
Editor Decision

Thank you for your detailed replies to the the comments of the 2 reviewers. As you have ac-
knowledged, both reviewers raised a couple of interesting points, a few of which are of considerable
importance for the underlying interpretation of your results. I very much appreciate that you
invested some time to addressed most comments in-depths. Yet, I feel that some points need a bit
more attention in order to clarify your approach for the reader and to avoid misinterpretations:

We appreciated the comments of the Editor and think we could benefit from them. We are sure
that they helped us to significantly improve our manuscript. In the following, we present these
comments as well as our point-by-point response to all of them.

1. relating to comments of both reviewers, it remains unclear *how* pQ is constructed in your
study. More specifically: which pQ does the reader actually get to see? Is it the age distri-
bution of an incoming signal J that leaves a grid cell through *all* exit routes (i.e. Q and
ET)? or is it only the age distribution of water leaving the unsaturated zone (Q and ET?)
as I seem to understand from your reply No.8 to reviewer 2? In case groundwater storage
was considered, how was the hydrologically passive storage accounted for (see e.g. the well
known Fogure 1 in Zuber, 1986, Journal of Hydrology 86) - this is highly relevant for the
age distributions as it exacerbates the dichotomy between celerity and velocity (McDonnell
and Beven, 2014)! In addition, as you showed, mHM uses several soil layers. Is pQ a direct
reflection of the total outflow from *all* soil layers? A further point is that only 5 years
of warm up period were used. As the subsequently used ”mean” age can be considerably
sensitive to long tails, what is the potential of your estimates being biased towards too young
water? In other words, even with 50 years modelling, is it conceivable that we miss some
minor volumes of very old water here? These points need to be made much clearer - in the
methods but also in results and discussion sections (particularily in the figures!).
This first comment contains several distinct sub-comments. To address them appropriately,
we will answer them individually.

(a) How is pQ determined.
We are sorry for this misunderstanding. Due to the Editor’s as well as the reviewers’
comments, we are now aware that this crucial aspect was not properly explained in the
earlier version of the mansucript. In the revised manuscript, we address these concerns
by elaborating on the question what storages and fluxes were used for the analysis. It
is now made clear in the Introduction, the Methods section as well as throughout the
Results section (plus figure captions) that all our analysis was confined to the soil layer,
only. In particular, we present the rationals for this decision both in the Introduction
and further elaborate on its ramifications in the Methods section.

(b) What about the soil layers.
The Editor is correct in his interpretation: we estimated the age distribution (TDDs) of
water leaving the unsaturated zone (Q and ET). The groundwater part is not accounted
in the analysis (see our elaborations above).

(c) Warm-up period too short.
The problem of a warm-up period that might be too short is only relevant for backward
TTDs. Most of the analysis in our study was performed with respect to forward TTDs.
In this case a similar problem exists with respect to a period of time at the end of the
estimation period that may have to be discarded. We determined the length of this
period by using the partitioning function θ as a measure. This quantity describes the
ratio of a water parcel that is entering the CV at a given time and eventually leaves as
discharge. Adding this value with the ratio of the water parcel that leaves as ET should
always add up to one. We could therefore add up these quantities to determine how
much of the time series we could use. Our investigation showed that only close to the
last two years needed to be discarded from the analysis. In the revised version of the
manuscript, we acknowledge this notion (see beginning of the Results and Discussion
section in the revised manuscript).

2. Not everybody may be familiar with the details of mHM and of how the parameters are ob-
tained in that model. It may therefore be important to clarify much earlier in the manuscript,

1



how the soil moisture storage capacity is determined. Attentive readers will otherwise wonder
if some of the storage is unaccounted for if the value is a ”normal” calibration parameter
(i.e. potential ”passive” storage” that within you period of application does not become hy-
drologically active but may provide a mixing volume; see above and McDonnell and Beven,
2014).
With respect to the way the soil moisture storage is determined, we now address this issue
early on in the manuscript (see the Introduction in the revised manuscript) and later we elab-
orate on it in the Methods section. We also expanded our explanation which parts of mHM
are parameters determined during calibration and which are determined as model outputs
(see the Methods section in the revised manuscript). In addition, we refer to Zacharias 2007,
where important aspects of the calibration process are described in more detail. Finally,
we discuss the difference between the water content relevant for outflow generation and for
travel-time behavior in the Conclusion section of the revised mansucript.

3. I am missing a clear research question and/or research hypothesis this manuscript is looking
at. Please add that at the end of the introduction.
We aggree that the manuscript in its previous form did not state concisly the main reserach
questions and novel contributions of the study. From our current perspective, we would sum-
marize the main questions as follows: (i) How are spatially distributed quantities, in particu-
lar land-cover, precipitation and soil type, impact travel-time behavior, (ii) how do different
hydrological regimes impact travel-time behavior and (iii) what is the inter-connection be-
tween travel-time behavior and specific conceptualization of different hydrological processes
and how may these connections be used for a better model calibration. These points are now
better stated in the manuscript (see Introduction in the revised manuscript).

4. Note that figure captions should be stand-alone. In other words, the reader should be able
to understand the figure by reading the captions alone. At the present the captions a very
vague and uninformative. I would encourage you to be more specific and detailed. Only one
example: what are the soil classes 9, 38, etc. in figure 14. what type of soils are we talking
about?
We heeded the advise of the Editor and strongly revised the figures caption in the manuscript
to make them more self explanatory (see figure captions in the revised manuscript).

In general, I would be glad if you could invest some more time in developing a more detailed
and clear description of your methods and a stronger discussion of the limitations of the chosen
approach (e.g. what about parameter uncertainty? uncertainty in age distributions? etc. and the
effect on the interpretation)

We thank the Editor for the for these suggestions. In the revised manuscript, we have now
added more material to address these two main points. First, with regard to the methods, we have
significantely expanded our description on how the states and fluxes were generated in mHM and
how the TTDs were computed using these states and fluxes. This point was already addressed
above. Second, we also added material to the Conclusions where we now ciritically assess the
limitations of our approach. In particular, we discuss the different sources of uncertainty in travel-
time estimation. These include uncertainties arising due to input data, simplified model structure
and parametric uncertainty. With respect to input data, we refer to prior studies on the validety
of the mHM input data. With respect to mHM model structure, we discuss the potential impact of
our definition of soil moisture. However, to fully assess this aspect, a model-to-model comparison
would be necessary. We are interested to pursue such a comparison with different candidate models
being considered. The last point is parameteric uncertainty. Here we refer to the literature that
exists on this topic with respect to mHM and discuss the main results from these studies and how
they may relate to the estimation of TTDs. This last point is particularly interesting and a full
study may be appropriate. These points are all discussed in the Conclusions section of the revised
version of the manuscript.
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Abstract.

Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike

stream�ow hydrographs, they describe the movement and storage of water inside and through the hydrological system.

Until recently, studies using such travel-time distributions have generally either been applied to simple (arti�cial toy) models

or to real-world catchments using available time series, e.g., stable isotopes. Whereas the former are limited in their realism,5

the latter are limited in their use of available data sets. In our study, we employ a middle ground by using the mesoscale

Hydrological Model (mHM) and apply it to a catchment in Central Germany. Being able to draw on multiple large data sets

for calibration and veri�cation, we generate a large array of spatially distributed states and �uxes. These hydrological outputs

are then used to compute the travel-time distributions for every grid cell in the modeling domain. A statistical analysis shows

the general soundness of the upscaling scheme employed in mHM and reveal precipitation, saturated soil moisture and po-10

tential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In addition,

we demonstrate and discuss the high information content of mean travel times for characterization of internal hydrological

processes.

Keywords

Travel-time distributions,mesoscale Hydrological Model (mHM), multiscale modeling, catchment hydrology, stochastic hy-15

drology, model calibration

1 Introduction

The description of storage and transport of both water and dissolved contaminants in catchments is a challenging subject

due to the high heterogeneity of the subsurface properties that govern their fate (Dagan, 1989). This heterogeneity, combined

with a limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are of-20

ten applied, where the relevant processes are modeled as being random (Dagan, 1986; Rubin, 2003). Amongst these methods,

a powerful tool is the use of travel-time distributions (TTDs
✿✿✿✿✿

TTD’s), where storage and transport inside the catchment are

modeled from a Lagrangian perspective (Rinaldo and Marani, 1987; Rinaldo et al., 1989). This means that the catchment itself
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or meaningful parts of it is treated as a control volume (CV). The spatially complex array of di�erent �ow paths inside such

a CV is consequently ignored and only inlet and outlet �uxes are used for the analysis (Botter et al., 2010; Rinaldo et al., 2011;

Botter , 2012). This observation-based description of catchment dynamics makes TTDs
✿✿✿✿✿✿

TTD’s a very robust tool. Although

the application of TTDs
✿✿✿✿✿

TTD’s
✿

goes back many decades (Danckwerts, 1953; Niemi, 1977), recent developments have strongly

improved their theoretical foundations turning them into a versatile and coherent tool to characterize catchment dynam-5

ics (Bertuzzo et al., 2013; Benettin et al., 2015a; Rinaldo et al., 2015; Porporato and Calabrese, 2015). Owing to this progress,

McMillan et al. (2012) andMcDonnell and Beven (2014) have opined that TTDs
✿✿✿✿✿

TTD’s should be used routinely for hydrolog-

ical model calibration, a notion that has been picked up with tremendous speed (Windhorst et al., 2014; Vereecken et al., 2015;

McGuire and McDonnell, 2015). Independently but somewhat parallel to that, Kitanidis (2015) has recently pointed out, that

the key to subsurface characterization is to use all available information. From this information-centered perspective, using10

TTDs
✿✿✿✿✿

TTD’s
✿

have several advantages. First, the travel-time behavior is controlled by di�erent factors than the hydrograph re-

sponse.Whereas the latter is relating rainfall–runo� events the former is relating rainfall–runo�water (McDonnell and Beven,

2014; Birkel and Soulsby, 2015). Second, spatially distributed tracer experiments may dramatically increase the information

content available for catchment characterization (Birkel and Soulsby, 2015).

This range of advantages have lead to a steady increase in both applied and theoretical studies using TTDs
✿✿✿✿✿✿

TTD’s for15

the description of catchment dynamics. Applied studies here means that data from real-world sites are used (McGuire et al.,

2005; Cardenas, 2007; Broxton et al., 2009; Tetzla� et al., 2011; Dunn et al., 2012; Hrachowitz et al., 2013, 2015; Harman, 2015).

Here the advantage is that the data used for the analysis do not su�er from model errors or other conceptual limitations.

However, such data are generally limited in amount (e.g., tracer or isotope time series limited to a few years only, although

Hrachowitz et al. (2009) used time series of up to 17 years) and variety (only a limited number of data types are available).20

As a result, such studies might fail to �nd long-term trends, establish connections between travel-time behavior and speci�c

catchment properties or to investigate the impact of certain hydraulic regimes that are only rarely occurring (e.g., drought

or extremely rainy months). In the second category, we �nd theoretical studies, that either use a very simpli�ed compu-

tational model to focus on speci�c questions (Rinaldo et al., 2006; Du�y, 2010; Botter et al., 2010; van der Velde et al., 2012;

Benettin et al., 2015a; Porporato and Calabrese, 2015) or employ more realistic hydrological models that provide a large data25

set typically not available in real-world sites Sayama and McDonnell (2009); Fenicia et al. (2010); McMillan et al. (2012). Such

theoretical studies allow a more thorough and detailed analysis of the involved processes and their interdependence but may

su�er from an oversimpli�ed model setup for in- and out�ux generation.

Our study falls into the latter category such that we use a hydrological model, i.e., the mesoscale Hydrological Model

(mHM) (Samaniego et al., 2010a; Kumar et al., 2013a), to generate the �uxes and states for the analysis. Using detailed data30

of precipitation, land cover, morphology and soil type as inputs, mHM is able to provide continuous simulations of spa-

tially distributed �uxes (e.g., groundwater recharge or evapotranspiration) and states (e.g., soil moisture) as outputs. By

employing mHM, which is a spatially-distributed hydrological model, we are, however, able to extend these prior studies to

a spatially-distributed travel-time analysis. This makes it possible to address several types of investigation. First, it allows

for a comprehensive description of the �ow and transport dynamics taking place in the catchment. The spatial distribution35
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of such dynamics can then be related to e.g., land cover and physical properties of the soil as well as to driving forces like

precipitation to determine dominant predictive factors. In addition, it allows to investigate how certain parametrizations

of the mHM model are related to the travel-time behavior of the catchment. This opens the way for a more robust model

calibration of hydrological models using additional datasets (McDonnell and Beven, 2014; Birkel and Soulsby, 2015; Kitanidis,

2015).5

As a case study, we use a ca. 1000 km2 catchment in Central Germany for which detailed morphological and climatological

data are available to parametrize mHM. In addition, the chosen catchment is the location of the Hainich Critical Zone Ex-

ploratory, a comprehensive monitoring network used within the Collaborative Research Center AquaDiva (Küsel et al., 2016).

AquaDiva seeks to elucidate the critical role of water �uxes connecting surface conditions with biogeochemical functions in

the subsurface. One of the goals of this project is to understand how far signal of surface properties, like land cover or land10

management, can be traced into the subsurface water and solute dynamics. Spatially explicit travel-time distributions are the

perfect analytical tool to investigate such questions.

✿✿

By
✿✿✿✿✿✿

virtue
✿✿

of
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

modeled
✿✿✿✿

data
✿✿✿✿✿

from
✿✿✿✿✿

mHM,
✿✿✿

we
✿✿✿

are
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

address
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿

questions
✿✿✿

that
✿✿✿✿✿

have
✿✿✿

not
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿✿

investigated

✿✿✿✿✿✿

before.
✿✿✿✿

First,
✿✿✿✿

how
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed
✿✿✿✿✿✿✿✿

quantities,
✿✿

in
✿✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿✿✿

land-cover,
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

and
✿✿✿

soil
✿✿✿✿✿

type,
✿✿✿✿✿✿✿✿

impacting
✿✿✿✿✿✿✿✿✿✿

travel-time

✿✿✿✿✿✿✿

behavior
✿✿

in
✿✿✿

the
✿✿✿✿

soil?
✿✿✿✿✿✿

Unlike
✿✿✿✿✿✿

earlier
✿✿✿✿✿✿✿✿✿✿✿

model-based
✿✿✿✿✿✿

studies,
✿✿✿✿✿

mHM
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿

model.
✿✿✿

We
✿✿✿

can
✿✿✿✿✿✿✿✿

therefore15

✿✿✿

add
✿✿

to
✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

knowledge
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

investigating
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿

behavior
✿✿✿

for
✿✿✿✿✿

every
✿✿✿✿✿

mHM
✿✿✿✿

grid
✿✿✿

cell
✿✿✿✿

and
✿✿✿✿✿

relate
✿

it
✿✿

to
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

geo-physical
✿✿✿✿

and

✿✿✿✿✿✿

climatic
✿✿✿✿✿✿✿✿✿✿

properties.
✿✿✿✿

Next,
✿✿✿✿

how
✿✿✿

do
✿✿✿✿✿✿✿

di�erent
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

regimes
✿✿✿

(wet
✿✿✿

vs
✿✿✿

dry)
✿✿✿✿✿✿

impact
✿✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿

behavior
✿✿

in
✿✿✿

the
✿✿✿✿✿

soil?
✿✿✿✿

Here
✿✿✿

we

✿✿✿✿✿✿✿✿✿

investigate
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(meteorological
✿✿✿✿✿✿

factors)
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿

long
✿✿✿✿✿✿✿✿✿✿

time-series
✿✿

of
✿✿✿✿✿✿✿

modeled
✿✿✿✿✿✿

�uxes

✿✿✿

and
✿✿✿✿✿✿

states.
✿✿✿✿✿✿

Finally,
✿✿✿✿✿

what
✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

inter-connection
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior
✿✿✿✿

and
✿✿✿✿✿✿✿

speci�c
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

conceptualization
✿✿

of
✿✿✿✿✿✿✿✿

di�erent

✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿✿

processes,
✿✿✿

and
✿✿✿✿

how
✿✿✿✿

may
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

connections
✿✿

be
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

of
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterization?
✿✿✿✿✿✿✿✿✿✿✿

Investigating20

✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

model-speci�c
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

conceptualizations
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior
✿✿✿

can
✿✿✿✿✿✿✿

provide
✿✿

a
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿✿✿✿

understanding

✿✿

on
✿✿✿✿

how
✿✿✿✿✿✿

actual
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿✿

connected
✿✿

to
✿✿✿✿✿✿

certain
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

parameters.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿✿✿

analysis,
✿✿✿

we
✿✿✿✿✿

focus
✿✿

on
✿✿✿✿

soil

✿✿✿✿✿✿✿✿

moisture,
✿✿✿✿

only,
✿✿✿✿

i.e.,
✿✿

we
✿✿✿✿✿✿✿

exclude
✿✿✿✿✿✿✿✿✿✿✿✿

groundwater.
✿✿✿✿

This
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

necessary,
✿✿✿

due
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

groundwater
✿✿✿

in
✿✿✿✿✿

mHM
✿✿

as
✿✿

a

✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

reservoir.
✿✿✿✿✿✿✿✿

Although
✿✿✿✿✿✿✿✿✿

variations,
✿✿✿✿

i.e.,
✿✿✿✿✿✿

�uxes,
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

groundwater
✿✿✿✿

level
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rakovec et al., 2016) the

✿✿✿✿

total
✿✿✿✿✿✿✿

amount
✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿

elusive.
✿✿✿✿

This
✿✿✿

is
✿

a
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

feature
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fan, 2015) and
✿✿✿✿✿✿

mHM
✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿✿✿

exception.25

✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿✿

this
✿✿✿✿✿✿✿✿✿

restriction
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

acceptable
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

scope
✿✿

of
✿✿✿

our
✿✿✿✿✿

study,
✿✿✿

i.e.,
✿✿✿✿✿✿✿✿✿

elucidation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal

✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿✿✿✿

TTD’s.
✿✿✿✿✿✿✿✿✿✿✿✿

Groundwater
✿✿

by
✿✿✿✿✿✿✿✿

de�nition
✿✿

is
✿✿✿

far
✿✿✿✿

less
✿✿✿✿✿✿✿✿

impacted
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

or
✿✿✿✿

land
✿✿✿✿✿✿

cover.

✿✿

In
✿✿✿✿✿✿✿

addition,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) recently
✿✿✿✿✿✿✿

showed
✿✿✿✿

that
✿✿✿✿✿✿

TTD’s
✿✿✿✿

show
✿✿✿✿✿

little
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

soil
✿✿✿✿✿✿✿✿✿

moisture.

To present our results on such questions, the rest of the paper is organized as follows: In Section 2we describe the numerical

and analytical tools used in this study. Thus comprises the framework of travel-time distributions, as applied in this study,30

as well as the relevant features of mHM. In Section 3, we present the results of our study and demonstrate how they relate

to the questions raised above. Finally, in Section 4 we summarize our main �ndings in light these questions and draw some

conclusions.
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2 Methods

In the following, we provide a short overview of the analytical and numerical tools and methods used in this study. We start

by introducing the concept of travel-time distributions. In the following, we use the nomenclature as given by Benettin et al.

(2015a) and the theoretical framework by Botter et al. (2010). In addition to that, we give a short overview of the numerical

model (mHM) which was used for the calculation of the states and �uxes. Finally, we introduce the catchment used in our5

study.

2.1 Travel-time distributions for a single control volume

Travel-time distributions are a stochastic description of the dynamic of a water parcel moving through a given control volume

(CV). The de�nition of such a control volume for real-world situation is often arbitrary to some extent (see e.g., the schematic

in Figure 1). Within the context of this study, we used a spatially distributed model where the catchment is partitioned in10

regular grid cells (for more details see Section 2.2 below). Consequently, the boundaries of our CV were given by the grid

cells of the model.

Q(t)

TET

TQ

ET (t)

watertable

TET

TQ

S(t)
ET (t)

Qin(t)

Q(t)

Figure 1. Water movement inside a hill slope (physical schematic on the left and conceptual schematic on the right).

Given that such a CV can be reasonably de�ned, it is clear that the dynamics of a water parcel is determined by the in-

and out-�uxes, that are changing the water content inside it. The time evolution of the water content S inside such a CV is

then given by the following balance equation15

d

dt
S(t) =Qin(t)−Qout(t) = J(t)− (ET (t)+Q(t)). (1)

Equation (1) is a simple initial-value problem with the in-�ux Qin(t) given by the e�ective precipitation J(t) whereas the

out-�ux Qout(t) is given by evapotranspiration ET (t) and runo� per grid cell Q(t).

To denote the di�erent times involved in the dynamic of a water parcel, we followed the notation of Benettin et al. (2015a).

Chronological time was accordingly denoted with t, whereas the water parcel entered the CV at tin and left at tex. At any20

given time t′ in between these two points, any water parcel can therefore be characterized by two di�erent properties; its

age TA as well as its (remaining) life expectancy TE (see Figure 2).
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t

travel time TT

age TA life expectancy TE

tin text′

Figure 2. Interpretation
✿✿✿✿✿✿✿

Schematic
✿

of di�erent times associated with
✿✿

the
✿✿✿✿✿✿✿✿✿

travel-time dynamics of a water parcel.
✿✿✿

Age
✿✿✿

TA
✿✿

is
✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿

elapsed

✿

at
✿✿

t′
✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿

water
✿✿✿✿✿

parcel
✿✿✿✿✿✿

entered
✿✿✿

the
✿✿✿

CV
✿

at
✿✿✿

tin,
✿✿✿✿✿✿✿

whereas
✿✿✿

life
✿✿✿✿✿✿✿✿✿

expectancy
✿✿

TE
✿✿

is
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

remaining
✿✿

at
✿

t′
✿✿✿✿

until
✿✿✿

the
✿✿✿✿✿

water
✿✿✿✿✿

parcel
✿✿✿✿✿

leaves
✿✿

at

✿✿✿

tex.

In their paper, Benettin et al. (2015a) emphasize the two interpretations that originate from these two points of view. Age

is a backwards concept referring to the time passed since the beginning. The associated travel time distribution is therefore

called the backward TTD. The concept of backward TTDs
✿✿✿✿✿

TTD’s is of particular interest for the characterization of e.g., a

water sample, since its composition is determined by the age of the water in the CV. Life expectancy, on the other hand, is

a forward concept since it is referring to the time still left until exit from the CV. The associated travel time distribution is5

therefore called the forward TTD. Such forward TTDs
✿✿✿✿✿

TTD’s
✿

are relevant e.g., for tracer test, since the concentration of an

ideal tracer at the outlet is given by the TTD of its associated water parcel.

In order to derive the TTDs
✿✿✿✿✿✿

TTD’s associated with the forward and backward formulation, Botter et al. (2011) presented

a derivation using only the states and �uxes inside the CV as well as what they call an age function (for more information

on their derivation we also refer to Botter et al. (2010) and the references therein). In the following, we assume a uniform10

age function only. This means that the age distribution of the water leaving the CV is the same as the age distribution of

the water inside the CV, i.e., no age preference of the out�ow generating processes (discharge and ET) exists. This decision

became necessary, since we could not yet draw on any data for the age distribution of water at the outlet of the catchment. As

a result, we were not able to compare the predictions of di�erent age functions to any measurements and therefore determine

the most adequate description. In absence of such data, the most appropriate choice is the one involving the least amount of15

information, which is given by the assumption of uniform sampling. Using this assumption, we can state the following for

the forward formulation

−→p Q(TE , tin) =
Q(t)

θ(tin)S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



 (2)

with TE = t− tin, t > tin, i.e., the time from the moment the water parcel entered the reservoir until now. The function θ

in Equation (2) is called the partition function (Botter et al., 2010, 2011) and can be derived using the following formula20

θ(tin) =

∞
∫

tin

Q(t)

S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



dt. (3)
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This partition function describes the portion of the water parcel, entering the CV at tin, that is contributing eventually to

discharge as opposed to evapotranspiration. It is consequently a dimensionless number between 0 and 1.

For the backward formulation, we can state the following

←−p Q(TA, tex) =
J(t)

S(t)
exp



−

∫

TA

Q(t′)+ET (t′)

S(t′)
dt′



 (4)

with TA = tex− t, t < tex, i.e., the time from now until the moment the water parcel leaves the reservoir.5

Both these formulations determine the travel time of the water leaving as discharge. The TTDs
✿✿✿✿✿✿

TTD’s for the water leaving

as evapotranspiration can be determined in an analogous way.

2.2 Numerical model

We used a spatially distributed, grid-based mesoscale Hydrological Model (mHM; Samaniego et al. (2010a); Kumar et al.

(2013a)) to generate the states and �uxes needed for the TDD analysis described above. The model uses the grid cell as a pri-10

mary hydrological unit and models the following dominant hydrological process: interception, snow accumulation and melt-

ing, root zone soil moisture dynamics, evapotranspiration, surface �ow, inter�ows, recharge and base�ow. The total runo�

generated at each grid cell is routed to the neighboring downstream cell following the river network using the Muskingum-

Cunge routing algorithm. Interested reader may refer to (Samaniego et al., 2010a) for further details on themodel components.

The model code is open source and can be downloaded from www.ufz.de/mhm. The model has been successfully applied to a15

number of river basins across Germany,USA and Europe (Samaniego et al., 2010a, b; Kumar et al., 2010, 2013a, b; ?; ?; Thober et al., 2015; Rako

An important and unique feature of mHM is its Multiscale Parameter Regionalization (MPR), that explicitly accounts for

subgrid variability of basin physical characteristics such as terrain, soil, vegetation, and geological properties (Samaniego et al.,

2010a; Kumar et al., 2013a). The model considers di�erent levels of spatial resolution to better account for spatial heterogene-

ity of inputs, forcings and the modeled hydrological processes (see schematic in Figure 3). The smallest scale (called l0 within20

the mHM nomenclature) is representing morphological factors, like elevation, soil type, land cover etc. On the other hand,

meteorological inputs can be represented on a larger scale (called l2 within mHM). The modeling of the hydrology is done

on a third scale (called l1 within mHM) that can vary depending, e.g., on catchment size or computational resources. Based

on the MPR technique, morphological inputs are linked to internal model parameters (e.g., through the use of pedo-transfer

functions) and a set of regional coe�cients (or global parameters, γ). In a second step, the internal parameters are upscaled to25

the resolution of the hydrological processes, i.e., l1, using parameter speci�c upscaling operators. Thus, MPR takes indirectly

subgrid variabilities into account. The global parameters (γ) are space and time invariant and are inferred via a calibration

procedure. mHM has 66 global parameters, which is a reasonable number for an optimization problem and is therefore able

to avoid overparameterization. Further details on MPR can be found in Samaniego et al. (2010a); Kumar et al. (2013a).

Relevant to this study is near-surface and root-zone hydrological process, which are computed using di�erent concep-30

tualizations. In the upmost layer (x3 in Figure 3) soil moisture
✿✿✿✿✿

water
✿✿✿✿✿✿✿

content is estimated using the in�ltration excess ap-
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Figure 3. Schematic of the mesocale hydrological model used in the study, depicting the di�erent scales as well as the states and �uxes

represented in a single cell.

proach similar to the HBV model (Bergström, 1995), but enhanced to account for multiple soil layers. Within this layer
✿✿✿✿✿

these

✿✿✿✿✿

layers, the water is either percolating into deeper layers or evapotranspirates to the atmosphere.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿✿

the
✿✿✿✿

root
✿✿✿✿

zone
✿✿

is

✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿✿✿✿✿✿✿

e�ective
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

for
✿✿✿✿✿✿✿✿

porosity,
✿✿✿✿✿✿✿✿

saturated
✿✿✿✿✿✿✿✿

hydraulic
✿✿✿✿✿✿✿✿✿✿✿

conductivity
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

permanent
✿✿✿✿✿✿

wilting
✿✿✿✿✿

point,
✿✿✿✿✿✿

which

✿✿✿

are
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

pedotransfer
✿✿✿✿✿✿✿✿

functions
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Zacharias and Wessolek (2007) .
✿✿✿✿✿

These
✿✿✿✿✿✿✿

e�ective
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿

are
✿✿✿✿✿✿✿✿✿

estimated

✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿✿

process.
✿

Evapotranspira-5

tion is estimated based on potential evapotranspiration, root water uptake and water availability in layer x3. In the second

layer (x5 in Figure 3) two di�erent types of inter�ow take place. Slow inter�ow q3 is implemented using a power-law model,

whereas fast inter�ow q2 is triggered when a threshold value TV
✿✿✿

γTV
✿

is reached, i.e

q3 = γsx
(1+α)
5 , (5a)

q2 =











γf (x5−TV γTV
✿✿✿

), if x5 > TV γTV
✿✿✿

0, otherwise

. (5b)10

In the third level (x5 in Figure 3) base�ow q4 is generated using a simple reservoir model, i.e.,

q4 = γbx6. (6)
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However, due to the strong uncertainty typically associated with the estimation of the groundwater storage, we excluded

this layer from our study. In the following all analysis in therefore con�ned to the travel-time behavior of the soil only.

These runo� generation processes are represented at every grid cell of mHM. The sum of direct runo� q1 (not used for

the analyis), inter�ows and base�ow constitutes the grid speci�c total runo� which is then routed through a river network.

Interested readers may refer to Samaniego et al. (2010a) or www.ufz.de/mhm (user manual) for further details on mHM.5

✿✿

As
✿✿✿✿✿✿✿✿✿

motivated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Introduction,
✿✿✿

we
✿✿✿✿✿✿✿

followed
✿✿✿

the
✿✿✿✿✿✿✿

concept
✿✿

of
✿✿✿✿

e.g.,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Botter et al. (2010) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) and
✿✿✿✿✿✿✿

divided

✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsurface
✿✿✿

into
✿✿✿✿

two
✿✿✿✿✿✿

distinct
✿✿✿✿✿✿

zones;
✿✿

the
✿✿✿✿

soil
✿✿✿✿

zone
✿✿✿✿✿

(called
✿✿✿✿

root
✿✿✿✿

zone
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Botter et al. (2010) and
✿✿✿✿✿✿✿

shallow
✿✿✿✿✿✿

storage
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) )

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

saturated
✿✿✿✿✿

zone
✿✿✿✿✿✿

(called
✿✿✿✿✿

called
✿✿✿✿✿✿✿✿✿✿✿

groundwater
✿✿✿✿✿✿

region
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Botter et al. (2010) and
✿✿✿✿

deep
✿✿✿✿✿✿✿

storage
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) ).

✿✿

All
✿✿✿✿✿✿✿✿

analysis
✿✿

in
✿✿✿

our
✿✿✿✿✿

study
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

former.
✿✿✿✿✿

This
✿✿✿

was
✿✿✿✿✿

seen
✿✿✿✿✿✿✿✿

necessary
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

uncertainties

✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿

with
✿✿✿✿✿✿

storage
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

deeper
✿✿✿✿✿✿✿

regions.
✿✿✿✿✿✿✿

Whereas
✿✿✿✿✿✿

mHM
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿

to
✿✿✿✿✿✿✿

provide
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

estimates10

✿✿

for
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rakovec et al., 2016) ,
✿✿✿✿✿✿✿

storage
✿✿✿✿✿✿✿✿

estimates
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

groundwater
✿✿✿

(x6
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

3)
✿✿✿

are
✿✿✿

far
✿✿✿✿

less
✿✿✿✿✿✿✿

reliable.
✿✿✿✿✿✿✿✿

Focusing

✿✿

on
✿✿✿

the
✿✿✿✿

soil
✿✿✿✿✿

zone,
✿✿✿✿

only,
✿✿✿✿

was
✿✿✿✿

seen
✿✿✿✿✿✿✿

justi�ed
✿✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿

focus
✿✿✿

of
✿✿✿

our
✿✿✿✿✿

study
✿✿✿✿

was
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

investigation
✿✿✿

of
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿

distributed
✿✿✿✿✿✿

factors

✿✿✿

like
✿✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿

and
✿✿✿✿

soil
✿✿✿✿✿

type,
✿✿✿✿✿

which
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

comparably
✿✿✿✿

little
✿✿✿✿✿✿✿

impact
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

groundwater
✿✿✿✿✿✿✿✿✿

dynamics.
✿✿✿✿✿✿✿✿✿✿✿✿

Furthermore,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) demonstrated
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

deeper
✿✿✿✿✿

zone
✿✿✿

has
✿✿✿✿✿✿✿✿✿✿

comparably
✿✿✿✿✿

little
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

variability,

✿✿✿

too.
✿
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TQ

TET

Figure 4.
✿✿✿✿✿

States
✿✿✿

and
✿✿✿✿✿

�uxes
✿✿

as
✿✿✿✿✿✿✿

computed
✿✿✿

by
✿✿✿✿

mHM
✿✿✿✿

(see
✿✿✿✿✿

Figure
✿✿

3)
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

derivation
✿✿

of
✿✿✿✿✿

TTD’s
✿✿✿✿✿

using
✿✿✿✿✿✿✿

Equations
✿✿

2
✿✿

to
✿✿

(3)
✿✿✿

(see
✿✿✿✿✿

Figure
✿✿✿

1).

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿

the
✿✿✿✿✿

TTD’s
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿✿✿✿✿✿

Equations
✿✿

(2)
✿✿

to
✿✿✿

(4),
✿✿✿

we
✿✿✿✿

used
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

storage
✿

S
✿✿✿✿

the
✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿✿

layer

✿✿

x3
✿✿✿✿

and
✿✿

x5
✿✿

of
✿✿✿✿✿✿

mHM
✿✿✿

(see
✿✿✿✿✿✿✿

Figures
✿✿

3
✿✿✿

and
✿✿✿

4).
✿✿✿

For
✿✿✿✿

ET
✿✿

we
✿✿✿✿✿

used
✿✿✿✿✿

�uxes
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿✿✿✿

from
✿✿✿

x3
✿✿✿

and
✿✿✿

for
✿✿

Q
✿✿✿

we
✿✿✿✿✿

used
✿✿

q2,
✿✿✿

q3

✿✿✿

and
✿✿✿

C .
✿✿✿✿✿✿✿✿✿✿✿

Conceptually
✿✿✿

the
✿✿✿✿✿✿✿✿

inter�ow
✿✿

is
✿✿✿✿✿✿✿✿

generated
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

unsaturated
✿✿✿✿

zone
✿✿✿✿✿✿✿✿✿

(reservoirs
✿✿✿

x3
✿✿✿

and
✿✿✿

x5)
✿✿✿✿✿✿

within
✿✿✿✿✿✿

mHM.
✿✿✿✿✿

Thus,
✿✿✿✿✿

using
✿✿✿

the

✿✿✿✿✿✿✿

inter�ow
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

out�ow
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

unsaturated
✿✿✿✿

zone
✿✿✿

for
✿✿✿✿✿✿✿✿

deriving
✿✿✿

the
✿✿✿✿✿

travel
✿✿✿✿✿

times
✿✿

is
✿✿

a
✿✿✿✿

valid
✿✿✿✿✿✿✿✿✿✿✿

assumption.
✿✿✿✿

Our
✿✿✿✿✿✿✿✿✿

delineation
✿✿✿

of

✿✿✿✿✿✿

shallow
✿✿✿✿

and
✿✿✿✿✿✿

deeper
✿✿✿✿✿✿

storage
✿✿✿✿

was
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

more
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Benettin et al. (2015b) than
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Botter et al. (2010) .
✿

20

2.3 Study area and model set-up

In this study, we used a mesoscale catchment in Central Germany with a drainage area of approximately 1000 km2 to the

gauging station at Nägelstedt (see Figure 5). The catchment is the headwaters of the Unstrut river basin, and was selected in

this study for its relevance to the Collaborative Research Center AquaDiva (Küsel et al., 2016). The terrain elevation within

the catchment ranges between 170m and 520m with the higher regions in the west and south being the forested hill chain25

8



of the Hainich (see Figure 5). The forested area covers approximately 17% of the catchment, while 78% of the area is covered

by crop/grassland. The remaining 5% is urban/build up area. The area is characterized by continental climatic conditions

with a mean annual precipitation of approximately 660mm and a mean temperature of approximately 8 ◦C.

Figure 5. Left: Catchment (highlighted) used in the study shown within the larger con�nes of the Unstrut catchment (area enclosed by

continuous line). The larger rivers of the catchment are shown in blue. The colorbar shows the elevation (in m) of the study catchment.

Right: Unstrut catchment within the larger con�nes of Germany. The axis descriptions denote the latitude and longitude values.

We established mHM over the study catchment and performed numerical simulations on several resolutions ranging from

200m to 2 km. The model was forced using daily gridded �elds of precipitation, air temperature and potential evapotranspi-5

ration. The point datasets for the precipitation and air temperature at several raingauges and weather stations located in and

around the catchment were acquired from the German Meteorological Service (DWD). These point stations were then inter-

polated on regular grids using an external drift kriging interpolation procedure wherein the terrain elevation was used as an

external drift (?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Samaniego et al., 2013) . The potential evapotranspiration was estimated using the Hargreaves and Samani

(1985) method. Other datasets required to set-up the model include digital elevation model (DEM) and derived terrain prop-10

erties like slope, aspect, �ow direction, catchment boundary; soil and geological maps were provided by the Federal Institute

for Geosciences and Natural Resources (BGR) and meta data such as sand and clay contents, bulk density, horizon depths,

9



dominant hydrogeological classes; CORINE land cover information for the years 1990, 2000 and 2005 available from the

European Environment Agency (EEA); and runo� data for the catchment outlet provided by the European Water Agency

(EWA) and the Global Runo� Data Centre (GRDC).
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Figure 6. Comparison between monthly measured and modeled evapotranspiration (ET) at the eddy-covariance station Mehrsted (see

Figure 5).

The model simulations were performed for the period 1950 to 2005. The �rst �ve years of the data were used to warm-up

the model to acquire plausible initial conditions. We therefore discarded the �rst �ve years of simulations and the further5

analyses were performed using model outputs for the period 1955− 2005. The model showed quite good performance with

NSE > 0.8 for the daily discharge simulations at the Nägelstedt station. Other statistics like bias and correlations were also

within a satisfactory range. To further validate our model prediction, we used measurements from a single Eddy Covariance

measurement station inside the study area (see Figure 5). This comparison also showed a good agreement between both

measurements and model prediction (see Figure 6).10

3 Results and discussion

In this section, we present and discuss the results which have been derived using the methods described above. We will begin

in the following by demonstrating and exemplify our general research procedure by virtue of a singly yet representative

example.

The starting point for the derivation of soil travel times were the states and �uxes as computed through mHM. Using the15

time series of soil moisture, evapotranspiration, inter�ow and recharge, we used Equation (2) to compute the travel time

distribution (see Figure 7 a).
✿✿✿

One
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

problems
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿

TTD’s
✿✿✿

by
✿✿✿✿✿

virtue
✿✿✿

of
✿✿✿✿✿✿✿

Equation
✿✿✿

(2)
✿✿

is
✿✿✿✿

that
✿✿✿

all
✿✿✿

the

✿✿✿✿✿

water
✿✿✿✿✿✿✿

entering
✿✿✿

the
✿✿✿

CV
✿✿

at
✿✿✿✿

time
✿✿✿

tin
✿✿✿✿✿

must
✿✿✿✿

leave
✿✿✿✿✿

until
✿✿✿

the
✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿

period.
✿✿✿✿

This
✿✿✿✿✿✿

means
✿✿✿

that
✿✿

a
✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿

amount
✿✿

at
✿✿✿

the

✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

available
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

could
✿✿✿

not
✿✿

be
✿✿✿✿✿

used
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis.
✿✿✿

To
✿✿✿✿✿✿✿✿✿

determine
✿✿✿

this
✿✿✿✿✿✿✿

period,
✿✿

we
✿✿✿✿✿✿✿✿✿

computed
✿✿✿

θin
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
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Figure 7. Forward TTD
✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿

with respect to mean travel time (in months) for a single cell within
✿

in
✿

the Nägelstedt catchment.

Panel (a) :
✿✿✿✿

shows
✿✿✿

the
✿

time-dependent TTD derived using Equation (2) for a given tin. Panel (b) :
✿✿✿✿✿

shows
✿✿

the
✿

stationary TTD derived using

Equation (7).

✿✿

to
✿✿✿✿✿✿✿✿

discharge
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration.
✿✿✿✿✿✿✿

Adding
✿✿

up
✿✿✿✿✿

both
✿✿✿✿✿✿

values
✿✿✿

for
✿

a
✿✿✿✿✿✿

given
✿✿

tin
✿✿✿✿✿✿

should
✿✿✿✿

add
✿✿✿

up
✿✿

to
✿✿✿✿

one,
✿✿✿✿

i.e.,
✿✿

all
✿✿✿✿✿✿

water

✿✿✿

that
✿✿✿✿✿✿✿

entered
✿✿

at
✿✿✿

tin
✿✿✿

has
✿✿✿

left
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿

available
✿✿✿✿

time
✿✿✿✿✿✿

frame.
✿

A
✿✿✿✿✿

value
✿✿✿✿✿✿✿

smaller
✿✿✿

that
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿

indicates
✿✿✿✿

that
✿✿✿✿✿

some
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿

the

✿✿✿✿✿

water
✿

is
✿✿✿✿

still
✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿

CV
✿✿✿✿

with
✿✿✿✿✿✿✿

possible
✿✿✿✿

error
✿✿✿✿✿✿✿✿

inducing
✿✿✿✿✿✿

e�ects
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

TTD’s.
✿✿✿✿✿✿✿✿✿

Analyzing
✿✿✿✿

this
✿✿✿✿✿✿✿✿

behavior,
✿✿✿

we

✿✿✿✿✿✿✿✿

concluded
✿✿✿✿

that
✿✿✿✿✿

close
✿✿

to
✿✿

2
✿✿✿✿

years
✿✿✿

at
✿✿✿

the
✿✿✿

end
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

available
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

had
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

excluded
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

calculations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

TTD’s

✿✿✿✿

(data
✿✿✿

not
✿✿✿✿✿✿✿

shown).
✿

The shape of these
✿✿

the
✿✿✿✿✿✿✿✿

resulting time-dependent distributions varied strongly, depending in particular on5

rainfall events that triggered the mobilization of older water stored within the soil. Another factor, although not apparent

from Figure 7, was the water content, i.e., the state of the soil itself. As been demonstrated by Niemi (1977), soil response to

rain events is strongly di�erent between wet or dry conditions.
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To disentangle this event-driven as well as state-dependent e�ects from other factors that in�uence the water movement

in the soil, we averaged these time dependent distributions. As a result, we got the stationary TTDs
✿✿✿✿✿

TTD’s for every cell

−→p Q(TE) =

∫

Q(t)

θ(tin)S(t)
exp



−

∫

TE

Q(t′)+ET (t′)

S(t′)
dt′



dtin (7)

with TE = t− tin, t > tin.

In all investigated cases, these stationary TTDs
✿✿✿✿✿

TTD’s could be well approximated by an exponential-like behavior (see5

Figure 7 b). Behavior as seen for stationary TTDs
✿✿✿✿✿

TTD’s
✿

is often assumed to be valid for TTDs
✿✿✿✿✿

TTD’s
✿

in general and are

consequently modeled using exponential or gamma distributions (Małoszewski and Zuber, 1982). Recentworks however, have

questioned this generalization by emphasizing the time-dependent nature of TTDs
✿✿✿✿✿✿

TTD’s (Du�y, 2010; Botter et al., 2011). The

examples given in Figure 7 exemplify these concerns by illustrating their respective origins. Consequently, we acknowledged

the inherent di�erences between these two TTDs
✿✿✿✿✿✿

TTD’s. Furthermore, the study area falls within a humid region with soils10

being generally wet and rainfall being evenly distributed throughout the year. Under these conditions the assumption of

(quasi) stationary TDDs is reasonable (Tetzla� et al., 2007; Hrachowitz et al., 2009). These stationary TTDs
✿✿✿✿✿

TTD’s provided

the basis for all following analysis, due to allowing the description of the average hydrological response of the catchment. In

addition, we also focused on travel-time behavior under speci�c hydrological regimes, i.e., wet and dry conditions, providing

a more detailed understanding of the catchment.15

For our statistical analysis, we used these stationary TTDs
✿✿✿✿✿

TTD’s, which, due to their exponential-like behavior, can be

characterized by its expected value τ . We will call this value mean life expectancy (or mean age respectively) in the following.

Estimating this value for every mHM cell provided a single measure for the travel-time behavior in the soil without the

otherwise dominating impact of single precipitation events (see Figure 8). One feature that became immediately apparent

were the long travel times in urban areas (see Figure 8 a). This can be explained by the fact that these areas are largely sealed,20

resulting in low in�ltration rates and consequently low turnover rates inside the soil. To disentangle this sealing e�ect from

the soil behavior, we discarded cells inside urban regions from our analysis (see Figure 8 b). This allowed us to investigate

the interplay between soil properties and travel-time behavior apart from such arti�cial in�uences.

3.1 Impact of modeling resolution

Due to its multiscale parameterization, mHM is able tomodel catchment dynamics at di�erent spatial resolutionwith the same25

set of calibration parameters (see e.g., Samaniego et al. (2010a) or Kumar et al. (2013a)). Within the context of TTDs
✿✿✿✿✿

TTD’s,

this feature may be used to investigate the potential in�uence of age-dependent out�ow generation. Themathematical theory

for including such age dependency has been developed independently by di�erent groups and recently been uni�ed using

the umbrella term of StorAge Selection (SAS) functions (Rinaldo et al., 2015; Harman, 2015). These functions fully describe

the sampling behavior of the catchment with respect to the age distribution of the stored water when discharge is generated.30
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Figure 8. Mean life expectancy
✿

(in months
✿

)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿

derived
✿✿✿

by
✿✿✿✿✿✿✿

Equation
✿

7
✿

for the Nägelstedt catchment (see also Figure 1 for

comparison) once for all mHM cells (left) and for all non-urban cells.

Discharge from a catchment may e.g., be primarily composed of younger or older water or it may show no preference to age

whatsoever. SAS functions are therefore a concise mathematical representation of this behavior.

On a physical basis, such preference for di�erent water age should be interpreted as the result of complex mixing pro-

cesses taking place in the subsurface of the catchment (Botter , 2012; Benettin et al., 2013; van der Velde et al., 2012). In order

13



to determine the appropriate SAS function for a given catchment, predictions using di�erent functions could be compared

with measurements. Alternatively, the form of the SAS function can be determined by using a physically based catchment

model (Cornaton and Perrochet , 2006a, b). As already mentioned above, we could not directly infer, which form of a SAS

function would be the most appropriate choice for our catchment. Instead we calculated the mean life expectancy for our

catchment on di�erent scales using the uniform SAS function. We motivated this choice by the principle of least information5

(or principle of maximum entropy) stating that amongst di�erent alternatives, the one with the least amount of information

should be chosen. Without any additional constraints, a uniform distribution is usually associated with maximum ignorance,

therefore, motivating the use of the uniform SAS function.
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Figure 9. Kernel density estimate of themean life expectancy (in months)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture for several grid sizes in the Nägelstedt catchment.

To estimate the possible in�uence of this decision, we reasoned that a scale-dependent bias in the estimation of travel-time

behavior would indicate the existence and possible strength of such an error. This is due to the multi-scale nature of mHM,10

where subgrid heterogeneity is taken into account by virtue of theMultiscale Parameter Regionalization. Using a smaller grid

size would make this heterogeneity explicit and therefore reveal any possible unaccounted subgrid in�uence. Results from

our simulations showed no discernible di�erences in the statistical distribution of mean life expectancy (see Figure 9). Using
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a smaller resolution had positive e�ect on statistical estimation procedure due to the increase in data points. In addition, we

saw more extreme values due to small scale features that were smeared out on coarser resolutions. Other than these two

changes, we noted only minor changes in the statistics of mean life expectancy. We therefore concluded that, within the

limits of the spatial scales tested here, mixing processes inside our catchment have no major impact on mean life expectancy.

We are aware, that this assessment is only covering one possible source of age-dependent out�ow behavior and that other5

unresolved heterogeneity (at even smaller scales or due to other subsurface properties not accounted for in mHM) would

in�uence the out�ow generation as well. We therefore regard our conclusions as tentative and open to revision once actual

measurements become available.

However, our investigation gave us the ability to �nd a good trade-o� between computational costs and data amount for

the following statistical analyses. We therefore used a data set from simulations using a grid size of 500m.10

3.2 Statistical analysis of mean life expectancy

The mean life expectancy τ of a water parcel inside a catchment is the result of a complex interplay of morphological and

climatological factors. Several recent studies have therefore tried to determine their relative importance under varying condi-

tions (McGuire et al., 2005; Cardenas, 2007; Broxton et al., 2009; Tetzla� et al., 2009, 2011). Contrary to these studies where �eld

measurements were used, we used results from computational simulations only. This gave us a much larger dataset, both in15

time and space, fromwhich we could infer the relative impact of di�erent factors, in particular meteorological (precipitation),

land surface (land cover, leaf-are index) and subsurface (soil) properties. Notably, our approach di�ers from Hrachowitz et al.

(2009) such that our analysis is based on model-derived gridded simulations of TDDs as compared to the observation-based

basin-wise quanti�cation of TDDs.

In the �rst step, we determined for every cell the statistical relationship between the mean life expectancy τ and a number20

of potential predictors like average precipitation, soil depth, soil type or leaf-area index (LAI). Similar to Hrachowitz et al.

(2009), we used the coe�cient of determinationR2 to quantify the strength of the statistical relationship. This quantity equals

to one minus the ratio of the remaining variance vs. the total variance of the data themselves. It is therefore a measure of the

variance explained by the model (which was always assumed to be linear in our study).

3.2.1 Precipitation25

The analysis above showed the strong impact of precipitation on the event-based TTDs
✿✿✿✿✿

TTD’s
✿

(see Figure 7). It is therefore

to be expected to exert strong control on the steady-state TTDs
✿✿✿✿✿✿

TTD’s as well. In our model two di�erent quantities can be

distinguished: �rst, the precipitation itself as well as, second, the e�ective precipitation. The latter value is here de�ned as

the water �ux that is actually entering the soil, i.e., corrected by surface runo� (through sealing), canopy interception and

snowmelt. While the precipitation can be measured with high accuracy, it is the e�ective precipitation that directly impacts30

the soil-moisture dynamics.

The scatterplot of both data sets against the mean life expectancy show a signi�cant negative correlation between them

(see Figure 10). This negative relationship can be explained such that precipitation events apply pressure to the water already
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Figure 10. Scatterplot of
✿✿✿✿

mean
✿✿✿

life
✿✿✿✿✿✿✿✿✿

expectancy
✿✿

(in
✿✿✿✿✿✿✿

months)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿

vs.
✿

monthly values
✿✿

(in
✿✿✿✿

mm) for precipitation (Panel (a)) and

e�ective precipitation (Panel (b))(in mm) vs. mean life expectancy (in months).

stored in the soil. Instead of immediately traveling through the soil, the water from these events rather pushes older water

out. Strong precipitation events therefore lead to a ’�ushing out’ of the soil and cause a shorter life expectancy.

3.2.2 Terrain elevation

In our next analysis, we used the physical elevation as a variable for our regression model. The height can simply be de-

rived from the digital elevation model (DEM), which, in mHM, is represented using data obtained from the Shuttle Radar5

Topography Mission.

Using a scatter plot for visualizing the statistical relationship between mean life expectancy and the DEM showed a neg-

ative correlation (see Figure 11 a), i.e., longer life expectancy correlated with lower heights of the terrain, and with a linear

coe�cient of determination of R2 = 0.668. Since no direct causal connection can be drawn between physical elevation and
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Figure 11. Scatterplot of elevation
✿✿✿✿

mean
✿✿✿

life
✿✿✿✿✿✿✿✿

expectancy
✿

(inm
✿✿✿✿✿✿

months)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture vs. mean life expectancy
✿✿✿✿✿✿✿

elevation (in months
✿✿

m).

travel-time behavior, such a high value is indicative of underlying mechanisms. One of these is the aforementioned precip-

itation, since higher altitudes are correlated with stronger mean precipitation levels (linear coe�cient of determination of

R2 = 0.812). Performing a multiple linear regression, including precipitation and saturated soil moisture (discussed below),

showed strong correlation between these variables (data not shown). It therefore stands to reason to attribute potential causal

e�ects to these covariates, only.5

3.2.3 Evapotranspiration

Evapotranspiration is directly in�uencing the form of a TTD (see e.g., Equation 2). Consequently, we anticipated a strong

correlation between mean evapotranspiration rates and mean life expectancy.

With respect to evapotranspiration, two di�erent de�nitions are typically distinguished: potential evapotranspiration

(PET) and actual evapotranspiration (AET). As implied by its name, PET describes the maximum possible rate of evapo-10

transpiration at a given site. This value is dependent on quantities like solar radiation and temperature that can generally be

measured with good accuracy (Samani, 2000). Using theoretical models, good estimates can therefore be provided for PET at

a given site (Almorox et al., 2015). On the other side, AET is a real quantity that can be measured. In principle, in situ measure-

ments can therefore provide good estimates (e.g., the eddy-covariance method). In practice, however, exact measurements

are hampered by a series of factors (Wang and Dickinson, 2012). As a consequence, PET can often be estimated with higher15

accuracy than AET.

Scatterplots of both PET and AET show a positive correlation between evapotranspiration and mean life expectancy in

general (see Figure 12). This correlation is more pronounced for AET with a coe�cient of determination of R2 = 0.496 vs.

only R2 = 0.259 for PET.

Contrary to precipitation, which is an in�ow mechanism, ET is an out�ow mechanism. It is not pushing but rather sucking20

the water out of the CV, which explains the di�erence in behavior of precipitation and ET. The lower relative strength of

the correlation (compared to precipitation) can be explained such that ET is only one of the two out�ow mechanisms (the
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Figure 12. Scatterplot of mean life expectancy (in months)
✿

of
✿✿✿✿

soil
✿✿✿✿✿✿✿

moisture vs. monthly potential as well as actual evapotranspiration

✿✿✿✿✿

values (in mm).
✿✿✿✿✿✿✿✿

Displayed
✿✿

are
✿✿✿✿

both
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿✿✿✿✿

(Panel
✿✿

(a))
✿✿✿✿

and
✿✿✿✿

actual
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿✿✿✿

(Panel
✿✿✿

(b)).

other being discharge). The relative stronger impact of AET compared to PET was also anticipated. AET is directly used in

Equation (2) for the calculation of TTDs
✿✿✿✿✿

TTD’s, whereas PET is only coupled by virtue of an additional function.

As explained above, for real-world situations, better estimates can often be provided for PET. The higher explanatory power

of AET has therefore to be balanced with its often less accurate estimate. Depending on the accuracy of measurements of

AET, PET estimates may be a better predictor of mean life expectancy.5

3.2.4 Land cover properties

Land cover is an important interface controlling the strength of incoming �uxes through arti�cial and natural sealing. In

mHM, three di�erent land-cover types are distinguished: forest, crop/grassland and urban area. As explained above, we

excluded mHM cells inside urban area from our analysis in order to better focus on the soil properties themselves. To further
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elucidate possible in�uence of the remaining land cover types, we separated the catchment into forest and crop/grassland

and calculated the mean travel times separately.

(a) spatial distribution
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Figure 13. Land cover in the Nägelstedt catchment (1
✿✿✿

blue
✿

= forest, 2
✿✿✿✿

green = urban, 3
✿✿✿

red = crop/grassland). Spatial
✿✿✿✿

Panel
✿✿✿

(a)
✿✿✿✿✿

shows
✿✿✿

the

✿✿✿✿✿

spatial distribution
✿✿

of
✿✿✿✿

land
✿✿✿✿

cover
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿

resolution
✿✿

l0 and
✿✿✿✿

Panel
✿✿

(b)
✿✿✿✿✿

shows
✿✿✿

the
✿

kernel density estimate
✿✿✿✿✿✿

estimates
✿

of the mean life

expectancy (in months) . The blue curve represents forest and
✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿

for the red curve represents grassland
✿✿✿

land
✿✿✿✿

cover
✿✿✿✿✿

types.

Estimating the PDF of the mean life expectancy for both land cover types separately, revealed strong di�erences between

them both in shape of the respective PDF and the range of values (see Figure 13). As shown above, results for the combined

data set showed a distinct bimodal behavior (see Figure 9). In contrast to that, the PDF for both land cover types were almost5
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unimodal. The most dominant peaks of every singly PDF coincided with the two peaks of the combined PDF. The behavior

of the latter can therefore – to some degree – be considered to be a superposition of the former.

The relationship between these two land cover types was such that forest resulted in much shorter mean travel times com-

pared to crop/grassland. This pronounced di�erence may be partially due to a correlation with precipitation patters that have

already been shown to exert a strong in�uence on travel-time behavior. Forest in the study catchment (as well as in Germany5

in general) is disproportionately found in hilly and mountainous regions. These regions in turn show stronger precipitation

values. The tendency depicted in Figure 13 may therefore be also caused by this covariate. However, this correlation between

forested and high-precipitation area would not explain the distinct di�erences between both land-cover types. Another fac-

tor, overlapping with the former, may be due to the di�erences in water uptake. Trees are rooted into deeper soil layers

compared to crop and grass and are therefore able to access a larger part of the subsurface water body. This larger access10

combined with the higher precipitation values as well as other factors would explain the almost non-overlapping travel-time

behavior demonstrated in Figure 13.

In addition to this classi�cation scheme, mHM uses the leaf area index (LAI) to describe land cover properties. The LAI

describes the ratio of the cell that is e�ectively covered by plant canopy. Due to the already established in�uence on evap-

otranspiration (see above), it stands to reason to expect an in�uence on the mean life expectancy as well. Comparing LAI15

class and land cover reveals a strong overlap between both (see Figure 13 (a) and Figure 14 (a)). Roughly, forest land cover

corresponds with LAI class 1− 4, urban land cover corresponds with LAI class 5 and grassland corresponds with LAI class

6− 10.

Using the same approach as above, i.e., investigating the mean life expectancy for every LAI class independently, con-

sequently revealed the same overall tendency for LAI classes compared to land cover types (data not shown). This was20

anticipated due to the aforementioned overlap between the two classi�cation schemes. In addition, we saw little diversity

for LAI classes within the same land cover class (data not shown).

However, this tendency was not present when using the actual leaf-area values associated with every LAI class. These

values could be constant over the year e.g., in case of coniferous forest or vary strongly e.g., in case of deciduous forest. To

make values from di�erent LAI classes comparable, we averaged the respective values year-wise. A scatter plot of leaf area25

index vs. mean life expectancy does not show any strong correlation between the two with similar ranges of values being

found for almost all LAI values (see Figure 14 (b)). This discrepancy can be explained by the implementation of the LAI in

mHM. In contrast to the land cover type, that is used for the determination of ET processes in the upmost soil layer, LAI

values are only used for interception and do consequently not directly in�uence travel-time behavior. As a result, any possible

relationship between LAI and TTDs
✿✿✿✿✿

TTD’s
✿

is therefore biased and conclusions from our results must take into account this30

limitation critically.
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Figure 14. Leaf area index (LAI) in the Nägelstedt catchment. Spatial
✿✿✿✿

Panel
✿✿

(a)
✿✿✿✿✿✿

shows
✿✿

the
✿✿✿✿✿✿

spatial distribution and
✿✿✿✿

Panel
✿✿✿

(b)
✿✿✿✿✿

shows
✿✿✿

the

scatter plot of LAI vs. mean life expectancy (in months)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿

vs.
✿✿✿

LAI.

3.2.5 Soil properties

An important input parameter in mHM is the soil type inside every cell. This property is implemented in mHMusing the Ger-

man soil data base Bodenübersichtskarte 1:1.000.000 (BÜK 1000) (Federal Institute for Geosciences and Natural Resources (BGR),

1998).

Due to this relevance in the model, we anticipated a strong impact of the soil type in a cell on the resulting mean life5

expectancy. Estimating the PDF of mean travel times for every soil type individually, did indeed show signi�cant di�erences

between them (see Figure 15). Soil classes found in the geographically lower regions of the catchment generally show longer
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Figure 15. Soil classes in the Nägelstedt catchment. Spatial
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estimate of the mean life expectancy (in months)
✿✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture for selected soil classes. Blue curve represents soil class 9
✿✿✿

(36%
✿✿✿✿

sand
✿✿✿

and

✿✿

10%
✿✿✿✿

clay), yellow curve represents soil class 38
✿✿

(12%
✿✿✿✿

sand
✿✿✿

and
✿✿

15%
✿✿✿

clay), orange curve represents soil class 40
✿✿

(10%
✿✿✿

sand
✿✿✿

and
✿✿

19%
✿✿✿✿

clay), red

curve represents soil class 42
✿

(7%
✿✿✿

sand
✿✿✿

and
✿✿✿

39%
✿✿✿✿

clay) and , brown curve represents soil class 51
✿✿

(19%
✿✿✿

sand
✿✿✿✿

and
✿✿

70%
✿✿✿✿

clay).

mean travel times with a unimodal distribution shape, whereas soil types in the geographically higher regions correspond

with generally shorter mean travel times with the shape of the distributions being less regular. This qualitative analysis

reveals some overlap with the land cover distributions as well as mean precipitation rates. It is consequently not possible to

directly infer causal correlation from statistical correlation.
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In addition, the soil class is a symbolic variable, i.e., its values only indicate a certain type of soil but does not directly

relate to any numerical quantity associated with this soil type. Consequently, we could not infer any quantitative connection

between soil types and resulting travel-time behavior.
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Figure 16. Statistical relationship between
✿✿✿✿✿

Scatter
✿✿✿

plot
✿✿

of mean life expectancy (in months) and
✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿✿✿

vs. saturated soil moisture

(in mm).

To address this problem, we used the saturated soil moisture of the soil. This quantity is the amount of pore space per cell

that can be potentially �lled with water (porosity times the depth of root-zone soil layer). Its value is determined in mHM5

through pedo-transfer functions using the soil textural information on percentage of sand, clay and bulk density. Comparing

these values in every single cell with the mean life expectancy shows a very strong statistical relationship with a coe�cient

of determination R2 = 0.675.

The high correlation values of the saturated soil moisture can be explained by a mixture of causal and statistical factors.

On one hand, it is reasonable to expect the total amount of storage to be �lled with water to have a signi�cant e�ect on the10

resulting travel-time bahvior. On the other hand, the soil tapes show a strong overlap with other factors like precipitation

levels and land cove types that have already been discussed above.

3.3 Statistical analysis of mean age

As described above, the di�erence between the forward and backward formulations of travel time has long been acknowl-

edged (Niemi, 1977) and many studies have investigated their relationship (Cornaton and Perrochet , 2006a; Botter , 2012;15

Benettin et al., 2013; Harman, 2015; Benettin et al., 2015a). Both these formulations are linked by virtue of the so called Niemi

relation

J(tin)θ(tin)
−→p (t− tin|tin) =Q(t)←−p (t− tin|t), (8)
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which can be derived by considering a water parcel entering the CV at tin and leaving at t. Consequently, mean life

expectancy and age only coincide in case of steady-state conditions. As a result, we also investigated the behavior of mean

age to elucidate connections and di�erences between forward and backward formulations for our catchment.
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Figure 17. Mean age
✿

of
✿✿✿

soil
✿✿✿✿✿✿✿

moisture
✿

in the Nägelstedt catchment. Spatial
✿✿✿✿

Panel
✿✿

(a)
✿✿✿✿✿

shows
✿✿✿✿✿

spatial
✿

distribution and
✿✿✿✿

Panel
✿✿

(b)
✿✿✿✿✿

shows
✿

scatter

plot of mean age vs. mean life expectancy (see Equation 8) in months.

Visually comparingmean age (see Figure 17) and mean life expectancy (see Figure 8 b) in the Nägelstedt catchment showed

strong qualitative and quantitative similarities. Accordingly, we also got a very strong statistical relationship between these5

two quantities with a coe�cient of determination of R2 = 0.956. Overall, the relationship was very linear with mean age

values falling short of mean life expectancy for both small and large values.
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Pre PET SSM

mean life expectancy 0.860 0.260 0.675

mean age 0.728 0.143 0.711

Table 1. R2 values for several predictors of mean travel time

Due to themathematical and physical similarities, such a strong connectionwas anticipated. To further investigate possible

origins of their respective di�erences, we performed the same statistical analysis for mean age.

To that end, we considered proxy variables that have already been shown to have a considerable impact on travel-time

behavior. As demonstrated by the analysis above, these were precipitation (Pre), potential evapotranspiration (PET) and

saturated soil moisture (SSM) as proxies for in�ux, out�ux and state respectively. Results showed overall the same trend for5

mean age and life expectancy with respect to these predictors (see Table 1). Precipitation was the most dominant factor for

both quantities with the saturated soil moisture being a close second. This is in contrast to e.g., Benettin et al. (2015a), who

emphasized the role of the out�uxes for the time evolution of both age and life expectancy. In our analysis, we saw that proxy

variables for in�ux and state showed strongest correlations with mean travel-time behavior. On the other hand, PET, which

is a good proxy for one of the two out�uxes, showed only moderately strong correlations with said behavior. In case of mean10

age, this relationship was even weaker compared to the other two (precipitation and saturated soil moisture). Since we could

not provide a proxy variable for the other out�ux, i.e., discharge, we excluded this quantity from our analysis.

3.4 Joint impact of multiple variables on mean travel times

In the analysis above, the statistical relationship between mean travel-time behavior and a number of variables was pre-

sented and discussed. This was done for every variable individually to elucidate its possible impact on mean travel times. In15

addition to this simple analysis, we also investigated the joint impact of several variables. Such results can be of relevance

for prediction, i.e., using a set of variables to predict travel times in a given CV.

To that end, we used the variables that had been shown to have the highest impact individually, i.e., precipitation, saturated

soil moisture and potential evapotranspiration, and performed a multiple linear regression. Simple linear regression had

already demonstrated that both precipitation and saturated soil moisture could explain a signi�cant amount of the variability20

contained in the dataset. Combining these factors could therefore improve the predictability even further. We therefore

applied Forward Stepwise Selection to generate a series of models with increasing complexity. The �st single-variable model

consequently used only precipitation as the variable with the highest single R2 value. Next, the double-variable model used

both precipitation and saturated soil moisture and the most complex three-variable model used precipitation, saturated soil

moisture and potential evapotranspiration jointly.25

Results for the default case, showed that, compared to using only one variable (precipitation), using two variables for the

regression (precipitation and saturated soil moisture) improved the predictability of mean travel times (see Table 2). This was

expected since both variables alone provided already highR2 values. In addition, precipitation and saturated soil moisture did
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Pre Pre + SSM Pre + SSM + PET

mean life expectancy 0.860 0.911 0.913

Table 2. R2 values of for several regression models of increasing complexity.

only show moderate correlation (R2 = 0.451), so adding the latter variable added new information to the prediction model.

The correlation that existed between precipitation and saturated soil moisture is explained by the an orographic e�ect,

i.e., hilly regions in the catchment, with typically lower values of saturated soil moisture, also show higher precipitation

values. In contrast, using three variables (precipitation, saturated soil moisture and potential evapotranspiration) resulted

in almost negligible improvement (see Table 2). This is due to the already lower impact of PET compared to precipitation5

and saturated soil moisture. In addition, PET showed comparably stronger correlation with both precipitation and saturated

soil moisture (data not shown), therefore adding only little new information compared to the other two variables. Such

low impact of outgoing �uxes compared to precipitation has already been reported before, for the case of synthetic toy

models (Daly and Porporato, 2006). Moreover our results agree with the �ndings ofHrachowitz et al. (2009), who also reported

similarly strong explanatory power of climatic variables like precipitation as well as soil and land surface properties.10

3.5 Impact of hydrological regime on travel-time behavior

The analysis above revealed the strong impact of the in�ux (i.e., precipitation) as well as the state variable (i.e., saturated soil

moisture) on the travel-time behavior. To further elucidate their impact, we investigated travel-time behavior independently

for di�erent hydrological regimes during the considered period of time, i.e., from 1955 - 2005. To that end we partitioned the

available time series into regimes based on soil moisture (state variable) and precipitation events (in�ux).15

In the �rst case, we averaged the time series of mean saturated soil moisture in the whole Nägelstedt catchment for every

year, i.e., 50 years in total. Next, we divided the resulting time series such that years with an average soil moisture content

above 85th percentile of the time series were labeled as wet years. In contrast, years with an average soil moisture content

below 15th percentile of the time series were labels as dry years. This annual partitioning was seen necessary due to the

strong annual �uctuations of this variable. Finally, we performed the same analysis as describe above for both – now smaller20

– datasets.

Using results from dry years only (see Figure 18), showed a similar qualitative travel-time behavior but strong quantitative

contrast compared to the mean travel-time behavior discussed above (see Figure 8). Compared to the general case, mean life

expectancy was much larger in dry years. In addition, dry years exhibit a wider range of possible values with the largest one

(over 50 months) being almost 4 times a large as the smallest one (approximately 12 months).25

Wet years on the other hand, exhibit a very small range with the smallest value (approximately 5 months) being roughly

only half as large as the largest value (approximately 11 months) (see Figure 19). Compared to the general case, where the

largest value (approximately 20 months) were roughly 3 times as large as the smallest value (approximately 6 months), these
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Panel
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the
✿✿✿✿✿
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of
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✿✿✿✿✿✿✿✿

expectancy
✿✿✿

(in
✿✿✿✿✿✿✿

months).

two scenarios fall on either side of this spectrum. This stark discrepancy demonstrates again the strong impact of the state

variable (soil moisture) on travel-time behavior. Another di�erence between the mean travel-time behavior in wet years and

the general case is the unimodal distribution of the former. The analysis above revealed how the bimodal behavior is mostly

due to the di�erent soil types and therefore re�ects the strong impact on this property on the overall soil-moisture dynamics.

The disappearance of this bimodal behavior is therefore re�ective of how the soil becomes ’forced into line’ when being �lled5

up with water leveling prior di�erences.
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Figure 19. Mean life expectancy (in months)
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of
✿✿✿

soi
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months).

Pre PET SSM

wet years 0.374 0.084 0.388

dry years 0.781 0.223 0.834

Table 3. R2 values for several predictors of mean travel time (as caused by wet and dry years).

In addition, results showed di�erent statistical dependency of travel-time behavior with respect to precipitation, PET and

SSM (see Table 3). Dry years showed very similar correlation values compared to the general case (see Table 1 a). On the

other side, correlation values for wet years were remarkably smaller.
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In the second case, we also investigated travel-time behavior depending in�ux, i.e., in case of months having above average

precipitation values (rainy months). To that end, we constrained our analysis to forward travel-time distributions which were

triggered by heavy rain events. This means that, in analogy to the analysis above we only used months with precipitation

values above the 97th percentile and performed again the same analysis for the reduced dataset.
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Figure 20.Mean life expectancy τE (in months)
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months).

Results showed strong di�erences in mean life expectancy during rainy months compared to the scenarios discussed above5

(compare Figure 20 with Figures 8 and 18). Compared to wet years, we saw even lower mean life expectancy. This can be

explained by the strong impact of the rain on soil moisture leading to a �ushing of the soil. We also saw a similarly small

variance and a nearly unimodal distribution of mean travel-time values.

29



Pre PET SSM

mean life expectancy 0.736 0.221 0.857

Table 4. R2 values for several predictors for mean travel time (as caused by rainy months).

all years dry years wet years

QIf 0.150 0.061 0.173

QIs 0.298 0.239 0.317

QB 0.552 0.700 0.512

Table 5. Relative contribution of the di�erent �uxes to runo� generation.

In addition to that, we saw di�erences for the statistical correlation of mean life expectancy with precipitation, potential

evapotranspiration and saturated soil moisture (see Table 4). Compared to the standard travel-time behavior, precipitation

was slightly less explanatory with mean life expectancy. This was caused by lower overall variation in precipitation values,

due to constraining our analysis to large values therefore excluding low and medium range rain events. In contrast to that,

R2 values for PET and SSM increased.5

3.6 Relevance of TTDs
✿✿✿✿✿✿

TTD’s for hydrological inference

The above results demonstrated the impact of certain soil properties, as implemented in mHM, on mean travel times using

the R2 metric as a measure. In addition to that statistical analysis, their relationship can further be elucidated by analyzing

Equation (2) or (3). Assuming for example a very simple linear relationship for both Q and ET with respect to S we get for

Equation (2) the following10

−→p Q(TE , tin) =
αQ

θ(tin)
exp(−αETTE)exp(−αQTE) . (9)

Equation (9) shows how under such simpli�ed assumptions, the TTDof such a CVwould follow an exponential distribution

with its mean travel time being related to the recession constantsαQ andαET . As shown above, such an exponential behavior

is visible in the mean behavior (see Figure 7 right), whereas non-stationary TTDs
✿✿✿✿✿

TTD’s
✿

show this exponential behavior to

be superimposed by the event-based nature of the governing �uxes (see Figure 7 left).15

In addition to these di�erences, we also saw di�erent mean travel-time behavior for di�erent regimes (see above). These

di�erences can be explained by the actual implementation of Q and ET in mHM, which is generally non linear (see Section

2.2). In order to assess the di�erent roles of each soil process on discharge generation, we calculated the relative contribution

of each out�ow mechanism for each regime. The data in Table 5 show how much of the water that entered the soil during

a given time and left eventually as discharge was leaving as base�ow QB, slow inter�ow QIs or fast inter�ow QIf . On20
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all years dry years wet years

R2 0.6059 0.6954 0.3619

Table 6. R2 values for recharge vs. mean travel times for di�erent regimes.

average, base�ow contributed the most to discharge with fast inter�ow having the smallest share. This overall distribution

became stronger pronounced during dry years with base�ow taking the largest share of out�ow generation and fast inter�ow

becoming negligible. For wet years this trend is reversed, with water entering the soil during rainy months having an almost

equal distribution. These di�erent weighs show the relative impact and therefore the relative information content that travel-

time distributions could contain, i.e., travel times in dry years are mostly the results of the successive processes leading5

eventually to base �ow (see Figure 3), whereas travel times during storm events contain information on all discharge processes

combined.

To further elucidate the relationship between the resulting mean travel times and certain model parameters, we performed

a regression analysis comparing the recession constant for recharge with the mean travel times for di�erent regimes. Results

con�rmed the relationship described above with mean travel times during dry years showing the strongest correlation (see10

Table 6).

Such a high interdependency between certain model parameters and data from di�erent �ow regimes is not unique for

TTDs
✿✿✿✿✿

TTD’s. Using discharge alone would reveal similar overall tendencies, e.g., discharge data from droughts is more in-

formative for calibrating base�ow recession constants. What is, however, new is the additional information content, which

is not contained in discharge data alone. Not only can this improve calibration e�orts, it allows the inference of additional15

system states. This is in particular relevant, but not con�ned to, the total amount of stored groundwater. Discharge data are

not sensitive to, and therefore not informative for, groundwater levels, but only to its relative changes. TTDs
✿✿✿✿✿

TTD’s on the

other hand, strongly depend on the total amount of water stored in every CV. Using both data types for inference would

therefore allow to provide reasonable estimates of this quantity. Similarly, the estimation of water in the root and vadose

zone can be improved.20

In addition Birkel and Soulsby (2015) highlight the temporal aspects of travel times on model calibration. They point out,

how the sampling frequency of the time series should match the expected travel times of the underlying process. Our results

above revealed di�erent time scales for di�erent hydrological regimes, that di�ered by almost an order of magnitude. Despite

this heterogeneity, all travel times in our study remained in the range of months. Under such circumstances, a high resolution

measurement campaign with daily or even hourly intervals would not be necessary.25

Although the above explanations provide only a limited perspective on the relationship between TTDs
✿✿✿✿✿✿

TTD’s and model

parameters, it can be said that the strong interlink between the travel-time behavior and out�ow generation indicates the

high information content of the former with respect to the latter. As a result, travel-time distributions should be regarded as

highly informative for the calibration of hydrological models. As mentioned in the Introduction,McDonnell and Beven (2014)
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have made the case for the usefulness of TTDs
✿✿✿✿✿✿

TTD’s for the parametrization of such models. The above presentations

provide empirical support for this notion.

4 Conclusions

In this study, we investigated soil behavior
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatially-distributed
✿✿✿✿✿✿✿✿✿✿✿

soil-moisture
✿✿✿✿✿✿✿✿✿

dynamics in the Nägelstedt catchment by

virtue of travel-time distributions. The states and �uxes, needed for the derivation of the travel times, were numerically5

computed using the mesoscale Hydrological Model (mHM), which was calibrated against 55 years of discharge data as well

as using detailed data on soil properties, land cover and precipitation. We performed a statistical analysis of mean travel

times to describe the soil response decoupled from the event-driven impact of precipitation.

Comparing the derived mean travel times for several modeling scales (spanning over one order of magnitude), we did not

see any signi�cant di�erence in their distribution. This indicates the a
✿

general soundness of the parametrization scheme of10

mHM used for the calculation of the states and �uxes on the di�erent modeling scales. Our analysis shows that precipitation,

saturated soil moisture and potential evapotranspiration are strong statistical predictors ofmean travel time behavior.We also

note that on average shorter mean travel times correspond to forested area and larger ones to crop/grassland, an observation

that we linked to both correlations between forested and high-precipitation areas as well as the di�erent water uptake

mechanisms of trees vs. crop/grass.15

We also investigated the travel-time behavior for di�erent hydrological regimes, i.e., for dry and wet conditions (using

soil moisture and precipitation as indicators). Our analysis revealed signi�cantly di�erent travel-time behavior for each of

these regimes. Despite the strong heterogeneity of soil properties as well as (to a lesser extent) precipitation values, we could

discriminate these regimes also in the resulting distribution of mean travel times.

Under dry conditions, we saw mean travel times having a pronounced bimodal distribution with long mean travel times20

and large variance. Such long travel times reveal the strong impact of base�ow on the generated out�ow, whereas the large

variance shows the variety of soil responses under dry conditions. Such conditions are therefore suited for inferring soil

properties relating to base�ow generation. In addition, due to the large variance of soil responses, such conditions would

allow to infer the spatial origin of solutes found in discharge streams. Such inferences are however, hampered by the long

travel times involved. Not only are long time series needed, measurements must also being performed during such dry25

conditions.

Under wet conditions, we saw mean travel times having a unimodal distribution with shorter mean travel times and

a smaller variance. This shorter travel times are caused by a larger in�uence of the slow and fast inter�ows on the total

discharge behavior. As a result, TTDs
✿✿✿✿✿

TTD’s derived under such conditions may be suited for inferring the parameters

relating to these hydrological processes.30

In case of rainy months, which overlap with wet conditions to a signi�cant degree, we saw a similar distribution of travel

times, but with even shorter mean values. This indicates a stronger impact of fast inter�ow on the total discharge behavior.

Such information can therefore be valuable for improving the parametrization of the fast inter�ow related processes.
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It is important to emphasize that our results have been derived with respect to a single hydrological model, i.e., mHM,

only. However, due
✿✿

As
✿✿

a
✿✿✿✿✿✿

result,
✿✿✿

we
✿✿✿✿

also
✿✿✿✿

need
✿✿✿

to
✿✿✿✿✿✿✿✿

critically
✿✿✿✿✿

assess
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

limitations
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿

impact
✿✿

on
✿✿✿✿

the

✿✿✿✿✿✿✿✿

reliability
✿✿

of
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿

conclusions.
✿✿✿✿✿

First,
✿✿✿✿✿

mHM
✿✿✿✿✿✿

treats
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

storage
✿✿

in
✿✿✿✿✿✿

every
✿✿✿✿✿✿✿✿✿✿✿

compartment
✿✿✿

as
✿✿✿✿✿

fully
✿✿✿✿✿✿

mixed.
✿✿

In
✿✿✿✿

the

✿✿✿✿✿✿

absence
✿✿✿

of
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿✿

information,
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿✿✿

consequently
✿✿✿✿✿✿✿✿

assumed
✿

a
✿✿✿✿✿✿✿✿

uniform
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿

scheme
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿✿

generation

✿✿✿✿

from
✿✿✿✿✿

every
✿✿✿✿✿✿

mHM
✿✿✿✿

cell.
✿✿✿✿

This
✿✿✿✿✿

may
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿✿✿

errors
✿✿

in
✿✿✿

the
✿✿✿✿

age
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿✿✿

�uxes
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

therefore
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

travel-time5

✿✿✿✿✿✿✿

behavior
✿✿✿

as
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿✿

2.1.
✿✿✿✿

Due to the well established ability of mHM to take subgrid heterogeneity into ac-

count, we have good con�dence in the physical plausibility of the spatially explicit soil moisture states and �uxes. The

framework we used here is general and can be used in conjunction with other hydrological/land-surface models applied

in other catchments.Moreover, future studies may incorporate other explanatory variables for the spatial heterogeneity of

TTDs
✿

In
✿✿✿

the
✿✿✿✿✿✿✿

absence
✿✿

of,
✿✿✿✿

say
✿✿✿✿✿

solute
✿✿✿✿

data,
✿✿✿

we
✿✿✿✿

have,
✿✿✿✿✿✿✿✿

however,
✿✿

to
✿✿✿✿✿✿✿

consider
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿

as
✿✿✿✿✿✿✿

tentative
✿✿✿

and
✿✿✿✿✿

open
✿✿

to
✿✿✿✿✿✿✿

revision.
✿✿✿✿

The10

✿✿✿✿

other
✿✿✿✿✿✿✿✿✿

limitation
✿✿

of
✿✿✿

our
✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿

stems
✿✿✿✿

form
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿

nature
✿✿

of
✿✿✿

our
✿✿✿✿✿

study
✿✿✿✿✿✿✿✿✿✿

introducing
✿✿

a
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

uncertainties.

✿✿✿✿

Like
✿✿✿

any
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿

model,
✿✿✿✿✿✿

mHM
✿✿✿✿

may
✿✿✿✿✿

su�er
✿✿✿✿✿

from
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿

di�erent
✿✿✿✿✿✿

sources
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncertainty;
✿✿✿✿✿✿

input
✿✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿✿✿✿✿✿✿✿

structural

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

parametric
✿✿✿✿✿✿✿✿✿✿✿

uncertainty.
✿✿✿

We
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿✿

therefore
✿✿✿

like
✿✿

to
✿✿✿✿✿✿

assess
✿✿✿✿

their
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿✿

our
✿✿✿✿✿✿

results

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

conclusions.
✿✿✿✿✿

First,
✿✿✿✿✿

input
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿

is
✿✿✿✿✿✿✿✿

referring
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿

inherit
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model,
✿✿✿

i.e.,
✿✿✿✿✿✿✿✿✿✿✿✿

precipitation.

✿✿✿

Our
✿✿✿✿✿✿

results
✿✿✿✿✿

have
✿✿✿✿✿✿

shown
✿✿✿

the
✿✿✿✿✿✿

strong
✿✿✿✿✿✿

impact
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

on
✿✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior.
✿✿

It
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

stand
✿✿

to
✿✿✿✿✿✿

reason
✿✿✿

to15

✿✿✿✿✿

expect
✿✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

to
✿✿✿✿✿✿✿✿

propagate
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior.
✿✿✿✿✿✿✿✿✿

However,

✿✿

we
✿✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿

behavior
✿✿✿✿

only,
✿✿✿✿✿✿

where
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿

from
✿✿✿✿✿

many
✿✿✿✿✿✿✿

months
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

averaged.
✿✿✿

We
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿

possible

✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿

to
✿✿✿

our
✿✿✿✿✿✿

results
✿✿

to
✿✿

be
✿✿✿✿✿✿

minor.
✿✿✿✿✿

Next,
✿✿✿✿✿✿✿✿

structural
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

conceptual
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿✿✿✿✿✿✿✿

subsurface

✿✿✿✿✿✿✿✿

processes
✿✿✿✿✿✿

within
✿✿✿✿✿

mHM
✿✿✿✿

and
✿✿✿

our
✿✿✿✿✿✿✿

choices
✿✿

of
✿✿✿✿✿✿✿

di�erent
✿✿✿✿✿✿

mHM
✿✿✿✿✿✿✿✿✿✿✿✿

compartments
✿✿✿

for
✿✿✿

our
✿✿✿✿✿✿✿✿

analysis.
✿✿

In
✿✿✿✿✿✿✿

Section
✿✿✿

2.2,
✿✿✿

we
✿✿✿✿✿✿✿✿

discussed
✿✿✿✿

this

✿✿✿✿

issue
✿✿✿

by
✿✿✿✿✿✿✿✿

providing
✿✿✿

the
✿✿✿✿✿✿✿✿

rationals
✿✿✿

for,
✿✿✿✿

e.g.,
✿✿✿✿✿✿✿✿

including
✿✿✿✿

the
✿✿✿✿✿✿✿✿

inter�ow
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿

into
✿✿✿✿

our
✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿

Finally,
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿

analysis20

✿

is
✿✿✿✿✿✿✿✿

probably
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿

total
✿✿✿✿✿✿

source
✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

and
✿✿✿✿✿✿

several
✿✿✿✿✿✿

studies
✿✿✿✿✿

have
✿✿✿✿✿✿✿

recently
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿

its
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿✿✿

mHM
✿✿✿✿✿✿

output

✿✿✿✿✿✿✿✿✿

generation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Samaniego et al., 2013; Cuntz et al., 2015; Livneh et al., 2015) .
✿✿✿✿

The
✿✿✿✿✿✿

studies
✿✿✿✿

show
✿✿✿✿

that,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿

�uxes
✿✿✿

are
✿✿✿✿✿✿✿✿

typically

✿✿✿

well
✿✿✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿✿✿

mHM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Livneh et al., 2015) ,
✿✿✿

the
✿✿✿✿✿✿✿

overall
✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿

storage
✿✿✿✿✿✿✿

showed
✿✿✿✿

less
✿✿✿✿✿✿✿✿

accuracy,
✿✿

in
✿✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿

during

✿✿✿✿✿✿✿

droughts
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Samaniego et al. (2013) .
✿✿✿

For
✿✿✿✿✿✿✿✿

droughts,
✿✿✿✿

our
✿✿✿✿✿✿

results
✿✿✿✿✿✿

showed
✿✿

in
✿✿✿✿✿✿✿

general
✿✿✿✿

long
✿✿✿✿✿✿✿✿✿✿

travel-times
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

soil
✿✿✿✿✿✿✿

speci�c

✿✿✿✿✿✿✿

behavior
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

comparably
✿✿✿✿✿

lesser
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿✿✿✿✿

While
✿✿✿

we
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿

expect
✿

a
✿✿✿✿✿✿

major
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

qualitative
✿✿✿✿✿✿

nature25

✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿

results,
✿✿✿

we
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿

aspect,
✿✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿✿

speci�c
✿✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿

mean
✿✿✿✿✿

travel
✿✿✿✿✿

times
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

inconclusive.

✿✿

In
✿✿✿✿✿✿✿

general,
✿✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿

stemming
✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿

storage
✿✿✿✿✿✿✿✿

estimate
✿✿

to
✿✿✿

be
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿

relevant
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿

having
✿✿✿✿✿

both

✿✿✿✿✿✿✿✿✿✿

comparably
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿

accuracy
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

strong
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿✿✿✿✿

above.
✿✿✿✿

This
✿

is
✿✿✿✿✿✿✿✿✿✿✿

exacerbated

✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿✿

water
✿✿✿✿✿✿

content
✿✿✿✿✿✿✿✿

relevant
✿✿✿

for
✿✿✿✿✿✿

out�ow
✿✿✿✿✿✿✿✿✿✿

generation
✿✿✿✿

may
✿✿✿

not
✿✿✿

be
✿✿✿

the
✿✿✿✿✿

same
✿✿

as
✿✿✿

the
✿✿✿✿

one
✿✿✿✿✿✿✿

relevant
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior.

✿✿✿✿✿✿✿✿

Immobile
✿✿✿✿✿

water
✿✿✿✿

due
✿✿

to,
✿✿✿✿

e.g.,
✿✿✿✿✿✿✿✿

dead-end
✿✿✿✿✿✿

pores,
✿✿✿✿✿✿

a�ects
✿✿✿

the
✿✿✿✿✿

latter
✿✿✿

but
✿✿✿✿

not
✿✿✿

the
✿✿✿✿✿✿✿

former.
✿

It
✿✿✿

is,
✿✿✿✿✿✿✿✿

however,
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

connection
✿✿✿✿✿✿✿✿

between30

✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿

water
✿✿✿✿✿✿✿

content
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿✿

travel-time
✿✿✿✿✿✿✿✿

behavior
✿✿✿✿

that
✿✿✿✿✿✿

makes
✿✿✿

the
✿✿✿

use
✿✿✿

of
✿✿✿✿✿✿

TTD’s
✿✿

an
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿

tool
✿✿✿

for
✿

a
✿✿✿✿✿✿

better

✿✿✿✿✿✿✿✿✿

calibration
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿

models.

Having

✿✿

As
✿✿✿

an
✿✿✿✿✿✿✿

outlook,
✿✿✿

we
✿✿✿✿

can
✿✿✿

say
✿✿✿✿

that,
✿✿✿✿✿✿

having
✿

established a comprehensive description for the storage and release of water in

the investigated catchment, the natural next step is the integration of reactive solute transport. As demonstrated by e.g.,35
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Botter et al. (2010), the concept of travel-time distributions can directly be adapted to account for the transport of both con-

servative and reactive solutes. This extension would facilitate to compare our predictions with the wealth of data that has

been and continues to be collected within the AquaDiva center at the Hainich Critical Zone Exploratory (Küsel et al., 2016).

Thereby, we will be able to test our predictions by virtue of a large data set as well as initiate the collection of additional new

data.5

Appendix A: Forward and backward formulation of travel times

Both the forward and backward formulations for TTDs
✿✿✿✿✿

TTD’s can be derived from Equation (1) by additionally associating

each term with its distribution, so

d

dt
[S(t)pS(T,t)] = J(t)pJ (T,t)−ET (t)pET (T,t)−Q(t)pQ(T,t). (A1)

Here T is a placeholder for either the age or life expectancy of the water parcel. The total derivative in Equation (A1) can10

be reformulated using the material derivative, so

(

∂

∂t
+

d

dt
T

∂

∂T

)

[S(t)pS(t,T )] = J(t)pJ (t,T )−ET (t)pET (t,T )−Q(t)pQ(t,T ). (A2)

Equation (A2) is the general PDE describing the time evolution of the age of the water in the CV. It is worthwhile to note

that there is a signi�cant inconsistency in the literature with respect to this equation. Botter et al. (2011) discuss the backward

formulation of Equation (A2), while referring to it as the Master Equation (ME). This is certainly justi�ed given that the ME is15

describing the time evolution of the PDF of any Markov process, i.e., a stochastic process that is local in (chronological) time.

This condition is true for Equation (A2). In addition, Equation (A2) is not only local with respect to chronological time t but

also with respect to the travel time T . Interpreting T as x, it becomes obvious that Equation (A2) is analogous to the much

simpler Fokker-Planck equation or, since there is no ’di�usion’, the even simpler advection-reaction equation. On the other

side, Porporato and Calabrese (2015) are careful to trace this equation back to the seminal work of both M’Kendrick (1925)20

and von Förster (1959) in population dynamics. Consequently, they call this equation the McKendrick-von Förster (MKVF)

equation.

One problem with Equations A1 and A2 is the lack of closure, i.e., pS(T,t), pJ (T,t), pET (T,t) and pQ(T,t) are di�erent

variables. The solution to this problem is the formulation and/or derivation of a dependency, i.e., closure, between the storage

and the �uxes through25

pF (T,t) = ω(T,t)pS(T,t). (A3)

This closure function ω(T,t) must follow some properties to ensure the normality of both pS(T,t) and pF (T,t), with

the latter being the PDF of a �ux, i.e., e�ective precipitation, evapotranspiration or discharge. These closure functions are
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called StorAge Selection (SAS) functions in the literature (Rinaldo et al., 2015). Several di�erent formulations exist with the

one given above being based on the work of Botter (2012).

The shape of the SAS function is determining the preference of the �uxes, e.g., discharge, for several ages of the water

stored in the CV. In the backward formulation a �at function would correspond to no preference with respect to age, a

monotonously decreasing function would correspond to a preference for younger water and a monotonously increasing5

function would correspond to a preference for older water
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