
Response to referee 1 
 

We thank the anonymous referee for such a detailed review. The insights provided definitely 

improved the quality of the manuscript.   

  

The referee’s primary concern was regarding the hydrologic evaluation of IMERG over 

Indian basins. We agree that the novelty of this study lies in the hydrologic evaluation. 

However, the availability of streamflow data for Indian basins for the time period of IMERG 

data availability (starting from March 2014) is limited. WRIS, the website (http://www.india-

wris.nrsc.gov.in) which provides streamflow dataset for India, is not updated and contain data 

for only a few gaging sites from March 2014 onwards. On going through the WRIS portal 

again (in January 2017) expecting better streamflow data availability, we found streamflow 

for the ‘Barman’ Gaging station in Upper Narmada basin, ‘Ashti’ gaging site for Wainganga 

river sub-basin of Lower Godavari from March 2014 apart from the gaging sites in Mahanadi 

basin that we have already used. We did hydrological evaluation over Wainganga river sub-

basin and included the results in the revised manuscript. In case of Upper Narmada basin we 

found the flow was regulated through a reservoir and in the absence of reservoir discharge 

data it is extremely difficult to calibrate the model, hence we did not include it.  

 

Another issue was regarding the length of the manuscript along with a large number of 

figures. We reduced length of the manuscript from 10,133 words, 18 figures, 5 tables to 9141 

words, 14 figures and 8 tables. 

  

Title: Slight misplacement of punctuation, I believe this should read: “Does the GPM 

mission improve the systematic error component in satellite rainfall estimates over 

TRMM? An evaluation at the pan-India scale”  

Title was modified as suggested. 

 

Lines 47-69: Interesting, and I see why this has been included, but this much detail is 

maybe not required as not all of these example are directly relevant to this study; this 

paragraph could easily be shortened. 

The text was reduced from 302 words to 228 words (lines 49-63). 

 

Lines 75-77: This is almost a repeat of lines 44-46.  

The line was removed. 

 

Lines 120 & 142: I would suggest replacing the word “scanty” with “scarce”, which is 

much more widely used and less colloquial. 

The word “scanty” was replaced with “scarce”. 

 

Section 2.1: While background information (and especially the maps) on the study area 

is always appreciated, I would recommend condensing section 2.1 - not all of the 

information is relevant or referred to later in the paper. 



The section was condensed from 711 to 612 words. We also incorporated description of 

Wainganga basin at which additional rainfall runoff exercise was carried out (lines 139-150). 

 

Lines 201-202: This is a repeat of lines 78-79. 

The text was removed. 

 

Section 3: Throughout the results section, there are a lot of statements along the lines of 

“IMERG outperforms TRMM in x out of y basins, but they are similar in z basins” – 

the authors may be able to reduce the text and number of figures by constructing a 

table of the number of basins in which IMERG outperforms TRMM, the number in 

which they are similar, and vice versa, for each skill measure evaluated in the paper. 

This would also be interesting for the reader to give a quick overview of these numbers 

without needing to read the entire text and pick them out. Of course, it is still worth 

discussing these and the regional differences etc. as the authors have done, but this text 

could be reduced. 

The results were summarized in tables 5 and 6.  

  

Lines 279-280: The authors state that the two datasets show similar skills, and 

immediately then state that IMERG is better in 70% of the basins - this is somewhat of 

a contradiction. 

We modified the line “Both IMERG and TRMM show quite similar skills with correlation 

values above 0.8, with IMERG showing better correlation in 60 out of 86 basins” to “IMERG 

shows better correlation in 60 out of 86 basins” (line 263-264). 

 

Section 3.3: Throughout the section on basin-wise bias, the results are difficult to follow. 

Typically in the literature, a positive bias indicates over-estimation, and a negative bias 

indicates under-estimation. I would recommend that the authors amend the 

presentation of the results here to also use this convention, making it more intuitive for 

the reader and more consistent with the literature. This is simply a case of reversing the 

sign in the results, i.e. using bias = simulated - observed, instead of bias = observed - 

simulated.  

The bias computation was reversed and the relevant plots and tables were modified 

accordingly. 

 

Line 352: The authors use the term “increased” bias - it is not clear if this refers to a 

larger negative or positive bias. 

We removed the line as it was too ambiguous. 

 

Line 408: Does section e refer to section 3.5? 

We modified the text as section 3.5 (line 376). 

 

Line 543: The term “slightly” is ambiguous - how much worse are they? How much 

better is the NSE? How much larger the bias? 

We included the NSE values in the description (lines 469-472). 



 

Answer to detailed comments: 

 

Lines 99-104: I would like to see more justification of the choice to focus on the basin 

level, to make it clear what the benefit of this study is over the previous studies the 

authors have mentioned. The authors state “most” of the previous studies - what about 

the remaining? How does this study improve on this? Why is the basin scale more useful 

for water resources and policy makers? It is not clear at the moment why this would be 

much more useful than the grid-scale analyses. 

We specifically focused on basin scale because it is more relevant hydrologically. The results 

of a basin scale study can be directly used by the watershed managers. Most of the previous 

studies (as cited in the manuscript) focus on gridscale but we see a gradually changing trend 

to analysis on basin scale (Bisht et al., 2017; Kneis et al., 2014). It becomes easier to compare 

the statistical and hydrologic results when the analyses are carried out at a basin scale. Thus, 

we used basin scale as the reference in this manuscript.  

 

Line 262: Could the authors clarify this statement? 

The hydrologic model was calibrated twice, once with IMD as the rainfall forcing and once 

with TRMM. The model was not calibrated with IMERG as the data period was too short 

(March 2014 – December 2014). Instead, the two variants of the calibrated model were 

validated separately using IMERG and TRMM as the rainfall forcings for the year 2014. 

  

Regarding the warmup period, the calibration period was from 2000-2011. The year 2000 

was taken as a spinup period and the results for 2000 were excluded while computing 

calibration statistics. 

  

Lines 270-275: Some of this explanation should be included in the datasets section. It is 

not clear why this is done like this - why were the TRMM statistics obtained for 2 

periods? Also implied here is that IMERG data is only available for March – December 

2014, but later in the conclusions the authors state that a longer timeseries is available. 

This is confusing and should be clarified. If a longer timeseries of IMERG is available, 

why did the authors choose to use only 2014? 

There seems to be a misunderstanding in IMERG timeseries availability. We meant to say 

that the IMERG is still a very young mission having started in March 2014, and as more data 

becomes available with time, they will lead to a clearer picture as to how IMERG compares 

with TRMM.   

  

Lines 309-310: Could the authors expand on what the implications of this result are; 

why is it worth noting? 

The comparison is drawn between the retrospective (1998-2013) and current (2014) time 

period of TRMM. Over a long period, there is a lot of temporal smoothing which may not be 

true for a shorter time scale. We pointed it out in the manuscript, it doesn’t have any other 

significance.   

  



Line 354: Surely, in the 20 basins that now exhibit a positive bias which did not before, 

this is indeed a decay in skill for these basins? Please clarify this statement. 

As mentioned in the text, although the number of basins with positive bias increased, it 

wasn’t a fall in skill as the basins with relatively unbiased results ( -10% <= Pbias <= 10%) 

increased. What really happened was some of the more negatively biased basins went to the 

unbiased category, thus improving the overall skill. 

  

Line 356: What do the authors mean by an increase in the variability of the bias? This is 

not clear. 

We removed the line as it was too ambiguous. 

  

Lines 354-365: The terms “lower” and “higher” when referring to bias are ambiguous; 

it would be better to refer to “smaller” and “larger” biases. Again, it is not clear in this 

paragraph whether the authors refer to positive or negative biases. Please also check the 

rest of the section / paper for further use of these terms. 

We replaced the terms “lower” and “higher” biases with “smaller” and “larger” biases 

throughout the manuscript. 

  

Lines 474-475: What is the reason behind this part of the evaluation? What do the 

authors aim to gain from this analysis? This may have been mentioned earlier in the 

paper but is not completely clear and it would be good to see clarification at the start of 

section 3.5. 

We performed a correlation analysis of skill with climatology and topography to understand 

the systematic biases in satellite products. We reemphasized it in section 3.5 (lines 424-426). 

  

Line 488: Again, the use of “high/low” when referring to bias is confusing. 

All instances of high/low bias were changed to large/small bias.   

  

Lines 533-537: This reads as though it should be part of the methodology of the paper, 

rather than results. 

This was included to quickly recap the calibration and validation time durations. We feel this 

is a good practise as the reader doesn’t have to go back in text and he/she can get the relevant 

information in brief. 

   

Section 3.6: This section is presented in the introduction as a major part of the novelty 

of this study, but in comparison to the proportion of the paper spent discussing the 

rainfall results, very little discussion is offered in terms of the hydrology. The 

implications of the findings are not discussed, and with only one basin used in this 

experiment, it is not possible to say whether the results would be similar for other basins 

in India or elsewhere. The aim of this experiment is left unclear and while I think it 

could be a very interesting part of the study, it seems somewhat unfinished. I would like 

to see, as the authors state would indeed be interesting, a comparison of these results for 

other basins in different regions in the study area. 

 



We included hydrologic evaluation over Wainganga basin of Godavari river basin. 

  

Conclusion 1: To which parameter do the authors refer to with the quoted values? 

We referred to skill in terms of correlation. We mention it in the revised manuscript (lines 

496-498). 

   

Conclusion 5: Use of “higher” bias, as before. 

We modified it to “larger” bias. 

  

Conclusion 7: If a longer timeseries of IMERG is available - why was this not used? 

This should be clarified / justified. 

As mentioned before, there seems to be a misunderstanding in IMERG timeseries 

availability. We meant to say that the IMERG is still a very young mission and as more data 

becomes available with time, they will lead to a clearer picture as to how IMERG compares 

with TRMM. We clarified it in our revised manuscript. 

  

Lines 601-604: These statements are somewhat contradictory. The authors state 

throughout that IMERG outperforms TRMM in various aspects, and here state that 

there is a reasonable improvement, and also that the improvement is only incremental 

and not ground-breaking, but also that IMERG is a worthy successor of TRMM. These 

statements leave the reader somewhat confused as to what the overall conclusion of the 

study is. 

We will modify the text from “In essence, IMERG gives reasonable improvement in rainfall 

estimates across majority of the Indian basins. However, the improvement was not found to 

be ground breaking, rather incremental, suggesting that the GPM mission is a worthy 

successor of the widely acclaimed TRMM mission” to “In essence, IMERG gives reasonable 

improvement in rainfall estimates across majority of the Indian basins”(lines 528-529). 

  

Line 611: “post forecast data assimilation scheme” - do the authors refer to 

postprocessing? 

We indeed meant postprocessing of streamflows. 

  

Figure 1: Thank you for including this map, this is incredibly helpful for those readers 

who are not as familiar with the geography of the region. I would recommend splitting 

Figure 1 into two figures, one containing the two geographical maps (a) and (d), and the 

second comprising of (b) and (c). Also, the colour scales used for (b) and (c) are 

confusing - please modify these; the best way to present these would be a colour bar 

with just one colour for each map, ranging from light to dark with increasing values. 

We split the figures as suggested by the referee. We also included map of Wainganga 

catchment of the Godavari River basin (Fig. 1c) 

The reason for selecting multiple colorbar for figure 1 (b) and (c) (now figs. 2a and 2b) is to 

highlight the spatial heterogeneity in the study area. When we used a simple one colorbar, a 

lot of information was lost in the contrast (for instance the contrast between low rainfall in 

Rajasthan and medium rainfall in the Western part of Indo-Gangetic plain in figure 1(b)).  



  

Figures 2.1 and 2.2. Firstly, it is strange to label two separate figures as 2.1 and 2.2 - 

surely these should be figures 2 and 3. Secondly, what exactly is the precipitation shown 

here? Is it daily precipitation? Is it averaged over a time period? This should be 

clarified and included on the axes / in the caption, for both 2.1 and 2.2. 

We split the figures 2.1 and 2.2 into two figures (Figs. 3 and 4). The scatterplots show daily 

precipitation which we mentioned in the figure descriptions. 

  

Figures 3 and 5: These figures are very difficult and confusing to interpret - this data is 

not continuous (it represents the independent basins, rather than e.g. a continuous time 

period), and this is not the best way to present it. I would in fact recommend removing 

figures 3 and 5, and just discussing their results in the text as you have done. 

The figures were moved to supplementary material (Figs S1, S2). 

  

Figures 4 and 6, the corresponding spatial maps, are a much clearer way of presenting 

the data. 

Figure 4: I like these maps, it is clear what they show and intuitive to interpret. 

However, the colours used are very confusing - please amend the colour scale to use just 

one colour from 0 to 1 (light to dark), and avoid rainbow colours. In the case of (j), (k) 

and (l) it is not immediately obvious that there is a negative correlation in one or more 

of the basins and it is hard to spot. So on these maps, two colours should be used – the 

same as (a-i) for 0 to +1, with white at 0, and a different colour for the negative values. 

For example, the colour scale the authors have chosen for figure 8 would be perfect for 

figure 4, with white at 0. 

The rationale behind using a rainbow color to represent correlation was to focus on the spatial 

heterogeneity in correlation values. When we used a single color in the colorbar (ranging 

from light to dark), most of the spatial features of correlation were lost. For instance, it 

became really difficult to decipher correlation value of 0.3 from 0.6, which is rather 

substantial. That’s why we used rainbow color bars instead of a single color bar. In the 

revised manuscript, fig. 4 is moved to fig. 5. 

  

Figure 6: Again, I like this figure, but the colour scale should be improved. I would 

recommend again a scale such as that used in figure 8, where 0 is white and the darker 

the colour, the larger the value. Please note that the colour scale has a big impact on the 

way the reader interprets the data, and incorrectly used colour scales 

can be misleading. 

We modified the color scale as recommended by the referee (Fig. 6). 

  

Figure 7: Again, the colour scale here is not the best option. For this data, the best 

would be to use one single colour, from light at 0 to dark at 1. For example, in figures (j-

l), at first glance it seems that the blue basins have an opposite result to the red basins, 

but this is not the case. 



Figure 8: While this scale would be perfect for the results shown in figure 4(j-l) and 

figure 6, it is not the good choice for the data presented in figure 8. As with figure 7, the 

best option would be one colour from light at 0 to dark at 1. 

We opted for the multi color bar to highlight the spatial variability. If there is one colorbar 

which varies from light to dark, a lot of information is lost as the contrast decreases 

significantly. For instance, in the case of figure 8, FAR of anything more than 0.5 can be 

taken as high error, which will be lost if the colorbar had only one color scale. We will use 

the same color bars in figure 7 and 8 but incorporate the referee’s suggestion in other figures. 

  

Figure 9: This graph could be removed and just discussed in the text. 

The figure was moved to the supplementary section (Fig. S3). 

  

figures 10 - 17: While I can see why the authors have presented the data in this way, 

again, there is the issue that this data is not continuous so this type of graph is not really 

correct, and also this is confusing for the reader. There are also a large number of 

similar plots here, I would suggest to pick one or two which show the most interesting 

results to present in the main body of the paper, and move the rest to supplementary 

material. Most readers would not analyse all the information in all of these figures and 

would appreciate the highlights, but the interested reader could easily find all the 

graphs in the supplementary material. This would solve the problem of the 

overwhelming number of figures included in this paper. Also, I would recommend that 

the authors display all of these graphs (whether in the main body or the supplementary 

material) instead as scatter plots of the rainfall/elevation vs. bias/correlation. This 

would be a much more accurate and easy-to-understand way of displaying the data. 

We moved the four figures related to climatology to supplementary and preserved the ones 

related to topography as they showed more significant results. We couldn’t show the 

scatterplots because the scales are not standardized. If we do a scatterplot of correlation with 

elevation, correlation varies from -1 to 1 but elevation varies from 0 to 4500m and there is no 

meaningful 1:1 line to draw any inference. Hence we stuck with the line plots. However, we 

removed the lines and only kept the points as then it is easier to see if there is a cluster of 

points behaving in a certain way. The modified plots are Figs. 9-12. 

 

Figure 18: What is “data points”? Is it time on the x axis? Please change this label, and 

if it is indeed time as I suspect, please display the dates. 

We will modify the label to “Number of days since April 1st, 2014. 
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Response to referee 2 
 

We thank the anonymous referee for providing valuable insights into the manuscript.  

 

The referee’s primary concern is about the influence of spatial interpolation to obtain gridded 

precipitation values over India, which in turn was used to obtain basin wise statistics. The 

gridded product was developed and quality controlled by the India Meteorological 

Department (IMD) (Pai et al., 2014) and has been extensively used in different statistical and 

hydrologic evaluations at both basin (Bisht et al., 2017; Kneis et al., 2014) and grid scale 

(Bisht et al., 2017; Kneis et al., 2014). As requested by the referee, we reported the number of 

rain gauges used to obtain the gridded precipitation product, their spatial configuration and 

variation with time in the supplementary section of the manuscript (Figs. S8, S9) and 

mentioned it in the section on IMD dataset (section 2.2.1). The description is below. 

 

Station related info 

Gridded rainfall product of IMD is prepared from station record of rainfall. However, the 

total number of stations used varies from year to year, the reasons may be attributed to 

maintenance, cost of operation, data quality, and man power availability. Figure S8 shows the 

maximum total number of stations used for preparing the high resolution gridded rainfall 

product during 1998-2014. Decline in the number of station over the period of time is evident 

form the fig. S8, nevertheless, the IMD gridded rainfall product has been widely used by the 

researchers in similar studies as discussed in the manuscript. Spatial distribution of rainfall 

stations during 1998-2014 at 0.25 degree spatial resolution is shown in the fig. S9, to reduce 

the number of plots maps are shown at 3 year interval during 1998-2014. Comparatively, a 

high density of rainfall station network can be seen in southern peninsular India. In some 



cases, the total number of stations in a single grid can go up to 11. 

 

Fig S8. Total maximum number of active rainfall stations across all the grids during 1998-

2014 

 
Fig S9. Spatial distribution of rainfall station during 1998, 2002, 2006, 2010, and 2014  

 

  



 

References: 

Bisht, D. S., Chatterjee, C., Raghuwanshi, N. S. and Sridhar, V.: Spatio-temporal trends of 

rainfall across Indian river basins, Theor. Appl. Climatol., 1–18, doi:10.1007/s00704-017-

2095-8, 2017. 

Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., Trenberth, K. E., Chadwick, 

R. S., Arkin, P. A., Sarojini, B. B., Becker, A., Dai, A., Durack, P. J., Easterling, D., Fowler, 

H. J., Kendon, E. J., Huffman, G. J., Liu, C., Marsh, R., New, M., Osborn, T. J., Skliris, N., 

Stott, P. A., Vidale, P.-L., Wijffels, S. E., Wilcox, L. J., Willett, K. M. and Zhang, X.: 

Challenges in Quantifying Changes in the Global Water Cycle, Bull. Am. Meteorol. Soc., 

96(7), 1097–1115, doi:10.1175/BAMS-D-13-00212.1, 2014. 

Kneis, D., Chatterjee, C. and Singh, R.: Evaluation of TRMM rainfall estimates over a large 

Indian river basin (Mahanadi), Hydrol. Earth Syst. Sci., 18(7), 2493–2502 [online] Available 

from: http://www.hydrol-earth-syst-sci-discuss.net/11/1169/2014/hessd-11-1169-2014.pdf, 

2014. 

Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S. and Mukhopadhyay, B.: 

Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily 

gridded rainfall data set over India and its comparison with existing data sets over the region., 

Mausam, 65(1), 1–18, 2014. 

Prakash, S., Mitra, A. K., Momin, I. M., Gairola, R. M., Pai, D. S., Rajagopal, E. N. and 

Basu, S.: A review of recent evaluations of TRMM Multisatellite Precipitation Analysis 

(TMPA) research products against ground-based observations over Indian land and oceanic 

regions, MAUSAM, 66(3), 355–366 [online] Available from: 

https://www.researchgate.net/profile/Satya_Prakash/publication/281115874_A_review_of_re

cent_evaluations_of_TRMM_Multisatellite_Precipitation_Analysis_(TMPA)_research_prod

ucts_against_ground-based_observations_over_Indian_land_and_oceanic_regions/links/55e, 

2015. 

Prakash, S., Mitra, A. K., AghaKouchak, A., Liu, Z., Norouzi, H. and Pai, D. S.: A 

preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon 

dominated region, J. Hydrol., doi:10.1016/j.jhydrol.2016.01.029, 2016. 

Shah, H. L. and Mishra, V.: Uncertainty and Bias in Satellite-based Precipitation Estimates 

over Indian Sub-continental Basins: Implications for Real-time Streamflow Simulation and 

Flood Prediction, J. Hydrometeorol., 17(2), 615–636, doi:10.1175/JHM-D-15-0115.1, 2016. 

 



1 
 

Does the GPM mission improve the systematic error component in satellite 1 

rainfall estimates over TRMM?, Aan evaluation at a pan-India scale.?  2 

Harsh Beria
1,2

Harsh Beria
1
, Trushnamayee Nanda

1
, Deepak Singh Bisht

1
, Chandranath 3 

Chatterjee
1
 4 

1
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, 5 

Kharagpur, India 6 

2
Institute of Earth Surface Dynamics, University of Lausanne, Switzerland 7 

Correspondence to: Harsh Beria (harsh.beria93@gmail.com) 8 

Abstract. Last couple of decades have seen the outburst of a number of satellite based 9 

precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely 10 

used for hydrologic applications. Transition of TRMM into Global Precipitation Mission 11 

(GPM) promises enhanced spatio-temporal resolution along with upgrades in sensors and 12 

rainfall estimation techniques. Dependence of systematic error components in rainfall 13 

estimates of Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with 14 

climatology and topography, was evaluated over 86 basins in India for year 2014 and 15 

compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. 16 

IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, 17 

with significant improvement in low rainfall estimates showing smaller negative biases in 75 18 

out of 86 basins. IMERG increased the inter-basin variability in bias for medium and high 19 

rainfall estimates. Low rainfall estimates in TRMM showed a systematic dependence on 20 

basin climatology, with significant overprediction in semi-arid basins which gradually 21 

improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM 22 

exhibited a strong dependence on basin topography, with declining skill in the higher 23 

elevation basins. Systematic dependence of error components on basin climatology and 24 

topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff 25 

modeling using Variable Infiltration Capacity (VIC) model over a flood prone basin 26 

(Mahanadi) revealed that improvement in rainfall estimates in IMERG didn’t translate into 27 

improvement in runoff simulations. More studies are required over basins in different hydro-28 

climatic zones to evaluate the hydrologic significance of IMERG. 29 

Keywords: GPM, IMERG, TRMM, VIC, climatology, topography  30 



2 
 

1 Introduction 31 

The developing part of the world suffers from acute data shortage, both in terms of 32 

quality and quantity. A recent commentary from Mujumdar (2015) provided insights into the 33 

problems faced by the Indian hydrologic community due to the lack of willingness of the 34 

relevant governmental bodies to openly share meteorologic and hydrologic data and its meta 35 

data to the research community. With the threats of climate changing looming large, high 36 

quality precipitation products (in terms of accuracy, spatial and temporal resolution) are the 37 

need of the hour. Satellite precipitation products offer a viable alternative to gauge based 38 

rainfall estimates.  39 

A number of satellite based precipitation estimates have cropped up in the past two 40 

decades, the famous ones being Climate Prediction Center morphing technique (CMORPH), 41 

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural 42 

Networks (PERSIANN), PERSIANN Climate Data Record (PERSIANN-CDR), Tropical 43 

Rainfall Measuring Mission (TRMM), Asian Precipitation - Highly-Resolved Observational 44 

Data Integration Towards Evaluation (APHRODITE) and National Oceanic and Atmospheric 45 

Administration (NOAA) Climate Prediction Center (CPC). A number of studies over the past 46 

decade have evaluated the hydrologic application of these datasets over regions with varied 47 

topography and climatology.  48 

Artan et al. (2007) found reasonable streamflow simulations using CPCused CPC to 49 

drive a hydrologic model over four basins with varied hydro-climatic and physiographic 50 

conditions in Africa and South-east Asia and reported similar rainfall-runoff performance on 51 

calibration using gauge and satellite rainfall estimates while. Collischonn et al. (2008) found 52 

similar results using also reported reasonable streamflow simulations using TRMM estimates 53 

over an Amazon River basin. Akhtar et al. (2009) used multiple artificial neural networks 54 

(ANN) to forecast discharges at varying lead times using TRMM 3B42V6 precipitation 55 

estimates. Wu et al. (2012) used TRMM 3B42V6 estimates to develop a real-time flood 56 

monitoring system and concluded that the probability of detection (POD) improved with 57 

longer flood durations and larger affected areas. Kneis et al. (2014) evaluated TRMM 3B42-58 

V7 and its real-time counterpart TRMM 3B42-V7RT over Mahanadi River basin in India and 59 

found the research product (3B42) to be superior to the real-time alternative (3B42RT) in 60 

terms of both the statistical and hydrologic components. Peng et al. (2014) found a systematic 61 

dependence of TRMM estimates on climatology in North-West China, characterizing the 62 
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wetter regions better than the drier ones conditions. They also reported promising results in 63 

the streamflow simulations at ungauged basin in arid and semi-arid regions.  Bajracharya et 64 

al. (2014) used CPC to drive a hydrologic model over Bagmati basin in Nepal and reported 65 

that the incorporation of local rain gauge data in addition to CPC tremendously benefited the 66 

streamflow simulations. Shah and Mishra (2015) explored the uncertainty in the estimates of 67 

multiple satellite rainfall products over major Indian basins and investigated the influence of 68 

bias in the satellite rainfall products on flood simulation over Mahanadi River basin in India. 69 

Most of the studies which evaluated multiple satellite precipitation estimates have reported 70 

TRMM to give the best estimate over the Tropical part of the world (Gao and Liu, 2013; 71 

Prakash et al., 2016b; Zhu et al., 2016).  72 

Tropical Rainfall Measuring Mission (TRMM) satellite was launched in late 1997 and 73 

provides high resolution (0.25° x 0.25°) quasi-global (50° N-S) rainfall estimates (Huffman et 74 

al., 2007).  The TRMM mission is a joint mission between the National Aeronautics and 75 

Space Administration (NASA) and the Japan Aerospace Exploration (JAXA) Agency to 76 

study rainfall for weather and climate research. The TRMM satellite produced 17 years of 77 

valuable precipitation data over the Tropics. In the last decade, a number of studies have 78 

evaluated Tropical Rainfall Measuring Mission (TRMM) Multi-Resolution Analysis (TMPA) 79 

product over different topographies and climatologies.  80 

Owing to the tremendous success of TMPA mission, Global Precipitation 81 

Measurement (GPM) was launched on February 27, 2014 (Liu, 2016). The GPM sensors 82 

carry first spaceborne dual-frequency phased array precipitation radar (DPR) operating at Ku 83 

(13 GHz) and Ka (35 GHz) bands and a canonical-scanning multichannel (10-183 GHz) 84 

microwave imager (GMI) (Hou et al., 2014). The improved sensitivity of Ku and Ka bands 85 

allow for improved detection of low precipitation rates (<0.5 mm/h) and falling snow.  86 

A few preliminary assessments of GPM over India and China (Prakash et al., 2016a, 87 

2016b; Tang et al., 2016a) suggest an improvement over TMPA. For 2014 monsoon (Prakash 88 

et al., 2016b) reported that Integrated Multi-satellitE Retrievals for GPM (IMERG), which is 89 

a level three multi-satellite precipitation algorithm of GPM (Hou et al., 2014), outperformed 90 

TMPA in extreme rainfall detection along the Himalayan foothills in North India and over 91 

North Western India, with slightly reduced false alarms. Tang et al. (2016a) found that 92 

IMERG outperformed TMPA in almost all the indices for every sub-region of mainland 93 

China at 3-hourly and daily temporal resolutions. They also reported that IMERG reproduced 94 
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probability density functions more accurately at various precipitation intensities and better 95 

represented the precipitation diurnal cycles. In another work by Prakash et al. (2016a), 96 

IMERG was compared with Global Satellite Mapping of Precipitation (GSMaP) V6 and 97 

TMPA 3B42V7 for the 2014 monsoon over India. It was found that IMERG estimates 98 

represented the mean monsoon rainfall and its variability more realistically, with fewer 99 

missed and false precipitation bias and improvements in the precipitation distribution over 100 

low rainfall rates.  101 

Most of the previous studies that compared satellite and reanalysis precipitation 102 

products for pan-India focused at a grid scale, rather than a basin scale (Prakash et al., 2015, 103 

2016a, 2016b). We focused at a basin scale as it is more relevant in terms of water resources 104 

assessment for policy makers.  Also, iIt provides a clear signal of the utility of the satellite 105 

precipitation products at the required spatial resolution for water managers working at a basin 106 

scale. Also, at a basin scale, the statistical and hydrologic results are more complementary 107 

(Bisht et al., 2017; Kneis et al., 2014).  108 

In this study, we comprehensively evaluated TRMM 3B42 from 1998-2013 over 86 109 

basins in India and explored systematic biases due to climatology and topography. We then 110 

compared TRMM 3B42 precipitation estimates with IMERG for 2014 and explored if the 111 

systematic biases were reduced in IMERG, and whether IMERG was able to better capture 112 

the low rainfall magnitudes. Finally, we used a macroscale hydrologic model (Variable 113 

Infiltration Capacity (VIC)) to evaluate TRMM and IMERG over a flood prone basin in 114 

Eastern India (Mahanadi River basin) for the year 2014.  115 

2 Description of the study area, datasets used and methodology 116 

2.1 Study area 117 

 The study was conducted over India at a basin scale (Fig. 1a). Water Resources 118 

Information System of India (India-WRIS) delineates India into multiple sub-basins divides 119 

India into 91 major basins (Fig. 1a) (India, 2014). In this study, 86 basins were used, with the 120 

five excluded basins located in the Jammu and Kashmir region of Northern India (details 121 

included in Supplementary table 1). Also, the Lakshadweep islands (located off the Indian 122 

West coast in the Arabian Sea) and the Andaman and Nicobar islands (located in the Bay of 123 

Bengal) were excluded from the analysis due to scanty scarce rain-gauge monitoring 124 

network.  125 
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Most of India experiences a tropical monsoon type of climate receiving an average 126 

annual rainfall of around 1100 mm/year, of which about 70-80% is concentrated during the 127 

monsoon season (June – September). Fig. 2a1b shows the spatial distribution of rainfall 128 

(details in supplementary table 1), calculated using India Meteorological Department (IMD) 129 

gridded precipitation dataset (computed using 31 years (1980-2010) of rainfall time series) 130 

over India. The Western Ghats (located on the Indian West coast) and the North-Eastern 131 

basins receive the highest rainfall, with the magnitudes going as high asup to 3000 mm/year. 132 

The Western Ghats receive orographic rainfall due to the steep topographic gradient that exist 133 

from the West to the East, making the Eastern part of the mountains a leeward area where 134 

rainfall is mainly associated with the passage of lows and depressions developed in the Bay 135 

of Bengal (Prakash et al., 2016a). Details of the orographic features of rainfall over Western 136 

Ghats can be found in Tawde and Singh (2015). The high rainfall in the North-Eastern part of 137 

India is associated with orographic control and multi-scale interactions of monsoon flow 138 

(Prakash et al., 2016a). Basins in the Indo-Gangetic plain and on the East coast receive above 139 

average rainfall of around 1400 mm/year, governed by the tropical monsoons. The hilly tracts 140 

of Jammu and Kashmir situated in North-most part of India receive an annual average rainfall 141 

of around 1000 mm/year. The North-west basins, associated with semi-arid type of climate, 142 

receive low annual rainfall ranging from 300-400 mm/year. The basin-wise rainfall is 143 

provided in Supplementary table 1. 144 

Fig. 2b1c shows the spatial distribution of the basin-wise elevation above mean sea 145 

level (m.s.l) (details in supplementary table 1). The Northern tract of Jammu and Kashmir 146 

comprises the basins with highest elevations, in between 2500 m to 5000 m above m.s.l. 147 

These basins also suffer from scanty scarce rain monitoring networks, due to which five of 148 

these high elevation basins have been ignored in the analysis (details in Supplementary table 149 

1). High Pitch Mountains are also found in the North-Eastern basins where basin-wise 150 

elevation goes as high as 1400 m above m.s.l. The Western Ghats are characterized by a very 151 

sharp topographic gradient with the elevations increasing from around 200 m on the West 152 

coast to above 600 m above m.s.l as we move east. This transition results in heavy orographic 153 

rainfall on the West coast and leads to the sharp rainfall contrast on the leeward side of the 154 

Western Ghat sMountains.  The Indo-Gangetic plain and the Eastern basins are mostly 155 

plateau areas, with basin elevation lying in between 200-400 m above m.s.l. The semi-arid 156 

North-Western basins are also characterized by plateau land (elevation between 200-300 m 157 

above m.s.l). The basin-wise elevation is provided in Supplementary table 1. 158 
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The rRainfall-runoff modeling exercise was done carried out in Hirakud catchment of 159 

the Mahanadi River basin (MRB) and Wainganga catchment of Godavari River basin. the 160 

Hirakud catchment of the Mahanadi River basin (MRB), located on the Eastern coast of 161 

India. MRB, situated on the Eastern coast of India, is one of the largest Indian basins draining 162 

an area of 1,41,000 km
2
, mostly flowing through the states of Chattisgarh and Odisha. It is 163 

prone to frequent flooding at the downstream, with five major flood events in the first decade 164 

of the 21st century (Jena et al., 2014). On the upstream of the MRB is a multi-purpose dam 165 

(Hirakud) which encompasses catchment area of around 85,200 km
2
 and spans between 19.5° 166 

and 23.8° N latitudes and 80° to 84° E longitudes (Fig. 1bd). Hirakud dam started its 167 

operations in 1957 and its upstream does not include any major dam, although a number of 168 

small scale irrigation reservoirs are operational during the monsoon. Agricultural, forest and 169 

shrub land account for around 55%, 35% and 7% of the total basin coverage respectively 170 

(Kneis et al., 2014). Wainganga river basin, the largest sub-basin of Godavari basin (located 171 

in Peninsular India) drains a total of 51,422 km2 area. The Both the area basins receives 172 

experiences a tropical monsoon type of climate, with an annual rainfall of around 1500 mm. 173 

Agricultural, forest and shrub land account for around 55%, 35% and 7% of the total basin 174 

coverage respectively (Kneis et al., 2014).    175 

2.2 Datasets used  176 

 IMD gridded rainfall dataset was used as the reference product and Tropical Rainfall 177 

Measuring Mission (TRMM) and Integrated Multi-satellitE Retrievals for GPM (IMERG) 178 

were compared against IMD. A brief summary of the datasets is given in Table 1. A brief 179 

introduction to the three rainfall datasets is given below. 180 

2.2.1 Gridded IMD and streamflow dataset 181 

IMD gridded precipitation dataset provides daily rainfall estimates over the Indian 182 

landmass from 1901-2014 at a spatial resolution of 0.25° x 0.25°. It has been developed using 183 

a dense network of rain gauges consisting of 6955 stations and is known to reasonably 184 

capture the heavy orographic rainfall in the Western Ghats, the Northeast and the low rainfall 185 

on the leeward side of the Western Ghats. Details about the number of stations used to make 186 

the gridded product are discussed in the supplementary material. For a detailed discussion on 187 

the evolution of IMD gridded dataset, refer to Pai et al. (2014).  188 
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It is to be noted that IMD measures rainfall accumulation at 8:30 AM Indian Standard 189 

time (IST) or (3:00 AM UTC). The accumulated rainfall for the previous day is provided as 190 

the rainfall estimate for current day. For instance, IMD rainfall estimate at a gauging station 191 

for September 14
th

, 2014 refers to the rainfall accumulation from 8:30 AM IST (3:00 AM 192 

UTC) on September 13
th

, 2014 to 8:30 AM IST (3:00 AM UTC) on September 14
th

, 2014. 193 

Both TRMM and IMERG precipitation estimates were converted to IMD timescale. 194 

The gridded daily minimum and maximum temperature was obtained from IMD at a 195 

spatial resolution of 1° x 1° (Srivastava et al., 2009). Daily wind speed data was obtained 196 

from coupled National Centers for Environmental Prediction (NCEP) and Climate Forecast 197 

System Reanalysis (CFSR) at a spatial resolution of 0.5° x 0.5°. Daily discharge data at the 198 

inflow site of the Hirakud reservoir was obtained from the State Water Resources Department 199 

(Odisha), Hirakud Dam Project, Burla, Sambalpur. Daily discharge data at Wainganga basin 200 

was obtained through WRIS-website (http://www.india-wris.nrsc.gov.in/wris.html).  201 

2.2.2 Tropical Rainfall Measuring Mission (TRMM)  202 

In order to provide high resolution precipitation dataset in real-time, the TRMM 203 

satellite was launched in late 1997 and it provides 3-hourly rainfall estimates from 1998 to 204 

the current date at a quasi-global coverage (50° N-S) at a spatial resolution of 0.25° x 0.25° 205 

(Huffman et al., 2007). Two variants of TRMM multi-satellite precipitation analysis (TMPA) 206 

are available, a real time product which is available at 3-6 hours latency and the research 207 

product which is available at 2-months latency. TRMM research product makes use of rain 208 

gauge stations from Global Precipitation Climatology Centre (GPCC) to post-process the 209 

TRMM estimates, details of which can be found in Huffman et al. (2007). We used TRMM 210 

research product in this study (henceforth mentioned as TRMM).  211 

2.2.3 Integrated Multi-SatellitE Retrievals for GPM (IMERG)   212 

Due to the great success of TMPA mission, Global Precipitation Measurement (GPM) 213 

was launched on February 27, 2014 (Liu, 2016). IMERG is the day-1 multi-satellite 214 

precipitation algorithm for GPM which combines data from TMPA, PERSIANN, CMORPH 215 

and NASA PPS (Precipitation Processing System). For a detailed understanding of the 216 

retrieval algorithm of IMERG, refer to  (Huffman et al., 2014; Liu, 2016).  217 

The major advancement in GPM satellite is the improved sensitivity of sensors 218 

leading to improved detection of low precipitation rates (<0.5 mm/h) and falling snow, a 219 
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known shortcoming of TRMM. IMERG is available in 3 variants, (a) Early run (latency ~ 6 220 

hours), (b) Late run (latency ~ 18 hours) and (c) Final run (latency ~ 4 months) (Liu, 2016). 221 

Each product is available at half-hourly temporal and 0.1° x 0.1° spatial resolution. The 222 

spatial coverage is 60° N-S which is planned to be extended to 90° N-S in the near future. We 223 

used the Final run product in our analysis. 224 

2.3 VIC Hydrological Model 225 

 VIC is a macroscale semi-distributed hydrological model which uses a grid-based 226 

approach to quantify different hydro-meteorological processes by solving water balance and 227 

energy flux equations, specifically designed to represent the surface energy and hydrologic 228 

fluxes at varying scales (Liang et al., 1994, 1996). VIC uses multiple soil layers with variable 229 

infiltration, non-linear baseflow and addresses the sub-grid scale variability in vegetation. A 230 

stand-alone routing model (Lohmann et al., 1996) is used to generate runoff and baseflow at 231 

the outlet of each grid cell, assuming linear and time-invariant runoff transport. The land 232 

surface parameterization (LSP) of VIC is coupled with a routing scheme in which the 233 

drainage system is conceptualized by connected-stem rivers at a grid scale. The routing 234 

model extends the FDTF-ERUHDIT (First Differenced Transfer Function-Excess Rainfall 235 

and Unit Hydrograph by a Deconvolution Iterative Technique) approach (Duband et al., 236 

1993) with a time scale separation and liberalized Saint-Venant equation type river routing 237 

model. The model assumes runoff transport process to be linear, stable and time invariant.  238 

VIC has been successfully used in a number of global and local hydrologic studies 239 

(Hamlet and Lettenmaier, 1999; Shah and Mishra, 2016; Tong et al., 2014; Wu et al., 2014; 240 

Yong et al., 2012). A recent commentary on the need for process-based evaluation of large-241 

scale hyper-resolution models by Melsen et al. (2016) provides interesting insights into the 242 

use of VIC at different spatial scales and why we shouldn’t just decrease the grid size (hence 243 

increasing the spatial resolution of model) without considering the dominant processes at that 244 

scale. In lines with the discussions in Melsen et al. (2016), VIC was run at a grid size of 0.5° 245 

x 0.5° for Hirakud basin and at 0.25° x 0.25° for Wainganga basin.  246 

2.4 Methodology 247 

 All the analysis was performed at a basin scale. Basin-wise mean areal rainfall was 248 

calculated for all the three rainfall products (IMD, TRMM and IMERG) using Thiessen 249 

Polygon method for their respective periods of availability.  250 
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 In order to statistically evaluate the precipitation products, two skill measures were 251 

used (Pearson correlation (R) and percentage bias (Pbias/bias)) along with two threshold 252 

statistics (probability of detection (POD) and false alarm ratio (FAR)). Table 2 shows the 253 

contingency table and Table 3 provides a summary of the statistical indices.  254 

All the statistical inferences were drawn for the overall time series, and then 255 

separately for the different rainfall regimes. Table 4 shows the criterion to segregate the 256 

rainfall time series into different components. For computing POD and FAR for different 257 

rainfall regime, a threshold is required. The 25th percentile value was selected as the 258 

threshold for low rainfall regime, 50th percentile for medium regime, 75th percentile for high 259 

rainfall regime and 95th percentile for very high rainfall regime. The statistical indices were 260 

calculated basin-wise.  261 

 In order to identify systematic bias in the satellite products, one meteorologic index 262 

(long term basin mean annual rainfall) and one topographic index (basin mean elevation) was 263 

computed for the 86 basins. The long term mean annual rainfall was computed using IMD 264 

gridded dataset from 1980 – 2010 (31 years). Basin mean digital elevation model (DEM) was 265 

extracted from Shuttle Radar Topography Mission (SRTM) DEM and mean elevation was 266 

obtained on a basin-wise scale.  267 

 Due to the limited availability of IMERG data (starting from 2014), calibration of 268 

VIC was done using an approach similar to the one used by Tang et al. (2016b). First, VIC 269 

was calibrated (2000-2011) and validated (2011-2014) using gridded IMD precipitation time 270 

series.  VIC was then calibrated (2000-2011) and validated (2011-2014) with TRMM 271 

precipitation time series. Further, both the IMD and TRMM calibrated models were validated 272 

with IMERG and TRMM for the year 2014 (from April 1, 2014 to December 31st, 2014). 273 

The year 2000 was used as a warm up period for the model.   274 

In line with the recent discussion by McCuen (2016) on the correct usage of statistical 275 

and graphical indices to evaluate model calibration and validation, four statistical parameters 276 

(Nash Sutcliffe efficiency (NSE), Percentage bias (Pbias), coefficient of determination (R
2
) 277 

along with its significance probability (p-value) and root mean squared error (RMSE)) were 278 

used to evaluate the runoff simulations from VIC. Table 3 provides a summary of these 279 

indices.  280 

3 Results 281 
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 All the TRMM statistics were obtained for two distinct periods (1998-2013 and 282 

2014). For the year 2014, the IMERG precipitation estimates were available from March 12, 283 

2014. Therefore, the TRMM statistics for the year 2014 were obtained from March 12, 2014 284 

to December 31, 2014. Henceforth, for the sake of convenience, statistics of TRMM-R refers 285 

to the time period 1998-2013, statistics of TRMM and IMERG refers to the time period 286 

March 12, 2014 to December 31, 2014. 287 

3.1 Scatterplots 288 

Fig. 32.1 shows the scatterplot of IMERG and TRMM with respect to IMD 289 

precipitation combining data from all the 86 basins for the year 2014. Both IMERG and 290 

TRMM show quite similar skills with correlation values above 0.8, with IMERG showsing 291 

better correlation in 60 out of 86 basins. On looking at the scatterplots for individual basins 292 

(Fig. 42.2), IMERG tends to be better correlated to IMD than TRMM. It can be seen that the 293 

correlation values go as high as 0.96 for IMERG (and 0.94 for TRMM) with a very uniform 294 

spread across the 1:1 line for the five best basins (Figs. 42.2a–e) (decided on the basis of 295 

correlation of IMERG with IMD in 2014). These basins are situated in the flat Deccan 296 

Plateau belt in South-central India (mostly concentrated in Tapi and Godavari basins).  For 297 

the other five basins (Figs. 42.2f–j), the poor correlation is due to the gross overestimation of 298 

IMERG/TRMM over IMD. Four of these five basins are situated in the high elevation basins 299 

in Northern India, which hints at a systematic dependence of IMERG/TRMM estimates with 300 

elevation. This is explored in detail in section 3.5e. 301 

3.2 Basin-wise correlation 302 

 Basin-wise correlation was computed for retrospective analysis of TRMM-R and to 303 

compare TRMM and IMERG rainfall estimates for the year 2014. Table 5 provides the 304 

summary of the number of basins where IMERG/TRMM has a higher correlation. IMERG 305 

gives slightly better rainfall estimates in majority of basins for all rainfall regime.Fig. 3 306 

suggests that IMERG gives slightly better rainfall estimate than TRMM for all rainfall 307 

regimes (with IMERG showing higher correlation for the year 2014 for 60, 52, 52 and 55 out 308 

of 86 basins for overall, low, medium and high rainfall regimes). IMERG shows a correlation 309 

coefficient higher than 0.8 (for overall time series) for 73 out of 86 basins, compared to 68 310 

basins for TRMM and higher than 0.9 for 20 basins compared to 13 for TRMM. The 311 

decomposition of the overall time series into different rainfall regime reduces the correlation, 312 

which can be attributed to temporal smoothening in longer time series.  313 
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The spatial maps (Fig. 54) provide an illustration of the slight improvement of 314 

IMERG over TRMM with spatially coherent patterns. In general, both TRMM and IMERG 315 

show high basin-wise correlation values for the overall time series. In the overall spatial maps 316 

(Figs. 54b–c), for the year 2014, TRMM and IMERG show similar skill, with IMERG 317 

capturing the rainfall  slightly better in Central and Southern India. Both show similar skill in 318 

the high rainfall areas of the Western Ghats and the North Eastern basins. IMERG gives 319 

slightly better estimates in the high elevation basins in North India. There is no significant 320 

improvement in the basins located on the Eastern coast (like the Mahanadi river basin). 321 

TRMM provides slightly better estimates of rainfall in the semi-arid basins located in the 322 

North Western states of India (Rajasthan). It is to be noted that TRMM statistics for 2014 are 323 

much better than its retrospective statistics (TRMM-R) with spatial coherent trends.  324 

The low rainfall estimates (Figs. 45d–f) over the semi-arid North Western basins are 325 

slightly better for TRMM compared to IMERG. IMERG captures low rainfall better over the 326 

Indo-Gangetic plain. Both IMERG and TRMM show similar trends over the Western Ghats, 327 

North-Eastern basins, Eastern coast and over the Deccan Plateau. IMERG doesn’t capture the 328 

low rainfall regime over the Upper Indus basin (in Northern India) and over the upper Bhima 329 

and the upper Godavari basin (in the Deccan plateau belt).  330 

The medium rainfall estimates (Figs. 54g–i) are best represented in Central India and 331 

over the Deccan Plateau by TRMM and IMERG. Both show similar statistics over the 332 

Western Ghats and basins in North-Eastern and Eastern coast of India. TRMM slightly 333 

outperforms IMERG in the North-Western basin of Rajasthan, a trend also found in the low 334 

rainfall regime. IMERG doesn’t capture the medium rainfall trends over the Upper Indus 335 

basin (in Northern India). In general, TRMM-R medium rainfall estimates are best correlated 336 

in the semi-arid region of Rajasthan (North-Western basins) and in Central India. There is not 337 

much variability in the correlation of medium rainfall trends of TRMM-R, with correlation 338 

coefficient mostly around 0.5 for entire India, except for the high elevation Upper Indus 339 

basin. 340 

The high rainfall estimates (Figs. 54j–k) show highest correlation in the Deccan 341 

Plateau belt, higher elevation basins in Northern India, the Western Ghats and the East coast 342 

basins (except for the Southern-most basin) for TRMM and IMERG. High rainfall estimates 343 

of TRMM are better correlated than IMERG in the North-Eastern basins of Brahmaputra and 344 

Barak and the North-Western basins of Rajasthan. Both show similar correlation over the 345 
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high elevation basins in the North and over the Western Ghats. IMERG outperforms TRMM 346 

in the rain-shadow area of the Western Ghats and in the South-Eastern basins of Pennar and 347 

Cauvery. Retrospective maps of TRMM-R (Fig. 54j) suggest that high rainfall is adequately 348 

captured in the Indo-Gangetic plain, Western Ghats, North-Western basins of Rajasthan, 349 

South-Eastern basins of Pennar and Cauvery and the Eastern coast basins of Central India. 350 

However, TRMM gives very low correlation values for the rain-shadow belt of the Western 351 

Ghats, suggesting that it doesn’t capture the steep orographic gradient. The high rainfall 352 

estimates of TRMM-R give modest correlation in the North-Eastern basins, high elevation 353 

basins in Northern India and the West most basins of the South (Varrar and Periyar). 354 

3.3 Basin-wise bias 355 

 Basin-wise bias was computed for retrospective analysis of TRMM-R and to compare 356 

TRMM and IMERG rainfall estimates for the year 2014. Although, IMERG tends to give 357 

slightly better correlation on a basin-wise scale (Fig. 3a), Fig. 5a suggests that it also 358 

enhances the bias in the product. The bBias plot for the low rainfall regime (Fig. S25b) 359 

suggests that TRMM is more positively negatively biased than IMERG for 75 out of 86 360 

basins implyings. Negative bias indicates overestimation, which is a known problem with 361 

TRMM as its sensors cannot detect very low rainfall magnitudes (<0.5 mm/hour) (Hou et al., 362 

2014). If it detects a low intensity storm, it is most likely to overestimate (it which can be 363 

clearly seen in Fig. S25b). IMERG tends to give a better estimate of low rainfall magnitudes 364 

with smaller negative biases for 75 out of 86 basinsThis seems to have improved in the 365 

IMERG product, due to the sensor improvements in the GPM mission (Huffman et al., 2014). 366 

For the medium rainfall magnitudes, IMERG slightly increased the bias in the majority of 367 

basins (63 out of 86). In TRMM, there were 18 basins which showed positive bias which was 368 

increased to 38 in IMERG The number of unbiased basins (-10% <=bias <= 10%) increased 369 

from. However, this is not to be misunderstood as a decay in skill as in TRMM there were 28 370 

in TRMM to 37 in IMERG basins which were relatively unbiased (-10% <=bias <= 10%) 371 

which was increased to 37 in IMERG. IMERG tends to increase the variability of bias in the 372 

high rainfall regime (Fig. 5d). For the high rainfall estimates, TRMM has 57 basins whose 373 

bias lies between -20% to +20% which is decreased to 52 in IMERG. In TRMM, 57 basins 374 

showed positive bias (implying underprediction) which was reduced to 48 basins in IMERG. 375 

This suggests a reduction in systematic underprediction, although with greater variability in 376 

bias in IMERG for the high rainfall regime.  377 
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 The spatial maps for the overall rainfall time series (Figs. 6a-c) suggests similar bias 378 

patterns in TRMM and IMERG with spatial coherent trends throughout most of India. 379 

IMERG gives slightly lower smaller bias (closer to zero) over the high elevation basins of 380 

North India (Upper Indus basin) and slightly larger higher bias (more negative) over the 381 

North Eastern basins (of Brahmaputra and Barak) and the West flowing rivers of Kutch on 382 

the Western coast in the state of Gujarat. IMERG and TRMM gives a large positive negative 383 

biases (overprediction) over Upper and Middle Godavari basin (in Deccan Plateau belt) 384 

which suggests that the sharp topographic gradient is not well captured. Retrospective maps 385 

of TRMM-R suggest an underestimation over high elevation basins in Northern India (Indus, 386 

Jhelum and Chenab basins). However, TRMM captures the heavy precipitation on the 387 

Western Ghats well with very low biases. 388 

 The low rainfall spatial maps (Figs. 6d–f) show the large overprediction (positive 389 

negative bias) by TRMM (1998-2013 and 2014) which is improved in IMERG. The 390 

improvement is most prominent in the North Eastern basins (of Brahmaputra and Barak), 391 

Central India (Mahi, Chambal and the Indo-Gangetic plain), rain-shadow area of the Western 392 

Ghats and the South-Eastern coast. IMERG shows gross overprediction over Luni basin (near 393 

the Western coast of Rajasthan). Retrospective TRMM-R maps for low rainfall regime (Fig. 394 

6d) show that the low rainfall was best captured in high rainfall areas of the Western Ghats, 395 

the Indo-Gangetic plain and the Eastern coastal basins, which is not very surprising as 396 

TRMM doesn’t detect low rainfall magnitudes very well, thus suffering from overprediction 397 

in arid and semi-arid basins. Improvement in the low rainfall sensors in IMERG has 398 

improved low rainfall estimates, but it still suffers from gross overprediction in semi-arid 399 

areas (as evident in the semi-arid basins in North-West India (Fig. 6f)). 400 

 The medium rainfall spatial maps (Figs. 6g–i) suggest very similar spatial bias pattern 401 

in TRMM and IMERG, with low biases in most of the basins. Both TRMM and IMERG 402 

suffer from underprediction (negative positive bias) in the high elevation Northern basins (of 403 

Indus and Jhelum), although IMERG seem to be less biased than TRMM. Both show similar 404 

trends in the Western Ghats, with very low bias. However, both the products show large 405 

positive negative bias (overprediction) in the Middle Godavari basin, unable to capture the 406 

sharp topographic gradient in the region. IMERG slightly overpredicts rainfall in the North 407 

Eastern basins (of Brahmaputra and Barak). The retrospective TRMM maps for medium 408 

rainfall (Fig. 6g) show low almost constant bias  (almost unbiased) over entire India, except 409 
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over the Western Ghats (slightly positive bias (slight underprediction)) and high elevation 410 

Northern basins of Indus and Jhelum (positive bias (strong underprediction)).  411 

 The high rainfall spatial maps (Figs. 6j–l) suggest similar spatial pattern in TRMM 412 

and IMERG, with slight negative bias over majority of the basins. The high rainfall in the 413 

Western Ghats is well represented in TRMM and IMERG, however with strong 414 

overprediction in the leeward side of the Western Ghats, suggesting that IMERG is unable to 415 

capture the sharp topographic gradients. IMERG shows slightly greater bias (implying greater 416 

underprediction) in the high rainfall areas of the North Eastern basins than TRMM, however. 417 

IMERG givinges a better estimates (still underpredicts) in the high elevation basins in 418 

Northern India. Both IMERG and TRMM give similar bias pattern in the Indo-Gangetic plain 419 

and the semi-arid areas of the North-West. The retrospective TRMM-R map for of high 420 

rainfall (Fig. 6j) suggests spatially homogeneous trends throughout Indias that TRMM 421 

slightly overpredicts high rainfall in majority of India (Indo-Gangetic plain, Deccan Plateau, 422 

rain-shadow area of the Western Ghats). However, it suffers from gross underestimation in 423 

the high elevation basins of Northern India (Indus, Jhelum and Chenab). It is clearly observed 424 

that the high elevation basins are an outlier in most of the analysis., Aa systematic 425 

dependence of bias with elevation may be an underlying trend which is further explored in 426 

section 3.5e.  427 

3.4 Threshold statistics 428 

 Basin-wise POD and FAR was computed for retrospective analysis of TRMM-R and 429 

for the comparison of TRMM with IMERG (Figs. 7 and 8). Four rainfall thresholds were 430 

chosen, representative of different rainfall regimes (low threshold: 25 percentile, medium 431 

threshold: 50 percentile, high threshold: 75 percentile and very high threshold: 95 percentile). 432 

Increasing rainfall threshold leads to deteriorating trends in POD and FAR across majority of 433 

the basins, with decreasing POD and increasing FAR.  434 

Table 6 summarizes the number of basins in which IMERG/TRMM gives higher/lower 435 

threshold statistics, including the basins in which they show similar results. For Atthe low 436 

rainfall threshold, IMERG shows gives higher POD than TRMM for 62 basins, with the 437 

major improvement in POD in the Western region of Gujarat (Luni, Bhadar and Setrunji 438 

basins) (Figs. 7b,c). There is less spatial variability in POD for both TRMM and IMERG at 439 

low rainfall threshold with POD above 0.9 for 75 basins for IMERG and 63 basins for 440 

TRMM. The average POD (low rainfall threshold) across basins is 0.95 for IMERG and 0.91 441 
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for TRMM. For theAt medium rainfall threshold, IMERG outperforms TRMM in 39 basins 442 

with TRMM giving a higher POD in 37 basins; both the products give similar POD in 10 443 

basins. The average POD (medium rainfall threshold) across basins is 0.87 for both IMERG 444 

and TRMM. Notably, IMERG gives lower POD (medium rainfall threshold) in two2 (Barak 445 

and Brahmaputra lower sub-basin) out of the three3 North-Eastern basins, and higher POD 446 

(medium rainfall threshold) in the semi-arid basins of Rajasthan and Gujarat (Luni, Bhadar 447 

and Setrunji basins) (Figs. 7e,f). At For the high rainfall threshold, TRMM outperforms 448 

IMERG in 45 basins with IMERG giving a higher POD in 32 basins, both the products give 449 

similar POD in 9 basins. The average POD (high rainfall threshold) across basins is 0.76 for 450 

IMERG and 0.77 for TRMM. There is notable fall in performance in all the 3three North-451 

Western basins. IMERG gives slightly higher POD (high rainfall threshold) in the high 452 

elevation Northern basins (Upper Indus and Jhelum basins) (Figs. 7h,i). At For the very high 453 

rainfall threshold, IMERG outperforms TRMM in 44 basins with TRMM giving a higher 454 

POD in 27 basins; both the products give similar POD in 15 basins. The average POD  (very 455 

high rainfall threshold) across basins is 0.72 for IMERG and 0.7 for TRMM. At very high 456 

rainfall threshold, it’s clear that POD of IMERG is worse for all the 3three North-Eastern 457 

basins and over the semi-arid basins of Rajasthan and Gujarat (Figs. 7k,i). There is slight 458 

improvement in POD values for the high elevation Northern basins (Chenab, Ravi, Beas and 459 

Satulaj basins). 460 

At low rainfall threshold, TRMM gives higher FAR than IMERG in 42 basins with 461 

IMERG giving a higher FAR in 40 basins; both the products give similar FAR in 4 basins. 462 

tThe average FAR (low rainfall threshold) across basins is 0.24 for TRMM and 0.22 for 463 

IMERG. For theAt medium rainfall threshold, IMERG outperforms TRMM (with lower 464 

FAR) in 53 basins with TRMM giving lower FAR in 26 basins; both the products give 465 

similar FAR in 7 basins. The average FAR (medium rainfall threshold) across basins is 0.22 466 

for TRMM and 0.19 for IMERG. Notably, IMERG outperforms TRMM at low and medium 467 

rainfall thresholds giving lower FAR in the Western basins of Gujarat (Luni and Setrunji 468 

basins) (Figs. 8b,c,e,f). For theAt high rainfall threshold, IMERG outperforms TRMM in 67 469 

basins (lower FAR) with TRMM giving a lower FAR in 15 basins; both the products give 470 

similar FAR in 4 basins. The average FAR (high rainfall threshold) across basins is 0.18 for 471 

IMERG and 0.22 for TRMM. Slightly reduced FAR are seen in Central India (Yamuna and 472 

Chambal basins) and the North-Eastern basins (Brahmaputra basin) in IMERG at high 473 

rainfall threshold (Figs. 8h,i). For theAt very high rainfall threshold, IMERG outperforms 474 
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TRMM in 64 basins (lower FAR) with TRMM giving a lower FAR in 17 basins; both the 475 

products give similar FAR in 5 basins. The average FAR (very high rainfall threshold) across 476 

basins is 0.33 for IMERG and 0.41 for TRMM. There are notably fewer false alarms in 477 

IMERG estimates over the Northern, North-Eastern basins and the Western Ghats at very 478 

high thresholds. Both products give similar FAR (very high threshold) along the Eastern 479 

coast and Deccan Plateau basins.  480 

POD for TRMM-R suggests decreasing POD and increasing FAR with increasing 481 

rainfall threshold (Figs. 7a,d,g,j, Figs. 8a,d,g,j). The average POD across basins is 0.89, 0.85, 482 

0.77 and 0.66 for low, medium, high and very high rainfall thresholds, respectively. The 483 

respective FAR values are 0.26, 0.22, 0.21 and 0.43. At high and very high threshold, POD 484 

drops significantly over the high elevation Northern basins and high rainfall North-Eastern 485 

basins and the Western Ghats) (Figs. 7g,j). High FAR is recorded in the basins in Gujarat 486 

(Luni and Setrunji) and Central India (Bhadar and Chambal) at low and medium rainfall 487 

threshold (Figs. 8a,d) suggesting TRMM creates a lot of false alarms at low and medium 488 

rainfall magnitudes. There is a sharp contrast between FAR at high and very high thresholds, 489 

with low FAR at high rainfall threshold (75 percentile) and high FAR at very high threshold 490 

(95 percentile) (Figs. 8g,j). This suggests that TRMM-R creates a lot of false alarms at very 491 

high rainfall thresholds, especially in the North-Eastern, Northern and extreme Southern 492 

basins (Fig 8j).  493 

3.5 Systematic error in satellite estimates as a function of annual rainfall and mean 494 

elevation 495 

 The satellite precipitation estimates were evaluated against a climatologic parameter 496 

(long term annual rainfall of basin) and a topographic parameter (basin mean elevation), to 497 

investigate if there was any systematic variation in errors with climatology or topography. 498 

Fig. 9 describes the relationship between mean annual precipitation and mean elevation by 499 

considering the point values for 86 basins. It was found that tThere is no  is no systematic 500 

dependence between the climatologic and topographic parameter (R = 0.07, Fig S3) and they 501 

can be considered as independent (implying minimal interference).  502 

 TRMM-R rainfall estimates exhibited strong systematic dependence of bias and 503 

correlation with basin wise mean rainfall at low and medium rainfall estimates (Figs. 10 and 504 

11). At low rainfall regime, TRMM-R estimates for basins experiencing low annual rainfall 505 

were found to be strongly negatively biased (Fig. 10b), implying significant overprediction. 506 
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The bias values improved drastically for basins experiencing higher annual rainfall. This is 507 

also reflected in the correlation plots (Fig. 11b), where a positive correlation between basin-508 

wise correlation and annual rainfall (R = 0.3) implies improved estimates of low rainfall at 509 

basins which experience high annual rainfall. At the medium rainfall regime, TRMM-R 510 

estimates showed higher bias (implying underprediction) and lower correlation (reduced 511 

skill) in basins receiving higher annual rainfall, with a sharp drop in correlation for heavy 512 

rainfall basins (Figs. 10c and 11c). At high rainfall regime, the systematic bias was reduced, 513 

both in terms of percent bias and correlation, implying that there is no significant difference 514 

in TRMM-R estimates of high rainfall, in basins receiving low/high annual rainfall.   515 

For the year 2014, both IMERG and TRMM showed increasing bias as a function of 516 

increasing annual rainfall for all the rainfall regimes (Fig. 12), with the systematic 517 

dependence strongly reduced in IMERG estimates for the medium rainfall regime. For the 518 

low rainfall regime, bias and correlation values improve for basins receiving higher rainfall 519 

(Figs. 12b and 13b). TRMM and IMERG showed similar systematic dependence on annual 520 

rainfall at low rainfall regime, with correlation values between basin wise correlation and 521 

annual rainfall equal to 0.38 and 0.39 for TRMM and IMERG, respectively. For the medium 522 

rainfall regime, both IMERG and TRMM showed increasing bias with increasing annual 523 

basin-wise rainfall (Fig. 12c). However, there was a strong reduction in the systematic bias 524 

component in IMERG, with correlation between basin-wise bias and rainfall decreasing from 525 

0.43 (for TRMM) to 0.3 (for IMERG). At medium rainfall, a substantial skill was lost in 526 

terms of decreasing correlation for basins receiving high rainfall (Fig. 13c). This systematic 527 

dependence wasn’t reduced in IMERG estimates, with correlation values between basin-wise 528 

correlation and rainfall as -0.45 for TRMM and -0.44 for IMERG. At high rainfall regime, 529 

bias was higher for basins which received more rainfall, implying greater underprediction in 530 

basins with heavy rainfall magnitude (Fig. 12d). This systematic bias wasn’t reduced in 531 

IMERG estimates. No systematic dependence was found in the correlation of 532 

IMERG/TRMM estimates with basin-wise rainfall (Fig. 13d). 533 

TRMM-R rainfall estimates exhibited very strong dependence on mean basin elevation, with 534 

decreasing skill (higher larger bias and lower correlation) in basins with high mean elevation 535 

(Figs. 914 and 105). For the low rainfall regime, a correlation coefficient (between basin-wise 536 

bias and elevation) of (-0.08) (Fig. 14b) may suggest that there is no systematic dependence 537 

between elevation and bias. For medium and high rainfall regimes (Figs. 914c, d), bias values 538 

were highlyvery negativeincrease drastically for high elevation basins (especially for basins 539 
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with mean elevation > 2000 m), implying underprediction at higher elevations. The 540 

corresponding correlation values (Figs. 150c, d) also suggested reduced skill at higher 541 

elevation basins.  542 

For the year 2014, except at low rainfall magnitude, bias increases with mean basin 543 

elevation for TRMM and IMERG rainfall estimates (Fig. 16). Ttheis systematic dependence 544 

of bias on basin elevation is improved in IMERG estimates, with the correlation between 545 

basin-wise bias and elevation reducing from -0.43 0.43 to -0.32 for medium rainfall regime 546 

intensity (Fig. 116c) and from -0.31 to -0.08 for high rainfall intensity regime (Fig. 116d). 547 

The same was not seenobserved in It’s interesting to note that the same is not seen for the 548 

correlation plots (Fig. 127). At low For the low rainfall intensity regime (Fig. 127b), IMERG 549 

estimates exhibited stronger systematic relationship between basin-wise correlation and 550 

elevation, with strongly decreasing correlation with elevation than TRMM. At medium 551 

rainfall intensity (Fig. 127c), both TRMM and IMERG showed decreasing skill with 552 

increasing elevation. This systematic dependence was is again stronger in IMERG than 553 

TRMM, as reflected in the higher negative correlation between basin-wise correlation and 554 

elevation in medium rainfall IMERG estimates (Fig. 172c). For the high rainfall intensity 555 

(Fig. 17d), both IMERG and TRMM do not show any systematic dependence of skill with 556 

elevation. 557 

The same analysis was repeated against mean annual precipitation (Figs. S4-S7) 558 

wherein. The systematic error dependence was found to be smaller than in elevation. TRMM-559 

R rainfall estimates exhibited systematic dependence of bias and correlation with basin wise 560 

mean annual rainfall atfor low and medium rainfall estimates (Fig. S4 and S5). At low 561 

rainfall intensity, TRMM-R estimates for basins experiencing low annual rainfall were found 562 

to be strongly positively biased (Figs. S4b), implying significant overprediction-estimation. 563 

For the year 2014, systematic dependence of bias was reduced in IMERG at medium rainfall 564 

intensities (Fig. S6c, correlation downimproved from -0.43 in TRMM to -0.3 for IMERG). A 565 

substantial skill was lost in terms of decreasing correlation for basins receiving high rainfall 566 

in both TRMM and IMERG estimates (Fig. S7c). At high rainfall intensities, bias was more 567 

negative (implying underprediction) in basins which received more rainfall in both IMERG 568 

and TRMM (Fig. S6d).  569 

3.6 Rainfall-runoff modeling 570 
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 Rainfall-runoff modeling was carried out over Hirakud catchment of Mahanadi River 571 

basin and Wainganga catchment of Godavari River basin, with the calibration and validation 572 

periods as 2000-2011 and 2012-2014, respectively. VIC was first calibrated with IMD 573 

gridded precipitation and then with TRMM3B42 V7. The two calibrated models were then 574 

forced with TRMM and IMERG precipitation forcing for the year 2014 (April – December). 575 

Tables 75 and 8 shows  the model performances. 576 

 VIC was successfully calibrated using IMD (NSE = 0.83 for calibration and 0.86 for 577 

validation) and TRMM  for both Hirakud and Wainganga basins(NSE = 0.72 for calibration 578 

and 0.73 for validation). The IMD calibrated model showed better simulations compared to 579 

the TRMM calibrated model, with higher NSE, coefficient of determination and lower 580 

smaller bias and RMSE in both Wainganga and Hirakud basins. TRMM calibrated model 581 

showed slight overprediction (negative positive bias) in Hirakud basin, but was relatively 582 

unbiased in Wainganga basin (-10 <= Pbias <= 10)  (Tables 7, 85).  583 

 The IMERG simulations with IMD and TRMM calibrated models were slightly 584 

inferior in comparison with TRMM simulations for 2014 (NSE = 0.64 for IMERG and 0.723 585 

for TRMM in IMD calibration; NSE = 0.7 for IMERG and 0.72 for TRMM in TRMM 586 

calibration) (Table 75, Fig. 138) for Hirakud. However, the IMERG simulations gave similar 587 

results as TRMM in Wainganga basin when calibrated using IMD data, but inferior results 588 

when calibrated with TRMM data (NSE = 0.61 for IMERG and 0.72 for TRMM) (Table 8, 589 

Fig. 14). In case of Hirakud basin, IMERG simulations gave higher NSE when calibrated 590 

with TRMM data. However, in the case of Wainganga basin, IMERG gave higher NSE when 591 

calibrated with IMD data. The IMERG simulations with TRMM calibrated model reported 592 

higher NSE and coefficient of determination, with lower smaller bias and RMSE, which 593 

might be due to the fact that TRMM and IMERG are both satellite products and exhibit 594 

similar spatio-temporal trends. The high negative bias in IMERG simulations (with IMD and 595 

TRMM calibrated models) showed significant overprediction compared to TRMM. 596 

 Both TRMM and IMERG underestimated the magnitude of the two major high peaks 597 

(flow > 15000 m
3
/s) in Hirakud and Wainganga basin in 2014 (Figs. 13, 14). However, the 598 

phase was well captured by both IMERG and TRMM in the two basins. Apart from the two 599 

major peaks, IMERG overestimated low flows for the majority of the time in both IMD and 600 

TRMM calibrated VIC model for both the basins (hence the negative bias value), and thus 601 

was inferior in performance to TRMM.  This suggests that the use of an appropriate post-602 
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processor (in form of real-time error updation) could tremendously benefit the flow 603 

simulations, which might be an interesting study for the future.   604 

4 Conclusions 605 

TRMM 3B42 and IMERG precipitation estimates were comprehensively evaluated over 606 

86 basins in India. TRMM 3B42 was analysed for two distinct time periods, the retrospective 607 

analysis was carried out from 1998-2013 and the current estimates were compared with 608 

IMERG for the year 2014 (March 12
th

 2014 – December 31
st
 2014). The systematic biases in 609 

both the estimates were explored with respect to a climatologic parameter (basin mean annual 610 

rainfall) and a topographic parameter (basin mean elevation). Finally, TRMM and IMERG 611 

were hydrologically evaluated by carrying out rainfall-runoff modeling over Hirakud 612 

catchment of Mahanadi River basin and Wainganga catchment of Godavari River basin, a 613 

flood prone basin in Eastern India. The results of the study are summarized as: 614 

1. IMERG rainfall estimates were found to be better than TRMM at all rainfall intensities, in 615 

terms of correlation. IMERG outperformed TRMM in 60, 52, 52 and 55 out of 86 basins 616 

for overall, low, medium and high rainfall regimes.  617 

2. IMERG gave better estimates of low rainfall magnitudes with smaller negative biases in 618 

75 out of the 86 basins analysed, which suggests that the sensor improvement in IMERG 619 

satellite translated into better low rainfall estimation. IMERG captured the low rainfall 620 

magnitudes better over the Indo-Gangetic plain, North Eastern basins of Brahmaputra and 621 

Barak, Central India (Mahi, Chambal and the Indo-Gangetic plain) and the rain shadow 622 

area of the Western Ghats. However, for the semi-arid North Western basins, TRMM low 623 

rainfall estimates outperformed IMERG.  624 

3. The high rainfall estimates of IMERG outperformed TRMM in the rain-shadow area of 625 

the Western Ghats, the high elevation basins of the North and the South-Eastern basins of 626 

Pennar and Cauvery. However, TRMM did a better job in the North-Eastern basins of 627 

Brahmaputra and Barak and the North-Western basins of Rajasthan. Interestingly, 628 

IMERG reduced the systematic underprediction over TRMM although with greater 629 

variability in bias at high rainfall intensity. 630 

4. Increasing rainfall thresholds lead to deteriorating trends in POD and FAR across 631 

majority of basins, with decreasing POD and increasing FAR.  632 

5. The skill of TRMM-R medium rainfall estimates (in terms of Pbias and correlation) was 633 

found to exhibit strong systematic dependence on annual rainfall (climatologic 634 
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parameter), with higher larger bias and lower correlation in basins which received higher 635 

annual rainfall. This systematic dependence was reduced significantly in IMERG 636 

estimates. However, no such improvement was found at low and high rainfall intensities. 637 

6. A very strong deteriorating skill (increasing bias and decreasing correlation) was found in 638 

TRMM-R rainfall estimates at all intensities in the high elevation basins. This systematic 639 

dependence was strongly reduced in IMERG estimates at all rainfall intensities, 640 

suggesting IMERG captures the rainfall trends better with respect to topography. 641 

7. Rainfall runoff modeling using VIC model over Hirakud catchment of the Mahanadi and 642 

Wainganga River basins River basin gave better results with TRMM as input forcing, 643 

rather than IMERG. Both TRMM and IMERG captured the phase of the peak flows, 644 

however both underreported the magnitudes. Low flows were grossly over predicted by 645 

IMERG, which led to overall poor performance with IMERG. As GPM is still a young 646 

mission, with time a longer timeseries As longer timeseries of IMERG willis available, it 647 

may help in model performance evaluation as IMERG can be used to directly calibrate 648 

the model, hence capturing the fine details in the product.  649 

In essence, IMERG gives reasonable improvement in rainfall estimates across majority of 650 

the Indian basins. However, the improvement was not found to be ground breaking, rather 651 

incremental, suggesting that the GPM mission is a worthy successor of the widely acclaimed 652 

TRMM mission. The most notable improvement in IMERG is the reduction in systematic 653 

error dependence on topography (basin mean elevation), which suggests improvements in the 654 

assimilation of satellite observations. The improved sensitivity of Ku and Ka bands in GPM 655 

satellite resulted in improvement in detection of low rainfall magnitudes. The expected 656 

improvement in IMERG in snow detection could not be verified in this study as India is 657 

mostly a tropical country which receives very less snow. The constant overestimation of low 658 

flow magnitudes in the rainfall-runoff exercise suggest that IMERG may benefit from a post 659 

forecast data assimilation scheme, which is a worthy topic for further research.   660 
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784 
Figure 1(a). Map of the major basins in India, map of (b) Hirakud catchment of the 785 

Mahanadi River basin and (c) Waingaga catchment of the Godavari River basin. 786 

Figure 1.(a) Map of the major basins in India, spatial distribution of  (b) long term average 787 

annual rainfall (calculated from IMD gridded rainfall dataset from years 1980-2010), (c) 788 

average elevation above mean sea level (calculated using SRTM DEM) over 86 major basins 789 

in India and (bd) map of Hirakud dam catchment of the Mahanadi River basin in Eastern 790 

India. 791 
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792 

 793 

Figure 2. Spatial distribution of (a) long term average annual rainfall (calculated from IMD 794 

gridded rainfall dataset from years 1980-2010), and (b) average elevation above mean sea 795 

level (calculated using SRTM DEM) over 86 major basins in India. 796 
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 797 

Figure 3.2.1 Scatterplot of satellite precipitation products (TRMM and IMERG) vs observed 798 

rainfall (IMD) computed over 86 major basins in India (based on daily precipitation data 799 

from March 12, 2014 to December 31, 2014). 800 

 801 

Figure 42.2. Scatterplot of satellite precipitation products (TRMM and IMERG) vs observed 802 

rainfall (IMD) for (a) – (e) five best basins in terms of correlation of IMERG with IMD 803 

(arranged in descending order) and (f) – (j) five worse basins in terms of correlation of 804 

IMERG with IMD (arranged in ascending order) (based on daily precipitation data from 805 

March 12, 2014 to December 31, 2014).  806 
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 807 

Figure 3. Correlation of TRMM (1998-2013), TRMM (2014) and IMERG (2014) over 86 808 

major basins in India for (a) overall time series and over (b) low, (c) medium and (d) high 809 

rainfall regime. 810 
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 811 

Figure 54. Spatial representation of correlation of TRMM (1998-2013), TRMM (2014) and 812 

IMERG (2014) over 86 major basins in India for (a) – (c) overall time series, (d) – (f) low, 813 

(g) – (i) medium and (j) – (l) high rainfall regime. 814 
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 815 

Figure 5. Percentage bias of TRMM (1998-2013), TRMM (2014) and IMERG (2014) over 816 

86 major basins in India for (a) overall time series and over (b) low, (c) medium and (d) high 817 

rainfall regime. 818 
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 820 

Figure 6. Spatial representation of percentage bias of TRMM (1998-2013), TRMM (2014) 821 

and IMERG (2014) over 86 major basins in India for (a) – (c) overall time series and over (d) 822 

– (f) low, (g) – (i) medium and (j) – (l) high rainfall regime. 823 
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 824 

Figure 7. Spatial representation of probability of detection (POD) for (a) – (c) low (25 825 

percentile), (d) – (f) medium (50 percentile), (g) – (i) high (75 percentile) and (j) – (l) very 826 

high (95 percentile) rainfall threshold for TRMM (1998-2013), TRMM (2014) and IMERG 827 

(2014) rainfall estimates over 86 major basins in India. 828 



38 
 

 829 

Figure 8. Spatial representation of false alarm ratio (FAR) for (a) – (c) low (25 percentile), 830 

(d) – (f) medium (50 percentile), (g) – (i) high (75 percentile) and (j) – (l) very high (95 831 

percentile) rainfall threshold for TRMM (1998-2013), TRMM (2014) and IMERG (2014) 832 

rainfall estimates over 86 major basins in India. 833 

 834 
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 835 

836 
Figure 9. Graphical representation of long term average annual rainfall (calculated from IMD 837 

gridded rainfall dataset from years 1980-2010) and average elevation above mean sea level 838 

for 86 major basins in India (arranged in increasing order of their mean elevation). 839 
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840 
Figure 10. Graphical representation of percentage bias of TRMM (1998-2013) arranged in 841 

the increasing order of basin-wise average annual rainfall for (a) overall time series and over 842 

(b) low, (c) medium and (d) high rainfall regime for 86 major basins in India.  843 

844 
Figure 11. Graphical representation of correlation of TRMM (1998-2013) arranged in the 845 

increasing order of basin-wise average annual rainfall for (a) overall time series and over (b) 846 

low, (c) medium and (d) high rainfall regime for 86 major basins in India. 847 
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848 
Figure 12. Graphical representation of percentage bias of IMERG (2014) and TRMM (2014) 849 

arranged in the increasing order of basin-wise average annual rainfall for (a) overall time 850 

series and over (b) low, (c) medium and (d) high rainfall regime for 86 major basins in India. 851 

852 
Figure 13. Graphical representation of correlation of IMERG (2014) and TRMM (2014) 853 

arranged in the increasing order of basin-wise average annual rainfall for (a) overall time 854 

series and over (b) low, (c) medium and (d) high rainfall regime for 86 major basins in India. 855 
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856 
Figure 149. Graphical representation of percentage bias of TRMM (1998-2013) arranged in 857 

the increasing order of basin-wise average elevation over mean sea level for (a) overall time 858 

series and over (b) low, (c) medium and (d) high rainfall regime for 86 major basins in India. 859 
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860 

861 
Figure 105. Graphical representation of correlation of TRMM (1998-2013) arranged in the 862 

increasing order of basin-wise average elevation over mean sea level for (a) overall time 863 

series and over (b) low, (c) medium and (d) high rainfall regime for 86 major basins in India.864 
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865 

866 
Figure 161. Graphical representation of percentage bias of IMERG (2014) and TRMM 867 

(2014) arranged in the increasing order of basin-wise average elevation over mean sea level 868 

for (a) overall time series and over (b) low, (c) medium and (d) high rainfall regime for 86 869 

major basins in India. 870 
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 871 

872 
Figure 127. Graphical representation of correlation of IMERG (2014) and TRMM (2014) 873 

arranged in the increasing order of basin-wise average elevation over mean sea level for (a) 874 

overall time series and over (b) low, (c) medium and (d) high rainfall regime for 86 major 875 

basins in India. 876 



46 
 

 877 

Figure 138. Hydrographs for TRMM and IMERG simulations (April 1, 2014 – December 31, 878 

2014) with (a) IMD and (b) TRMM calibrated VIC model for Hirakud basin.  879 

 880 

Figure 14. Hydrographs for TRMM and IMERG simulations (April 1, 2014 – December 31, 881 

2014) with (a) IMD and (b) TRMM calibrated VIC model for Wainganga basin.  882 

Number of days since April 1
st
, 2014 
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Table 1. Summary of the precipitation datasets used. 883 

Product name Spatial 

resolution 

Temporal 

resolution 

Spatial 

coverage 

Temporal 

coverage 

Period used in this 

study 

IMD Gridded 

Rainfall 

0.25° x 0.25° Daily Indian 

landmass 

1901-2014 1998-2013, 

12
th

 March, 2014 – 

31
st
 December 2014 

TRMM Research 

product 

0.25° x 0.25° 3-hourly 50° N-S 1998-present 1998-2013, 

12
th

 March, 2014 – 

31
st
 December 2014 

IMERG Final Run 0.1° x 0.1° Half-hourly 60° N-S 12
th

 March, 2014 

- present 

12
th

 March, 2014 – 

31
st
 December 2014 

Table 2. Contingency table used to calculate probability of detection (POD) and false alarm 884 

ratio (FAR) at a given rainfall threshold. 885 

  Simulated 

  > Threshold <= Threshold 

Observed 

 

> Threshold HIT MISS 

<= Threshold FALSE NEGATIVE 

Table 3. Summary of different statistical indices used to evaluate the satellite precipitation 886 

products. 887 

Index Formula Best value Worst value 

Pearson correlation (R) ∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

√∑(𝑋 − 𝑋̅)2 √∑(𝑌 − 𝑌̅)2
 

1 0 

Percentage bias (Pbias) ∑(𝑌𝑋 − 𝑋𝑌)

∑ 𝑋
∗ 100 

0 +∞ / - ∞ 

Probability of detection 

(POD) 

𝐻𝐼𝑇

𝐻𝐼𝑇 + 𝑀𝐼𝑆𝑆
 

1 0 

False alarm ratio (FAR) 𝐹𝐴𝐿𝑆𝐸

𝐻𝐼𝑇 + 𝐹𝐴𝐿𝑆𝐸
 

0 1 

Nash Sutcliffe 

efficiency (NSE) 
1 −

∑(𝑋 − 𝑌)2

∑(𝑋 − 𝑋̅)2
 

1 - ∞ 

(negative value means that 

mean is a better estimator 
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than the model). 

Root mean squared 

error (RMSE) 

 

√
∑(𝑋 − 𝑌)2

𝑛
 

0 +∞ 

 (𝑋 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑋̅ = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑒𝑎𝑛, 𝑌 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑, 𝑌̅ = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑛, 𝑛 =888 

𝐷𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠) 889 

Table 4. Segregation of overall rainfall time series into low, medium and high rainfall time 890 

series (R = Rainfall, µ = Mean of rainfall, σ = Standard deviation of rainfall). 891 

Rainfall regime Criterion 

Low R < µ 

Medium R >= µ and R <= µ + 2σ 

High R > µ + 2σ 

Table 5. Comparison of the IMERG and TRMM based on the number of basins in which the satellite 892 

products show higher/lower correlation based on the year 2014 (R: pearson correlation) 893 

Expression IMERG TRMM 

R > 0.8 73 68 

R > 0.9 20 13 

Higher R 60 26 

Higher R (low rainfall regime) 52 34 

Higher R (medium rainfall regime) 52 34 

Higher R (high rainfall regime) 55 31 

Table 6. Comparison of the IMERG and TRMM based on the number of basins in which the satellite 894 

products show higher/lower POD/FAR based on the year 2014. The third column gives the number 895 

of basins in which IMERG/TRMM gives similar POD/FAR. (Low, medium, high and very high 896 

threshold: 25, 50, 75, 95 percentile respectively)  897 

Expression IMERG TRMM Similar 

Higher POD (low rainfall threshold) 62 24 0 

Higher POD (medium rainfall threshold) 39 37 10 

Higher POD (high rainfall threshold) 32 45 9 

Higher POD (very high rainfall threshold) 44 27 15 

Lower FAR (low rainfall threshold) 42 40 4 

Lower FAR (medium rainfall threshold) 53 26 7 

Lower FAR (high rainfall threshold) 67 15 4 

Lower FAR (very high rainfall threshold) 64 17 5 

 898 

 899 
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Table 75. Performance statistics for rainfall-runoff modeling using VIC for Hirakud 900 

catchment of Mahanadi River basin in India. 901 

 Time 

period 

NSE R
2
 (p-value) P-bias RMSE (m

3
/s) 

IMD calibration 2000-2011 0.83 0.84 (0.01) -16.78 919.88 

IMD validation 2012-2014 0.86 0.88 (0.01) -3.91 823.58 

TRMM calibration 2000-2011 0.72 0.74 (0.01) -18.2 1160.94 

TRMM validation 2012-2014 0.73 0.74 (0.01) -14 1128.15 

TRMM (IMD 

calibration) 

2014 0.72 0.82 (0.01) -9.41 1591.09 

IMERG (IMD 

calibration) 

2014 0.64 0.68 (0.01) -41.4 1786.22 

TRMM (TRMM 

calibration) 

2014 0.72 0.82 (0.01) -9.24 1588.86 

IMERG (TRMM 

calibration) 

2014 0.7 0.72 (0.01) -31.32 1641.82 

Table 8. Performance statistics for rainfall-runoff modeling using VIC for Wainganga River 902 

basin. 903 

 Time 

period 

NSE R
2
 (p-value) P-bias RMSE (m

3
/s) 

IMD calibration 2000-2011 0.81 0.81 9.18 740.49 

IMD validation 2012-2014 0.87 0.88 -10.8 852.9 

TRMM calibration 2000-2011 0.7 0.71 15.66 931.65 

TRMM validation 2012-2014 0.83 0.83 5.93 973.41 

TRMM (IMD 

calibration) 

2014 0.74 0.74 8.70 883.19 

IMERG (IMD 

calibration) 

2014 0.74 0.76 -0.52 883.59 

TRMM (TRMM 

calibration) 

2014 0.72 0.75 -2.70 922.04 

IMERG (TRMM 

calibration) 

2014 0.61 0.66 -12.10 1082.34 
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