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Abstract10

In this work ten algorithms for estimating downwelling longwave atmospheric radiation (L↓) and one for11

upwelling longwave radiation (L↑) are integrated into the JGrass-NewAge modeling system. The algorithms12

are tested against energy flux measurements available for 24 sites in North America to assess their reliability.13

These new JGrass-NewAge model components are used i) to evaluate the performances of simplified models14

(SMs) of L↓ , as presented in literature formulations, and ii) to determine by automatic calibration the15

site-specific parameter sets for L↓ in SMs. For locations where calibration is not possible because of a lack of16

measured data, we perform a multiple regression using on-site variables, i.e. mean annual air temperature,17

relative humidity, precipitation, and altitude. The regressions are verified through a leave-one-out cross18

validation, which also gathers information about the possible errors of estimation. Most of the SMs, when19

executed with parameters derived from the multiple regressions, give enhanced performances compared to20

the corresponding literature formulation. A sensitivity analysis is carried out for each SM to understand21

how small variations of a given parameter influence SM performance. Regarding the L↓ simulations, the22

Brunt (1932) and Idso (1981) SMs, in their literature formulations, provide the best performances in many23

of the sites. The site-specific parameter calibration improves SM performances compared to their literature24

formulations. Specifically, the root mean square error (RMSE) is almost halved and the Kling Gupta25

efficiency is improved at all sites. Also in this case Brunt (1932) and Idso (1981) SMs provided the best26

performances.27

The L↑ SM is tested by using three different temperatures (surface soil temperature, air temperature at28

2 m elevation, and soil temperature at 4 cm depth) and model performances are then assessed. Results show29

that the best performances are achieved using the surface soil temperature and the air temperature.30
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1 Introduction31

Longwave radiation is an important component of the radiation balance on earth and it affects many phenom-32

ena, such as evapotranspiration, snow melt (Plüss and Ohmura, 1997), glacier evolution (MacDonell et al.,33

2013), vegetation dynamics (Rotenberg et al., 1998), plant respiration, and primary productivity (Leigh Jr,34

1999). Longwave radiation is usually measured with pyrgeometers, but these are not normally available in35

basic meteorological stations, even though an increasing number of projects has been developed to fill the gap36

Augustine et al. (2000), Augustine et al. (2005) and Baldocchi et al. (2001). The use of satellite products to37

estimate longwave solar radiation is increasing (GEWEX, Global Energy and Water cycle Experiment, ISCCP38

the International Satellite Cloud Climatology Project) but they have too coarse a spatial resolution for many39

hydrological uses. Therefore, models have been developed to solve energy transfer equations and compute ra-40

diation at the surface (e.g. Key and Schweiger (1998), Kneizys et al. (1988)). These physically based and fully41

distributed models provide accurate estimates of the radiation components. However, they require input data42

and model parameters that are not easily available. To overcome this issue, simplified models (SM), which are43

based on empirical or physical conceptualizations, have been developed to relate longwave radiation to atmo-44

spheric proxy data such as air temperature, water vapor deficit, and shortwave radiation. They are widely used45

and provide clear sky (e.g. Ångström (1915); Brunt (1932); Idso and Jackson (1969)) and all-sky estimations46

of downwelling (L↓) and upwelling (L↑) longwave radioation(e.g. Brutsaert (1975); Iziomon et al. (2003a)).47

SM performances have been assessed in many studies by comparing measured and modeled L↓ at hourly48

and daily time-steps (e.g. Sugita and Brutsaert (1993a); Iziomon et al. (2003b); Juszak and Pellicciotti (2013);49

MacDonell et al. (2013); Schmucki et al. (2014)). Hatfield et al. (1983) was among the first to present a50

comparison of the most used SMs in an evaluation of their accuracy. They tested seven clear-sky algorithms51

using atmospheric data from different stations in the United States. In order to validate the SMs under52

different climatic conditions, they performed linear regression analyses on the relationship between simulated53

and measured L↓ for each algorithm. The results of the study show that the best models were Brunt (1932),54

Brutsaert (1975) and Idso (1981). Flerchinger et al. (2009) made a similar comparison using more formulations55

(13) and a wider data-set from North America and China, considering all possible sky conditions. Finally,56

Carmona et al. (2014) evaluated the performance of six SMs, with both literature and site-specific formulations,57

under clear-sky conditions for the sub-humid Pampean region of Argentina.58

However, none of the above studies have developed a method to systematically estimate site-specific model59

parameters for location where measurements are not available using basic site characteristics.60

This paper introduces the LongWave Radiation Balance package (LWRB) of the JGrass-NewAGE modelling61

system Formetta et al. (2014a). LWRB implements 10 formulations for L↓ and one for L↑ longwave radiation.62

The package was systematically tested against measured L↓ and L↑ longwave radiation data from 24 stations63

across the contiguous USA, chosen from the 65 stations of the AmeriFlux Network. Unlike all previous works,64

the LWRB component follows the specifications of the Object Modeling System (OMS) framework (David65

et al., 2013). Therefore, it can use all of the JGrass-NewAge tools for the automatic calibration algorithms,66
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data management and GIS visualization, and it can be seamlessly integrated into various modeling solutions67

for the estimation of water budget fluxes (Formetta et al., 2014a). Moreover, differently from other studies, all68

the tools used in this paper are open-source, well documented, and ready for practical use by other researchers69

and practitioners.70

2 Methodology71

The SMs for L↑ [W m−2] and L↓ [W m−2] longwave radiation are based on the Stefan-Boltzmann equation:72

L↓ = εall−sky · σ · T 4
a (1)

L↑ = εs · σ · T 4
s (2)

where σ = 5.670·10−8 [W m−2 K−4] is the Stefan-Boltzmann constant, Ta [K] is the air temperature, εall−sky73

[-] is the effective atmospheric emissivity, εs [-] is the soil emissivity and Ts [K] is the surface soil temperature.74

To account for the increase of L↓ in cloudy conditions, εall−sky [-] is formulated according to eq. (3):75

εall−sky = εclear · (1 + a · cb) (3)

where c [-] is the cloud cover fraction and a [-] and b [-] are two calibration coefficients. Site specific values of76

a and b are presented in Brutsaert (1975), (a=0.22 and b=1), Iziomon et al. (2003a) (a ranges between 0.25 and77

0.4 and b=2) and Keding (1989) (a=0.183 and b=2.18). In our modeling system a and b are calibrated to fit78

measurement data under all-sky conditions. The cloud cover fraction, c, can be estimated from solar radiation79

measurements (Crawford and Duchon, 1999), from visual observations (Alados-Arboledas et al., 1995, Niemelä80

et al., 2001), and from satellite data (Sugita and Brutsaert, 1993b) or it can be modeled as well. In this study81

we use the formulation presented in Campbell (1985) and Flerchinger (2000), where c is related to the clearness82

index s [-], i.e. the ratio between the measured incoming solar radiation, Im [W m−2], and the theoretical solar83

radiation computed at the top of the atmosphere, Itop [W m−2], according to c = 1− s (Crawford and Duchon,84

1999). This type of formulation needs a shortwave radiation balance model to estimate Itop and meteorological85

stations to measure Im; also, it cannot estimate c at night. In our application, the fact that the SMs are fully86

integrated into the JGrass-NewAge system allows us to use the shortwave radiation balance model (Formetta87

et al., 2013) to compute Itop. Night-time values of c are computed with a linear interpolation between its values88

at the last hour of daylight and the first hour of daylight on consecutive days. The computation of the first89

and last hour of the day is based on the model proposed in Formetta et al., 2013 that follows the approach90

proposed in Corripio (2002), equations (4.23)-(4.25). The sunrise occurs at t = 12 · (1 − ω/π) and the sunset91

will be at t = 12 · (1 + ω/π) where ω is the hour angle, i.e. the angle between the observer meridian and the92

solar meridian. It is zero at noon and positive before noon. Those equations are based on the assumption that93
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sunrise and sunset occur at the time when the z coordinate of the sun vector equals zero.94

The formulation presented in equation (3) was proposed by Bolz (1949) applied in other studies (Carmona95

et al. (2014), Maykut and Church (1973), Jacobs (1978), Niemelä et al. (2001)). Evaluating the effectiveness of96

different formulations respect to equation (3) is still an open question which is not object of the current paper.97

It has been investigated in several studies (i.e. Flerchinger et al. (2009), Juszak and Pellicciotti (2013), and98

references therein) and some of them recommended the one proposed by Unsworth and Monteith (1975).99

Ten SMs from literature have been implemented for the computation of εclear. Table 1 specifies assigned100

component number, component name, defining equation, and reference to the paper from which it is derived.101

X, Y and Z are the parameters provided in literature for each model, listed in Table 2.102

ID Name Formulation Reference
1 Angstrom εclear = X − Y · 10Ze Ångström (1915)
2 Brunt’s εclear = X + Y · e0.5 Brunt (1932)
3 Swinbank εclear = (X · 10−13 · T 6

a )/(σ · T 4
a ) Swinbank (1963)

4 Idso and Jackson εclear = 1−X · exp(−Y · 10−4 · (273− Ta)
2) Idso and Jackson (1969)

5 Brutsaert εclear = X · (e/Ta)
1/Z Brutsaert (1975)

6 Idso εclear = X + Y · 10−4 · e · exp(1500/Ta) Idso (1981)
7 Monteith and Unsworth εclear = X + Y · σ · T 4

a Monteith and Unsworth (1990)
8 Konzelmann εclear = X + Y · (e/Ta)

1/8 Konzelmann et al. (1994)
9 Prata εclear = [1− (X + w) · exp(−(Y + Z · w)1/2)] Prata (1996)
10 Dilley and O’Brien εclear = (X + Y · (Ta/273.16)

6 + Z · (w/25)1/2)/(σ · T 4
a ) Dilley and O’brien (1998)

Table 1: Clear sky emissivity formulations: Ta is the air temperatue [K], w [kg/m2] is precipitable water = 4650 [e0/Ta]
and e [kPa] is screen-level water-vapour pressure. The models follow the formulations presented in used in Flerchinger
(2000). The Angstrom and Brunt model was presented as cited by Niemelä et al. (2001). Konzelmann uses water vapour
pressure in [Pa] not [kPa].

The models presented in Table 1 were proposed with coefficient values (X, Y, Z) strictly related to the location103

in which the authors applied the model and where measurements of L↓ radiation were collected. Coefficients104

reflect climatic, atmospheric and hydrological conditions of the sites, and are reported in Table 2.

ID Name X Y Z
1 Angstrom 0.83 0.18 −0.07
2 Brunt 0.52 0.21 [−]
3 Swinbank 5.31 [−] [−]
4 Idso and Jackson 0.26 −7.77 [−]
5 Brutsaert 1.72 7 [−]
6 Idso 0.70 5.95 [−]
7 Monteith and Unsworth −119.00 1.06 [−]
8 Konzelmann et al 0.23 0.48 [−]
9 Prata 1.00 1.20 3.00
10 Dilley and O’brien 59.38 113.70 96.96

Table 2: Model parameter values as presented in their literature formulation.

105

The formulation of the L↑ requires the soil emissivity, which usually is a property of the nature of a surface,106

and the surface soil temperature. Table 3 shows the literature values (Brutsaert, 2005) of the soil emissivity for107

different surface types: εs varies from a minimum of 0.95 for bare soils to a maximum of 0.99 for fresh snow.108

It is well known that surface soil temperature measurements are only available at a few measurement sites,109

therefore, under the hypothesis that difference between soil and air temperatures is not too big, it is possible to110

simulate L↑ using the air temperature (Park et al., 2008). In our approach three different types of temperature111
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Nature of surface Emissivity
Bare soil (mineral) 0.95− 0.97
Bare soil (organic) 0.97− 0.98
Grassy vegetation 0.97− 0.98
Tree vegetation 0.96− 0.97
Snow (old) 0.97
Snow (fresh) 0.99

Table 3: Soil emissivity for surface types (Brutsaert, 2005).

were used to simulate L↑, specifically: surface soil temperature (where available), air temperature at 2 m height,112

and soil temperature at 4 cm depth.113

The LWRB package (see flowchart in Figure1) is part of the JGrass-NewAge system and was preliminary114

tested in Formetta et al. (2014b). Model inputs depend on the specific SM being implemented and the purpose115

of the run being performed (calibration, verification, simulation). The inputs are meteorological observations116

such as air temperature, relative humidity, incoming solar radiation, and sky clearness index. The LWRB is also117

fed by other JGrass-NewAGE components, such as the shortwave radiation balance (SWRB) (Formetta et al.,118

2013). To test model performances (i.e. verification), the LWRB can be connected to the system’s Verification119

component; to execute the parameter calibration algorithm (Formetta et al., 2014a), it can be connected to the120

LUCA (Let Us CAlibrate) component. In turn, all these components can and/or need to be connected to other121

ones, as the problem under examination may require. Model outputs are L↓ and L↑. These can be provided122

in single points of specified coordinates or over a whole geographic area, represented as a raster map. For the123

latter case a digital elevation model (DEM) of the study area is necessary in input.124

Figure 1: The LWRB component of JGrass-NewAge and the flowchart to model longwave radiation.
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The subsection 2.1 and 2.2 respectively present the calibration and the verification procedure. Moreover125

a model sensitivity analysis procedure is presented in subsection 2.3 and a multi-regression model to relate126

optimal parameter set and easy available meteorological data is proposed in subsection 2.4.127

2.1 Calibration of L↓ longwave radiation models128

Model calibration estimates the site-specific parameters of L↓ models by tweaking them with a specific algorithm129

in order to best fit measured data. To this end, we use the LUCA calibration algorithm proposed in Hay et al.130

(2006), which is a part of the OMS core and is able to optimize parameters of any OMS component. LUCA131

is a multiple-objective, stepwise, and automated procedure. As with any automatic calibration algorithm, it is132

based on two elements: a global search algorithm; and the objective function(s) to evaluate model performance.133

In this case, the global search algorithm is the Shuffled Complex Evolution, which has been widely used and134

described in literature (e.g., Duan et al., 1993). As the objective function we use the Kling-Gupta Efficiency135

(KGE, Gupta et al. (2009)), which is described below, but LUCA could use other objective functions just as136

well.137

The calibration procedure for L↓ follows these steps:138

• The theoretical solar radiation at the top of the atmosphere (Itop) is computed using the SWRB (see139

Figure 1);140

• The clearness index, c, is calculated as the ratio between the measured incoming solar radiation (Im) and141

Itop;142

• Clear-sky and cloud-cover hours are detected by a threshold on the clearness index (equal to 0.6), providing143

two subsets of measured L↓, which are L↓clear
and L↓cloud

. On one side, a threshold of 0.6 to define the144

clear-sky conditions helps in the sense that allow to define time-series of measured clear-sky L↓ with145

comparable length in all the stations, and this is useful for a reliable calibration process. On the other146

side, it introduces a small error in computing the emissivity in all-sky condition using equation (3).147

Although the effects of this small error would need further investigations, they could be compensated148

by the optimization of the parameters a and b, that are non-linearly related to the emissivity in all-sky149

conditions;150

• The parameters X, Y, and Z for the models in Table 1 are optimised using the subset L↓clear
and setting151

a=0 in eq. 3;152

• The parameters a and b for eq. 3 are optimized using the subset L↓cloud
and using the X, Y, and Z values153

computed in the previous step.154

The calibration procedure provides the optimal set of parameters at a given location for each of the ten155

models.156
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As well as parameter calibration, we carry out a model parameter sensitivity analysis and we provide a157

linear regression model relating a set of site-specific optimal parameters with mean air temperature, relative158

humidity, precipitation, and altitude.159

2.2 Verification of L↓ and L↑ longwave radiation models160

As presented in previous applications (e.g. Hatfield et al. (1983), Flerchinger et al. (2009)), we use the SMs161

with the original coefficients from literature (i.e. the parameters of Table 2) and compare the performances of162

the models against available measurements of L↓ and L↑ for each site. The goodness of fit is evaluated by using163

two goodness-of-fit estimators: the Kling-Gupta Efficiency (KGE) and the root mean square error (RMSE).164

The KGE (eq. 4) is able to incorporate into one objective function three different statistical measures of165

the relation between measured (M) and simulated (S) data: (i) the correlation coefficient, r ; (ii) the variability166

error, a = σS/σM ; and (iii) the bias error, b=µS/µM . In these definitions µS and µM are the mean values,167

while σS and σM are the standard deviations, of measured and simulated time series.168

KGE = 1−
√
(r − 1)2 + (a− 1)2 + (b− 1)2 (4)

The RMSE, on the other hand, is presented in eq. 5:169

RMSE =

√√√√ 1

N

N∑
i=1

(Mi − Si)2 (5)

where M and S represents the measured and simulated time-series respectively and N is their length.170

2.3 Sensitivity analysis of L↓ models171

For each L↓ model we carry out a model parameters sensitivity analysis to investigate the effects and significance172

of parameters on performance for different model structures (i.e. models with one, two, and three parameters).173

The analyses are structured according to the following steps:174

• we start with the optimal parameter set, computed by the optimization process for the selected model;175

• all parameters are kept constant and equal to the optimal parameter set, except for the parameter under176

analysis;177

• 1000 random values of the analyzed parameter are picked from a uniform distribution centered on the178

optimal value with width equal to ± 30% of the optimal value; in this way 1000 model parameter sets179

were defined and 1000 model runs were performed;180

• 1000 values of KGE are computed by comparing the model outputs with measured time series.181

The procedure was repeated for each parameter of each model and for each station of the analyzed dataset.182
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2.4 Regression model for parameters of L↓ models183

The calibration procedure previously presented to estimate the site specific parameters for L↓ models requires184

measured downwelling longwave data. Because these measurements are rarely available, we implement a185

straightforward multivariate linear regression (Chambers et al., 1992; Wilkinson and Rogers, 1973) to relate186

the site-specific parameters X, Y and Z to a set of easily available site specific climatic variables, used as regres-187

sors ri. To perform the regression we use the open-source R software (https://cran.r-project.org) and to select188

the best regressors we use algorithms known as "best subsets regression", which are available in all common189

statistical software packages. The regressors we have selected are: mean annual air temperature, relative hu-190

midity, precipitation, and altitude. The models that we use for the three parameters are presented in equations191

(6), (7), and (8):192

X = iX +

N∑
k=1

αk · rk + εX (6)

Y = iY +

N∑
k=1

βk · rk + εY (7)

Z = iZ +

N∑
k=1

γk · rk + εZ (8)

where N=4 is the number of regressors (annual mean air temperature, relative humidity, precipitation, and193

altitude); rk with k=1,.., 4 are the regressors; iX , iY , and iZ are the intercepts; αk, βk, and γk are the coefficients;194

and εX , εY , and εZ are the normally distributed errors. Once the regression parameters are determined, the195

end-user can estimate site specific X, Y and Z parameter values for any location by simply substituting the196

values of the regressors in the model formulations.197

3 The study area: the AmeriFlux Network198

To test and calibrate the LWRB SMs we use 24 meteorological stations of the AmeriFlux Network (http://ameriflux.ornl.gov).199

AmeriFlux is a network of sites that measure water, energy, and CO2 ecosystem fluxes in North and South200

America. The dataset is well-known and used in several applications such as Xiao et al. (2010), Barr et al.201

(2012), and Kelliher et al. (2004). Data used in this study are the Level 2, 30-minute average data. Complete202

descriptions and downloads are available at the Web interface located at http://public.ornl.gov/ameriflux/.203

We have chosen 24 sites that are representative of most of the contiguous USA and span a wide climatic range:204

going from the arid climate of Arizona, where the average air temperature is 16 ◦C and the annual precipitation205

is 350 mm, to the equatorial climate of Florida, where the average air temperature is 24 ◦C and the annual206

precipitation is 950 mm. Some general and climatic characteristics for each site are summarized in Table 4, while207

Figure 2 shows their locations. The 30-minute average data have been cumulated to obtain continuous time208

series of averaged, hourly data for longwave radiation, air and soil temperature, relative humidity, precipitation,209
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and soil water content. Longwave radiation was measured with Eppley Pyrgeometers with uncertainty of +/-210

3 [W m−2].211

SiteID State Latitude Longitude Elevation (m) Climate T (oC) Data period
1 AZ 31.908 −110.840 991 semiarid 19 2008− 2013
2 AZ 31.591 −110.509 1469 temperate,arid 16 2002− 2011
3 AZ 31.744 −110.052 1372 temperate,semi-arid 17 2007− 2013
4 AZ 31.737 −109.942 1531 temperate,semi-arid 17 2004− 2013
5 AZ 31.821 −110.866 116 subtropical 19 2004− 2014
6 AZ 35.445 −111.772 2270 warm temperate 9 2005− 2010
7 AZ 35.143 −111.727 2160 warm temperate 9 2005− 2010
8 AZ 35.089 −111.762 2180 warm temperate 8 2005− 2010
9 CA 37.677 −121.530 323 mild 16 2010− 2012
10 CA 38.407 −120.951 129 mediterranean 15 2000− 2012
11 FL 25.365 −81.078 0 equatorial savannah 24 2004− 2011
12 ME 45.207 −68.725 61 temperate continental 5 1996− 2008
13 ME 45.204 −68.740 60 temperate continental 6 1996− 2009
14 MN 44.995 −93.186 301 continental 6 2005− 2009
15 MN 44.714 −93.090 260 snowy, humid summer 8 2003− 2012
16 MO 38.744 −92.200 219 temperate continental 13 2004− 2013
17 MT 48.308 −105.102 634 continental 5 2000− 2008
18 NJ 39.914 −74.596 30 temperate 12 2005− 2012
19 OK 36.427 −99.420 611 cool temperate 15 2009− 2012
20 TN 35.931 −84.332 286 temperate continental 15 2005− 2011
21 TN 35.959 −84.287 343 temperate 14 1994− 2007
22 TX 29.940 −97.990 232 warm temperate 20 2004− 2012
23 WA 45.821 −121.952 371 strongly seasonal 9 1998− 2013
24 WV 39.063 −79.421 994 temperate 7 2004− 2010

Table 4: Some general and climatic characteristics of the sites used for calibration: elevation is the site elevation above
sea level, T is the annual average temperature, and data period refers to the period of available measurements.

Figure 2: Test site locations in the United State of America.
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4 Results212

4.1 Verification of L↓ models with literature parameters213

When implementing the ten L↓ SMs using the literature parameters, in many cases, they show a strong bias in214

reproducing measured data. A selection of representative cases is presented in Figure 3 which shows scatterplots215

for four SMs in relation to one measurement station. The black points represent the hourly estimates of L↓216

provided by literature formulations, while the solid red line represents the line of optimal predictions. Model 1217

(Ångström (1915)) shows a tendency to lie below the 1:1 line, indicating a negative bias (percent bias of -9.8)218

and, therefore, an underestimation of L↓. In contrast, model 9 ( Prata (1996)) shows an overestimation of L↓219

with a percent bias value of 26.3.220

Figure 4 presents the boxplot of KGE (first column) and RMSE (second column) obtained for each model221

under clear-sky conditions, grouped by classes of latitude and longitude. In general all the models except the222

Model 8 (Konzelmann et al. (1994)) provided values of KGE higher than 0.5 and RMSE lower than 100 [W223

m−2] for all the latitude and longitude classes. Model 8 is the less performing model for many of the stations224

likely because the model parameters were estimated for the Greenland where snow and ice play a fundamental225

role on the energy balance. Its KGE values range between 0.33 and 0.62 on average, while its RMSE values226

are higher than 100 [W m−2] except for latitude classes >40◦N and longitude classes >-70◦W. Model 6 (Idso227

(1981)) and Model 2 (Brunt (1932)) provide the best results and the lower variability, independently of the228

latitude and longitude ranges where they are applied. Their average KGE values are between 0.75 and 0.92,229

while the RMSE has a maximum value of 39 [W m−2]. Moreover, all the models except 2 and 6 show a high230

variability of the goodness of fit through the latitude and longitude classes.231
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Figure 3: Results of the clear-sky simulation for four literature models using data from Howland Forest (Maine).

Figure 4: KGE and RMSE values for each clear-sky simulation using literature formulations, grouped by classes of
latitude and longitude. Only values of KGE above 0.5 are shown. Only values of RMSE below 100 [W m−2] are shown.
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4.2 L↓ models with site-specific parameters232

The calibration procedure greatly improves the performances of all ten SMs. Optimized model parameters for233

each model are reported in the supplementary material (Table S1). Figure 5 presents the boxplots of KGE and234

RMSE values for clear-sky conditions grouped by classes of latitude and longitude. The percentage of KGE235

improvement ranges from its maximum value of 70% for Model 8 (which is not, however, representative of the236

mean behavior of the SMs) to less than 10% for Model 6, with an average improvement of around 35%. Even237

though variations in model performances with longitude and latitude classes still exist when using optimized238

model parameters, the magnitude of these variations is reduced with respect to the use of literature formulations.239

The calibration procedure reduces the RMSE values for all the models to below 45 [W m−2], even for Model240

8, which also in this case had the maximum improvement. Model 6 (Idso (1981)) and Model 2 (Brunt (1932))241

provide the best results on average for all the analyzed latitude and longitude classes.242

Figure 5: KGE (best is 1) and RMSE (best is 0) values for each optimized formulation in clear-sky conditions, grouped
by classes of latitude and longitude. Only values of KGE above 0.5 are shown.

Figure 6 presents the boxplots of KGE and RMSE values for each model under all-sky conditions, grouped243

by latitude and longitude classes. In general, for all-sky conditions we observe a deterioration of KGE and244

RMSE values with respect to the clear-sky optimized case, with a decrease in KGE values up to a maximum of245

25% on average for Model 10. This may be due to uncertainty incorporated in the formulation of the cloudy-sky246

correction model (eq. 3): it seems that sometimes the cloud effects are not accounted for appropriately. This,247

however, is in line with the findings of Carmona et al. (2014).248
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Figure 6: KGE and RMSE values for each model in all-sky conditions with the optimized parameters; results are
grouped by classes of latitude and longitude. Only values of KGE above 0.5 are shown.

4.3 Sensitivity analysis of L↓ models249

The results of the models sensitivity analysis are summarized in Figures 7-a and 7-b for models 1 to 5 and250

models 6 to 10, respectively. Each figure presents three columns, one for each parameter. Considering model 1251

and parameter X: the range of X is subdivided into ten equal-sized classes and for each class the corresponding252

KGE values are presented as a boxplot. A smooth blue line passing through the boxplot medians is added to253

highlight any possible pattern to parameter sensitivity. A flat line indicates that the model is not sensitive to254

parameter variation around optimal value. Results suggest that models with one and two parameters are all255

sensitive to parameter variation, presenting a peak in KGE in correspondence with their optimal values; this is256

more evident in models with two parameters. Models with three parameters tend to have at least one insensitive257

parameter, except for Model 1, that could reveal a possible overparameterization of the modeling process.258

4.4 Regression model for parameters of L↓ models259

A multivariate linear regression model was estimated to relate the site-specific parameters X, Y and Z to mean260

annual air temperature, relative humidity, precipitation, and altitude. The script containing the regression261

model is available, as specified in Reproducible Research section below.262

The performances of the L↓ models using parameters assessed by linear regression are evaluated through263

the leave-one-out cross validation (Efron and Efron, 1982). We use 23 stations as training-sets for equations264

(6), (7), and (8) and we perform the model verification on the remaining station. The procedure is repeated for265

each of the 24 stations.266

The cross validation results for all L↓ models and for all stations are presented in Figures (8) and (9),267
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Figure 7: Results of the model parameters sensitivity analysis. It presents as boxplot the variation of the model
performances due to a variation of one of the optimal parameter and assuming constant the others. The procedure is
repeated for each model and the blue line represents the smooth line passing through the boxplot medians.

grouped by classes of latitude and longitude, respectively. They report the KGE comparison between the L↓268

models with their original parameters (in black) and with the regression model parameters (in black).269

In general, the use of parameters estimated with regression model gives a good estimation of L↓, with KGE270

values of up to 0.92. With respect to the classic formulation, model performance with regression parameters271

improved for all the models independently of the latitude and longitude classes. In particular for Model 8 the272

KGE improved from 0.26 for the classic formulation to of 0.92, on average. Finally, the use of the parameters273

estimated by the regression model provides a reduction of the model performances variability for all the models274

except Model 5 and 8, for longitude class -125;-105◦W and -105;-90◦W respectively.275
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Figure 8: Comparison between model performances obtained with regression and classic parameters: the KGE values
shown are those above 0.3 and results are grouped by latitude classes.

Figure 9: Comparison between model performances obtained with regression and classic parameters: the KGE values
shown are those above 0.3 and results are grouped by longitude classes.
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4.5 Verification of the L↑ model276

Figure 10 presents the results of the L↑ simulations obtained using the three different temperatures available at277

experimental sites: soil surface temperature (skin temperature), air temperature, and soil temperature (mea-278

sured at 4 cm below the surface). The figure shows the performances of the L↑ model for the three different279

temperatures used in terms of KGE, grouping all the stations for the whole simulation period according to280

season. This highlights the different behaviors of the model for periods where the differences in the three tem-281

peratures are larger (winter) or negligible (summer). The values of soil emissivity are assigned according the282

soil surface type, according to Table 4 (Brutsaert, 2005). Although many studies investigated the influence of283

snow covered area on longwave energy balance (e.g. Plüss and Ohmura (1997); Sicart et al. (2006)), the SMs284

do not explicitly take into account of it. As presented in König-Langlo and Augstein (1994), the effect of snow285

could be implicitly taken into account by tuning the emissivity parameter.286

The best fit between measured and simulated L↑ is obtained with the surface soil temperature, with an all-287

season average KGE of 0.80. Unfortunately, the soil surface temperature is not an easily available measurement.288

In fact, it is available only for 8 sites of the 24 in the study area. Very good results are also obtained using the289

air temperature, where the all-season average KGE is around 0.76. The results using air temperature present290

much more variance compared to those obtained with the soil surface temperature. However, air temperature291

(at 2 m height) is readily available measure, in fact it is available for all 24 sites.292

The use soil temperature at 4 cm depth provides the least accurate results for our simulations, with an293

all-season average KGE of 0.46. In particular, the use of soil temperature at 4 cm depth during the winter is294

not able to capture the dynamics of L↑. It does, however, show a better fit during the other seasons. This could295

be because during the winter there is a substantial difference between the soil and skin temperatures, as also296

suggested in Park et al. (2008).297
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Figure 10: Boxplots of the KGE values obtained by comparing modeled upwelling longwave radiation, computed with
different temperatures (soil surface temperature (SKIN), air temperature (AIR), and soil temperature (SOIL)), against
measured data. Results are grouped by seasons.

5 Conclusions298

This paper presents the LWRB package, a new modeling component integrated into the JGrass-NewAge system299

to model upwelling and downwelling longwave radiation. It includes ten parameterizations for the computation300

of L↓ longwave radiation and one for L↑. The package uses all the features offered by the JGrass-NewAge301

system, such as algorithms to estimate model parameters and tools for managing and visualizing data in GIS.302

The LWRB is tested against measured L↓ and L↑ data from 24 AmeriFlux test-sites located all over contigu-303

ous USA. The application for L↓ longwave radiation involves model parameter calibration, model performance304

assessment, and parameters sensitivity analysis. Furthermore, we provide a regression model that estimates305

optimal parameter sets on the basis of local climatic variables, such as mean annual air temperature, rela-306

tive humidity, and precipitation. The application for L↑ longwave radiation includes the evaluation of model307

performance using three different temperatures.308

The main achievements of this work include: i) a broad assessment of the classic L↓ longwave radiation309

parameterizations, which clearly shows that the Idso (1981) and Brunt (1932) models are the more robust and310

reliable for all the test sites, confirming previous results (Carmona et al., 2014); ii) a site specific assessment of311

the L↓ longwave radiation model parameters for 24 AmeriFlux sites that improved the performances of all the312

models; iii) the set up of a regression model that provides an estimate of optimal parameter sets on the basis313

climatic data; iv) an assessment of L↑ model performances for different temperatures (skin temperature, air314

temperature, and soil temperature at 4 cm below surface), which shows that the skin and the air temperature315
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are better proxy for the L↑ longwave radiation. Regarding longwave downwelling radiation the Brunt (1932)316

model is able to provide on average the best performances with the regression model parameters independently317

of the latitude and longitude classes. For the Idso (1981) model the formulation with regression parameter318

provided lower performances with respect to the literature formulation for latitude between 25◦N and 30◦N.319

The integration of the package into JGrass-NewAge will allow users to build complex modeling solutions320

for various hydrological scopes. In fact, future work will include the link of the LWRB package to the existing321

components of JGrass-NewAge to investigate L↓ and L↑ effects on evapotranspiration, snow melting, and glacier322

evolution. Finally, the methodology proposed in this paper provides the basis for further developments such as323

the possibility to: i) investigate the effect of different all-sky emissivity formulation and quantify the influence of324

the clearness index threshold ii) verify the usefulness of the regression models for climates outside the contiguous325

USA; iii) analyze in a systematic way the uncertainty due to the quality of meteorological input data on the326

longwave radiation balance in scarce instrumented areas.327

ACKNOWLEDGEMENTS328

The authors are grateful to the AmeriFlux research community for providing the high-quality public data sets.329

In particular, we want to thank the principal investigators of each site: Shirley Kurc Papuga (AZ), Tilden330

P. Meyers (AZ), Russ Scott (AZ), Tom Kolb (AZ), Sonia Wharton (CA), Dennis D. Baldocchi (CA), Jordan331

G.Barr (FL), Vic C. Engel (FL), Jose D. Fuentes (FL), Joseph C. Zieman (FL), David Y. Hollinger (ME), Joe332

McFadden (MN), John M. Baker (MN), Timothy J. Griffis (MN), Lianhong Gu (MO), Kenneth L. Clark (NJ),333

Dave Billesbach (OK), James A. Bradford (OK), Margaret S. Torn (OK), James L. Heilman (TX), Ken Bible334

(WA), Sonia Wharton (WA). The authors thank the CLIMAWARE Project, of the University of Trento (Italy),335

and the GLOBAQUA Project, which have supported their research.336

Replicable Research337

The LWRB package has been implemented according to the object oriented paradigm, making them flexible,338

expendable for future improvements and maintenance. Thanks to Gradle Buid tool, an open source build339

automation system and Travis CI, a continuous integration service used to build and test software projects, the340

principle of the replicability of the research is fully satisfied. Researchers interested in replicating or extending341

our results are invited to download our codes at:342

https : //github.com/geoframecomponents.343

Instructions for using the code can be found at:344

http : //geoframe.blogspot.co.uk/2016/04/lwrb− component− latest− documentation.html.345

Regression of parameters were performed in R and are available at346

https : //github.com/GEOframeOMSProjects/OMS_Project_LWRB/blob/master/docs/Regression.R347

18



References348

Alados-Arboledas, L., Vida, J., and Olmo, F.: The estimation of thermal atmospheric radiation under cloudy349

conditions, International journal of climatology, 15, 107–116, 1995.350

Ångström, A. K.: A study of the radiation of the atmosphere: based upon observations of the nocturnal351

radiation during expeditions to Algeria and to California, vol. 65, Smithsonian Institution, 1915.352

Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD-A national surface radiation budget network for353

atmospheric research, Bulletin of the American Meteorological Society, 81, 2341–2357, 2000.354

Augustine, J. A., Hodges, G. B., Cornwall, C. R., Michalsky, J. J., and Medina, C. I.: An update on SURFRAD-355

The GCOS Surface Radiation budget network for the continental United States, Journal of Atmospheric and356

Oceanic Technology, 22, 1460–1472, 2005.357

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K.,358

Evans, R., et al.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale359

carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society, 82,360

2415–2434, 2001.361

Barr, J. G., Engel, V., Smith, T. J., and Fuentes, J. D.: Hurricane disturbance and recovery of energy balance,362

CO 2 fluxes and canopy structure in a mangrove forest of the Florida Everglades, Agricultural and Forest363

Meteorology, 153, 54–66, 2012.364

Bolz, H.: Die Abhängigkeit der infraroten Gegenstrahlung von der Bewölkung, Z Meteorol, 3, 201–203, 1949.365

Brunt, D.: Notes on radiation in the atmosphere. I, Quarterly Journal of the Royal Meteorological Society, 58,366

389–420, 1932.367

Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resources Research, 11,368

742–744, 1975.369

Brutsaert, W.: Hydrology: an introduction, vol. 61, Wiley Online Library, 2005.370

Campbell, G. S.: Soil physics with BASIC: transport models for soil-plant systems, vol. 14, Elsevier, 1985.371

Carmona, F., Rivas, R., and Caselles, V.: Estimation of daytime downward longwave radiation under clear and372

cloudy skies conditions over a sub-humid region, Theoretical and applied climatology, 115, 281–295, 2014.373

Chambers, J. M., Hastie, T., et al.: Linear models, 1992.374

Corripio, J. G.: Modelling the energy balance of high altitude glacierised basins in the Central Andes, Ph.D.375

thesis, University of Edinburgh, 2002.376

Crawford, T. M. and Duchon, C. E.: An improved parameterization for estimating effective atmospheric emis-377

sivity for use in calculating daytime downwelling longwave radiation, Journal of Applied Meteorology, 38,378

474–480, 1999.379

19



David, O., Ascough, J., Lloyd, W., Green, T., Rojas, K., Leavesley, G., and Ahuja, L.: A software engineering380

perspective on environmental modeling framework design: The Object Modeling System, Environmental381

Modelling & Software, 39, 201–213, 2013.382

Dilley, A. and O’brien, D.: Estimating downward clear sky long-wave irradiance at the surface from screen383

temperature and precipitable water, Quarterly Journal of the Royal Meteorological Society, 124, 1391–1401,384

1998.385

Duan, Q., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution approach for effective and efficient386

global minimization, Journal of optimization theory and applications, 76, 501–521, 1993.387

Efron, B. and Efron, B.: The jackknife, the bootstrap and other resampling plans, vol. 38, SIAM, 1982.388

Flerchinger, G.: The Simultaneous Heat and Water (SHAW) Model: Technical Documentation, Northwest389

Watershed Research Center, USDA Agricultural Research Service, Boise, Tech. rep., Idaho, Technical Report390

NWRC 2000-09, 37 pp, 2000.391

Flerchinger, G., Xaio, W., Marks, D., Sauer, T., and Yu, Q.: Comparison of algorithms for incoming atmospheric392

long-wave radiation, Water resources research, 45, 2009.393

Formetta, G., Rigon, R., Chávez, J., and David, O.: Modeling shortwave solar radiation using the JGrass-394

NewAge system, Geoscientific Model Development, 6, 915–928, 2013.395

Formetta, G., Antonello, A., Franceschi, S., David, O., and Rigon, R.: Hydrological modelling with components:396

A GIS-based open-source framework, Environmental Modelling & Software, 55, 190–200, 2014a.397

Formetta, G., David, O., and Rigon, R.: Testing site-specific parameterizations of longwave radiation integrated398

in a GIS-based hydrological model, International Environmental Modelling and Software Society (iEMSs) 7th399

Intl. Congress on Env. Modelling and Software, San Diego, CA, USA, Daniel P. Ames, Nigel W.T. Quinn400

and Andrea E. Rizzoli (Eds.), 2014b.401

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and402

NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377,403

80–91, 2009.404

Hatfield, J., Reginato, R. J., and Idso, S.: Comparison of long-wave radiation calculation methods over the405

United States, Water Resources Research, 19, 285–288, 1983.406

Hay, L. E., Leavesley, G. H., Clark, M. P., Markstrom, S. L., Viger, R. J., and Umemoto, M.: Step wise,407

multiple objective calibration of a hydrologic model for a snowmelt dominated basin1, 2006.408

Idso, S. B.: A set of equations for full spectrum and 8-to 14-µm and 10.5-to 12.5-µm thermal radiation from409

cloudless skies, Water resources research, 17, 295–304, 1981.410

20



Idso, S. B. and Jackson, R. D.: Thermal radiation from the atmosphere, Journal of Geophysical Research, 74,411

5397–5403, 1969.412

Iziomon, M. G., Mayer, H., and Matzarakis, A.: Downward atmospheric longwave irradiance under clear and413

cloudy skies: Measurement and parameterization, Journal of Atmospheric and Solar-Terrestrial Physics, 65,414

1107–1116, 2003a.415

Iziomon, M. G., Mayer, H., and Matzarakis, A.: Downward atmospheric longwave irradiance under clear and416

cloudy skies: Measurement and parameterization, Journal of Atmospheric and Solar-Terrestrial Physics, 65,417

1107–1116, 2003b.418

Jacobs, J.: Radiation climate of Broughton Island, Energy budget studies in relation to fast-ice breakup pro-419

cesses in Davis Strait, 26, 105–120, 1978.420

Juszak, I. and Pellicciotti, F.: A comparison of parameterizations of incoming longwave radiation over melting421

glaciers: model robustness and seasonal variability, Journal of Geophysical Research: Atmospheres, 118,422

3066–3084, 2013.423

Keding, I.: Klimatologische Untersuchung ueber die atmosphaerische Gegenstrahlung und Vergleich vom Berech-424

nungsverfahren anhand langjaehriger Messungen im Oberrheintal, Offenbach am Main: Selbstverlag des425

Deutschen Wetterdienstes, 1989.426

Kelliher, F., Ross, D., Law, B., Baldocchi, D., and Rodda, N.: Limitations to carbon mineralization in litter427

and mineral soil of young and old ponderosa pine forests, Forest Ecology and Management, 191, 201–213,428

2004.429

Key, J. R. and Schweiger, A. J.: Tools for atmospheric radiative transfer: Streamer and FluxNet, Computers430

& Geosciences, 24, 443–451, 1998.431

Kneizys, F. X., Shettle, E., Abreu, L., Chetwynd, J., and Anderson, G.: Users guide to LOWTRAN 7, Tech.432

rep., DTIC Document, 1988.433

König-Langlo, G. and Augstein, E.: Parameterization of the downward long-wave radiation at the Earth’s434

surface in polar regions, Meteorologische zeitschrift, NF 3, Jg. 1994, H. 6, pp. 343–347, 1994.435

Konzelmann, T., van de Wal, R. S., Greuell, W., Bintanja, R., Henneken, E. A., and Abe-Ouchi, A.: Parameter-436

ization of global and longwave incoming radiation for the Greenland Ice Sheet, Global and Planetary change,437

9, 143–164, 1994.438

Leigh Jr, E. G.: Tropical Forest Ecology: A View from Barro Colorado Island: A View from Barro Colorado439

Island, Oxford University Press, 1999.440

MacDonell, S., Nicholson, L., and Kinnard, C.: Parameterisation of incoming longwave radiation over glacier441

surfaces in the semiarid Andes of Chile, Theoretical and applied climatology, 111, 513–528, 2013.442

21



Maykut, G. A. and Church, P. E.: Radiation climate of Barrow Alaska, 1962-66, Journal of Applied Meteorology,443

12, 620–628, 1973.444

Monteith, J. L. and Unsworth, M.: Principles of Environmental Physics, Butterworth-Heinemann, 1990.445

Niemelä, S., Räisänen, P., and Savijärvi, H.: Comparison of surface radiative flux parameterizations: Part I:446

Longwave radiation, Atmospheric Research, 58, 1–18, 2001.447

Park, G.-H., Gao, X., and Sorooshian, S.: Estimation of surface longwave radiation components from ground-448

based historical net radiation and weather data, Journal of Geophysical Research: Atmospheres (1984–2012),449

113, 2008.450

Plüss, C. and Ohmura, A.: Longwave radiation on snow-covered mountainous surfaces, Journal of Applied451

Meteorology, 36, 818–824, 1997.452

Prata, A.: A new long-wave formula for estimating downward clear-sky radiation at the surface, Quarterly453

Journal of the Royal Meteorological Society, 122, 1127–1151, 1996.454

Rotenberg, E., Mamane, Y., and Joseph, J.: Long wave radiation regime in vegetation-parameterisations for455

climate research, Environmental modelling & software, 13, 361–371, 1998.456

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled snow depth and snow water equiva-457

lent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological458

data input, Cold Regions Science and Technology, 99, 27–37, 2014.459

Sicart, J.-E., Pomeroy, J., Essery, R., and Bewley, D.: Incoming longwave radiation to melting snow: observa-460

tions, sensitivity and estimation in northern environments, Hydrological processes, 20, 3697–3708, 2006.461

Sugita, M. and Brutsaert, W.: Cloud effect in the estimation of instantaneous downward longwave radiation,462

Water Resources Research, 29, 599–605, 1993a.463

Sugita, M. and Brutsaert, W.: Comparison of land surface temperatures derived from satellite observations464

with ground truth during FIFE, International Journal of Remote Sensing, 14, 1659–1676, 1993b.465

Swinbank, W. C.: Long-wave radiation from clear skies, Quarterly Journal of the Royal Meteorological Society,466

89, 339–348, 1963.467

Unsworth, M. H. and Monteith, J.: Long-wave radiation at the ground I. Angular distribution of incoming468

radiation, Quarterly Journal of the Royal Meteorological Society, 101, 13–24, 1975.469

Wilkinson, G. and Rogers, C.: Symbolic description of factorial models for analysis of variance, Applied Statis-470

tics, pp. 392–399, 1973.471

Xiao, J., Zhuang, Q., Law, B. E., Chen, J., Baldocchi, D. D., Cook, D. R., Oren, R., Richardson, A. D.,472

Wharton, S., Ma, S., et al.: A continuous measure of gross primary production for the conterminous United473

States derived from MODIS and AmeriFlux data, Remote sensing of environment, 114, 576–591, 2010.474

22


