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This paper presents an analysis of correlations between large-scale climate 
indices and streamflow in 41 Taiwanese catchments.  Additionally, a climate 
regime shift (CRS) analysis is employed to detect changes in the relationships 
between the climate indices and streamflow across time.  Comments are made 
about the impact of CRS on predictor screening routines and forecasting. 
 
The purpose of the paper is to identify the relationships between climate patterns 
and Taiwanese high season (July-August-September) streamflow.  My 
understanding of the key findings suggested by the authors are:  concurrent JAS 
correlations are positive and high for West-Pacific, Pacific-Japan and NAO 
indices; 9-month averaged preceding climate indices (ONDJFMAMJ) are 
generally more weakly correlated with JAS streamflow with the exception of the 
QBO which is negatively and significantly correlated; and climate regime shifts 
occurred in the 1970s and 1990s. 
 
I suspect the study will not vastly benefit the general seasonal streamflow 
forecasting community, however it could be of interest in the study region.  The 
writing is not yet publication quality, there is not enough detail for the study to be 
repeatable, and some choices related to data prevent this study from being clear 
cut with robust conclusions.  My overall opinion is the paper is not coherent 
enough to be published in HESS at this time.  However, I do encourage the 
authors to rethink certain aspects of the study and seek eventual publication.  My 
general and specific comments are below. 
 
We thank the reviewer for making a considerable effort to review our manuscript 
and provide insightful comments.  As addressed by the reviewer, we do believe 
that the results of our correlation analysis is of great importance to Taiwan and 
most East Asian regions sharing similar climatic conditions; however, we also 
believe that the discussion part of our study (i.e., effect of CRS on predictor 
screening in general) should deserve more attention in the forecasting 
community, especially for those applying empirical forecasting methods.  To 
address your foremost concerns, we would like to make the following statements 
at the front of our point-by-point responses: 
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a) Regarding the reproducibility of this study (details of the data and 
methodology used, in line with Comment 3):  We have listed all the 
periods of streamflow data used for the 41 gauges in Taiwan.  
Assumptions and limitations of the correlation analysis will be amply 
discussed, and so will the robustness of the CRS detection method.  
Related discussion can be found in our response to Comment 3 below. 
 

b) Regarding the inconsistent correlation analysis related to the Pacific-
Japan (PJ) index (in line with Comment 2):  We have consulted with Dr. 
Hisayuki Kubota from the Japan Agency for Marine-Earth Science and 
Technology, who developed the PJ index in his journal paper, to obtain 
the raw pressure data at Yokohama and Hengchun for the derivation of 
the new PJ index in JAS.  The concurrent correlation analysis of the new 
PJ index is now consistent with all other indices, and our major findings 
stay very much the same, as expected.  Furthermore, we have also 
derived the PJ index in three preceding seasons (i.e., AMJ, JFM, and 
previous OND) for conducting more lagged correlation analyses (in line 
with Comment 4).  Please see our responses to Comments 2 and 4 below 
for more details. 

 
We will carefully revise our article to your satisfactory level.  We wish our revision 
will find your support of our article.   
 
 
General comments 
 
1) The stated purpose of this paper is to understand climate impacts on seasonal 
streamflow forecasting (as per the title) in Taiwan.  Of concern is empirical 
prediction (P11 L5-6).  P5 L22-23 states that lagged correlations are used to 
investigate forecasting possibilities.  What is not made sufficiently clear is why 
the concurrent analysis of climate indices and streamflow is included in this 
study.  To make use of concurrent relationships, models would need to be used 
to forecast the climate indices in the first instance.  I suggest clarifying the 
reasoning and reconsider the weight given to the concurrent results in the paper 
unless knowing concurrent relationships is actually useful for empirical seasonal 
streamflow forecasting in Taiwan.  Furthermore, the results and discussion 
interweave concurrent results and suggestions about the implications for 
forecasting in a way which I interpret as incompatible. 
 
We agree with the reviewer that the concurrent analysis does not produce 
immediate forecasting utility.  However, we believe that it is still important to 
examine concurrent relationships between climate indices and streamflow since 
many climate patterns have been proven to drive regional climates in the 
concurrent season.  Probably the idea of calculating contemporaneous/ 
concurrent correlations was best demonstrated by Wallace and Gutzler (1981), 
who nicely described several dominant teleconnection patterns at the Northern 
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Hemisphere extratropics during winter (e.g., NAO).  Beyond the Northern 
Hemisphere extratropics, one of the most important concurrent relationships 
being witnessed by several operating agencies and research organizations (e.g., 
CPC and IRI) is the impacts of ENSO on world regions.  Various maps of the 
concurrent relationships (e.g., composite and historical probability) have been 
archived as valuable references.  Over the Indian Ocean basin, the different 
phases of the IOD are also known to have pronounced concurrent impacts on the 
formation of the trade wind and the short rains over East Africa from October to 
November (Black et al., 2003; Clark et al., 2003; Behera et al., 2005; Chen and 
Georgakakos, 2015).  By contrast, significant lagged correlations (if identified) 
can indeed generate some forecasting utility, but to assess the dynamical 
mechanisms of the lagged relationships found by statistical approaches is usually 
not a trivial task.  To use concurrent relationships for forecasting, one can adopt 
a hierarchical or hybrid approach that applies another empirical or dynamical 
model to forecast the climate indices in the first instance (e.g., Kim and Webster, 
2010; also suggested by the reviewer). 
 
The above clarification will be incorporated into the revised article.   
 
In addition, we wish to restate the original scope of this work, which was set to 
focus more on the discussion about the general relationships between 
teleconnections and Taiwan’s streamflow, rather than the development of a 
prediction model for the pursuit of forecasting utility.  This article is currently 
included in the special issue of sub-seasonal to seasonal hydrological forecasting 
(as per the editor’s suggestion), but we do not want to mislead the reviewer 
about our original intent.  Since we have agreed with the transfer decision of our 
manuscript, we certainly realize it should be our responsibility to include more 
forecasting elements in the study.  In essence, we have conducted more lagged 
correlation analyses as suggested by the reviewer in Comment 4 below.  This 
part of results will be included in the revised article to provide a more balanced 
weight between the concurrent and lagged results. 
 
 
2) A different point, but related to the above.  It severely bothers me that the 
Pacific Japan (PJ) correlations are different to all the others in that they are 
“semi-concurrent” (P5 L30-32) and not consistent with the separate concurrent 
and lagged analyses.  The JJA PJ index is treated as concurrent for JAS, which 
in my mind is technically incorrect, and concerning given the PJ results feature 
so heavily in the paper.  The CRS analysis and discussion, as far as I can tell, 
hinges on the PJ index (Table 2 and P8 L24-27).  It seems to me an effort has 
been made to include the PJ index because it yields high correlations (Fig 4) and 
garners some significant CRS results when really it should be excluded or 
included in a way that is consistent with the other results.  Can the authors obtain 
the full PJ time series and complete the analysis more rigorously and put the PJ 
correlation and CRS analyses in the context of forecasting? 
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We think it would be worthwhile to provide the context of how we chose to use 
the PJ index.  Kubota et al. (2015) developed the PJ index to monitor the long-
term interannual variability of the PJ pattern (leading mode over the western 
North Pacific during summer), and they used JJA (typical definition of boreal 
summer) for the average period.  It was unfortunate that they did not generate 
JAS or monthly PJ index for our purpose, so we ended up using their JJA index 
with an annotation (i.e., “semi-concurrent”) added to the manuscript.  Since the 
PJ pattern has been proven to dominate cyclonic activity and summer rainfall in 
East and Southeast Asia, it was our gut feeling that high correlations between the 
PJ index and Taiwan’s streamflow should be observed as well.  This supposition 
was then supported by our experiment, and then the intriguing CRS was 
identified.  We believed the significant correlation and CRS results should 
outweigh the slight inconsistency with other indices, so we presented our findings 
as is without pursuing the absolute consistency. 
 
Nevertheless, we agree that the PJ-related presentation is somewhat distinct 
from all other analyses, so we have managed to develop the new PJ index using 
the following steps (with Dr. Kubota’s guidance):   
 

a) We first obtained atmospheric pressure data at Yokohama and Hengchun 
in Japan and Taiwan, respectively. 
 

b) We calculated the JAS (and all other tri-monthly periods, e.g., AMJ, JFM, 
and previous OND) average of atmospheric pressure anomaly, and then 
normalized the values by the standard deviation at each station. 
 

c) The JAS (and all other tri-monthly periods) PJ index was derived from the 
difference of the two normalized pressure anomalies, and then the index 
was normalized again by its 1979–2009 standard deviation.   

 
We have successfully reproduced the JJA PJ index and produced the new JAS 
PJ index.  The figure below shows the comparison between the PJ index in JAS 
and that in JJA.  The correlation analysis can now be performed with full 
consistency, and the results will be updated in the revised article (demonstrated 
by the table below).  In terms of concurrent correlations, the updated results 
seem to be even more significant than the original ones. 
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Figure R1. Comparison between the PJ index in JAS and that in JJA. 

 
Table R1. Comparison between the correlation values derived from JAS_PJ and 
those from JJA_PJ (original results in Table 2 of the manuscript); values before 

(after) the slash are concurrent (lagged) correlation coefficients ( 210 , significant 

at 0.05p   are bold and italic) 

JAS Runoff Climate Index 

Watershed JAS_PJ JJA_PJ† 

TC 33/-8 25/* 

HLO 45/21 32/* 

WU 26/12 45/* 

JS 40/34 33/* 

BG 13/8 26/* 

ZW 25/12 16/* 

ER 12/3 5/* 

GP 34/3 30/* 

BN 25/-9 9/* 

SGL 40/11 41/* 

HLI 38/13 20/* 

HP 17/-2 7/* 

LY 31/-8 9/* 

†: lagged correlation was not computed for the original results 
 

3) The manuscript is far too scant in the detail of the data and the methodology 
for it to be repeatable.  Questions I have are:  a) What is the period of data used? 
P4 L16 states that an “extended record” is selected.  Exactly what is the period of 
data for each gauge?  Are they all the same or different?  b) What are the 
assumptions of the correlation analysis?  What are its limitations and how is it 
suitable for this analysis?  c) Is the CRS detection method robust for picking out 
multiple change points in short data records? 
 
Please see our point-by-point responses to your specific questions:  
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a) Regarding the period of data:  The periods of record for all 41 catchments 

are listed in the table below (which will be included in the revised article).  
Despite the existence of CRS, correlation analysis typically requires a 
sufficiently long period of record.  Thus, we decided to use all available 
data even though their periods of record are not entirely the same. 

 
Table R2. Period of data record and missing data percentage for all 41 

catchments used for our analysis. Note that we use only JAS data in each year, 

and the missing data percentage is referred to as the percentage of years in 

which no JAS data is available. 
Catchment 
(downstream) 

Period 
of 
Record 

Missing 
Data % 

Catchment 
(upstream) 

Period 
of 
Record 

Missing 
Data % 

Catchment 
(upstream) 

Period 
of 
Record 

Missing 
Data % 

TC 1951– 
2013 

0% Cat_01 1970– 
2013 

2.3% Cat_15 1970– 
2013 

2.3% 

HLO 1981– 
2013 

0% Cat_02 1970– 
2006 

0% Cat_16 1971– 
2013 

0% 

WU 1966– 
2013 

2.1% Cat_03 1970– 
2002 

0% Cat_17 1970– 
2013 

11.4% 

JS 1965– 
2009 

0% Cat_04 1970– 
2002 

0% Cat_18 1971– 
2013 

2.3% 

BG 1949– 
2013 

0% Cat_05 1971– 
2007 

0% Cat_19 1970– 
2013 

11.4% 

ZW 1960– 
2013 

0% Cat_06 1972– 
2013 

2.4% Cat_20 1970– 
2013 

11.4% 

ER 1971– 
2013 

0% Cat_07 1970– 
2008 

0% Cat_21 1970– 
2013 

11.4% 

GP 1951– 
2010 

0% Cat_08 1976– 
2013 

5.3% Cat_22 1970– 
2001 

0% 

BN 1948– 
2013 

4.5% Cat_09 1972– 
2013 

0% Cat_23 1974– 
2013 

5% 

SGL 1969– 
2013 

0% Cat_10 1970– 
2013 

0% Cat_24 1977– 
2011 

5.7% 

HLI 1969– 
2013 

0% Cat_11 1970– 
2013 

2.3% Cat_25 1977– 
2011 

2.9% 

HP 1975– 
2013 

5.1% Cat_12 1970– 
2008 

0% Cat_26 1970– 
2012 

2.3% 

LY 1949– 
2009 

0% Cat_13 1970– 
2013 

9.1% Cat_27 1970– 
2013 

0% 

   Cat_14 1970– 
2013 

4.5% Cat_28 1970– 
2013 

2.3% 

 
b) Regarding the assumptions and limitations of the correlation analysis:  

One of the most fundamental assumptions of the correlation analysis 
would be the result of such analysis does not indicate any causality.  The 
result can be two-way; that is, there is no physical implication for a 
predictor-predictand relationship.  However, the assumption taken by us is 
that significant correlations should suggest some large-scale dominance 
over local-scale hydroclimate since the opposite route of dominance (i.e., 
the impact of a disturbance at the island (Taiwan) scale on large-scale 
circulations) is unlikely and hard to explain.  In addition, we also neglect 
the effect of any outliers (if exist) and examine only the linear relationship 
between two continuous variables.  In other words, our analysis cannot 
identify any nonlinear effect of extreme teleconnection patterns on 
Taiwan’s streamflow. 
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c) Regarding any caveats of using the CRS detection method (number of 
change points vs. data length):  As already indicated by the manuscript, 
there are several classes of approaches available for the detection of 
regime shifts, such as parametric methods (e.g., the classical t-test), non-
parametric methods (e.g., the Mann-Whitney-Pettitt test), regression-
based methods, cumulative sum methods, and sequential methods.  
Rodionov (2005) pointed out the pros and cons of some common 
approaches as well as his sequential method (Rodionov, 2004).  The pros 
of his method are the automatic, early detection of a regime shift and the 
ability to monitor a possibility of a regime shift in real time.  He has shown 
that his method can outperform Lanzante’s method (another robust, non-
parametric procedure developed by Lanzante, 1996).  Therefore, since 
developed, Rodionov’s method has been used in many studies in climate 
sciences.  Nevertheless, the cons of his method are the requirement of 
some experimentation on the two parameters used (i.e., the cut-off length l 
and probability level p) and inability to account for a gradual regime shift 
and data with obvious autocorrelation (or red noise, but this issue was 
later ameliorated by a prewhitening procedure introduced by him, 
Rodionov, 2006).  According to Rodionov (2004), while the probability 
level p is known to determine the critical value of t (the Student’s t-
distribution), “the cut-off length l determines the minimum length of the 
regimes, for which the magnitude of the shifts remains intact.”  It has been 
tested that, the larger l is set, the fewer change points can be identified.  
By contrast, a smaller l does not necessarily lead to more change points 
since only those significant change points can be identified based on the t-
test.  In other words, if there is no strong regime shift in the data series, 
the method with some variations in p and l simply cannot identify any 
change point (Rodionov, 2015 and verified by us too).  In any case, we 
should still use Rodionov’s method with caution since the CRS detection 
method is purely statistical, and the CRS results could be meaningless 
without solid evidence from related research. 
 
We will incorporate the above discussions into the revised article. 

 
 
4) For me it would be far more interesting to analyse lagged correlations with 
increasing lead time as suggested at P5 L28-30, rather than averaging climate 
indices over the preceding three-, six- and nine-month periods and then 
presenting the best results.  For forecasting, some of the indices are not 
immediately available after the end of June. E.g. at 15 July 2016, the PDO index 
for June is not yet published at jisao.washington.edu 
 
We have been aware of the reviewer’s (and likely other readers’) interest in 
seeing more results of lagged correlations.  Thus, for all 41 catchments, we have 
calculated two additional sets of lagged correlations between the JAS flow data 
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and the climate indices averaged over two preceding periods (ONDJFM and 
OND), in line with our average scheme used in the article.  The table below 
shows the new generated results of lagged correlations for the major watersheds 
in Taiwan; the complete results will be included in the revised article. 
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Table R3. Results of correlation analysis for the major watersheds in Taiwan; values before (after) the slash are lagged 

correlation coefficients with preceding ONDJFM (OND) climate indices ( 210 , significant at 0.05p   are bold and italic). 

JAS 
Runoff 

Climate Index 

Watershed AMO PDO NINO1+2 NINO3.4 NINO4 IOD EPNP PNA AO AAO NAO QBO WP PJ 

TC 4/5 4/7 -13/-14 -13/-14 -1/-1 -10/-14 -1/12 -9/-9 -6/-1 12/0 1/6 -20/-19 -14/-9 -11/-2 

HLO 27/29 -14/-10 -32/-29 -24/-23 -12/-10 -3/-5 -27/-10 -11/0 -5/4 4/-15 2/12 -42/-43 -4/0 21/20 

WU -22/-19 0/7 -18/-17 -14/-17 -11/-18 -14/-24 -4/1 -11/-2 7/8 6/-6 14/14 -1/3 -4/-3 10/4 

JS 8/15 -16/-9 -28/-29 -32/-31 -26/-26 -13/-19 -26/-11 -15/8 8/12 30/8 8/21 -21/-17 9/6 43/34 

BG -6/-7 5/12 -12/-12 -12/-10 -18/-18 -7/-14 -2/18 2/9 -28/-13 -9/-21 -4/12 -20/-17 -1/-10 1/16 

ZW 4/8 -26/-19 -25/-28 -22/-21 -19/-17 -12/-14 -20/-8 -16/-3 4/2 12/-11 -5/3 -28/-26 0/-9 21/23 

ER 16/18 -10/-7 -16/-10 -15/-13 -11/-8 -7/-13 -14/0 -5/0 -1/-7 22/5 0/0 3/9 8/4 21/21 

GP 1/6 -9/0 -20/-21 -21/-19 -17/-17 -9/-19 -4/10 -13/-5 5/2 28/6 3/9 -20/-17 10/5 13/19 

BN 16/25 -22/-24 -25/-26 -15/-17 -9/-12 8/-5 2/-9 -15/-20 -13/-11 24/5 3/-7 -9/-7 -11/-15 -7/-5 

SGL -5/-3 4/5 -16/-7 -8/-8 -2/-1 -4/2 -11/-5 -11/-8 0/-2 21/16 6/8 -31/-24 -8/-20 9/-7 

HLI 21/21 -17/-16 -22/-18 -9/-7 1/2 -2/0 -26/-14 -15/-3 -12/-8 17/0 -12/3 -34/-29 8/-13 20/9 

HP 13/14 1/8 -7/-4 3/5 12/13 7/9 -1/13 -20/-23 5/-1 -6/10 -6/-1 -28/-22 -13/-30 11/1 

LY 18/18 -5/-5 -11/-15 -12/-14 -5/-3 6/-5 7/6 -4/-7 -17/-17 -1/-11 6/-5 -33/-25 1/-2 4/8 
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Specific comments 

 
5) Related to major comment 3, I suspect the QBO can have a strange 
distribution.  Given it has the most outstanding lagged correlation (overall 
correlation actually) and the concluding remarks section trumpets its forecasting 
potential (P11 L10), this should be analysed further.  It would be helpful to 
confirm that the results are not a quirk. 
 
First of all, the QBO depicts a quasi-periodic oscillation between easterlies 
(positive) and westerlies (negative phase) over the lower tropical stratosphere, 
and the period is about 20 to 36 months.  This information, as per the other 
reviewer’s suggestion, will be added to Section 2.1 in the revised article. 
 
In order to confirm that the most outstanding lagged correlation between 
Taiwan’s streamflow and the QBO, additional literature review and field 
significance test are conducted.  The strongest lagged correlation is very likely 
attributed to the tropical cyclone (TC) activity in the western North Pacific (WNP) 
modulated by the QBO.  Chan (1995) has performed a cross-spectral analysis 
between the QBO and the number of TCs in the WNP and indicated that the 
leading westerly phase of the QBO can result in an increase in TC activity.  He 
explained that the westerly phase of the QBO creates an environment of 
relatively low vertical wind shear in favor of TC formation.  Ho et al. (2009) later 
found that during the westerly (easterly) phase of the QBO, more TCs 
approaches the East China Sea (the eastern shore of Japan).  Therefore, the 
negative correlation between the QBO index and TC activity in the vicinity of 
Taiwan is carried over into the negative correlation with streamflow.  In fact, such 
strong correlations found in 22 out of the 41 catchments also reach field 
significance.  The number of catchments with significant temporal correlations 
has exceeded the critical value of field significance (p = 0.05) from the empirical 
null distribution (Figure R2) developed by using a Monte Carlo technique similar 
to those suggested by Livezey and Chen (1983) and Wilks (2011).  2000 Monte 
Carlo trials are used, and each trial depicts a significant local test for correlations 
between the “randomly ordered” QBO index and streamflow data at the 41 
catchments, resulting a count of the number of catchments with significant 
temporal correlations constituting the null distribution. 
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Figure R2. Empirical null distribution of field significance test. The abscissa 

represents the number of catchments with correlations between streamflow and 
lagged QBO significant at the 95% level (p = 0.05) in 2000 Monte Carlo trials. 

 
 
6) In the abstract and elsewhere it is mentioned that the lagged correlations 
represent 1 month lead time.  From my experience, the lagged correlations would 
be called 0 months lead time, since data up until the end of June is used. 
 
You are correct, but to avoid any confusion with the concurrent analysis, we will 
replace those lead time information with the exact average period.  For example, 
we will make the following change in the abstract (original manuscript P1L8): 
 

“On the other hand, the Quasi-Biennial Oscillation index averaged over a 
period from previous October to concurrent June significantly correlate 
with the JAS flows (most significant r = -0.66), indicating some forecasting 
utility.” 

 
 
7) Should the RHS of equation (3) be 2(1-r)? 
 
Sorry for the typo, and yes, it should be 2(1-r). 
 
 
8) P6 L10 – not sure that it is correct to say x = y = 0 if the variables are 
normalized.  The variance analysis doesn’t appear to depend on this anyway. 
 
We agree that “normalization” is a term with a more rigorous definition, so we will 
revise the sentence as: 
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“Further, if the two variables have zero mean and unit variance, the above 
equation…” 

 
 
9) Is it possible to mark significance thresholds on Figure 4?  I understand it may 
not be possible if the data records have different lengths. 
 
As indicated by the reviewer, since the data records have different lengths, it is 
not possible to mark significance thresholds on Figure 4. 
 
 
10) I may have missed the reasoning, but I don’t understand why the pink and 
blue lines in Figure 5 start at different points. 
 
Same reason above, since the data records have different lengths and start at 
different years, the pink and blue lines in Figure 5 start at different points.  We 
will make this remark in the revised article. 
 
 
Technical corrections (typing errors, etc.) 
 
11) Some captions are far too brief, e.g. Figure 5. 
 
Agreed.  We will add more descriptions to those short captions.  For instance, the 
caption of Figure 5 will be revised as: 
 

“Figure 5. Selected moving-window correlation results. Each boxplot 
encapsulates correlation values derived from 28 upstream catchments 
(JAS runoff vs. specific climate index). Blue (magenta) time series denotes 
the highest (lowest) moving-window correlations over the temporal 
horizon. Please refer to Section 3.2 for more details.” 

 
 
12) P7 L10: I suspect this should be *any* rather than *none*. 
 
Agreed.  We will change to “any.” 
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