 (b)). This discrepancy can be explained by the implementation of

the LAI in mHM. In contrast to the land cover type , that is used for the determination of ET processes in the upmost
✿✿✿

top

soil layer, LAI values are only used for interception and do consequently
✿✿✿✿✿✿✿✿✿✿✿

consequently
✿✿

do
✿

not directly in�uence travel-time

behavior. As a result, any possible relationship between LAI and TTD’s
✿✿✿✿✿

TTDs is therefore biased and conclusions from our5

results must take into account this limitation critically.

3.2.5 Soil properties

An important input parameter in mHM is the soil type inside every cell. This property is implemented in mHMusing the Ger-

man soil data base Bodenübersichtskarte 1:1.000.000 (BÜK 1000) (Federal Institute for Geosciences and Natural Resources (BGR),

1998).10

Due to this relevance in the model, we anticipated a strong impact of the soil type in a cell on the resulting mean life

expectancy. Estimating the PDF of mean travel times for every soil type individually , did indeed show signi�cant di�erences

between them (see Figure 15). Soil classes found in the geographically lower regions of the catchment generally show longer

mean travel times with a unimodal distribution shape, whereas soil types in the geographically higher regions correspond

with generally shorter mean travel times with the shape of the distributions being less regular. This qualitative analysis15

reveals some overlap with the land cover distributions as well as mean precipitation rates. It is consequently not possible to

directly infer causal correlation from statistical correlation.

In addition, the soil class is a symbolic variable, i.e., its values only indicate a certain type of soil but does not directly

relate to any numerical quantity associated with this soil type. Consequently, we could not infer any quantitative connection

between soil types and resulting travel-time behavior.20

To address this problem, we used the saturated soil moisture of the soil. This quantity is the amount of pore space per cell

that can be potentially �lled with water (porosity times the depth of root-zone soil layer). Its value is determined in mHM

through pedo-transfer functions using the soil textural information on percentage of sand, clay and bulk density. Comparing

these values in every single cell with the mean life expectancy shows a very strong statistical relationship with a coe�cient

of determination R2 = 0.675.25

The high correlation values of the saturated soil moisture can be explained by a mixture of causal and statistical factors.

On one hand, it is reasonable to expect the total amount of storage to be �lled with water to have a signi�cant e�ect on the

resulting travel-time bahvior
✿✿✿✿✿✿✿

behavior. On the other hand, the soil tapes
✿✿✿✿

types
✿

show a strong overlap with other factors like

precipitation levels and land cove
✿✿✿✿

cover
✿

types that have already been discussed above.

3.3 Statistical analysis of mean age30

As described above, the di�erence between the forward and backward formulations of travel time has long been acknowl-

edged (Niemi, 1977) and many studies have investigated their relationship (Cornaton and Perrochet , 2006a; Botter , 2012;
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Figure 15. Soil classes in the Nägelstedt catchment. Panel (a) shows the spatial distribution and Panel (b) shows the kernel density estimate

of the mean life expectancy (in months) of soil moisture for selected soil classes. Blue curve represents soil class 9 (36% sand and 10% clay),

yellow curve represents soil class 38 (12% sand and 15% clay), orange curve represents soil class 40 (10% sand and 19% clay), red curve

represents soil class 42 (7% sand and 39% clay) and brown curve represents soil class 51 (19% sand and 70% clay).

Benettin et al., 2013; Harman, 2015; Benettin et al., 2015a). Both these formulations are linked by virtue of the so called Niemi

relation

J(tin)θ(tin)
−→p (t− tin|tin) =Q(t)←−p (t− tin|t), (8)
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Figure 16. Scatter plot of mean life expectancy (in months) of soil moisture vs.
✿✿✿✿✿

versus
✿

saturated soil moisture (in mm).

Pre PET SSM

mean life expectancy 0.860 0.260 0.675

mean age 0.728 0.143 0.711

Table 1. R2 values for several predictors of mean travel time

which can be derived by considering a water parcel entering the CV at tin and leaving at t. Consequently, mean life

expectancy and age only coincide in
✿✿✿

the case of steady-state conditions. As a result, we also investigated the behavior of

mean age to elucidate connections and di�erences between forward and backward formulations for our catchment.

Visually comparingmean age (see Figure 17) and mean life expectancy (see Figure 8 b) in the Nägelstedt catchment showed

strong qualitative and quantitative similarities. Accordingly, we also got a very strong statistical relationship between these5

two quantities with a coe�cient of determination of R2 = 0.956. Overall, the relationship was very linear with mean age

values falling short of mean life expectancy for both small and large values.

Due to themathematical and physical similarities, such a strong connectionwas anticipated. To further investigate possible

origins of their respective di�erences, we performed the same statistical analysis for mean age.

To that end, we considered proxy variables that have already been shown to have a considerable impact on travel-time10

behavior. As demonstrated by the analysis above, these were precipitation (Pre), potential evapotranspiration (PET) and

saturated soil moisture (SSM) as proxies for in�ux, out�ux and state
✿

, respectively. Results showed overall the same trend for

mean age and life expectancy with respect to these predictors (see Table 1). Precipitation was the most dominant factor for

both quantities with the saturated soil moisture being a close second. This is in contrast to
✿

, e.g., Benettin et al. (2015a), who

emphasized the role of the out�uxes for the time evolution of both age and life expectancy. In our analysis, we saw that proxy15

variables for in�ux and state showed
✿✿✿✿

show
✿

strongest correlations with mean travel-time behavior. On the other hand, PET,

which is a good proxy for one of the two out�uxes, showed only moderately strong correlations with said behavior. In case
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Figure 17. Mean age of soil moisture in the Nägelstedt catchment. Panel (a) shows spatial distribution and Panel (b) shows scatter plot of

mean age vs.
✿✿✿✿✿

versus mean life expectancy (see Equation 8) in months.

of mean age, this relationship was even weaker compared to the other two (precipitation and saturated soil moisture). Since

we could not provide a proxy variable for the other out�ux, i.e., discharge, we excluded this quantity from our analysis.

3.4 Joint impact of multiple variables on mean travel times

In the analysis above, the statistical relationship between mean travel-time behavior and a number of variables was pre-

sented and discussed. This was done for every variable individually to elucidate its possible impact on mean travel times. In5
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Pre Pre + SSM Pre + SSM + PET

mean life expectancy 0.860 0.911 0.913

Table 2. R2 values of for several regression models of increasing complexity.

addition to this simple analysis, we also investigated the joint impact of several variables. Such results can be of relevance

for prediction, i.e., using a set of variables to predict travel times in a given CV.

To that end, we used the variables that had been shown to have the highest impact individually, i.e., precipitation, saturated

soil moisture and potential evapotranspiration, and performed a multiple linear regression. Simple linear regression had

already demonstrated that both precipitation and saturated soil moisture could explain a signi�cant amount of the variability5

contained in the dataset. Combining these factors could therefore improve the predictability even further. We therefore

applied Forward Stepwise Selection to generate a series of models with increasing complexity. The �st
✿✿✿

�rst
✿

single-variable

model consequently used only precipitation as the variable with the highest singleR2 value. Next, the double-variable model

used both precipitation and saturated soil moisture and the most complex three-variable model used precipitation, saturated

soil moisture and potential evapotranspiration jointly.10

Results for the default case , showed that, compared to using only one variable (precipitation), using two variables for the

regression (precipitation and saturated soil moisture) improved the predictability of mean travel times (see Table 2). This

was expected since both variables alone provided already high R2 values. In addition, precipitation and saturated soil mois-

ture did only show
✿✿✿✿

only
✿✿✿✿✿✿✿

showed
✿

moderate correlation (R2 = 0.451), so adding the latter variable added new information

to the prediction model. The correlation that existed between precipitation and saturated soil moisture is explained by the15

an orographic e�ect, i.e., hilly regions in the catchment , with typically lower values of saturated soil moisture , also show

higher precipitation values. In contrast, using three variables (precipitation, saturated soil moisture and potential evapotran-

spiration) resulted in almost negligible improvement (see Table 2). This is due to the already lower impact of PET compared

to precipitation and saturated soil moisture. In addition, PET showed comparably stronger correlation with both precipita-

tion and saturated soil moisture (data not shown), therefore adding only little new information compared to the other two20

variables. Such low impact of outgoing �uxes compared to precipitation has already been reported before, for the case of

synthetic toy models (Daly and Porporato, 2006). Moreover our results agree with the �ndings of Hrachowitz et al. (2009),

who also reported similarly strong explanatory power of climatic variables like precipitation as well as soil and land surface

properties.

3.5 Impact of hydrological regime on travel-time behavior25

The analysis above revealed the strong impact of the in�ux (i.e., precipitation) as well as the state variable (i.e., saturated

soil moisture) on the travel-time behavior
✿

in
✿✿✿✿

the
✿✿✿

soil. To further elucidate their impact, we investigated
✿✿✿

the
✿✿✿

soil
✿

travel-time

behavior independently for di�erent hydrological regimes during the considered period of time, i.e., from 1955 - 2005. To
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that end,
✿

we partitioned the available time series into regimes based on soil moisture (state variable) and precipitation events

(in�ux).

In the �rst case, we averaged the time series of mean saturated soil moisture in the whole Nägelstedt catchment for every

year, i.e., 50 years in total. Next, we divided the resulting time series such that years with an average soil moisture content

above
✿✿✿

the 85th percentile of the time series were labeled as wet years. In contrast, years with an average soil moisture content5

below
✿✿✿

the 15th percentile of the time series were labels as dry years. This annual
✿✿✿✿✿✿✿✿

year-wise
✿

partitioning was seen necessary

due to the strong annual �uctuations of this variable. Finally, we performed the same analysis as describe above for both –

now smaller – datasets.
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Figure 18. Mean life expectancy of soi
✿✿

soil
✿

moisture in the Nägelstedt catchment in dry years. Panel (a) shows the spatial distribution and

Panel (b) shows the kernel density of mean life expectancy (in months).
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Using results from dry years only (see Figure 18) , showed a similar qualitative travel-time behavior but strong quantitative

contrast compared to the mean travel-time behavior discussed above (see Figure 8). Compared to the
✿✿✿

this general case, mean

life expectancy was much larger in dry years. In addition, dry years exhibit a wider range of possible values with the largest

one (over 50 months) being almost 4 times a large as the smallest one (approximately 12 months).

(a) spatial distribution
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Figure 19.Mean life expectancy of soi
✿✿

soil
✿

moisture in the Nägelstedt catchment in wet years. Panel (a) shows the spatial distribution and

Panel (b) shows the kernel density of mean life expectancy (in months).

Wet years
✿

, on the other hand, exhibit a very small range
✿

of
✿✿✿✿✿✿

values
✿

with the smallest value (approximately 5 months) being5

roughly only half as large as
✿✿✿

half
✿

the largest value (approximately 11 months) (see Figure 19). Compared to the general

case, where the largest value (approximately 20 months) were roughly 3 times as large as the smallest value (approximately 6
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Pre PET SSM

wet years 0.374 0.084 0.388

dry years 0.781 0.223 0.834

Table 3. R2 values for several predictors of mean travel time (as caused by wet and dry years).

Pre PET SSM

mean life expectancy 0.736 0.221 0.857

Table 4. R2 values for several predictors for mean travel time (as caused by rainy months).

months), these two scenarios fall on either side of this spectrum. This stark discrepancy demonstrates again the strong impact

of the state variable (soil moisture) on travel-time behavior. Another di�erence between the mean travel-time behavior in

wet years and the general case is the unimodal distribution of the former. The analysis above revealed how the bimodal

behavior is mostly due to
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿

correlates
✿✿✿✿✿

with the di�erent soil types and therefore re�ects the strong impact on this

property on the overall soil-moisture dynamics. The disappearance of this bimodal behavior is therefore re�ective of how5

the soil becomes ’forced into line’ when being
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿

when
✿

�lled up with waterleveling prior di�erences.

In addition,
✿✿✿

our results showed di�erent statistical dependency
✿✿✿✿✿✿✿✿✿✿✿

dependencies of travel-time behavior with respect to pre-

cipitation, PET and SSM (see Table 3). Dry years showed very similar correlation values compared to the general case (see

Table 1 a). On the other side, correlation values for wet years were remarkably smaller.

In the second case, we also investigated travel-time behavior depending
✿✿

on
✿✿✿✿✿✿✿✿

extreme
✿✿✿✿✿

values
✿✿✿

of
✿✿✿

the
✿

in�ux, i.e., in case of10

months having above average
✿✿

for
✿✿✿✿✿✿✿

months
✿✿✿✿✿✿

having
✿✿✿✿✿

large precipitation values (rainy months). To that end, we constrained our

analysis to forward travel-time
✿✿✿✿

travel
✿✿✿✿✿

time distributions which were triggered by heavy rain events. This means that, in

analogy to the analysis above,
✿

we only used months with precipitation values above the 97th percentile and performed again

the same analysis for the reduced dataset.

Results showed strong di�erences in mean life expectancy during rainy months compared to the scenarios discussed above15

(compare Figure 20 with Figures 8 and 18). Compared to wet years, we saw even lower mean life expectancy. This can be

explained by the strong impact of the rain on soil moisture leading to a �ushing of the soil. We also saw a similarly small

variance and a nearly unimodal distribution of mean travel-time values.

In addition to that, we saw di�erences for
✿

in
✿

the statistical correlation of mean life expectancy with
✿✿

of precipitation, poten-

tial evapotranspiration and saturated soil moisture (see Table 4). Compared to the standard travel-time behavior, precipitation20

was slightly less explanatory
✿✿✿✿✿✿✿✿✿

correlated with mean life expectancy. This was caused by lower overall variation in precipi-

tation values , due to constraining our analysis to large values,
✿

therefore excluding low and medium range rain events. In

contrast to that, R2 values for PET and SSM increased.
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Figure 20. Mean life expectancy of soil moisture in the Nägelstedt catchment caused by rainy months. Panel (a) shows the spatial distri-

bution and Panel (b) shows the kernel density of mean life expectancy (in months).

3.6 Relevance of TTD’s
✿✿✿✿✿

TTDs for hydrological inference

The above results demonstrated the impact of certain soil properties, as implemented in mHM, on mean travel times using

the R2 metric as a measure. In addition to that statistical analysis, their relationship can further be elucidated by analyzing
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all years dry years wet years

QIf 0.150 0.061 0.173

QIs 0.298 0.239 0.317

QB 0.552 0.700 0.512

Table 5. Relative contribution of the di�erent �uxes to runo� generation.

all years dry years wet years

R2 0.6059 0.6954 0.3619

Table 6. R2 values for recharge vs.
✿✿✿✿✿

versus
✿

mean travel times for di�erent regimes.

Equation (2) or (3). Assuming for example a very simple linear relationship for both Q and ET with respect to S we get for

Equation (2) the following

−→p Q(TE , tin) =
αQ

θ(tin)
exp(−αETTE)exp(−αQTE) . (9)

Equation (9) shows how under such simpli�ed assumptions, the TTDof such a CVwould follow an exponential distribution

with its mean travel time being related to the recession constantsαQ andαET . As shown above, such an exponential behavior5

is visible in the mean behavior (see Figure 7 right), whereas non-stationary TTD’s
✿✿✿✿

TTDs
✿

show this exponential behavior to

be superimposed
✿✿✿✿✿✿✿✿✿

dominated
✿

by the event-based nature of the governing �uxes (see Figure 7 left).

In addition to these di�erences, we also saw di�erent mean travel-time behavior for di�erent regimes (see above). These

di�erences can be explained by the actual implementation of Q and ET in mHM, which is generally non linear
✿✿✿✿✿✿✿✿✿

non-linear

(see Section 2.2). In order to
✿✿

To
✿

assess the di�erent roles of each soil process on discharge generation, we calculated the10

relative contribution of each out�ow mechanism for each regime. The data in Table 5 show how much of the water that

entered the soil during a given time and left eventually as discharge was leaving as base�ow QB, slow inter�ow QIs or fast

inter�ow QIf . On average, base�ow contributed the most to discharge with fast inter�ow having the smallest share. This

overall distribution became stronger
✿✿✿✿✿

more
✿✿✿✿✿✿✿

strongly
✿

pronounced during dry years with base�ow taking the largest share of

out�ow generation and fast inter�ow becoming negligible. For wet years this trend is reversed, with water entering the soil15

during rainy months having an almost equal distribution. These di�erent weighs show the relative impact and therefore the

relative information content that travel-time
✿✿✿✿

travel
✿✿✿✿

time
✿

distributions could contain, i.e., travel times in dry years are mostly

the results of the successive processes leading
✿✿✿✿✿✿✿✿✿✿

contributing
✿

eventually to base �ow (see Figure 3), whereas travel times during

storm events contain information on all discharge processes combined
✿✿✿✿✿✿

equally.

To further elucidate the relationship between the resulting mean travel times and certain model parameters, we performed20

a regression analysis comparing the recession constant for recharge with the mean travel times for di�erent regimes. Results
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con�rmed the relationship described above with mean travel times during dry years showing the strongest correlation (see

Table 6).

Such a high interdependency between certain model parameters and data from di�erent �ow regimes is not unique for

TTD’s
✿✿✿✿✿

TTDs. Using discharge alone would reveal similar overall tendencies, e.g., discharge data from droughts is more infor-

mative for calibrating base�ow recession constants. What is
✿✿✿

new, however, new is the additional information content, which5

is not contained in discharge data alone. Not only can this improve calibration e�orts, it allows the inference of additional

system states. This is in particular relevant
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to, but not con�ned to, the total amount of

stored groundwater. Discharge data are not sensitive to, and therefore not informative for, groundwater levels, but only to

its relative changes.TTD’s
✿✿

are
✿✿

to
✿✿✿

its
✿✿✿✿✿✿✿✿✿

variations,
✿✿✿

i.e.,
✿✿✿✿✿✿

�uxes.
✿✿✿✿✿

TTDs
✿

on the other hand, strongly depend on the total amount of

water stored in every CV. Using both data types for inference would therefore allow to provide reasonable estimates of this10

quantity. Similarly, the estimation of water in the root and vadose zone can be improved.

In addition,
✿

Birkel and Soulsby (2015) highlight the temporal aspects of travel times on model calibration. They point out ,

how the sampling frequency of the time series should match the expected travel times of the underlying process. Our results

above revealed di�erent time scales for di�erent hydrological regimes, that di�ered
✿✿✿✿✿✿✿

varying by almost an order of magnitude.

Despite this heterogeneity, all travel times in our study remained in
✿✿✿✿✿

within the range of months. Under such circumstances,15

a high resolution measurement campaign with daily or even hourly intervals would not be necessary.

Although the above explanations provide only a limited perspective on the relationship between TTD’s
✿✿✿✿✿

TTDs and model

parameters, it can be said that the strong interlink between the travel-time behavior and out�ow generation indicates

the high information content of the former with respect to the latter. As a result, travel-time
✿✿✿✿✿

travel
✿✿✿✿✿

time distributions

should be regarded as highly informative for the calibration of hydrological models. As mentioned in the Introduction,20

McDonnell and Beven (2014) have made the case for the usefulness of TTD’s
✿✿✿✿✿

TTDs
✿

for the parametrization of such mod-

els. The above presentations provide empirical support for this notion.

4 Conclusions

In this study, we investigated the spatially-distributed soil-moisture dynamics in the Nägelstedt catchment by virtue of

travel-time
✿✿✿✿

using
✿✿✿✿✿✿

travel
✿✿✿✿

time
✿

distributions. The states and �uxes, needed for the derivation of the travel times, were nu-25

merically computed using the mesoscale Hydrological Model (mHM), which was calibrated against 55 years of discharge

data as well as using detailed data on soil properties, land cover and precipitation. We performed a statistical analysis of

mean travel times to describe the soil response decoupled from the event-driven impact of precipitation.

Comparing the derived mean travel times for several modeling scales (spanning over one order of magnitude), we did

not see any signi�cant di�erence in their distribution. This indicates a general soundness of the parametrization scheme of30

mHM used for the calculation of the states and �uxes on the di�erent modeling scales. Our analysis shows that precipitation,

saturated soil moisture and potential evapotranspiration are strong statistical predictors ofmean travel time behavior.We also

note thaton average ,
✿✿✿

on
✿✿✿✿✿✿✿

average, shorter mean travel times correspond to forested area and larger ones to crop/grassland, an
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observation that we linked to both correlations between forested and high-precipitation areas as well as the di�erent water

uptake mechanisms of trees vs.
✿✿✿✿✿

versus
✿

crop/grass.

We also investigated the travel-time behavior for di�erent hydrological regimes, i.e., for dry and wet conditions (using

soil moisture and precipitation as indicators). Our analysis revealed signi�cantly di�erent travel-time behavior for each of

these regimes. Despite the strong heterogeneity of soil properties as well as (to a lesser extent) precipitation values, we could5

discriminate these regimes also in the resulting distribution of mean travel times.

Under dry conditions, we saw mean travel times having a pronounced bimodal distribution with long mean travel times

and large variance. Such long travel times reveal the strong impact of base�ow on the generated out�ow, whereas the large

variance shows the variety of soil responses under dry conditions. Such conditions are therefore suited for inferring soil

properties relating to base�ow generation. In addition, due to the large variance of soil responses, such conditions would10

allow to infer
✿✿✿

the
✿✿✿✿✿✿✿✿

inference
✿✿

of the spatial origin of solutes found in discharge streams. Such inferences are,
✿

however, hampered

by the long travel times involved. Not only are long time series needed, measurements must also being performed during

such dry conditions.

Under wet conditions, we saw mean travel times having a unimodal distribution with shorter mean travel times and

a smaller variance. This shorter travel times are caused by a larger in�uence of the slow and fast inter�ows on the total15

discharge behavior. As a result, TTD’s
✿✿✿✿✿

TTDs derived under such conditions may be suited for inferring the parameters

relating to these hydrological processes.

In
✿✿✿

the case of rainy months, which overlap with wet conditions to a signi�cant degree, we saw a similar distribution of

✿✿✿✿

mean
✿

travel times, but with even shorter mean values. This indicates a stronger impact of fast inter�ow on the total discharge

behavior. Such information can therefore be valuable for improving the parametrization of the fast inter�ow related processes.20

It is important to emphasize that our results have been derived with respect to a single hydrological model, i.e., mHM,

only. As a result, we also need to critically assess the limitations of this approach and its impact on the reliability of our

conclusions. First, mHM treats the hydrological storage in every compartment as fully mixed. In the absence of additional

information, we consequently assumed a uniform sampling scheme for the discharge generation from every mHM cell. This

may have introduced errors in the age distribution of �uxes and therefore the travel-time behavior as discussed in Section25

2.1. Due to the well established ability of mHM to take subgrid
✿✿✿✿✿✿✿

sub-grid
✿

heterogeneity into account, we have con�dence

in the physical plausibility of the spatially explicit
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-explicit soil moisture states and �uxes. In the absence of , say

solute data, we have, however, to consider these assumptions as tentative and open to revision. The other limitation of our

approach stems form the computational nature of our study introducing a number of uncertainties. Like any hydrological

model, mHMmay su�er from three di�erent sources of uncertainty; :
✿

input uncertainty, structural uncertainty and parametric30

uncertainty. We would therefore like to assess their nature and potential impact on our results and conclusions. First, input

uncertainty is referring to the uncertainties inherit in the forcing of the model, i.e., precipitation. Our results have shown the

strong impact of precipitation on travel-time behavior. It would therefore stand to reason to expect
✿✿✿

that
✿

a strong impact of

any uncertainty from precipitation to propagate
✿✿✿✿✿✿✿✿✿

propagates to the resulting travel-time behavior. However, we investigated

mean behavior only, where time series from many months were averaged. We therefore consider possible contributions35
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to our results to be minor. Next, structural uncertainty depend on the conceptual implementation of subsurface processes

within mHM and our choices of di�erent mHM compartments for our analysis. In Section 2.2, we discussed this issue by

providing the rationals
✿✿✿✿✿✿✿✿

rationales
✿

for, e.g., including the inter�ow components into our analysis. Finally, parameter analysis

is probably the largest total source of uncertainty and several studies have recently investigated its impact on mHM output

generation (Samaniego et al., 2013; Cuntz et al., 2015; Livneh et al., 2015). The studies show that, while the �uxes are typically5

well represented in mHM (Livneh et al., 2015), the overall soil moisture storage showed less accuracy, in particular during

droughts Samaniego et al. (2013). For droughts, our results showed in general long travel-times and pronounced soil speci�c

behavior with comparably lesser impact of precipitation. While we do not expect a major impact on the qualitative nature

of these results, we should consider the quantitative aspect, i.e., the speci�c values for mean travel times to be inconclusive.

In general, we consider the uncertainty stemming from the storage estimate to be the most relevant due to having both10

comparably lower accuracy and the strong impact on overall travel-time behavior demonstrated above. This is exacerbated

since the water content relevant for out�ow generation may not be the same as the one relevant for travel-time behavior.

Immobile water due to, e.g., dead-end pores, a�ects the latter but not the former. It is, however, this connection between the

total water content and the resulting travel-time behavior that makes the use of TTD’s
✿✿✿✿✿

TTDs
✿

an important tool for a better

calibration of hydrological models.15

As an outlook, we can say that, having established a comprehensive description for the storage and release of water in

the investigated catchment, the natural next step is the integration of reactive solute transport. As demonstrated by e.g.,

Botter et al. (2010), the concept of travel-time
✿✿✿✿✿

travel
✿✿✿✿

time distributions can directly be adapted to account for the transport of

both conservative and reactive solutes. This extension would facilitate to compare
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿

our predictions with

the wealth of data that has been and continues to be collected within the AquaDiva center at the Hainich Critical Zone20

Exploratory (Küsel et al., 2016). Thereby, we will be able to test our predictions by virtue of a large data set as well as initiate

the collection of additional new data.

Appendix A: Forward and backward formulation of travel times

Both the forward and backward formulations for TTD’s
✿✿✿✿✿

TTDs can be derived from Equation (1) by additionally associating

each term with its distribution, so
✿

.
✿✿✿✿✿✿✿✿

Therefore,
✿✿✿

we
✿✿✿

get
✿

25

d

dt
[S(t)pS(T,t)] = J(t)pJ (T,t)−ET (t)pET (T,t)−Q(t)pQ(T,t). (A1)

Here T is a placeholder for either the age or life expectancy of the water parcel. The total derivative in Equation (A1) can

be reformulated using the material derivative, so

(

∂

∂t
+

d

dt
T

∂

∂T

)

[S(t)pS(t,T )] = J(t)pJ (t,T )−ET (t)pET (t,T )−Q(t)pQ(t,T ). (A2)
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Equation (A2) is the general PDE describing the time evolution of the age of the water in the CV. It is worthwhile to note

that there is a signi�cant inconsistency in the literature with respect to this equation. Botter et al. (2011) discuss the backward

formulation of Equation (A2), while referring to it as the Master Equation (ME). This is certainly justi�ed given that the ME is

describing the time evolution of the PDF of any Markov process, i.e., a stochastic process that is local in (chronological) time.

This condition is true for Equation (A2). In addition, Equation (A2) is not only local with respect to chronological time t but5

also with respect to the travel time T . Interpreting T as x, it becomes obvious that Equation (A2) is analogous to the much

simpler Fokker-Planck equation or, since there is no ’di�usion’, the even simpler advection-reaction equation. On the other

side, Porporato and Calabrese (2015) are careful to trace this equation back to the seminal work of both M’Kendrick (1925)

and von Förster (1959) in population dynamics. Consequently, they call this equation the McKendrick-von Förster (MKVF)

equation.10

One problem with Equations A1 and A2 is the lack of closure, i.e., pS(T,t), pJ (T,t), pET (T,t) and pQ(T,t) are di�erent

variables. The solution to this problem is the formulation and/or derivation of a dependency, i.e., closure, between the storage

and the �uxes through

pF (T,t) = ω(T,t)pS(T,t). (A3)

This closure function ω(T,t) must follow some properties to ensure the normality of both pS(T,t) and pF (T,t), with15

the latter being the PDF of a �ux, i.e., e�ective precipitation, evapotranspiration or discharge. These closure functions are

called StorAge Selection (SAS) functions in the literature (Rinaldo et al., 2015). Several di�erent formulations exist with the

one given above being based on the work of Botter (2012).

The shape of the SAS function is determining the preference of the �uxes, e.g., discharge, for several ages of the water

stored in the CV. In the backward formulation,
✿

a �at function would correspond to no preference with respect to age, a20

monotonously decreasing function would correspond to a preference for younger water and a monotonously increasing

function would correspond to a preference for older water.
✿
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