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S.1 Properties of the function E/P = B1
’(0) 

Putting y = E/P with 0 ⩽	y ⩽1, x = 0 and a = α0/(2αw), function B1’ given by Eq. (20) can be rewritten as 
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For x = 0, y is obviously equal to 0. When x tends to infinite the result is less evident. Eq. (S1.1) can be rewritten as: 
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When x tends to infinite, given that y is limited by 1, the right-hand term of the equation should tend to infinite. This means 

that y should tend to 1 so that the denominator tends to zero.   

The derivative of the function in Eq. (S1.1) is given by 15 
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which can be rewritten as 
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Close to x = 0, y is close to zero and the derivative can be approximated by 
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If Eq. (22) is taken into account: 
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This means that αw/α0 and dy/dx tend to 1 when x tends to zero.  

 



2 
 

S.2 Properties of the function E/E0 = B2
’(0

-1) 

With X = 0
-1, Y = E/E0 and the parameter a defined as above, function B2’ given in Eq. (21) can be written as 
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When X tends to zero, Y which is limited by 1 necessarily tends to zero, and when X tends to infinite Y tends to 1/2a = αw/α0 

which is equal to 1 according to Eq. (S1.6) (x =1/X = 0).  5 

The derivative of B2’ can be written as 
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When X tends to zero, Y also tends to zero and the term into square brackets tends to 1 which means that 
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Taking into account Eq. (S2.1), we have 10 
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which tends to 1. 

 

S.3 Transcendental forms of the basic equations E/P = B1(p) and E/Ep = B2(p
-1) 

Eqs. (4) and (5) have the same following form  15 
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with x = p (or X = p
-1) and y = E/P (or Y = E/Ep). Eq. (S3.1) can be also written as 
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With similar notations, Eq. (23) can be written as 
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Eq. (S3.3) is equivalent to y + x = x + y, which means that S3.1 or S3.2 are solutions of Eq. (S3.3). A similar reasoning can 

be conducted with Eq. (24) which can be written 
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Taking into account Eq. (S3.1) and given that 
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Eq. (S3.4) is equivalent to 1 = 1, which means that S3.1 or S3.2 are solutions of Eq. (S3.4). 
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S.4 Calculations made with the Fu-Zhang equation 

The Fu-Zhang equation is given by 
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First, we study the feasible domain of the drying power of the air and the correspondence with the evaporation rate. Inserting 

Eq. (S4.1) into Eq. (9) gives 5 
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The limits given in Eq. (11), (12) and (13) are independent from the TB equation used, and consequently D* remains 

unchanged 
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Using a similar reasoning as in Eqs (14), (15), (16) and (17), we obtain 10 
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Second, we link the Priestley-Taylor coefficient to the Fu-Zhang shape parameter ω. Substituting EP in Eq. (S4.1) by its 

value given by Eq. (18) and putting 0 = E0/P gives 15 
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Eq. (S4.7) can be rewritten as 
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An equation similar to Eq. (21) can be obtained expressing E/E0 as a function of 0
-1 = P/E0 
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Eqs. (S4.8) and (S4.9) obtained from the Fu-Zhang equation correspond respectively to E/P = B1’(0) in Eq. (20) and E/E0 = 

B2’(0
-1) in Eq. (21) obtained with the Turc-Mezentsev equation. 

Using a similar reasoning as in Eq. (22), the expression of α0 can be inferred by matching Eq. (S4.8) and Eq. (S4.1): for a 

given value of the aridity index , we have the same value of E/P. This leads to 
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Eq. (S4.10) is equivalent to Eq. (22), but with a transcendental form. It can be resolved numerically and Fig. (S1) shows the 

variation of the Priestley-Taylor coefficient α0 as a function of the aridity index  for different values of the  parameter. 

The shape of the curves is very similar to those of Fig. (5a) obtained with the parameter λ of the Turc-Mezentsev function. 
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Figure S1: Variation of the Priestley-Taylor coefficient α0 as a function of the aridity index  for different values of the shape 
parameter  of the Fu-Zhang function. The bold lines indicate the upper and lower limits of the feasible domain. 
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