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Abstract

In this work ten algorithms for estimating downwelling longwave atmospheric radiation (L) and one for
upwelling longwave radiation (L4) are integrated into the JGrass-NewAge modeling system. The algorithms
are tested against energy flux measurements available for 24 sites in North America to assess their reliability.
These new JGrass-NewAge model components are used i) to evaluate the performances of simplified models
(SMs) of L, , as presented in literature formulations, and ii) to determine by automatic calibration the
site-specific parameter sets for L in SMs. For locations where calibration is not possible because of a lack of
measured data, we perform a multiple regression using on-site variables, i.e. mean annual air temperature,
relative humidity, precipitation, and altitude. The regressions are verified through a leave-one-out cross
validation, which also gathers information about the possible errors of estimation. Most of the SMs, when
executed with parameters derived from the multiple regressions, give enhanced performances compared to
the corresponding literature formulation. A sensitivity analysis is carried out for each SM to understand
how small variations of a given parameter influence SM performance. Regarding the L, simulations, the
Brunt (1932) and Idso (1981) SMs, in their literature formulations, provide the best performances in many
of the sites. The site-specific parameter calibration improves SM performances compared to their literature
formulations. Specifically, the root mean square error (RMSE) is almost halved and the Kling Gupta
efficiency is improved at all sites. Also in this case Brunt (1932) and Idso (1981) SMs provided the best
performances.

The Ly SM is tested by using three different temperatures (surface soil temperature, air temperature at
2 m elevation, and soil temperature at 4 cm depth) and model performances are then assessed. Results show

that the best performances are achieved using the surface soil temperature and the air temperature.
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1 Introduction

Longwave radiation is an important component of the radiation balance on earth and it affects many phenom-
ena, such as evapotranspiration, snow melt (Pliiss and Ohmura, 1997), glacier evolution (MacDonell et al.,
2013), vegetation dynamics (Rotenberg et al., 1998), plant respiration, and primary productivity (Leigh Jr,
1999). Longwave radiation is usually measured with pyrgeometers, but these are not normally available in
basic meteorological stations, even though an increasing number of projects has been developed to fill the gap
Augustine et al. (2000), Augustine et al. (2005) and Baldocchi et al. (2001). The use of satellite products to
estimate longwave solar radiation is increasing (GEWEX, Global Energy and Water cycle Experiment, ISCCP
the International Satellite Cloud Climatology Project) but they have too coarse a spatial resolution for many
hydrological uses. Therefore, models have been developed to solve energy transfer equations and compute ra-
diation at the surface (e.g. Key and Schweiger (1998), Kneizys et al. (1988)). These physically based and fully
distributed models provide accurate estimates of the radiation components. However, they require input data
and model parameters that are not easily available. To overcome this issue, simplified models (SM), which are
based on empirical or physical conceptualizations, have been developed to relate longwave radiation to atmo-
spheric proxy data such as air temperature, water vapor deficit, and shortwave radiation. They are widely used
and provide clear sky (e.g. Angstrom (1915); Brunt (1932); Idso and Jackson (1969)) and all-sky estimations
of downwelling (L) and upwelling (L+) longwave radioation(e.g. Brutsaert (1975); Iziomon et al. (2003a)).

SM performances have been assessed in many studies by comparing measured and modeled L, at hourly
and daily time-steps (e.g. Sugita and Brutsaert (1993a); Iziomon et al. (2003b); Juszak and Pellicciotti (2013);
MacDonell et al. (2013); Schmucki et al. (2014)). Hatfield et al. (1983) was among the first to present a
comparison of the most used SMs in an evaluation of their accuracy. They tested seven clear-sky algorithms
using atmospheric data from different stations in the United States. In order to validate the SMs under
different climatic conditions, they performed linear regression analyses on the relationship between simulated
and measured L) for each algorithm. The results of the study show that the best models were Brunt (1932),
Brutsaert (1975) and Idso (1981). Flerchinger et al. (2009) made a similar comparison using more formulations
(13) and a wider data-set from North America and China, considering all possible sky conditions. Finally,
Carmona et al. (2014) evaluated the performance of six SMs, with both literature and site-specific formulations,
under clear-sky conditions for the sub-humid Pampean region of Argentina.

However, none of the above studies have developed a method to systematically estimate site-specific model
parameters for location where measurements are not available using basic site characteristics.

This paper introduces the LongWave Radiation Balance package (LWRB) of the JGrass-NewAGE modelling
system Formetta et al. (2014a). LWRB implements 10 formulations for L| and one for Ly longwave radiation.
The package was systematically tested against measured L and L4 longwave radiation data from 24 stations
across the contiguous USA, chosen from the 65 stations of the AmeriFlux Network. Unlike all previous works,
the LWRB component follows the specifications of the Object Modeling System (OMS) framework (David

et al., 2013). Therefore, it can use all of the JGrass-NewAge tools for the automatic calibration algorithms,
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data management and GIS visualization, and it can be seamlessly integrated into various modeling solutions
for the estimation of water budget fluxes (Formetta et al., 2014a). Moreover, differently from other studies, all
the tools used in this paper are open-source, well documented, and ready for practical use by other researchers

and practitioners.

2 Methodology

The SMs for Ly [W m~2] and L, [W m~?2| longwave radiation are based on the Stefan-Boltzmann equation:

Ly = €qli—sky - 0 - T;l (1)

L»r:65~a~T;l (2)

where o = 5.670-107% [W m~2 K~1] is the Stefan-Boltzmann constant, T,, [K] is the air temperature, €a;—sky
[-] is the effective atmospheric emissivity, €5 [-] is the soil emissivity and T [K] is the surface soil temperature.

To account for the increase of L in cloudy conditions, €q1i—sky |-] is formulated according to eq. (3):
€all—sky = €clear * (1 +a- Cb) (3)

where ¢ [-] is the cloud cover fraction and a [-] and b [-] are two calibration coefficients. Site specific values of
a and b are presented in Brutsaert (1975), (a=0.22 and b=1), Iziomon et al. (2003a) (@ ranges between 0.25 and
0.4 and b=2) and Keding (1989) (a=0.183 and »=2.18). In our modeling system a and b are calibrated to fit
measurement data under all-sky conditions. The cloud cover fraction, ¢, can be estimated from solar radiation
measurements (Crawford and Duchon, 1999), from visual observations (Alados-Arboledas et al., 1995, Niemeld
et al., 2001), and from satellite data (Sugita and Brutsaert, 1993b) or it can be modeled as well. In this study
we use the formulation presented in Campbell (1985) and Flerchinger (2000), where c is related to the clearness
index s [-], i.e. the ratio between the measured incoming solar radiation, I,,, [W m~2], and the theoretical solar
radiation computed at the top of the atmosphere, I1,, [W m™2|, according to ¢ = 1 — s (Crawford and Duchon,
1999). This type of formulation needs a shortwave radiation balance model to estimate I;,, and meteorological
stations to measure I,,,; also, it cannot estimate ¢ at night. In our application, the fact that the SMs are fully
integrated into the JGrass-NewAge system allows us to use the shortwave radiation balance model (Formetta
et al., 2013) to compute I;,,. Night-time values of ¢ are computed with a linear interpolation between its values
at the last hour of daylight and the first hour of daylight on consecutive days. The computation of the first
and last hour of the day is based on the model proposed in Formetta et al., 2013 that follows the approach
proposed in Corripio (2002), equations (4.23)-(4.25). The sunrise occurs at ¢t = 12 - (1 — w/7) and the sunset
will be at ¢ = 12+ (1 + w/7) where w is the hour angle, i.e. the angle between the observer meridian and the

solar meridian. It is zero at noon and positive before noon. Those equations are based on the assumption that



oa sunrise and sunset occur at the time when the z coordinate of the sun vector equals zero.

o5 The formulation presented in equation (3) was proposed by Bolz (1949) applied in other studies (Carmona
e et al. (2014), Maykut and Church (1973), Jacobs (1978), Niemel4 et al. (2001)). Evaluating the effectiveness of
oz different formulations respect to equation (3) is still an open question which is not object of the current paper.
es It has been investigated in several studies (i.e. Flerchinger et al. (2009), Juszak and Pellicciotti (2013), and
9o references therein) and some of them recommended the one proposed by Unsworth and Monteith (1975).

100 Ten SMs from literature have been implemented for the computation of €.eq-. Table 1 specifies assigned
12 component number, component name, defining equation, and reference to the paper from which it is derived.

12 X, Y and Z are the parameters provided in literature for each model, listed in Table 2.

ID Name Formulation Reference

1 Angstrom €clear = X — Y - 107° Angstrom (1915)

2 Brunt’s €ctear = X +Y - %5 Brunt (1932)

3 Swinbank €ctear = (X - 1072 . T9) /(0 - T) Swinbank (1963)

4 Idso and Jackson €ctear = 1 — X - exp(—=Y -107* - (273 — Ty,)?) Idso and Jackson (1969)
5 Brutsaert €clear = X - (e/Ta)l/Z Brutsaert (1975)

6 Idso €ctear = X +Y -107* - e - exp(1500/T5) Idso (1981)

7 Monteith and Unsworth  €cjear = X +Y -0 - T2 Monteith and Unsworth (1990)
8 Konzelmann €clear =X +Y - (e/Ta)l/8 Konzelmann et al. (1994)
9 Prata €ctear = [1 — (X +w) - exp(—(Y + Z - w)*/?)) Prata (1996)

10  Dilley and O’Brien €ctear = (X +Y - (T0/273.16)° + Z - (w/25)Y/?) /(0 - T2) Dilley and O’brien (1998)

Table 1: Clear sky emissivity formulations: T, is the air temperatue [K], w [kg/m?| is precipitable water = 4650 [eo/T4]
and e |kPa] is screen-level water-vapour pressure. The models follow the formulations presented in used in Flerchinger
(2000). The Angstrom and Brunt model was presented as cited by Niemel4 et al. (2001). Konzelmann uses water vapour
pressure in [Pa] not [kPa].

103 The models presented in Table 1 were proposed with coefficient values (X, Y, Z) strictly related to the location
104 in which the authors applied the model and where measurements of L radiation were collected. Coefficients

reflect climatic, atmospheric and hydrological conditions of the sites, and are reported in Table 2.

ID Name X Y Z

1 Angstrom 0.83 0.18 —0.07
2 Brunt 0.52 0.21 -]

3 Swinbank 5.31 -] -]

4 Idso and Jackson 0.26 =777 [-]

5  Brutsaert 1.72 7 -]

6 Idso 0.70 595 [

7  Monteith and Unsworth —119.00 1.06 -]

8  Konzelmann et al 0.23 0.48 -]

9 Prata 1.00 1.20 3.00
10 Dilley and O’brien 59.38 113.70  96.96

Table 2: Model parameter values as presented in their literature formulation.

105
106 The formulation of the L requires the soil emissivity, which usually is a property of the nature of a surface,
w7 and the surface soil temperature. Table 3 shows the literature values (Brutsaert, 2005) of the soil emissivity for
10s different surface types: €5 varies from a minimum of 0.95 for bare soils to a maximum of 0.99 for fresh snow.

100 It is well known that surface soil temperature measurements are only available at a few measurement sites,
110 therefore, under the hypothesis that difference between soil and air temperatures is not too big, it is possible to

11 simulate Ly using the air temperature (Park et al., 2008). In our approach three different types of temperature



112

113

116

119

122

Nature of surface Emissivity
Bare soil (mineral) 0.95 — 0.97
Bare soil (organic) 0.97 —0.98
Grassy vegetation  0.97 — 0.98

Tree vegetation 0.96 — 0.97
Snow (old) 0.97
Snow (fresh) 0.99

Table 3: Soil emissivity for surface types (Brutsaert, 2005).

were used to simulate Ly, specifically: surface soil temperature (where available), air temperature at 2 m height,
and soil temperature at 4 cm depth.

The LWRB package (see flowchart in Figurel) is part of the JGrass-NewAge system and was preliminary
tested in Formetta et al. (2014b). Model inputs depend on the specific SM being implemented and the purpose
of the run being performed (calibration, verification, simulation). The inputs are meteorological observations
such as air temperature, relative humidity, incoming solar radiation, and sky clearness index. The LWRB is also
fed by other JGrass-NewAGE components, such as the shortwave radiation balance (SWRB) (Formetta et al.,
2013). To test model performances (i.e. verification), the LWRB can be connected to the system’s Verification
component; to execute the parameter calibration algorithm (Formetta et al., 2014a), it can be connected to the
LUCA (Let Us CAlibrate) component. In turn, all these components can and/or need to be connected to other
ones, as the problem under examination may require. Model outputs are L and L4+. These can be provided
in single points of specified coordinates or over a whole geographic area, represented as a raster map. For the

latter case a digital elevation model (DEM) of the study area is necessary in input.

SWRB
@In: @O0ut:
Elevation
SkyViewFact. Shortwave_Beam_ LUCA
Stations Component @In: @O0ut:
Air Temperature
Relative Humidity Shortwave_Diffuse - Model Optimal
_Component.csv L 4 Parameter Set
LWRB Measurement
@In: @Qut:
Start Date, End Date
Station elevation ID, timeStep, Shp or Dem map Upwelling Checking convergence
atmospheric trasmittance Incoming. Shortwave LU“E_W?"'E ? parameter, optimization
parameters Rad. (l,) Radiation algorithm parameters,
Measured Shortwave . Objective function
Downwelling
Rad. (I,) *
) Longwave
Air Temperature Radiation
Air Humidity

Longwave radiation

Current time, Mode(raster or Measurement data

vector), Station ID, Model ID,
model parameters

—— Models

—— Calibration procedure Verification

@In: @OQut:
—— Verification procedure Measured longwave

radiatiion Goodness of fit

indices

- > ¢ Modelled longwave
radiation

Figure 1: The LWRB component of JGrass-NewAge and the flowchart to model longwave radiation.
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The subsection 2.1 and 2.2 respectively present the calibration and the verification procedure. Moreover
a model sensitivity analysis procedure is presented in subsection 2.3 and a multi-regression model to relate

optimal parameter set and easy available meteorological data is proposed in subsection 2.4.

2.1 Calibration of L longwave radiation models

Model calibration estimates the site-specific parameters of L | models by tweaking them with a specific algorithm
in order to best fit measured data. To this end, we use the LUCA calibration algorithm proposed in Hay et al.
(2006), which is a part of the OMS core and is able to optimize parameters of any OMS component. LUCA
is a multiple-objective, stepwise, and automated procedure. As with any automatic calibration algorithm, it is
based on two elements: a global search algorithm; and the objective function(s) to evaluate model performance.
In this case, the global search algorithm is the Shuffled Complex Evolution, which has been widely used and
described in literature (e.g., Duan et al., 1993). As the objective function we use the Kling-Gupta Efficiency
(KGE, Gupta et al. (2009)), which is described below, but LUCA could use other objective functions just as
well.

The calibration procedure for L follows these steps:

e The theoretical solar radiation at the top of the atmosphere (I,,) is computed using the SWRB (see

Figure 1);

e The clearness index, ¢, is calculated as the ratio between the measured incoming solar radiation (I,,,) and

Itop;

e Clear-sky and cloud-cover hours are detected by a threshold on the clearness index (equal to 0.6), providing
two subsets of measured L}, which are L, and Lj . ,. On one side, a threshold of 0.6 to define the
clear-sky conditions helps in the sense that allow to define time-series of measured clear-sky L; with
comparable length in all the stations, and this is useful for a reliable calibration process. On the other
side, it introduces a small error in computing the emissivity in all-sky condition using equation (3).
Although the effects of this small error would need further investigations, they could be compensated
by the optimization of the parameters a and b, that are non-linearly related to the emissivity in all-sky

conditions;

e The parameters X, Y, and Z for the models in Table 1 are optimised using the subset L, . and setting

a=0 in eq. 3;

e The parameters a and b for eq. 3 are optimized using the subset L,  , and using the X, Y, and Z values

computed in the previous step.

The calibration procedure provides the optimal set of parameters at a given location for each of the ten

models.
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As well as parameter calibration, we carry out a model parameter sensitivity analysis and we provide a
linear regression model relating a set of site-specific optimal parameters with mean air temperature, relative

humidity, precipitation, and altitude.

2.2 Verification of L and L, longwave radiation models

As presented in previous applications (e.g. Hatfield et al. (1983), Flerchinger et al. (2009)), we use the SMs
with the original coefficients from literature (i.e. the parameters of Table 2) and compare the performances of
the models against available measurements of L) and Ly for each site. The goodness of fit is evaluated by using
two goodness-of-fit estimators: the Kling-Gupta Efficiency (KGE) and the root mean square error (RMSE).
The KGE (eq. 4) is able to incorporate into one objective function three different statistical measures of
the relation between measured (M) and simulated (S) data: (i) the correlation coefficient, r ; (ii) the variability
error, a = og/op; and (iil) the bias error, b=pg/pp. In these definitions pg and pps are the mean values,

while g and o) are the standard deviations, of measured and simulated time series.

KGE=1—+/(r—1)2+(a— 12+ (b—1)2 (4)

The RMSE, on the other hand, is presented in eq. 5:

1 & )
RMSE = NZ (M; — S) (5)

i=1
where M and S represents the measured and simulated time-series respectively and N is their length.

2.3 Sensitivity analysis of L; models

For each L model we carry out a model parameters sensitivity analysis to investigate the effects and significance
of parameters on performance for different model structures (i.e. models with one, two, and three parameters).

The analyses are structured according to the following steps:
e we start with the optimal parameter set, computed by the optimization process for the selected model;

e all parameters are kept constant and equal to the optimal parameter set, except for the parameter under

analysis;

e 1000 random values of the analyzed parameter are picked from a uniform distribution centered on the
optimal value with width equal to + 30% of the optimal value; in this way 1000 model parameter sets

were defined and 1000 model runs were performed;
e 1000 values of KGE are computed by comparing the model outputs with measured time series.

The procedure was repeated for each parameter of each model and for each station of the analyzed dataset.
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2.4 Regression model for parameters of L, models

The calibration procedure previously presented to estimate the site specific parameters for L models requires
measured downwelling longwave data. Because these measurements are rarely available, we implement a
straightforward multivariate linear regression (Chambers et al., 1992; Wilkinson and Rogers, 1973) to relate
the site-specific parameters X, Y and Z to a set of easily available site specific climatic variables, used as regres-
sors ;. To perform the regression we use the open-source R software (https://cran.r-project.org) and to select
the best regressors we use algorithms known as "best subsets regression", which are available in all common
statistical software packages. The regressors we have selected are: mean annual air temperature, relative hu-
midity, precipitation, and altitude. The models that we use for the three parameters are presented in equations

(6), (7), and (8):

N

X:iX+Zak~rk+eX (6)
k=1
N

Yziy—I—Zﬂk'Tk-f-Gy (7)
k=1
N

Z=iz+Y w-ritez (8)
k=1

where N=4 is the number of regressors (annual mean air temperature, relative humidity, precipitation, and
altitude); v, with k=1,.., 4 are the regressors; ix, iy, and iz are the intercepts; ay, Bg, and 7y are the coefficients;
and ex, €y, and ez are the normally distributed errors. Once the regression parameters are determined, the
end-user can estimate site specific X, Y and Z parameter values for any location by simply substituting the

values of the regressors in the model formulations.

3 The study area: the AmeriFlux Network

To test and calibrate the LWRB SMs we use 24 meteorological stations of the AmeriFlux Network (http://ameriflux.ornl.gov).

AmeriFlux is a network of sites that measure water, energy, and CO2 ecosystem fluxes in North and South
America. The dataset is well-known and used in several applications such as Xiao et al. (2010), Barr et al.
(2012), and Kelliher et al. (2004). Data used in this study are the Level 2, 30-minute average data. Complete
descriptions and downloads are available at the Web interface located at http://public.ornl.gov/ameriflux/.
We have chosen 24 sites that are representative of most of the contiguous USA and span a wide climatic range:
going from the arid climate of Arizona, where the average air temperature is 16 °C and the annual precipitation
is 350 mm, to the equatorial climate of Florida, where the average air temperature is 24 °C and the annual
precipitation is 950 mm. Some general and climatic characteristics for each site are summarized in Table 4, while
Figure 2 shows their locations. The 30-minute average data have been cumulated to obtain continuous time

series of averaged, hourly data for longwave radiation, air and soil temperature, relative humidity, precipitation,



210 and soil water content. Longwave radiation was measured with Eppley Pyrgeometers with uncertainty of + /-

21 3 [W m72].
SiteID State Latitude Longitude Elevation (m) Climate T (°C) Data period
1 AZ 31.908 —110.840 991 semiarid 19 2008 — 2013
2 AZ 31.591 —110.509 1469 temperate,arid 16 2002 — 2011
3 AZ 31.744 —110.052 1372 temperate,semi-arid 17 2007 — 2013
4 AZ 31.737 —109.942 1531 temperate,semi-arid 17 2004 — 2013
5 AZ 31.821 —110.866 116 subtropical 19 2004 — 2014
6 AZ 35.445 —111.772 2270 warm temperate 9 2005 — 2010
7 AZ 35.143 —111.727 2160 warm temperate 9 2005 — 2010
8 AZ 35.089 —111.762 2180 warm temperate 8 2005 — 2010
9 CA 37.677 —121.530 323 mild 16 2010 — 2012
10 CA 38.407 —120.951 129 mediterranean 15 2000 — 2012
11 FL 25.365 —81.078 0 equatorial savannah 24 2004 — 2011
12 ME 45.207 —68.725 61 temperate continental 5 1996 — 2008
13 ME 45.204 —68.740 60 temperate continental 6 1996 — 2009
14 MN 44.995 —93.186 301 continental 6 2005 — 2009
15 MN 44.714 —93.090 260 snowy, humid summer 8 2003 — 2012
16 MO  38.744 —92.200 219 temperate continental 13 2004 — 2013
17 MT 48.308 —105.102 634 continental 5 2000 — 2008
18 NJ 39.914 —74.596 30 temperate 12 2005 — 2012
19 OK 36.427 —99.420 611 cool temperate 15 2009 — 2012
20 TN 35.931 —84.332 286 temperate continental 15 2005 — 2011
21 TN 35.959 —84.287 343 temperate 14 1994 — 2007
22 X 29.940 —97.990 232 warm temperate 20 2004 — 2012
23 WA 45.821 —121.952 371 strongly seasonal 9 1998 — 2013
24 WV 39.063 —79.421 994 temperate 7 2004 — 2010

Table 4: Some general and climatic characteristics of the sites used for calibration: elevation is the site elevation above
sea level, T is the annual average temperature, and data period refers to the period of available measurements.
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Figure 2: Test site locations in the United State of America.
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4 Results

4.1 Verification of L| models with literature parameters

When implementing the ten L; SMs using the literature parameters, in many cases, they show a strong bias in
reproducing measured data. A selection of representative cases is presented in Figure 3 which shows scatterplots
for four SMs in relation to one measurement station. The black points represent the hourly estimates of L
provided by literature formulations, while the solid red line represents the line of optimal predictions. Model 1
(Angstrom (1915)) shows a tendency to lie below the 1:1 line, indicating a negative bias (percent bias of -9.8)
and, therefore, an underestimation of L;. In contrast, model 9 ( Prata (1996)) shows an overestimation of L
with a percent bias value of 26.3.

Figure 4 presents the boxplot of KGE (first column) and RMSE (second column) obtained for each model
under clear-sky conditions, grouped by classes of latitude and longitude. In general all the models except the
Model 8 (Konzelmann et al. (1994)) provided values of KGE higher than 0.5 and RMSE lower than 100 [W
m~2| for all the latitude and longitude classes. Model 8 is the less performing model for many of the stations
likely because the model parameters were estimated for the Greenland where snow and ice play a fundamental
role on the energy balance. Its KGE values range between 0.33 and 0.62 on average, while its RMSE values
are higher than 100 [W m~2| except for latitude classes >40°N and longitude classes >-70°W. Model 6 (Idso
(1981)) and Model 2 (Brunt (1932)) provide the best results and the lower variability, independently of the
latitude and longitude ranges where they are applied. Their average KGE values are between 0.75 and 0.92,
while the RMSE has a maximum value of 39 [W m~2]. Moreover, all the models except 2 and 6 show a high

variability of the goodness of fit through the latitude and longitude classes.

10
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Figure 3: Results of the clear-sky simulation for four literature models using data from Howland Forest (Maine).
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4.2 L models with site-specific parameters

The calibration procedure greatly improves the performances of all ten SMs. Optimized model parameters for
each model are reported in the supplementary material (Table S1). Figure 5 presents the boxplots of KGE and
RMSE values for clear-sky conditions grouped by classes of latitude and longitude. The percentage of KGE
improvement ranges from its maximum value of 70% for Model 8 (which is not, however, representative of the
mean behavior of the SMs) to less than 10% for Model 6, with an average improvement of around 35%. Even
though variations in model performances with longitude and latitude classes still exist when using optimized
model parameters, the magnitude of these variations is reduced with respect to the use of literature formulations.
The calibration procedure reduces the RMSE values for all the models to below 45 [W m~2|, even for Model
8, which also in this case had the maximum improvement. Model 6 (Idso (1981)) and Model 2 (Brunt (1932))

provide the best results on average for all the analyzed latitude and longitude classes.
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Figure 5: KGE (best is 1) and RMSE (best is 0) values for each optimized formulation in clear-sky conditions, grouped
by classes of latitude and longitude. Only values of KGE above 0.5 are shown.

Figure 6 presents the boxplots of KGE and RMSE values for each model under all-sky conditions, grouped
by latitude and longitude classes. In general, for all-sky conditions we observe a deterioration of KGE and
RMSE values with respect to the clear-sky optimized case, with a decrease in KGE values up to a maximum of
25% on average for Model 10. This may be due to uncertainty incorporated in the formulation of the cloudy-sky
correction model (eq. 3): it seems that sometimes the cloud effects are not accounted for appropriately. This,

however, is in line with the findings of Carmona et al. (2014).
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4.3 Sensitivity analysis of L; models

The results of the models sensitivity analysis are summarized in Figures 7-a and 7-b for models 1 to 5 and
models 6 to 10, respectively. Each figure presents three columns, one for each parameter. Considering model 1
and parameter X: the range of X is subdivided into ten equal-sized classes and for each class the corresponding
KGE values are presented as a boxplot. A smooth blue line passing through the boxplot medians is added to
highlight any possible pattern to parameter sensitivity. A flat line indicates that the model is not sensitive to
parameter variation around optimal value. Results suggest that models with one and two parameters are all
sensitive to parameter variation, presenting a peak in KGE in correspondence with their optimal values; this is
more evident in models with two parameters. Models with three parameters tend to have at least one insensitive

parameter, except for Model 1, that could reveal a possible overparameterization of the modeling process.

4.4 Regression model for parameters of L, models

A multivariate linear regression model was estimated to relate the site-specific parameters X, Y and Z to mean
annual air temperature, relative humidity, precipitation, and altitude. The script containing the regression
model is available, as specified in Reproducible Research section below.

The performances of the L models using parameters assessed by linear regression are evaluated through
the leave-one-out cross validation (Efron and Efron, 1982). We use 23 stations as training-sets for equations
(6), (7), and (8) and we perform the model verification on the remaining station. The procedure is repeated for
each of the 24 stations.

The cross validation results for all L, models and for all stations are presented in Figures (8) and (9),
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Figure 7: Results of the model parameters sensitivity analysis. It presents as boxplot the variation of the model
performances due to a variation of one of the optimal parameter and assuming constant the others. The procedure is
repeated for each model and the blue line represents the smooth line passing through the boxplot medians.

grouped by classes of latitude and longitude, respectively. They report the KGE comparison between the L
models with their original parameters (in black) and with the regression model parameters (in black).

In general, the use of parameters estimated with regression model gives a good estimation of L, with KGE
values of up to 0.92. With respect to the classic formulation, model performance with regression parameters
improved for all the models independently of the latitude and longitude classes. In particular for Model 8 the
KGE improved from 0.26 for the classic formulation to of 0.92, on average. Finally, the use of the parameters
estimated by the regression model provides a reduction of the model performances variability for all the models

except Model 5 and 8, for longitude class -125;-105°W and -105;-90°W respectively.
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Figure 8: Comparison between model performances obtained with regression and classic parameters: the KGE values
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shown are those above 0.3 and results are grouped by longitude classes.
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4.5 Verification of the L; model

Figure 10 presents the results of the L simulations obtained using the three different temperatures available at
experimental sites: soil surface temperature (skin temperature), air temperature, and soil temperature (mea-
sured at 4 cm below the surface). The figure shows the performances of the Ly model for the three different
temperatures used in terms of KGE, grouping all the stations for the whole simulation period according to
season. This highlights the different behaviors of the model for periods where the differences in the three tem-
peratures are larger (winter) or negligible (summer). The values of soil emissivity are assigned according the
soil surface type, according to Table 4 (Brutsaert, 2005). Although many studies investigated the influence of
snow covered area on longwave energy balance (e.g. Pliiss and Ohmura (1997); Sicart et al. (2006)), the SMs
do not explicitly take into account of it. As presented in Konig-Langlo and Augstein (1994), the effect of snow
could be implicitly taken into account by tuning the emissivity parameter.

The best fit between measured and simulated Ly is obtained with the surface soil temperature, with an all-
season average KGE of 0.80. Unfortunately, the soil surface temperature is not an easily available measurement.
In fact, it is available only for 8 sites of the 24 in the study area. Very good results are also obtained using the
air temperature, where the all-season average KGE is around 0.76. The results using air temperature present
much more variance compared to those obtained with the soil surface temperature. However, air temperature
(at 2 m height) is readily available measure, in fact it is available for all 24 sites.

The use soil temperature at 4 cm depth provides the least accurate results for our simulations, with an
all-season average KGE of 0.46. In particular, the use of soil temperature at 4 cm depth during the winter is
not able to capture the dynamics of L. It does, however, show a better fit during the other seasons. This could
be because during the winter there is a substantial difference between the soil and skin temperatures, as also

suggested in Park et al. (2008).
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Figure 10: Boxplots of the KGE values obtained by comparing modeled upwelling longwave radiation, computed with
different temperatures (soil surface temperature (SKIN), air temperature (AIR), and soil temperature (SOIL)), against
measured data. Results are grouped by seasons.

5 Conclusions

This paper presents the LWRB package, a new modeling component integrated into the JGrass-NewAge system
to model upwelling and downwelling longwave radiation. It includes ten parameterizations for the computation
of L longwave radiation and one for Ly. The package uses all the features offered by the JGrass-NewAge
system, such as algorithms to estimate model parameters and tools for managing and visualizing data in GIS.

The LWRB is tested against measured L and L4 data from 24 AmeriFlux test-sites located all over contigu-
ous USA. The application for L longwave radiation involves model parameter calibration, model performance
assessment, and parameters sensitivity analysis. Furthermore, we provide a regression model that estimates
optimal parameter sets on the basis of local climatic variables, such as mean annual air temperature, rela-
tive humidity, and precipitation. The application for L; longwave radiation includes the evaluation of model
performance using three different temperatures.

The main achievements of this work include: i) a broad assessment of the classic L, longwave radiation
parameterizations, which clearly shows that the Idso (1981) and Brunt (1932) models are the more robust and
reliable for all the test sites, confirming previous results (Carmona et al., 2014); ii) a site specific assessment of
the L longwave radiation model parameters for 24 AmeriFlux sites that improved the performances of all the
models; iii) the set up of a regression model that provides an estimate of optimal parameter sets on the basis
climatic data; iv) an assessment of Ly model performances for different temperatures (skin temperature, air

temperature, and soil temperature at 4 cm below surface), which shows that the skin and the air temperature
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are better proxy for the L} longwave radiation. Regarding longwave downwelling radiation the Brunt (1932)
model is able to provide on average the best performances with the regression model parameters independently
of the latitude and longitude classes. For the Idso (1981) model the formulation with regression parameter
provided lower performances with respect to the literature formulation for latitude between 25°N and 30°N.
The integration of the package into JGrass-NewAge will allow users to build complex modeling solutions
for various hydrological scopes. In fact, future work will include the link of the LWRB package to the existing
components of JGrass-NewAge to investigate L| and L4 effects on evapotranspiration, snow melting, and glacier
evolution. Finally, the methodology proposed in this paper provides the basis for further developments such as
the possibility to: i) investigate the effect of different all-sky emissivity formulation and quantify the influence of
the clearness index threshold ii) verify the usefulness of the regression models for climates outside the contiguous
USA,; iii) analyze in a systematic way the uncertainty due to the quality of meteorological input data on the

longwave radiation balance in scarce instrumented areas.
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