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S.1 Properties of the function E/P = B, (®,)

Putting y = E/P with 0 <y <1, x = @yand a = ay/(2a.,,), function B;’ given by Eqg. (20) can be rewritten as

_ -1/2
x=a [(y A-1) T+ y]. (S1.1)
For x = 0, y is obviously equal to 0. When x tends to infinite the result is less evident. Eq. (S1.1) can be rewritten as:
Zoy=—1. (S1.2)
G)
yl

When x tends to infinite, given that y is limited by 1, the right-hand term of the equation should tend to infinite. This means
that y should tend to 7 so that the denominator tends to zero.

The derivative of the function in Eq. (S1.1) is given by

d _ _ -2-1
d_§= a[l 4y~ WD (y=A— 1) ] (S1.3)

which can be rewritten as

dy 1 —@+p/A171

=21+ (1-y%) ] (S1.4)
Close to x = 0, y is close to zero and the derivative can be approximated by

@y 21 = (B2 2] & 2w

E~a[1 (zl)y]~a0' (S1.5)

If Eqg. (22) is taken into account:

Gw _ M _ (S1.6)

@ 2

This means that a,/ay and dy/dx tend to 7 when x tends to zero.
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S.2 Properties of the function E/E, = B, (®;)
With X = @, Y = E/E, and the parameter « defined as above, function B,’ given in Eq. (21) can be written as

XA=y2*— (l - y)_'1 . (S2.1)

a
When X tends to zero, Y which is limited by 7 necessarily tends to zero, and when X tends to infinite Y tends to 1/2a = a,,/0
which is equal to 7 according to Eq. (S1.6) (x =1/X = 0).
The derivative of B, can be written as

ay x~A-1 1

ar _ = . (S2.2)
ax a1y (1_y) AT A+1
) ) 1+ﬁ
(@)

When X tends to zero, Y also tends to zero and the term into square brackets tends to 7 which means that
dy Y A+1
il IR (523
Taking into account Eq. (S2.1), we have

A A e

Y +1 1 - 2

(}) = [1 - (E - 1) ] . (S2.4)

which tends to /.

S.3 Transcendental forms of the basic equations E/P = B;(®,) and E/E, = Bz((D,,")

Egs. (4) and (5) have the same following form

y=(1+x2)""" (S3.1)
withx = @, (or X = ch'I) and y = E/P (or Y = E/E,). Eq. (S3.1) can be also written as

x=y*r-1)"" (S3.2)
With similar notations, Eq. (23) can be written as

y+ (- 1)_1/'1 =x+(1+ x"l)_l//1 . (S3.3)

Eg. (S3.3) is equivalent to y + x = x + y, which means that S3.1 or S3.2 are solutions of Eq. (S3.3). A similar reasoning can
be conducted with Eq. (24) which can be written

[1-v+(1+ X"l)_lM]_A —yR-XxA, (S3.4)
Taking into account Eq. (S3.1) and given that

Y A=1+X*, (S3.5)
Eq. (S3.4) is equivalent to 7 = I, which means that S3.1 or S3.2 are solutions of Eq. (S3.4).
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S.4 Calculations made with the Fu-Zhang equation

The Fu-Zhang equation is given by

1
E o1
S=1+0,—[1+(0,)" " . (54.1)
First, we study the feasible domain of the drying power of the air and the correspondence with the evaporation rate. Inserting
Eq. (S4.1) into Eq. (9) gives

Ea _ g1y — (1L _ © )5

fa — p(o;1) = (1 + y) {1 - [2 + b, — (1+ %) ]] (S4.2)

Ep

The limits given in Eq. (11), (12) and (13) are independent from the TB equation used, and consequently D* remains

unchanged

D* =ﬁ(1 +§) (S4.3)
Using a similar reasoning as in Eqs (14), (15), (16) and (17), we obtain

4 =20-1, (S4.4)
w = m(l;_z_l) , (S4.5)
5 =(1+ é)ﬁ(zi ~1)=D'd" . (54.6)

Second, we link the Priestley-Taylor coefficient to the Fu-Zhang shape parameter . Substituting Ep in Eq. (S4.1) by its
value given by Eq. (18) and putting @, = E,/P gives

1

E _ 2ay, E 2ay, E\? o
;_1+a—0¢0—;—[1+(a—0¢0—;) |”. (S4.7)
Eq. (S4.7) can be rewritten as

2ay, E\® _ 2ay, E\%
(1 +a—0¢>0—2;) _1+(a—0¢>0—;) . (34.8)
An equation similar to Eq. (21) can be obtained expressing £/E, as a function of @, = P/E,

2 (aw_ EN]Y _ 1\ (2w _ BN
[+am(-D) =1+GR) G2-2) (54.9)

Eqgs. (S4.8) and (S4.9) obtained from the Fu-Zhang equation correspond respectively to E/P = B,’(®,) in Eq. (20) and E/E, =
B,’(®,") in Eq. (21) obtained with the Turc-Mezentsev equation.
Using a similar reasoning as in Eq. (22), the expression of «, can be inferred by matching Eq. (S4.8) and Eq. (S4.1): for a

given value of the aridity index @, we have the same value of E£/P. This leads to

ay 1@ _ 2ay, 1@
[—1 +2(a—0— 1)<1>+2(1+¢>w )w] =1+ [—1+ (a—o— 1)¢>+ 1 +d>w)w] . (S4.10)
Eqg. (S4.10) is equivalent to Eq. (22), but with a transcendental form. It can be resolved numerically and Fig. (S1) shows the
variation of the Priestley-Taylor coefficient a,as a function of the aridity index @ for different values of the o parameter.

The shape of the curves is very similar to those of Fig. (5a) obtained with the parameter A of the Turc-Mezentsev function.
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Figure S1: Variation of the Priestley-Taylor coefficient a,as a function of the aridity index @ for different values of the shape
parameter @ of the Fu-Zhang function. The bold lines indicate the upper and lower limits of the feasible domain.



