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Abstract. The Budyko functions B1(Φp) are dimensionless relationships relating the ratio E/P (actual evaporation over 

precipitation) to the aridity index Φp = Ep/P (potential evaporation over precipitation). They are valid at catchment scale with 

Ep generally defined by Penman’s equation. The complementary evaporation (CE) relationship stipulates that a decreasing 10 

actual evaporation enhances potential evaporation through the drying power of the air which becomes higher. The Turc-

Mezentsev function with its shape parameter λ, chosen as example among various Budyko functions, is matched with the CE 

relationship, implemented through a generalized form of the Advection-Aridity model. First, we show that there is a 

functional dependence between the Turc-Budyko curve and the drying power of the air. Then, we examine the case where 

potential evaporation is calculated by means of a Priestley-Taylor type equation (E0) with a varying coefficient α0. Matching 15 

the CE relationship with the Budyko function leads to a new transcendental form of the Budyko function B1’(Φ0) linking E/P 

to Φ0 = E0/P. For the two functions B1(Φp) and B1’(Φ0) to be equivalent, the Priestley-Taylor coefficient α0 should have a 

specified value as a function of the Turc-Mezentsev shape parameter and the aridity index. This functional relationship is 

specified and analysed.   

 20 

1 Introduction 

The Budyko curves are analytical formulations of the functional dependence of actual evaporation E on moisture 

availability, represented by precipitation P, and atmospheric water demand, represented by potential evaporation Ep. They 

are valid on long timescales at catchment scale. More precisely, the Budyko functions relate the evaporation fraction E/P to 

an aridity index defined as Φp = Ep/P. Empirical formulations have been obtained by simple fitting to observed values (Turc, 25 

1954; Budyko, 1974). Analytical derivations have also been developed (Mezentsev, 1955; Fu, 1981; Zhang et al., 2004; 

Yang et al., 2008). The Budyko relationships have been extensively used in the scientific literature up to now and interpreted 

with physical models (Gerrits et al., 2009) or thermodynamic approaches (Wang et al., 20015). For some of the formulations 

the shape of the curve is determined by a parameter linked to catchment characteristics such as vegetation, soil water storage 
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(Li et al., 2013; Yang et al., 2007) or catchment slope (Yang et al., 2014). The most representative functions E/P = B(Φp) are 

shown in Table 1 (see Lebecherel et al. (2013) for an historical overview) and one of them (Turc-Mezentsev) is represented 

in Fig. 1 for different values of its shape parameter. All the Budyko functions assume steady-state conditions, which means 

that all the water consumed by evaporation comes from the precipitation and that the change in catchment water storage is 

nil: P-E = Q with Q the total runoff. Consequently, the following conditions should be met: (i) E = 0 if P = 0, (ii) E ⩽ P 5 

(water limit), (iii) E⩽ Ep (energy limit), (iv) E → Ep if P→ +∞. These conditions define a physical domain where the 

Budyko curves are constrained (Fig. 1). It is interesting to note also that any Budyko function B1 relating E/P to Φp can be 

transformed into a corresponding function B2 relating E/Ep to Φp
-1 = P/Ep (Zhang et al., 2004; Yang et al., 2008). Indeed we 

have:    
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Potential evaporation establishes an upper limit to the evaporation process in a given environment. It is generally 

given by a Penman-type equation (Lhomme, 1997a), which is the sum of two terms: a first term depending on the radiation 

load Rn and a second term involving the drying power of the ambient atmosphere Ea: 

 � = �
����� + �

��� �� .            (2) 

In Eq. (2) γ is the psychrometric constant and ∆ the slope of the saturated vapour pressure curve at air temperature. Ea 15 

represents the capacity of the ambient air to extract water from the surface. It is an increasing function of the vapour pressure 

deficit of the air Da and of wind speed u through a wind function f(u): Ea = f(u) Da. Contrary to precipitation, potential 

evaporation Ep is not a forcing variable independent of the surface. Ep is in fact coupled to E by means of a functional 

relationship known as the complementary evaporation relationship (Bouchet, 1963), which stipulates that potential 

evaporation increases when actual evaporation decreases. This complementary behaviour is made through the drying power 20 

of the air Ea: a decreasing actual evaporation makes the ambient air drier, which enhances Ea and thus potential evaporation. 

Eq. (2) takes into account this complementary behaviour through the drying power Ea, which adjusts itself to the conditions 

generated by the rate of actual evaporation. It is also the case, for instance, when Ep is calculated as a function of pan 

evaporation.  

In most of Budyko type functions encountered in the literature, potential evaporation Ep is generally not defined 25 

with accuracy. Choudhury (1999, p. 100) noted that “varied methods were used to calculate Ep, and these methods can give 

substantially different results”. Moreover, in the original framework and in some subsequent works (e.g. Choudhury, 1999; 

Donohue et al., 2007), net radiation alone is used as a good approximation of the energy available for evaporation. Many 

formulae, in fact, can be used to calculate the potential rate of evaporation, each one involving different weather variables 

and yielding different values. Some formulae are based upon temperature alone, others on temperature and radiation 30 

(Carmona et al., 2016). In the present study we examine the case where Ep is estimated via a Priestley-Taylor type equation 

(Priestley and Taylor, 1978) with a variable coefficient α0: 



3 
 

�� = �� �
����� .            (3) 

Here, soil heat flux is neglected on large timescale and the coefficient α0 (named “Priestley-Taylor” coefficient) has not the 

fixed value (1.26) mentioned in the original work of Priestley-Taylor. It is supposed to increase with climate aridity and 

could vary from around 1.25 up to 1.75 according to Shuttleworth (2012). This can be seen as a direct consequence of the 

complementary evaporation relationship. Indeed, α0 is linked to Ea by α0 = 1+ (γ/∆)Ea/Rn (obtained by matching Eqs. 2 and 5 

3), which shows that α0 increases when the drying power rises. Lhomme (1997b) made a thorough examination of the so 

defined coefficient α0 by means of a convective boundary layer model. 

In the present paper, the behaviour of the drying power of the air Ea will be examined, together with its physical 

boundaries, in relation to the actual rate of evaporation predicted by the Budyko functions. We will also show that the 

coefficient α0, which allows an estimate of potential evaporation through the Priestley-Taylor equation (Eq. 3), has a 10 

functional relationship with the shape parameter of the Budyko curve and the aridity index, this last point constituting our 

main objective. Once α0 is determined and thus potential evaporation E0, actual evaporation can be estimated, either through 

the Budyko function or the CE relationship. The standpoint used in the study differs from various previous attempts 

undertaken in the literature to examine from different perspectives the links between Bouchet and Budyko relationships, 

investigating their apparent contradictory behaviour (Szilagyi and Jozsa, 2009). For example, Zhang et al. (2004) established 15 

a parallel between the assumptions underlying Fu’s equation and the complementary relationship. In a study by Yang et al. 

(2006) concerning numerous catchments in China, the consistency between Bouchet, Penman and Budyko hypotheses was 

theoretically and empirically explained. Lintner et al. (2015) examined the Budyko and complementary relationships using 

an idealized prototype representing the physics of large-scale land-atmosphere coupling in order to evaluate the 

anthropogenic influences. Zhou et al. (2015) developed a complementary relationship for partial elasticities to generate 20 

Budyko functions, their relationship fundamentally differing from Bouchet’s one. Carmona et al. (2016) proposed a power 

law to overcome a physical inconsistency of the Budyko curve in humid environments, this new scaling approach implicitly 

incorporating the complementary evaporation relationship.  

The paper is organized as follows. First, the basic equations used in the development are detailed: the choice of a 

particular Budyko function is discussed and the complementary evaporation relationship, implemented through a generalised 25 

form of the Advection-Aridity model (Brutsaert and Stricker, 1979) is presented. Second, the feasible domain of the drying 

power of the air Ea is examined, together with its correspondence in dimensionless form with actual evaporation, as 

predicted by the Budyko function. Third, the functional relationship linking the Priestley-Taylor coefficient α0 to the shape 

parameter of the Budyko function and the aridity index is inferred. In the following development, “complementary 

evaporation” is abbreviated in CE. 30 
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2 Basic equations 

Among the Budyko functions given in Table 1, one particular form is retained in our study: the one initially obtained by Turc 

(1954) and Mezentsev (1955) through empirical considerations and then analytically derived by Yang et al. (2008) through 

the resolution of a Pfaffian differential equation with particular boundary conditions. Three reasons guided this choice: (i) 

the function is one of the most commonly used; (ii) it involves a model parameter λ which allows it to evolve within the 5 

Turc-Budyko physical domain; (iii) it has a notable simple mathematical property expressed as: F(1/x) = F(x)/x. This last 

property means that the same mathematical expression is valid for B1 and B2 (Eq. 1). The so-called Turc-Mezentsev function 

is expressed as:   

�
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It is written here with an exponent noted λ instead of the n generally used (Yang et al., 2009). The slope of the curve for Φp 10 

= 0 is 1. When the model parameter λ increases from 0 to +∞, the curves grow from the x-axis (zero evaporation) to an 

upper limit (water and energy limits), as shown in Fig. 1. In other words, when λ increases, actual evaporation gets closer to 

its maximum rate and when Φp tends to infinite E/P tends to 1. The intrinsic property of Eq. (4) allows it to be transformed 

into a similar equation with E/Ep replacing E/P and Φp
-1 replacing Φp (see Figs. 2a, b): 

�
�� = 	����	
�� = �	
� �1 + ��	
��!	#�

�$ =	 �1 + ��	
��
!#
�/! .         (5) 15 

Fu (1981) and Zhang et al. (2004) derived a very similar equation with a shape parameter ω (see Table 1) and Yang et al. 

(2008) established a simple linear relationship between the two parameters (ω = λ + 0.72). In the rest of the paper, the 

development and calculations are made with the Turc-Mezentsev formulation. However, similar (but less straightforward) 

results can be obtained with the Fu-Zhang formulation (see the supplementary material S4).  

The complementary evaporation (CE) relationship expresses that actual evaporation E and potential evaporation Ep 20 

are related in a complementary way following: 

�	 + &� = (1 + &)�' .            (6) 

Ew is the wet environment evaporation, which occurs when E = Ep and b⩾ 1 is a proportionality coefficient which accounts 

for the asymmetry of the relationship (Han et al., 2012): the increase in potential evaporation is generally higher than the 

reduction in actual evaporation. Various forms of the CE relationship exist in the literature (Xu et al., 2005; Brutsaert, 2015; 25 

Szilagyi et al., 2016) and the value of b has been largely discussed (Kahler and Brutsaert, 2006; Pettijohn and Salvucci, 

2009; Aminzadeh et al., 2015). In our analysis, the CE relationship is interpreted in the widely accepted framework of the 

Advection-Aridity model (Brutsaert and Stricker, 1979), where b is assumed to be equal to 1, potential evaporation Ep is 

calculated using Penman’s equation (Eq. 2) and Ew is expressed by the original Priestley-Taylor equation with a fixed value 

(1.26) of the coefficient αw:  30 

	�' = �' �
�����		 .            (7) 
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Ew only depends on net radiation and air temperature through ∆. The value of αw has been the subject of discussion (Mallick 

et al., 2013): its analytical expression inferred from a land-atmosphere coupling model by Lintner et al. (2015) tends to prove 

that it could be lower than 1.26, in line with the in situ observations of Kahler and Brutsaert (2006). The value of 1.26, 

nevertheless, is kept in our numerical simulations, together with the value of 1 for b. All the algebraic calculations, however, 

will be performed with non-prescribed values of b and αw, which allows other possible numerical simulations. 5 

At this stage of the development it is important to make clear that two different Priestley-Taylor coefficients are 

defined in our analysis in relation to the CE relationship: one (αw) is used to define the wet environment evaporation Ew and 

the other (α0) to calculate the potential evaporation E0, which is a substitute for the “true” potential evaporation Ep 

represented by Penman’s equation (Eq. 2). Observational data confirm that the CE relationship generally holds on daily to 

annual timescales (Lintner et al., 2015). If the Budyko functions were initially derived and used on long timescales, they 10 

have been subsequently downscaled to the season or the month by some authors (Zhang et al., 2008; Du et al., 2016; Greve 

et al., 2016). This means that the matching between the two relationships is legitimate. E0 (Eq. 3) being a substitute for Ep, it 

should also verify the CE relationship (Eq. 6), which implies that: αw ⩽ α0 ⩽ (1+b)αw. 

As already said in the introduction, the complementarity between E and Ep is essentially made through the drying 

power of the air Ea: a decrease in regional actual evaporation, consecutive to a decrease in water availability, generates a 15 

drier air, which enhances Ea and thus Ep. The behaviour of Ea is examined in the next section.  

3 Feasible domain of the drying power of the air and correspondence with the evaporation rate 

As a consequence of land-atmosphere interactions expressed by the CE relationship, the drying power of the air Ea is linked 

to the evaporation rate. Its feasible domain is examined hereafter by determining its bounding frontiers and its behaviour is 

assessed as a function of the evaporation rate. Inverting Eq. (2) and replacing its radiative term by Ew (Eq. 7) yields: 20 

�� = )1 + �
�* )�	 − �,

-,* .            (8) 

Taking into account the CE relationship (Eq. 6) and scaling by Ep leads to: 

�.
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Inserting Eq. (5) into Eq. (9) gives: 
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This means that the ratio Ea/Ep can be also expressed and drawn as a function of Φp
-1 like the Budyko functions. Given that 

there is a water limit expressed by 0 < E < P and an energy limit expressed by 0 < E < Ep, the function Ea/Ep = D(Φp
-1) 

should meet the following three conditions:  

(i) E > 0 implies that Ea < Ea,x given by: 
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(ii)  E < P implies that Ea > Ea,n1 given by: 

�.,:�
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(iii)  E < Ep implies that Ea > Ea,n2 given by: 

�.,:;
�� = )1 + �

�* )1 − �
-,*	.           (13) 5 

With Ep as scaling parameter, the feasible domain of Ea/Ep in the dimensionless space (Φp
-1 = P/Ep, Ea/Ep) is shown in Fig. 

2c with b=1: when evaporation is nil, Ea = Ea,x is maximum (upper boundary in Fig. 2c); when evaporation is maximal, Ea is 

minimal (lower boundary in Fig. 2c). The maximum dimensionless difference D*  between the upper boundary (Ea,x/Ep) and 

the lower boundary is obtained by subtracting Eq. (13) from Eq. (11): 

2∗ = 0
(��0)-, )1 + �

�* .            (14) 10 

There is a correspondence between the Budyko curves E/P = B1(Φp) and E/EP =B2(Φp
-1) drawn into Figs. 2a, b and the one 

of Ea/Ep=  D(Φp
-1) drawn in Fig. 2c. Figs. 2a, b, c show this correspondence for a particular case defined by b = 1, λ = 1 and 

∆ = 110 Pa °C-1 (T = 15°C). When the Budyko curves reach their upper limit, i.e. in very evaporative environments, the 

corresponding curve Ea/Ep reaches its lower limit. Conversely, when the Budyko curves reach their lower limit, i.e. the x-

axis (no-evaporative environment), the corresponding Ea/Ep curve reaches its upper limit. 15 

It is interesting to note that the shape parameter λ of the Turc-Mezentsev function has a clear graphical expression. 

Indeed, denoting by d* the maximum difference between the Turc-Mezentsev curve and its upper limit (Fig. 2a), this 

difference (0 < d* <1) obviously occurring for Φp = P/Ep = 1, we have from Eq. (4): 

=∗ = 1 − 2
�$ ,             (15) 

which leads to: 20 

? = 
@��
AB	(�
C∗) .             (16) 

When d* varies from 1 to 0, the parameter λ varies from 0 to +∞. The value corresponding to d* in the graphical 

representation of Ea/Ep= D(Φp
-1) (Fig. 2c) is the difference δ*  between the Ea/Ep curve (Eq. 10) and its lower boundary (Eq. 

13) for Φp
-1=P/Ep = 1. It is given by 

D∗ = )1 + �
�* 0

(��0)-, )1 − 2
�$* = 2∗=∗ .          (17) 25 

This simple relationship shows that the dimensionless differences d* and δ*  vary simultaneously in the same direction with a 

proportionality coefficient equal to D* , whose value is close to 1. It is a direct consequence of the CE relationship. When d* 

decreases, i.e. the dimensionless evaporation rate (E/P or E/Ep) increases, δ*  decreases, i.e. the drying power of the air Ea 

decreases: the air becomes wetter (assuming a constant wind speed). In the next section, another consequence of the CE 
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relationship will be examined in relation to the value of the Priestley-Taylor coefficient α0 and its dependence on the rate of 

actual evaporation. 

4 Linking the Priestley-Taylor coefficient to the Budyko functions  

Using the CE relationship as a basis, this section examines the link existing between the Priestley-Taylor coefficient α0 

defined by Eq. (3) and the Turc-Mezentsev shape parameter λ (Eq. 4). Combining Eqs. (3), (6) and (7) potential evaporation 5 

can be written as: 

�	 = (1 + b) -,-F �� − b� .           (18) 

Substituting Ep in Eq. (4) by its value given by Eq. (18) and putting Φ0 = E0/P gives 

�	
 = �(��0)-,-F �� − & �
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#
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Eq. (19) can be rewritten as: 10 
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! − 11
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Eq. (20) represents a transcendental form of the Turc-Mezentsev function (Eq. 4) issued from the complementary 

relationship and written with Φ0 = E0/P instead of Φp = Ep/P. Calling B1’  this new function E/P = B1’(Φ0), Eq. (20) 

represents in fact its inverse function Φ0 = B1’
-1(E/P). The function E/P = B1’(Φ0) has properties similar to the Turc-

Mezentsev function (Eq. 4) (see the demonstrations in the supplementary materials S1): i) when Φ0 tends to zero, B1’(Φ0) 15 

tends to zero with a slope equal to αw/α0 (⩽	 1); ii) when Φ0 tends to infinite, E/P tends to 1. A transcendental form of Eq. (5), 

called B2’ , can be obtained by expressing E/E0 as a function of Φ0
-1 = P/E0: 

��
� = ��I
� ) �
�F* = G) �

�F*

! − �(��0)-,-F − & �

�F#

!H
�/!   .        (21) 

Function B2’  has the following properties at its limits (see the supplementary materials S2): i) when Φ0
-1

 tends to zero, 

B2’(Φ0
-1) tends to zero with a slope equal to 1; ii) when Φ0

-1
 tends to infinite, E/E0 tends to αw/α0 (⩽	 1). For a given value of 20 

the exponent λ and fixed values of α0 and αw (= 1.26), the relationship between E/P and Φ0 (or between E/E0 and Φ0
-1) can be 

obtained by solving numerically Eqs. (20) and (21). Similar calculations, more or less complicated, could be made with any 

Budyko function (Table 1). These results show that a Turc-Mezentsev curve (or any Budyko curve) generates a different 

curve when potential evaporation is given by E0 instead of Ep. The new curve B1’  is represented in Fig. 3a by comparison 

with the original one B1 for two values of the shape parameter λ (0.5 and 2) and b = 1, assuming α0 = αw = 1.26. The new 25 

curve has a form similar to the original one, with the same limits at 0 and +∞, but it is higher or lower depending on the 

value of α0. In Fig. 3b the two curves are drawn when α0 is adjusted according to Eq. (22) to make same closer. It is 
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worthwhile noting also that B2’  is different from B1’ , contrary to B2 (Eq. 5) which is identical to B1 (Eq. 4), but the two 

curves are very close, as shown in Fig. 4, and it is easy to verify they have the same value for Φ0 = Φ0
-1=1. 

We have now two sets of Budyko functions: B’1 and B’2 (Eqs. 20 and 21) involving Φ0 = E0/P and their 

corresponding original formulations B1 and B2 (Eqs. 4 and 5) as a function of Φp = Ep/P. The question now is to find out the 

value of α0 which allows B’1 to be equivalent (or the closest) to the original Turc-Mezentsev function B1. Both equations 5 

expressing E/P as a function of an aridity index Φ (Φp or Φ0), the expression of α0 can be inferred by matching Eq. (20) and 

Eq. (4): for a given value of the aridity index Φ, B1 and B1’  should give the same value of E/P. This leads to: 

�� = (��0)-,
��0����$���/$  .            (22) 

The same relationship (Eq. 22) is obtained by matching B’2 with B2. Putting the value of α0 defined by Eq. (22) into B1’  and 

B2’  (Eqs. 20 and 21) leads to new transcendental equations linking E/P and Φ0 (or E/E0 and Φ0
-1) which are exactly 10 

equivalent to the original Turc-Mezentsev functions (Eqs. 4 and 5). Function B1’  transforms into: 

�
 + /)�*


! − 11
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!�
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and B2’  into: 

J1 + K1 + (��
�)
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�)
! .        (24) 

In the supplementary material (S3) we show that the original Turc-Mezentsev functions are the solutions of these 15 

transcendental equations. It is worthwhile noting also that when α0 is expressed by Eq. (22) and Φ0 tends to zero (or Φ0
-1 

tends to infinite), αw/α0 in Eqs. (20) and (21) tends to 1. This means that these equations have the same limits as their original 

equations (Eqs. 4 and 5). 

For every value of λ and Φ, a unique value of α0 can be calculated by means of Eq. (22), b and αw being fixed. In 

this equation α0 = f(λ, Φ), Φ represents climate aridity and λ catchments characteristics in relation to its ability to evaporate 20 

(the greater λ, the higher its evaporation capability). The Priestley-Taylor coefficient α0 appears to be an increasing function 

of Φ and a decreasing function of λ. Fig. 5a shows the relationship between α0 and λ for different values of Φ: When λ tends 

to zero (non-evaporative catchment), α0 tends to (1+b)αw =2αw, whatever the value of Φ. When λ tends to infinity (i.e. very 

evaporating catchment), the limit of α0 depends on the value of Φ: for Φ ⩽ 1 the limit is αw and for Φ > 1 the limit is the 

branch of the hyperbole (1+b)αwΦ/(b+Φ)=  2αwΦ/(1+Φ). Fig. 5b shows the relationship between α0 and Φ for different 25 

values of λ. When Φ tends to +∞ (very arid catchment), the coefficient α0 tends to (1+b)αw=2αw. When Φ tends to 0 (very 

humid catchment), α0 tends to αw. These results illustrate the simple functional relationship existing between the Priestley-

Taylor coefficient, the Budyko shape parameter and the aridity index. Very similar results are obtained when the Fu-Zhang 

formulation is used instead of the Turc-Mezentsev one, as detailed in the supplementary material S4. In the last 

supplementary material (S5), Figures 5a, b are redrawn with a value of b = 4.5, as obtained by Brutsaert (2015) from a 30 
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reformulated complementary relationship. The general shape of the curves is very similar, but the upper limits are much 

higher in agreement with a higher value of b.  

5 Summary and conclusion  

The Budyko curves have two different and equivalent dimensionless expressions: B1 where E/P is a function of the aridity 

index Φp = Ep/P, and B2 where E/Ep is a function of Φp
-1 = P/Ep; any B1 curve can be transformed into an equivalent B2 curve 5 

and conversely. Among various Budyko type curves, the Turc-Mezentsev one (Eq. 4) with the shape parameter λ was chosen 

because it is commonly used and has the remarkable property of having the same mathematical expression in both 

representations B1 or B2. Using Penman’s equation (Eq. 2) to express potential evaporation and introducing the 

complementary evaporation relationship in the form of the Advection-Aridity model with its parameters b and αw (Eqs. 6 and 

7), it was shown that the dimensionless drying power of the air D = Ea/Ep expressed as a function of Φp
-1 has upper and 10 

lower boundaries and that there is a functional correspondence between the Budyko and D curves. Next, we examined the 

case where potential evaporation is expressed by the Priestley-Taylor equation (E0 given by Eq. 3) with a varying coefficient 

α0 instead of the sounder Penman’s equation. Introducing the CE relationship in the form of the Advection-Aridity model 

shows that the Turc-Mezentsev function linking E/P to Φp = Ep/P (Eq. 4) transforms into a new transcendental form of the 

Turc-Budyko function B1’  linking E/P to Φ0 = E0/P (Eq. 20), only numerically resolvable. The Priestley-Taylor coefficient 15 

α0 should have a specified value as a function of b, αw, λ and Φ0 = Φp so that the two curves B1 and B1’ be equivalent. This 

means that the coefficient α0 [αw ⩽ α0 ⩽ (1+b)αw] is intrinsically linked to the shape parameter λ of the Turc-Mezentsev 

function and to the aridity index. 
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6 List of symbols 

B1 function linking E/P to Φp = Ep/P. 

B1’  function linking E/P to Φ0  = E0/P given by Eq. (20). 

B2 function linking E/EP to Φp
-1 = P/Ep. 25 

B2’  function linking E/E0 to Φ0
-1  = P/E0 given by Eq. (21). 

b asymmetry coefficient of the CE relationship (Eq. 6) 

D function linking Ea/Ep to P/Ep. 

D*  difference between the upper and lower boundaries of D [-]. 

d* maximum difference between the Turc-Budyko curve and its upper limit [-]. 30 
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E actual evaporation [LT-1]. 

Ep potential evaporation expressed by Penman’s equation [LT-1]. 

E0 potential evaporation expressed by the Priestley-Taylor equation [LT-1]. 

Ew wet environment evaporation (CE relationship) [LT-1]. 

P precipitation [LT-1]. 5 

Ea  drying power of the air [LT-1]. 

Ea,n1 lower limit of Ea given by Eq. (12) [LT-1]. 

Ea,n2 lower limit of Ea given by Eq. (13) [LT-1]. 

Ea,x upper limit of Ea given by Eq. (11) [LT-1]. 

Rn  net radiation [LT-1]. 10 

α0  varying coefficient of the Priestley-Taylor equation E0 [-]. 

αw  =1.26: fixed coefficient of the Priestley-Taylor equation  Ew [-]. 

γ  psychrometric constant  [M L-1T-2 °C-1]. 

∆  slope of the saturated vapour pressure curve at air temperature [M L-1T-2 °C-1]. 

δ*  maximum difference between the Ea/Ep curve and its lower boundary [-]. 15 

λ shape parameter of the Turc-Mezentsev equation (λ > 0) [-]. 

Φ0 aridity index calculated with E0 (Φ0 = E0/P) [-]. 

Φp aridity index calculated with Ep (Φp = Ep/P) [-]. 
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Figure 1: The Turc-Mezentsev relationship Eq. (4) between the ratio E/P and the aridity index ΦΦΦΦp = Ep/P for four values of the 
parameter λλλλ    (0.3, 0.5, 1 and 3). The bold line indicates the upper limit of the feasible domain. 
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Figure 2: Correspondence between the two forms of the Turc-Mezentsev functions (E/P = B1(ΦΦΦΦp) and E/Ep = B2(ΦΦΦΦp
-1)  given by Eqs. 10 

(4) and (5)) and the function defining the drying power of the air (Ea/Ep = D(ΦΦΦΦp
-1) given by Eq. (10)). The calculations are made 

with b = 1, λλλλ = 1 and a temperature of 15°C: d* = 0.50, D* = 1.05 and δδδδ* = 0.52. The bold lines indicate the upper limit of the 
feasible domain. 
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Figure 3: Comparison between the Turc-Mezentsev function B1(ΦΦΦΦp) (Eq. 4) in solid line and its corresponding function B1’(ΦΦΦΦ0) 
(Eq. 20) in dotted line for two values of λλλλ (0.5 and 2) and b =1:  (a) with αααα0 = ααααw = 1.26; (b) with α0 adjusted according to Eq. (22) 
for ΦΦΦΦ  = 1. The x-axis legend ΦΦΦΦ represents either ΦΦΦΦp for B1(ΦΦΦΦp) or ΦΦΦΦ0000 for B1’(ΦΦΦΦ0). 
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Figure 4: Comparison of functions E/P = B1’(ΦΦΦΦ0) (Eq. 20) and E/E0 = B2’(ΦΦΦΦ0
-1) (Eq. 21) for two different values of the shape 

parameter λ (0.5 and 2), b =1 and α0  = 1.26. 10 
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Figure 5: Variation of the Priestley-Taylor coefficient α0 (Eq. (22) with b =1 and αw = 1.26): (a) as a function of the aridity index ΦΦΦΦ 
for different values of the shape parameter λ of the Turc-Mezentsev function; (b) as a function of λλλλ for different values of the 
aridity index ΦΦΦΦ. The bold lines indicate the upper and lower limits of the feasible domain. 
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Table 1: Different expressions of the Budyko functions as a function of the aridity index ΦΦΦΦp. 

Equation Reference 

�/N � 4�	tanh	( 1�	�K1 + exp	�+�	�L5
�/�

 
Budyko (1974) 

�/N � �	 �1 � ��	�!	#�
�$
 

Turc (1954) with λ = 2, Mezentsev (1955), Yang et al. (2008) 

 

�/N � 1 � �	 + �1 � ��	�V	#
�W
 

Fu (1981), Zhang et al. (2004) 

 

�/N � 1 � X�	
1 � X�	 ��	
� 

Zhang et al. (2001) 

�/N � �	 3 Y
1 � Y�	�6

�/�
 

Zhou et al. (2015) 

 


