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Abstract9

In this work ten algorithms for estimating downwelling longwave atmospheric radiation (L↓) and one10

for upwelling longwave radiation (L↑) are integrated into the hydrological model JGrass-NewAge. The11

algorithms are tested against energy flux measurements available for twenty-four sites in North America to12

assess their reliability. These new JGrass-NewAge model components are used i) to evaluate the performances13

of simplified models (SMs) of L↓ , as presented in literature formulations, and ii) to determine by automatic14

calibration the site-specific parameter sets for SMs of L↓. For locations where calibration is not possible15

because of a lack of measured data, we perform a multiple regression using on-site variables, such as mean16

annual air temperature, relative humidity, precipitation, and altitude. The regressions are verified through17

a leave-one-out cross validation, which also gathers information about the possible errors of estimation.18

Most of the SMs, when executed with parameters derived from the multiple regressions, give enhanced19

performances compared to the corresponding literature formulation. A sensitivity analysis is carried out for20

each SM to understand how small variations of a given parameter influence SM performance. Regarding21

the L↓ simulations, the Brunt (1932) and Idso (1981) SMs, in their literature formulations, provide the22

best performances in many of the sites. The site-specific parameter calibration improves SM performances23

compared to their literature formulations. Specifically, the root mean square error (RMSE) is almost halved24

and the Kling Gupta efficiency is improved at all sites.25

The L↑ SM is tested by using three different temperatures (surface soil temperature, air temperature at26

2 m elevation, and soil temperature at 4 cm depth) and model performances are then assessed. Results show27

that the best performances are achieved using the surface soil temperature and the air temperature.28

Models and regression parameters are available for any use, as specified in the paper.29

1

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-227, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



1 Introduction30

Longwave radiation (1-100 µm) is an important component of the radiation balance on earth and it affects many31

phenomena, such as evapotranspiration, snow melt (Plüss and Ohmura, 1997), glacier evolution (MacDonell32

et al., 2013), vegetation dynamics (Rotenberg et al., 1998), plant respiration, and primary productivity (Leigh Jr,33

1999). Longwave radiation is usually measured with very expensive pyrgeometers, but these are not normally34

available in basic meteorological stations, even though an increasing number of projects has been developed to35

fill the gap, Augustine et al. (2000), as seen in Augustine et al. (2005) and Baldocchi et al. (2001). The use of36

satellite products to estimate longwave solar radiation is increasing (GEWEX, Global Energy and Water cycle37

Experiment, ISCCP the International Satellite Cloud Climatology Project) but they have too coarse a spatial38

resolution for many hydrological uses. Therefore, models have been developed to solve energy transfer equations39

and compute radiation at the surface, e.g. Key and Schweiger (1998), Kneizys et al. (1988). These physically40

based and fully distributed models provide accurate estimates of the radiation components. However, they41

require input data and model parameters that are not easily available. To overcome this issue, simplified models42

(SM), which are based on empirical or physical conceptualizations, have been developed to relate longwave43

radiation to atmospheric proxy data such as air temperature, deficit of vapor pressure, and shortwave radiation.44

They are widely used and provide clear sky (e.g. Ångström (1915); Brunt (1932); Idso and Jackson (1969)) and45

all-sky estimations of downwelling, L↓, and upwelling, L↑, longwave radioation(e.g. Brutsaert (1975); Iziomon46

et al. (2003a)).47

SM performances have been assessed in many studies by comparing measured and modeled L↓ at hourly48

and daily time-steps (e.g. Sugita and Brutsaert (1993b); Iziomon et al. (2003b); Juszak and Pellicciotti (2013)).49

Hatfield et al. (1983) was among the first to present a comparison of the most used SMs in an evaluation of50

their accuracy. It tested seven clear-sky algorithms using atmospheric data from different stations in the United51

States. So In order to validate the SMs under different climatic conditions, they performed linear regression52

analyses on the relationship between simulated and measured L↓ for each algorithm. The results of the study53

show that the best models were Brunt (1932), Brutsaert (1975) and Idso (1981). Flerchinger et al. (2009)54

made a similar comparison using more formulations (13) and a wider data-set from North America and China,55

considering all possible sky conditions. Finally, Carmona et al. (2014) evaluated the performance of six SMs,56

with both literature and site-specific formulations, under clear-sky conditions for the sub-humid Pampean region57

of Argentina. However, none of the above studies have provided a comprehensive set of open-source tools that58

are well documented and ready for practical use by other researchers and practitioners.59

This paper introduces the LongWave Radiation Balance package (LWRB) of the JGrass-NewAGE modelling60

system Formetta et al. (2014a). LWRB implements 10 formulations for L↓ and one for L↑ longwave radiation.61

The package was systematically tested against measured L↓ and L↑ longwave radiation data from 24 stations62

across the USA, chosen from the 65 stations of the AmeriFlux Network. Unlike all previous works, the LWRB63

component follows the specifications of the Object Modeling System (OMS) framework, David et al. (2013).64

Therefore, it can use all of the JGrass-NewAge tools for the automatic calibration algorithms, data management65
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and GIS visualization, and it can be seamlessly integrated into various modeling solutions for the estimation of66

water budget fluxes (Formetta et al., 2014a).67

The paper is organized into five sections, with Section 1 being this introduction. Section 2 describes method-68

ology, calibration and verification for the L↓ and L↑ models. Section 3 presents the study sites and the datasets69

used. Section 4 presents the simulation results for L↓ and L↑ longwave radiation. It includes model verification70

and calibration, sensitivity analysis and multiple regressions of the parameters against some explaining variables71

for L↓. It also presents a verification of the L↑ model, which includes an assessment of the model performances72

in predicting correct upwelling longwave L↑ radiation in using different temperatures (soil surface temperature,73

air temperature, and soil temperature at 4 cm below surface). In Section 5 we present our conclusions.74

2 Methodology75

The SMs for L↑ [Wm−2] and L↓ [Wm−2] longwave radiation are based on the Stefan-Boltzmann equation:76

L↓ = εall−sky · σ · T 4
a (1)

L↑ = εs · σ · T 4
s (2)

where σ = 5.670 · 10−8 [Kg s−3 K−4] is the Stefan-Boltzmann constant, Ta [K] is the near-surface air77

temperature, εall−sky [-] is the effective atmospheric emissivity, εs [-] is the soil emissivity and Ts [K] is the78

surface soil temperature. To account for the increase of L↓ in cloudy conditions, εall−sky [-] is formulated79

according to eq. (3):80

εall−sky = εclear · (1 + a · cb) (3)

where c [-] is the clearness index and a [-] and b [-] are two calibration coefficients. Site specific values of a81

and b are presented in Brutsaert (1975), (a=0.22 and b=1), Iziomon et al. (2003a) (a ranges between 0.25 and82

0.4 and b=2) and Keding (1989) (a=0.183 and b=2.18). In our modeling system a and b are calibrated to fit83

measurement data under all-sky conditions. The cloud cover fraction, c, can be estimated from solar radiation84

measurements (Crawford and Duchon, 1999), from visual observations (Alados-Arboledas et al., 1995, Niemelä85

et al., 2001), and from satellite data (Sugita and Brutsaert, 1993a) or it can be modeled as well. In this study86

we use the formulation presented in Campbell (1985) and Flerchinger (2000), where c is related to the clearness87

index, (i.e. the ratio between the measured incoming solar radiation, Im [Wm−2], and the theoretical solar88

radiation computed at the top of the atmosphere, Itop [Wm−2]). This type of formulation needs a shortwave89

radiation balance model to estimate Itop and meteorological stations to measure Im; also, it cannot estimate c90

at night. In our application, the fact that the SMs are fully integrated into the JGrass-NewAge system allows91

us to use the shortwave radiation balance model (Formetta et al., 2013 ) to compute Itop. Night-time values of92

c are computed with a linear interpolation between its values at the last hour of daylight and the first hour of93
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daylight on consecutive days. Ten SMs from literature have been implemented for the computation of εclear.94

Table 1 specifies assigned component number, component name, defining equation, and reference to the paper95

from which it is derived. X, Y and Z are the parameters provided in literature for each model, listed in table 2.96

ID Name Formulation Reference
1 Angstrom εclear = X − Y · 10Ze Angstrom [1918]
2 Brunt’s εclear = X + Y · e0.5 Brunt’s [1932]
3 Swinbank εclear = X · 10−13 · T 6

a Swinbank [1963]
4 Idso and Jackson εclear = 1−X · exp(−Y · 10−4 · (273− Ta)2) Idso and Jackson [1969]
5 Brutsaert εclear = X · (e/Ta)1/Z Brutsaert [1975]
6 Idso εclear = X + Y · 10−4 · e · exp(1500/Ta) Idso [1981]
7 Monteith and Unsworth εclear = X + Y · σ · T 4

a Monteith and Unsworth [1990]
8 Konzelmann εclear = X + Y · (e/Ta)1/8 Konzelmann et al [1994]
9 Prata εclear = [1− (X + w) · exp(−(Y + Z · w)1/2)] Prata [1996]
10 Dilley and O’Brien εclear = X + Y · (Ta/273.16)6 + Z · (w/25)1/2 Dilley and O’Brien [1998]

Table 1: Clear sky emissivity formulations: Ta is the air temperatue [K], w [kg/m2] is precipitable water = 4650 [e0/Ta]
and e [kPa] is screen-level water-vapour pressure.

The models presented in table 1 were proposed with coefficient values (X, Y, Z) strictly related to the location97

in which the authors applied the model and where measurements of L↓ radiation were collected. Coefficients98

reflect climatic, atmospheric and hydrological conditions of the sites, and are reported in Table 2.

ID Name X Y Z
1 Angstrom 0.83 0.18 −0.07
2 Brunt 0.52 0.21 [−]
3 Swinbank 5.31 [−] [−]
4 Idso and Jackson 0.26 −7.77 [−]
5 Brutsaert 1.72 7 [−]
6 Idso 0.70 5.95 [−]
7 Monteith and Unsworth −119.00 1.06 [−]
8 Konzelmann et al 0.23 0.48 [−]
9 Prata 1.00 1.20 3.00
10 Dilley and O’brien 59.38 113.70 96.96

Table 2: Model parameter values as presented in their literature formulation.

99

The formulation of the L↑ requires the soil emissivity, which usually is a property of the nature of a surface,100

and the surface soil temperature. Table 3 shows the literature values(Brutsaert, 2005) of the soil emissivity for101

different surface types: εs varies from a minimum of 0.95 for bare soils to a maximum of 0.99 for fresh snow.102

Nature of surface Emissivity
Bare soil (mineral) 0.95− 0.97
Bare soil (organic) 0.97− 0.98
Grassy vegetation 0.97− 0.98
Tree vegetation 0.96− 0.97
Snow (old) 0.97
Snow (fresh) 0.99

Table 3: Soil emissivity for surface types (Brutsaert, 2005).

Since surface soil temperature measurements are only available at a few measurement sites, if the difference103

between soil and air temperatures is not too big, it is possible to simulate L↑ using the air temperature, Park104

et al. (2008). In our approach three different types of temperature were used to simulate L↑, specifically: surface105
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soil temperature; air temperature at 2 m height; and soil temperature at 4 cm depth.106

The LWRB package (see flowchart in figure1) is part of the JGrass-NewAge system and was preliminary107

tested in Formetta et al. (2014b). Model inputs depend on the specific SM being implemented and the purpose108

of the run being performed (calibration, verification, simulation). The inputs are meteorological observations109

such as air temperature, relative humidity, incoming solar radiation, and sky clearness index. The LWRB is also110

fed by other JGrass-NewAGE components, such as the shortwave radiation balance (SWRB) (Formetta et al.,111

2013). To test model performances (i.e. verification), the LWRB can be connected to the system’s Verification112

component; to execute the parameter calibration algorithm (Formetta et al., 2014a), it can be connected to the113

LUCA (Let Us CAlibrate) component. In turn, all these components can and/or need to be connected to other114

ones, as the problem under examination may require.115

Further information about the SMs used is available in table 1 and in Carmona et al. (2014).116

Model outputs are L↓ and L↑. These can be provided in single points of specified coordinates or over a117

whole geographic area, represented as a raster map. For the latter case a digital elevation model (DEM) of the118

study area is necessary in input.119

Figure 1: The LWRB component of JGrass-NewAge and the flowchart to model longwave radiation.

2.1 Calibration of L↓ longwave radiation models120

Model calibration estimates the site-specific parameters of L↓ models by tweaking them with a specific algorithm121

in order to best fit measured data. To this end, we use the LUCA calibration algorithm proposed in (Hay et al.,122
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2006), which is a part of the OMS core and is able to optimize parameters of any OMS component. LUCA is123

a multiple-objective, stepwise, and automated procedure. As with any automatic calibration algorithm, it is124

based on two elements: a global search algorithm; and the objective function(s) to evaluate model performance.125

In this case, the global search algorithm is the Shuffled Complex Evolution, which has been widely used and126

described in literature (e.g., Duan et al., 1993). As the objective function we use the Kling-Gupta Efficiency127

(KGE), which is described below, but LUCA could use other objective functions just as well.128

The calibration procedure for L↓ follows these steps:129

• The theoretical solar radiation at the top of the atmosphere (Itop) is computed using the SWRB (see130

Figure 1);131

• The clearness index, c, is calculated as the ratio between the measured incoming solar radiation (Im) and132

Itop;133

• Clear-sky and cloud-cover hours are detected by a threshold on the clearness index (equal to 0.6), providing134

two subsets of measured L↓, which are L↓clear
and L↓cloud

;135

• The parameters X, Y, and Z for the models in table 1 are optimised using the subset L↓clear
and setting136

a=0 in eq. 3.137

• The parameters a and b for eq. 3 are optimized using the subset L↓cloud
and using the X, Y, and Z values138

computed in the previous step.139

The calibration procedure provides the optimal set of parameters at a given location for each of the ten140

models.141

As well as parameter calibration, we carry out a model parameter sensitivity analysis and we provide a linear142

regression model relating a set of site-specific optimal parameters with easily available climatic variables, such143

as mean air temperature, relative humidity, precipitation and altitude.144

2.2 Verification of L↓ and L↑ longwave radiation models145

As presented in previous applications (e.g. Hatfield et al. (1983), Flerchinger et al. (2009)), we use the SMs146

with the original coefficients from literature (i.e. the parameters of table 2) and compare the performances of147

the models against available measurements of L↓ and L↑ for each site. The goodness of fit is evaluated by using148

two goodness-of-fit estimators: the Kling-Gupta Efficiency (KGE) presented in Gupta et al. (2009); and the149

root mean square error (RMSE).150

The KGE (eq. 4) is able to incorporate into one objective function three different statistical measures of151

the relation between measured (M) and simulated (S) data: (i) the correlation coefficient, r ; (ii) the variability152

error, a = σS/σM ; and (iii) the bias error, b=µS/µM . In these definitions µS and µM are the mean values,153

while σS and σM are the standard deviations, of measured and simulated time series.154

KGE = 1−
√

(r − 1)2 + (a− 1)2 + (b− 1)2 (4)
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The RMSE, on the other hand, is presented in eq. 5:155

RMSE =

√√√√ 1
N

N∑

i=1

(Mi − Si)2 (5)

where M and S represents the measured and simulated data respectively.156

3 The study area: the AmeriFlux Network157

To test and calibrate the LWRB SMs we use twenty-four meteorological stations of the AmeriFlux Network158

(http://ameriflux.ornl.gov). AmeriFlux is a network of sites that measure water, energy, and CO2 ecosystem159

fluxes in North and South America. The dataset is widely known and used for biological and environmental160

applications. To cite a few, Xiao et al. (2010) used Ameriflux data in a study on gross primary production data,161

Kelliher et al. (2004) in a study on carbon mineralization, and Barr et al. (2012) in a study on hurricanes. Data162

used in this study are the Level 2, 30-minute average data. Complete descriptions and downloads are available163

at the Web interface located at http://public.ornl.gov/ameriflux/.164

We have chosen twenty-four sites that are representative of most of the USA and span a wide climatic range:165

going from the arid climate of Arizona, where the average air temperature is 16 ◦C and the annual precipitation166

is 350 mm, to the equatorial climate of Florida, where the average air temperature is 24 ◦C and the annual167

precipitation is 950 mm. Some general and climatic characteristics for each site are summarized in table 4, while168

figure 2 shows their locations. The 30-minute average data have been cumulated to obtain continuous time series169

of averaged, hourly data for longwave radiation, air and soil temperature, relative humidity, precipitation, and170

soil water content.171

Figure 2: Test site locations in the United State of America.
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SiteID State Latitude Longitude Elevation (m) Climate T (oC) Data period
1 AZ 31.908 −110.840 991 semiarid 19 2008− 2013
2 AZ 31.591 −110.509 1469 temperate,arid 16 2002− 2011
3 AZ 31.744 −110.052 1372 temperate,semi-arid 17 2007− 2013
4 AZ 31.737 −109.942 1531 temperate,semi-arid 17 2004− 2013
5 AZ 31.821 −110.866 116 subtropical 19 2004− 2014
6 AZ 35.445 −111.772 2270 warm temperate 9 2005− 2010
7 AZ 35.143 −111.727 2160 warm temperate 9 2005− 2010
8 AZ 35.089 −111.762 2180 warm temperate 8 2005− 2010
9 CA 37.677 −121.530 323 mild 16 2010− 2012
10 CA 38.407 −120.951 129 mediterranean 15 2000− 2012
11 FL 25.365 −81.078 0 equatorial savannah 24 2004− 2011
12 ME 45.207 −68.725 61 temperate continental 5 1996− 2008
13 ME 45.204 −68.740 60 temperate continental 6 1996− 2009
14 MN 44.995 −93.186 301 continental 6 2005− 2009
15 MN 44.714 −93.090 260 snowy, humid summer 8 2003− 2012
16 MO 38.744 −92.200 219 temperate continental 13 2004− 2013
17 MT 48.308 −105.102 634 continental 5 2000− 2008
18 NJ 39.914 −74.596 30 temperate 12 2005− 2012
19 OK 36.427 −99.420 611 cool temperate 15 2009− 2012
20 TN 35.931 −84.332 286 temperate continental 15 2005− 2011
21 TN 35.959 −84.287 343 temperate 14 1994− 2007
22 TX 29.940 −97.990 232 warm temperate 20 2004− 2012
23 WA 45.821 −121.952 371 strongly seasonal 9 1998− 2013
24 WV 39.063 −79.421 994 temperate 7 2004− 2010

Table 4: Some general and climatic characteristics of the sites used for calibration: elevation is the site elevation above
sea level, T is the annual average temperature, and data period refers to the period of available measurements.

4 Results172

4.1 Verification of L↓ models with literature parameters173

When implementing the ten L↓ SMs using the literature parameters, in many cases, they show a strong bias in174

reproducing measured data. A selection of representative cases is presented in Figure 3, which shows scatterplots175

for four SMs in relation to one measurement station. The black points represent the hourly estimates of L↓176

provided by literature formulations, while the solid red line represents the line of optimal predictions. Model 1177

(Ångström (1915)) shows a tendency to lie below the 45 degree line, indicating a negative bias (percent bias of178

-9.8) and, therefore, an underestimation of L↓. In contrast, model 9 ( Prata (1996)) shows an overestimation of179

L↓ with a percent bias value of 26.3.180

Figure 4 presents the KGE (first column) and RMSE (second column) obtained for each model under clear-181

sky conditions, grouped by classes of latitude and longitude. Model 8 (Konzelmann et al. (1994)) does not182

perform very well for some reason. Its KGE values range between 0.16 and 0.41, while its RMSE values are183

higher than 100 W/m2, with a maximum of 200 W/m2. Model 6 (Idso (1981)) and model 2 (Brunt (1932))184

provide the best results, independently of the latitude and longitude ranges where they are applied. Their KGE185

values are between 0.75 and 0.94, while the RMSE has a maximum value of 39 W/m2.186
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Figure 3: Results of the clear-sky simulation for four literature models using data from Howland Forest (Maine).

Figure 4: KGE and RMSE values for each clear-sky simulation using literature formulations, grouped by classes of
latitude and longitude. The values of the KGE shown are those above 0.5: in this case, model 8 KGE values are not
represented as they are between 0.16 and 0.41. The range of RMSE is 0-100 W/m2.
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4.2 L↓ models with site-specific parameters187

The calibration procedure greatly improves the performances of all ten SMs. Optimized model parameters for188

each model are reported in the supplementary material. Figure 5 presents the KGE and RMSE values for189

clear-sky conditions grouped by classes of latitude and longitude. The percentage of KGE improvement ranges190

from its maximum value of 80% for model 8 (which is not, however, representative of the mean behavior of191

the SMs) to less than 10% for model 6, with an average improvement of around 35%. Even though variations192

in model performances with longitude and latitude classes still exist when using optimized model parameters,193

the magnitude of these variations is reduced with respect to the use of literature formulations. The calibration194

procedure reduces the RMSE values for all the models to below 50 W/m2, with the exception of model 8, which195

now has a maximum of 58 W/m2.196
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Figure 5: KGE (best is 1) and RMSE (best is 0) values for each optimized formulation in clear-sky conditions, grouped
by classes of latitude and longitude. Only values of KGE above 0.5 are shown.

Figure 6 presents KGE and RMSE values for each model under all-sky conditions, grouped by latitude and197

longitude classes. In general, for all-sky conditions we observe a deterioration of KGE and RMSE values with198

respect to the clear-sky optimized case, with a decrease in KGE values up to a maximum of 25% for model 10.199

This may be due to uncertainty incorporated in the formulation of the cloudy-sky correction model (eq. 3): it200

seems that sometimes the cloud effects are not accounted for appropriately. This, however, is in line with the201

findings of Carmona et al. (2014).202
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Figure 6: KGE and RMSE values for each model in all-sky conditions, grouped by classes of latitude and longitude.
Only values of KGE above 0.5 are shown.

4.3 Sensitivity analysis of L↓ models203

For each L↓ model we carry out a model parameters sensitivity analysis to investigate the effects and significance204

of parameters on performance for different model structures (i.e. models with one, two, and three parameters).205

The analyses are structured according to the following steps:206

• we start with the optimal parameter set, computed by the optimization process for the selected model;207

• all parameters are kept constant and equal to the optimal parameter set, except for the parameter under208

analysis;209

• 1000 random values of the analyzed parameter are picked from a uniform distribution centered on the210

optimal value with width equal to ± 30% of the optimal value; in this way 1000 model parameter sets211

were defined and 1000 model runs were performed;212

• 1000 values of KGE are computed by comparing the model outputs with measured time series.213

The procedure was repeated for each parameter of each model. Figures 7-a and 7-b summarize the sensitivity214

analysis results for models 1 to 5 and models 6 to 10, respectively. Each figure presents three columns, one for215

each parameter. Considering model 1 and parameter X: the range of X is subdivided into ten equal-sized classes216

and for each class the corresponding KGE values are presented as a boxplot. A smooth blue line passing through217

the boxplot medians is added to highlight any possible pattern to parameter sensitivity. A flat line indicates that218

the model is not sensitive to parameter variation about optimal value. Results suggest that models with one219

and two parameters are all sensitive to parameter variation, presenting a peak in KGE in correspondence with220

their optimal values; this is more evident in models with two parameters. Models with three parameters tend221
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Figure 7: Results o the model parameters sensitivity analysis.

to have at least one insensitive parameter, except for model 1, that could reveal a possible overparameterization222

of the modeling process.223

4.4 Regression model for parameters of L↓ models224

The calibration procedure that allows the estimation of site specific parameters for L↓ models requires measured225

downwelling longwave data. Because these measurements are rarely available, we implement a straightforward226

multivariate linear regression (Chambers et al., 1992; Wilkinson and Rogers, 1973) to relate the site-specific227

parameters X, Y and Z to a set of easily available site specific climatic variables, used as regressors ri. To228

perform the regression we use the open-source R software (https://cran.r-project.org) and to select the best229

regressors we use algorithms known as "best subsets regression", which are available in all common statistical230

software packages. The script containing the regression model is available, with the complementary material, at231

the web page of this paper: http://abouthydrology.blogspot.it/2015/07/site-specific-long-wave-radiation.html.232

The regressors we have selected are: mean annual air temperature, relative humidity, precipitation, and233

altitude. The models that we use for the three parameters are presented in equations (6), (7), and (8):234

X = aX +
N∑

k=1

αk · rk + εX (6)

Y = aY +
N∑

k=1

βk · rk + εY (7)
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Z = aZ +
N∑

k=1

γk · rk + εZ (8)

where N=4 is the number of regressors (annual mean air temperature, relative humidity, precipitation,235

and altitude); rk with k=1,.., 4 are the regressors; aX , aY , and aZ are the intercepts; αk, βk, and γk are236

the coefficients; and εX , εY , and εZ are the normally distributed errors. Once the regression parameters are237

determined, the end-user can estimate site specific X, Y and Z parameter values for any location by simply238

substituting the values of the regressors in the model formulations.239

The performances of the L↓ models using parameters assessed by linear regression are evaluated through240

the leave-one-out cross validation (Efron and Efron, 1982). We use 23 stations as training-sets for equations241

(6), (7), and (8) and we perform the model verification on the remaining station. The procedure is repeated for242

each of the 24 stations.243

The cross validation results for all L↓ models and for all stations are presented in figures (8) and (10),grouped244

by classes of latitude and longitude, respectively. They report the KGE comparison between the L↓ models245

with their original parameters (in red) and with the regression model parameters (in blue).246

In general, the use of parameters estimated with regression model gives a good estimation of L↓, with KGE247

values of up to 0.97. With respect to the classic formulation, model performance with regression parameters248

improved for all the models, in particular for model 8 in which the KGE improved from a minimum of 0.16 for249

the classic formulation to a maximum of 0.97.250
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Figure 8: Comparison between model performances obtained with regression and classic parameters: the KGE values
shown are those above 0.7 and results are grouped by latitude classes.
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Figure 9: Comparison between model performances obtained with regression and classic parameters: the KGE values
shown are those above 0.7 and results are grouped by longitude classes.
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4.5 Verification of the L↑ model251

Figure 10 presents the results of the L↑ simulations obtained using the three different temperatures available at252

experimental sites: soil surface temperature (skin temperature), air temperature, and soil temperature (mea-253

sured at 4 cm below the surface). The figure shows the performances of the L↑ model for the three different254

temperatures used in terms of KGE, grouping all the stations for the whole simulation period according to255

season. This highlights the different behaviors of the model for periods where the differences in the three tem-256

peratures are larger (winter) or negligible (summer). The values of soil emissivity are assigned according the257

soil surface type, according to Table 4 (Brutsaert, 2005).258

The best fit between measured and simulated L↑ is obtained with the surface soil temperature, with an all-259

season average KGE of 0.80. Unfortunately, the soil surface temperature is not an easily available measurement.260

In fact, it is available only for 8 sites of the 24 in the study area. Very good results are also obtained using the261

air temperature, where the all-season average KGE is around 0.76. The results using air temperature present262

much more variance compared to those obtained with the soil surface temperature. However, air temperature263

(at 2 m height) is readily available measure, in fact it is available for all 24 sites.264

The use soil temperature at 4 cm depth provides the least accurate results for our simulations, with an265

all-season average KGE of 0.46. In particular, the use of soil temperature at 4 cm depth during the winter is266

not able to capture the dynamics of L↑. It does, however, show a better fit during the other seasons. This could267

be because during the winter there is a substantial difference between the soil and skin temperatures, as also268

suggested in Park et al. (2008).269
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Figure 10: Boxplots of the KGE values obtained by comparing modeled upwelling longwave radiation, computed with
different temperatures (soil surface temperature (SKIN), air temperature (AIR), and soil temperature (SOIL)), against
measured data. Results are grouped by seasons.

5 Conclusions270

This paper presents the LWRB package, a new modeling component integrated into the JGrass-NewAge system271

to model upwelling and downwelling longwave radiation. It includes ten parameterizations for the computation272

of L↓ longwave radiation and one for L↑. The package uses all the features offered by the JGrass-NewAge273

system, such as algorithms to estimate model parameters and tools for managing and visualizing data in GIS.274

The LWRB is tested against measured L↓ and L↑ data from twenty-four AmeriFlux test-sites located all275

over continental USA. The application for L↓ longwave radiation involves model parameter calibration, model276

performance assessment, and parameters sensitivity analysis. Furthermore, we provide a regression model that277

estimates optimal parameter sets on the basis of local climatic variables, such as mean annual air temperature,278

relative humidity, and precipitation. The application for L↑ longwave radiation includes the evaluation of model279

performance using three different temperatures.280

The main achievements of this work include: i) a broad assessment of the classic L↓ longwave radiation281

parameterizations, which clearly shows that the Idso (1981) and Brunt (1932) models are the more robust282

and reliable for all the test sites, confirming previous results; ii) a site specific assessment of the L↓ longwave283

radiation model parameters for twenty-four AmeriFlux sites that improved the performances of all the models;284

iii) the set up of a regression model that provides an estimate of optimal parameter sets on the basis climatic285

data; iv) an assessment of L↑ model performances for different temperatures (skin temperature, air temperature,286

and soil temperature at 4 cm below surface), which shows that the skin and the air temperature are better287
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proxy for the L↑ longwave radiation.288

The integration of the package into JGrass-NewAge will allow users to build complex modeling solutions289

for various hydrological scopes. In fact, future work will include the link of the LWRB package to the existing290

components of JGrass-NewAge to investigate L↓ and L↑ effects on evapotranspiration, snow melting, and glacier291

evolution.292
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