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General comments 
 
The authors found significant correlation between Taiwan summer (July-
September) catchment streamflow and the WP (West-Pacific) and PJ (Pacific-
Japan) teleconnection indices, and demonstrated that the correlation relationship 
is not stable over a period of 50 years by calculating the correlation in a 20-year 
running window.  Significantly high correlation appears only during the years from 
1979–1999.  The authors further used Rodionov’s method to identify the 
correlation change points and found two significant points at 1988 and 2000.  
These findings prompted the authors to discuss potential problems of using 
teleconnection indices as predictors for forecasting seasonal catchment 
streamflow.  Although the subject is of great importance, the authors did not 
present sufficient scientific evidence to support the argument.  I suggest the 
authors to continue the research and taking the following comments into account.  
The writing need to be more exact and concise. 
 
We are grateful for the reviewer’s insightful comments (special thanks to the 
notice of the importance of the subject), which we address in detail below.  We 
will incorporate our responses to your comments into our revision, and look 
forward to the re-evaluation of the article for publication.    
 
 
Specific comments 
 
1) P2L19-P2L26:  I don’t understand the point of this paragraph.  “East Asia” is 
rather big compared with “Taiwan.”  Why is that “seeking the relationship 
between Taiwan’s climate and large-scale circulations can provide some clue to 
dissect the mechanisms of East Asian climate?”  What are the mechanisms of 
East Asian climate? 
 
In that paragraph, we merely wanted to use the analogy between the weather 
systems found in Taiwan and those in East Asia to indicate our findings could be 
applicable to other East Asian regions.  Climate similarity among these areas 
(e.g., Taiwan and south-to-southeast China) can be identified by employing EOF 
analysis (e.g., Wu et al., 2009).  Nevertheless, we acknowledge that this 



paragraph might not be precise enough to clearly depict our motivation, and the 
scale difference between Taiwan and East Asia could be somewhat confusing.  
As noted by the reviewer too (e.g., next comment), the scope of this study is 
certainly not to scrutinize the mechanisms of East Asian climate.  In accordance 
with your fourth comment below, in the revised article, we will rearrange the two 
paragraphs in Sections 1 and 2 to compose a new paragraph to emphasize more 
Taiwan’s climates and our motivation.  The new paragraph will be as follows: 
 

“Several studies (e.g., Wang et al., 2000; Yang et al., 2002; Wang and 
Fan, 2005; Choi et al., 2012) have witnessed the various effects of 
teleconnection patterns on East Asian regions, in which an island country 
Taiwan is situated (Figure 1).  Taiwan has an area about 36,000 km2 and 
features most weather systems found in East Asia, including spring rains, 
Mei-Yu, and East Asian monsoon from spring to summer, typhoons from 
summer to autumn, and the Mongolian high pressure system and 
associated northeast monsoon in winter.  Because of the Central 
Mountain Range (topographic variations) and gradually varied climate 
zones (latitudinal differences), the influence of those weather systems on 
precipitation in particular can show great east-west and north-south 
contrasts. As a result, while the wet season generally spans from summer 
to autumn based on the long-term average, Taiwan’s precipitation and 
streamflow in the wet season exhibits great spatial distributions of 
prominent intra-seasonal and inter-annual variations.  Thus, seeking the 
relationship between Taiwan’s climate in the wet season and large-scale 
circulations can guide the development of a hydro-climatic forecasting 
framework potentially of benefit to water resources management in this 
area.” 

 
 
2) P3L14-P3L17:  It seems to me that the authors wanted to use Taiwan as an 
example for “diagnosing underlying mechanisms of predictability and pointing 
caveats on intrinsic covariability between regional streamflow and large-scale 
circulation.”  However, the “predictability” and “caveats” depend strongly on the 
prediction model under discussion.  Therefore, the “backbone” (P3L17) of the 
research should be a prediction model with acceptable prediction skill at least for 
a substantial period.  In this regard, the following missing material is required to 
support the argument the authors trying to make. 
 

2-1) The authors need to present a prediction model that uses large-scale 
circulation to predict Taiwan streamflow with proved skill. 

 
2-2) The authors need to provide scientific evidence to explain the underlying 

mechanisms of the predictability of the prediction model. 
 
2-3) The authors need to show how variations of the intrinsic covariability 

influences the performance of the prediction model. 



 
2-4) With the evidence listed above, the authors can discuss the observed 

facts of climate regime shift and point out the caveats on using large-
scale circulation indices to predict regional streamflow. 

 
We totally agree that the inclusion of a prediction model with acceptable skill in 
our study can facilitate the discussion about how regional streamflow prediction 
can be affected by potential climate regime shifts (CRS).  In fact, it is our 
intention to develop a new hydro-climatic forecasting method that takes the effect 
of CRS into account.  The new forecasting method is going to be a renovation of 
the “dipole forecasting model,” previously developed by the coauthor and his 
colleague (Chen and Georgakakos, 2014) and designed to excel at auto-
identifying dipole-like predictor patterns from various oceanic and atmospheric 
fields (e.g., SST, SLP, geopotential height, and wind).  However, we are still in 
the process of brainstorming the most adequate plug-in module of the CRS 
detection for the dipole forecasting model.  Even though this work is still ongoing, 
we try to incorporate the reviewer’s suggestion into our article by performing 
multiple linear regression as a surrogate for our new forecasting method (yet to 
come) to illustrate the effect of CRS on streamflow prediction in this study. 
 
Linear regression is widely used in climate forecasting studies (e.g., Hastenrath 
1995, 2004; Chen and Georgakakos, 2015) to generate forecasts based on a 
calibrated, linear equation that depicts how a hydro-climatic predictand (Y, 
streamflow in our case) responds to selected predictors (X, climate indices in our 
case): 

 ,Y X  (R1) 

where β are coefficients estimated by ordinary least squares.  In each catchment, 
we will develop a linear regression equation as the prediction model.  In terms of 
predictors (i.e., independent variables), we adopt 13 climate indices described in 
the paper (with AAO excluded as relatively short in record) and perform stepwise 
model selection based AIC (Akaike Information Criteria).  Model selection can be 
performed in forward or backward direction, and we use both directions to ensure 
a thorough search in the variable space.  Afterwards, to avoid possible 
multicollinearity issues resulting from some highly correlated climate indices, the 
variance inflation factor (VIF) is assessed: 
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where 2

jR  is the coefficient of determination from a regression of the jth predictor 

on any other predictors.  According to the literature (Chen and Georgakakos, 
2014; Hidalgo-Muñoz et al., 2015), the VIF tolerance threshold is set to be 4 for 
small samples (say ~50 points).  The final model is thus determined and used for 
generating hindcasts (i.e., retrospective forecasts) for that catchment.  The 
generation of hindcasts is subject to the leave-one-out cross-validation (LOOCV) 
procedure to circumvent artificial skill.  Eventually, the LOOCV correlation and 
Gerrity Skill Score (GSS, Gerrity, 1992) are calculated to assess the prediction 



skill in that catchment.  The above framework will be repeated for all 41 
catchments. 
 
Figure R1 below shows some hindcasting results for selected upstream and 
downstream catchments.  LOOCV correlations vary from one catchment to 
another, and can be as high as ~0.6.  As a more stringent metric, cross-validated 
GSS values are generally lower, but most of time pass the significant threshold 
(e.g., ~0.25 for data size 30, determined by the bootstrap-based hypothesis 
testing, Chen and Georgakakos, 2014).  Overall, using large-scale circulation 
indices can produce fair to good prediction skills in summer streamflow prediction 
in Taiwan.  Among those many climate indices, the PDO and PJ indices are 
selected most frequently as the predictors for the catchments [while the former is 
selected seven times (except for SGL), the latter is selected five times (except for 
Catchments 3 and 9 and BG) for the results shown in Figure R1].  This result is 
to a certain extent consistent with our general correlation assessments (e.g., 
Table 2 in our original manuscript) and indicates the general dominance of 
summer climate in Taiwan.  Regarding the origin of the predictability, Chen and 
Chen (2011) indicated that the PDO coincides with the specific meridional SST 
contrast (i.e., warming in the tropical central and eastern Pacific and cooling in 
the extratropical North Pacific), which plays a dominant role in modulating 
summer rainfall in Taiwan.  Choi et al. (2010), Kosaka et al. (2013), and Kubota 
et al. (2016) all provided sufficient evidence of the significant impact of the PJ on 
tropical cyclone activity and rainfall over the western North Pacific during 
summer.  Based on our findings, the predictability for summer rainfall can be 
extended to streamflow in Taiwan. 
 
From Figure R1, we can note that the relatively better performance of each 
LOOCV time series occurs during the period from the late 1970s to the late 
1990s, which coincides with the CRS epoch discussed in the manuscript.  
Hindcasts during the pre-regime shift epoch seem to be still able to capture the 
general variability of observed runoff (with relatively poorer performance), 
whereas hindcasts during the post-regime shift epoch appear to present more 
opposite signals and apparent departures from observed runoff.  It is worth 
noting that some of the departures occur in years when JAS typhoon activity is 
abnormally high.  For example, in 2007, typhoons Pabuk, Sepat, and Wipha 
together generated the highest amount of cumulative rainfall for some 
watersheds over the past decade, and in 2008, typhoons Kalmaegi, Fung-Wong, 
Sinlaku, Hagupit, and Jangmi made a record of continuous invasions of intense 
typhoons (all Category 2 and above) in JAS.  To further illustrate the effect of 
CRS on streamflow prediction, we fit a new regression model using the data from 
1979 to 1998, and then evaluate how the fitted model performs in the remaining 
years.  Using the SGL watershed as an example, Figure R2 shows the new 
hindcasting result.  In comparison with the bottom-left plot in Figure R1, the new 
fitted model exhibits some definite improvement during the period from 1979 to 
1998, showing the outstanding CV correlation and GSS values as 0.84 and 0.56, 
respectively.  However, the fitted model can generate nothing but extremely poor 



hindcasts for the remainders.  In fact, both skill metrics show a reverse sign, 
clearly illustrating distinct climate regimes over the temporal horizon.  In contrast 
to the above experiment, if we fit another regression model using the data 
outside the time frame of 1979–98, the stepwise model selection scheme 
discloses no climate indices qualified for being a predictor.  To sum up, the linear 
regression experiment points out that the assumption of a stable predictor-
predictand relationship could be quite problematic for hydro-climatic forecasting 
due to the observation of CRS. 
 
In addition to the above response to your specific comment, we would like to 
forward the following message (response to the other reviewer) to you since we 
wonder if the inclusion of our article in the special issue has caused any 
misconceptions about evaluating our work:   

“We wish to restate the original scope of this work, which was set to focus 
more on the discussion about the general relationships between 
teleconnections and Taiwan’s streamflow, rather than the development of 
a prediction model for the pursuit of forecasting utility.  This article is 
currently included in the special issue of ‘sub-seasonal to seasonal 
hydrological forecasting’ (as per the editor’s suggestion), but we do not 
want to mislead the reviewer about our original intent.  Since we have 
agreed with the transfer decision of our manuscript, we certainly realize it 
should be our responsibility to include more forecasting elements in the 
study.”   

 
In essence, as indicated above, we have developed a prediction model using 
linear regression to support our argument.  This part of analysis and associated 
results will be included in the revised article (likely as new Section 3.3) to make 
our work fit better within the scope of the special issue. 
 
  



 

 

 

 

 
Figure R1. Selected hindcasting results for upstream and downstream 

catchments in Taiwan using linear regression. Time series in red are model 
estimates based on the leave-one-out cross-validation (LOOCV) procedure. 

Cross-validated (CV) correlation and GSS values are also denoted in each plot. 
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Figure R2. Similar to the bottom-left plot in Figure R1, but the linear regression 
model is trained/fitted with the data from 1979 to 1998, and then the fitted model 

is tested with the rest of data points (i.e., 1969–78 and 1999–2013).  
 
 
3) P3L28-P3L31:  The two objectives listed here cannot be "objectives" because 
the scientific questions/purposes are not clear. 
 
We wish our responses to the above comments (as well as other comments 
below) have made the scientific questions/purpose clear.  Moreover, another 
specific purpose as already stated in the paragraph above (original manuscript 
P3L3–17) is that a similar analysis has not conducted before in this area to the 
best of our knowledge. 
 
We will revise the second objective as: 

“To verify the existence of any CRS signals in the correlation and to 
discuss associated changes in large-scale circulation patterns.” 

 
We will also add a third objective:   

“To illustrate the overall prediction skill and the effect of CRS on 
streamflow prediction in Taiwan using a linear regression approach.” 

 
  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
9
6
9

1
9
7
1

1
9
7
3

1
9
7
5

1
9
7
7

1
9
7
9

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

2
0
1
1

2
0
1
3

k
m

3
LOOCV Time Series (SGL)

Q cvpred test

CorCV_1979-98 = 0.84
GSSCV_1979-98 = 0.56

Cortest = -0.16
GSStest = -0.19



4) P4-P6:  The “Data and Analysis Procedures” section should focus on 
discussing the “Data” and “Procedure”, such as the data length (e.g. beginning 
and end years), quality check (e.g. missing data issue and solution), and 
methodology (e.g. decision principles of the teleconnection/large-scale indices).  
Other discussion such as the season (JAS) of study and references of 
teleconnection indices should be presented in the Introduction section. 
 
As pointed out by the first reviewer as well, the information about data length and 
quality check will be amply supplemented in the revised article.  We also list the 
periods of record and missing data percentage for all 41 catchments in the table 
below.  Note that the periods of record are not entirely the same, and we decided 
to use all available data for the calculation of correlation values.  30 out of 41 
gauges present missing data less than 3% (e.g., 1 out of 40 years is missing), 
indicating the quality of JAS flow data is quite reasonable.  For those missing-
data years, we do not perform any data filling because we do not want to create 
any artificial, subjective flow quantities that may skew correlation values; that is, 
we simply skip the pair of data (flow and climate index) in those missing-data 
years for the calculation of correlation values.   
 

Table R1. Period of data record and missing data percentage for all 41 

catchments used for our analysis. Note that we use only JAS data in each year, 

and the missing data percentage is referred to as the percentage of years in 

which no JAS data is available. 

Catchment 
(downstream) 

Period 
of 
Record 

Missing 
Data % 

Catchment 
(upstream) 

Period 
of 
Record 

Missing 
Data % 

Catchment 
(upstream) 

Period 
of 
Record 

Missing 
Data % 

TC 1951– 
2013 

0% Cat_01 1970– 
2013 

2.3% Cat_15 1970– 
2013 

2.3% 

HLO 1981– 
2013 

0% Cat_02 1970– 
2006 

0% Cat_16 1971– 
2013 

0% 

WU 1966– 
2013 

2.1% Cat_03 1970– 
2002 

0% Cat_17 1970– 
2013 

11.4% 

JS 1965– 
2009 

0% Cat_04 1970– 
2002 

0% Cat_18 1971– 
2013 

2.3% 

BG 1949– 
2013 

0% Cat_05 1971– 
2007 

0% Cat_19 1970– 
2013 

11.4% 

ZW 1960– 
2013 

0% Cat_06 1972– 
2013 

2.4% Cat_20 1970– 
2013 

11.4% 

ER 1971– 
2013 

0% Cat_07 1970– 
2008 

0% Cat_21 1970– 
2013 

11.4% 

GP 1951– 
2010 

0% Cat_08 1976– 
2013 

5.3% Cat_22 1970– 
2001 

0% 

BN 1948– 
2013 

4.5% Cat_09 1972– 
2013 

0% Cat_23 1974– 
2013 

5% 

SGL 1969– 
2013 

0% Cat_10 1970– 
2013 

0% Cat_24 1977– 
2011 

5.7% 

HLI 1969– 
2013 

0% Cat_11 1970– 
2013 

2.3% Cat_25 1977– 
2011 

2.9% 

HP 1975– 
2013 

5.1% Cat_12 1970– 
2008 

0% Cat_26 1970– 
2012 

2.3% 

LY 1949– 
2009 

0% Cat_13 1970– 
2013 

9.1% Cat_27 1970– 
2013 

0% 

   Cat_14 1970– 
2013 

4.5% Cat_28 1970– 
2013 

2.3% 

 



As aforementioned, we will move some of the general description of Taiwan, its 
climates (P4L3–8), and the target high-flow season (P4L22–25) to the 
introduction section and merge them with the revised third paragraph in response 
to your first comment.   
 
Regarding the references of teleconnection indices, most of them have already 
been presented in the first two paragraphs of the original manuscript.  The 
paragraph in Section 2.1 mainly focuses on explaining the decision principles of 
the teleconnection indices, as pointed out by the reviewer.  In accordance with 
the comment below, we will add some short descriptions of the physical meaning 
of the teleconnection indices in that paragraph. 
 
 
5) P5L1-P5L14:  The physical meaning of the teleconnection indices listed here 
is barely mentioned.  It is not possible to diagnose “underlying mechanisms of 
predictability” without presenting the physical insight of the relationship between 
Taiwan climate and the large-scale circulation indices.  Are all of the indices 
relevant to Taiwan climate variability? 
 
Many of the teleconnection indices (e.g., ENSO, NAO, and PDO) are well known 
and their physical meaning have been substantially elaborated in dedicated 
articles (e.g., Trenberth, 1997; Trenberth and Stepaniak, 2001; Hurrell, 1995; 
Mantua et al., 1997).  However, we support the reviewer’s assertion that we 
should at least summarize the physical definition of each teleconnection index in 
that paragraph.   
 
For instance, the ENSO is characterized as an air-sea coupled phenomenon:  a 
zonal Sea Level Pressure (SLP) anomaly in the tropical Pacific (i.e., the Southern 
Oscillation) and a quasi-periodic Sea Surface Temperature (SST) 
warming/cooling in the tropical eastern Pacific (i.e., El Niño/La Niña).  The NAO 

is referred to as the meridional seesaw of the SLP field with the north and south 
centers near Iceland and the Azores, respectively.  The PDO is characterized by 
a long-lived ENSO-like pattern that shifts phases with a period of at least 15 to 25 
years.   
 
The complete summary of the physical definition of all the 14 indices used in the 
study will be added to the revised article. 
 
All of the indices have been proven to show certain signs of connections to East 
Asian climate variability in general (e.g., precipitation, monsoon and cyclone 
activity across seasons; see original manuscript P5L1–14), which is the main 
decision principle of the indices.  Very likely only a few indices are relevant to 
Taiwan’s hydro-climate variability (summertime streamflow in particular), and one 
way to figure out the significant indices is through our correlation analysis. 
 
 



6) The authors clearly showed that Taiwan JAS catchment streamflow is 
significantly correlated with the WP and PJ teleconnection indices and the 
correlation relationship changes with time.  The large-scale climate also shows 
decadal-scale variations.  However, time coincidence cannot be used for arguing 
physical relationship.  For example, the argument of “The CRS firstly emanates 
from the change in the basin-scale climatology over the Pacific (e.g., shift in the 
PDO), and then the reorganized large-scale patterns can reset the relationship 
between the island-scale streamflow with established regional circulations (e.g., 
the PJ pattern)” on P9L12-14 is a hand-waving argument.  Nothing is explained 
about how the decadal-scale changes of sea surfaces temperature (PDO) 
influences the regional circulation pattern (PJ) in the atmosphere and then the 
rainfall pattern and subsequently the streamflow pattern in Taiwan.  There are 
many more hand-waving type of argument in the paper.  There is no point to list 
out all of them here if the above points are not addressed. 
 
Whilst time coincidence cannot explain any physical relationship, it certainly 
motivates us to look into whether the physical relationship does exist.  We wish 
to state that it is not our pure speculation by providing more explanation and 
evidence (references) below.   
 
Since the PDO is strongly tied to ENSO, the shift in the PDO can induce changes 
in the ENSO-related SST anomalies as well as ENSO-related teleconnections 
(Duan et al., 2013).  Such SST anomalies have been found robust in the western 
North Pacific during summer (Alexander et al., 2002), and numerical model 
experiments have verified the ENSO-forced PJ pattern (Kosaka et al., 2013).  
Kubota et al. (2016) further pointed out the ENSO-PJ relationship strengthened 
after 1980, and then weakened after 2000, likely due to the phase shift in the 
PDO.  When the ENSO-PJ relationship is more pronounced, the systematic 
impacts of the PJ pattern on TC activity, rainfall, and subsequently streamflow in 
Taiwan are clear.  By contrast, if the PJ pattern is less forced by ENSO, the 
associated impacts can be ambiguous.  Consequently, Taiwan’s streamflow 
become less predictable after the post-regime shift epoch. 
 
We will supplement the above information to the revised article to make our 
argument sounder. 
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