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 2 

Abstract: This paper proposes the application of evolutionary fuzzy (EF) approach for prediction 1 

of daily suspended sediment concentration (SSC). The EF was improved by the combination of 2 

two methods, fuzzy logic and genetic algorithm. The accuracy of EF models is compared with 3 

those of the artificial neural network (ANN) and adaptive neuro-fuzzy inference system with 4 

fuzzy c-means clustering (ANFIS-FCM). The daily streamflow and suspended sediment data 5 

collected from two stations on the Eel River in California, United States are used in the study. 6 

Root mean square errors (RMSE), mean absolute errors (MAE) and determination coefficient 7 

criteria are used for evaluating the accuracy of the models. The EF is found to be superior to the 8 

ANN and ANFIS-FCM in SSC prediction. The relative RMSE and MAE differences between the 9 

optimal EF and ANN models were found to be 13-50% and 15-65% for the upstream and 10 

downstream stations, respectively. Comparison of the optimal EF, ANN and ANFIS-FCM 11 

models in estimating peak and total suspended sediments revealed that the EF model provided 12 

better accuracy than the ANN and ANFIS-FCM. 13 

Keywords: Suspended sediment concentration; modelling; neural networks; fuzzy logic; genetic 14 

algorithm. 15 

 16 

1. Introduction 17 

The sediment transport in rivers is vital for pollution, channel navigability, reservoir filling, 18 

hydroelectric-equipment longevity and scientific interests. The assessment of the sediment 19 

amount being transported by a river has a vital importance in hydraulic engineering due to its 20 

importance in the design and management of water resources projects (Jain 2001; Kisi et al. 21 

2006). The suspended sediment estimation is exceedingly difficult since it is closely related to 22 

flow and their relationship mechanism is highly non-linear and they have complicated 23 

interactions to each other (Sivakumar and Wallender 2005). 24 
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Artificial neural networks (ANN) have been successfully applied in water resources in the last 1 

decades (Kisi and Shiri 2012; Kisi et al. 2012, 2013; Shiri et al. 2013). Recent investigations have 2 

reported that ANNs may offer a promising alternative for suspended sediment estimation (Jain 3 

2001; Tayfur 2002; Kisi 2005; Cigizoglu & Kisi 2006, 2008, 2010; Dogan et al. 2007; Rai and 4 

Mathur 2008; Kisi et al. 2008, 2009; Cobaner et al. 2009; Jothiprakash and Garg 2009; Rajaee et 5 

al. 2009; Talebizadeh et al. 2010; Melesse et al. 2011; Mustafa et al. 2012; Kisi and Aytek 2013; 6 

Kitsikoudis et al. 2014). Jain (2001) compared single ANN approach with rating curve in 7 

establishing sediment-discharge relationship and found that the ANN model performed better 8 

than the rating curve. Tayfur (2002) used an ANN model for sheet sediment transport and 9 

compared with physically-based models, whose transport capacity was based on one of the 10 

dominant variables-flow velocity, shear stress, stream power, and unit stream power. He reported 11 

that the ANN performed as well as, in some cases better than, the physically-based models. Kisi 12 

(2005) used an ANN model for estimating suspended sediment and compared its results with 13 

sediment rating curve (SRC) and multiple linear regression (MLR). He used daily streamflow and 14 

suspended sediment data from two stations, Quebrada Blanca and Rio Valenciano, operated by 15 

the US Geological Survey. Comparison results indicated that the ANN model performs better 16 

than the regression and rating curve techniques in estimation of suspended sediment. Cigizoglu & 17 

Kisi (2006) proposed some methods to improve ANN accuracy in suspended sediment 18 

estimation. They used k-fold partitioning of the training data set and showed that similar or even 19 

superior sediment estimation performances can be obtained with quite limited data provided that 20 

the training data statistics of the subset are close to those of the testing data. Rai and Mathur 21 

(2008) developed a back propagation feed-forward ANN model for the computation of event-22 

based temporal variation of sediment yield from the watersheds and compared with linear transfer 23 

function model. Based on the comparison, the ANN based model resulted better agreement than 24 
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the linear transfer function model for the computation of runoff hydrographs and 1 

sedimentographs for both the watersheds (W-2 watershed of Treynor catchment and W7 of 2 

Goodwin Creek experimental watershed in USA). Kisi (2008) compared three different ANN 3 

training algorithms in suspended sediment estimation by using the flow and sediment data from 4 

the stations Quebrada Blanca and Rio Valenciano in USA. He indicated that the Levenberg–5 

Marquardt and conjugate gradient algorithms performed better than the gradient descent in 6 

suspended sediment estimation. He also reported that the gradient descent algorithm took an 7 

unusually high number of iterations and time taken by the other two algorithms for training of the 8 

network. Jothiprakash and Garg (2009) used ANN model for estimating the volume of sediment 9 

retained in a reservoir and they found that the ANN model estimated the sediment volume with 10 

better accuracy and less effort as compared to conventional regression analysis. Rajaee et al. 11 

(2009) compared ANN with MLR and SRC models in daily simulation of suspended sediment 12 

concentration (SSC) using daily river discharge and SSC data from the Little Black River and 13 

Salt River stations in the USA. They indicated that the ANN model was more accurate than the 14 

MLR and SRC models in predicting SSC. Talebizadeh et al. (2010) made uncertainty analysis in 15 

sediment load estimation by using ANN and SWAT model. Melesse et al. (2011) used ANNs 16 

with an error back-propagation algorithm to predict the suspended sediment load from 17 

Mississippi, Missouri, and Rio Grande major rivers in USA. They evaluated different input 18 

combinations and compared the results with MLR, multiple nonlinear regression and 19 

autoregressive integrated moving average (ARIMA). Kisi and Aytek (2013) proposed explicit 20 

neural network (ENN) formulation for modeling daily suspended sediment-discharge relationship 21 

and compared with two different SRCs, MLR and nonlinear regression (NLR). They used daily 22 

streamflow and suspended sediment data from two stations on Tongue River in Montana, USA. 23 

The comparison results revealed that the ENN model performs better than the conventional SRC, 24 
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MLR and NLR. Kitsikoudis et al. (2014) employed ANN and ANFIS for prediction of bed load 1 

transport rates in gravel-bed steep mountainous streams and rivers in Idaho (USA). They 2 

compared ANN and ANFIS results with those of the symbolic regression (SR) based on genetic 3 

programming (GP) and widely applied bed load formulas. The ANN and ANFIS models 4 

performed equally well, better than SR and bed load formulas. Mustafa et al. (2012) compared 5 

different ANN training algorithms (gradient descent, gradient descent with momentum, scaled 6 

conjugate gradient, and Levenberg-Marquardt) in prediction of the suspended sediment discharge 7 

of Pari River at Silibin in Peninsular Malaysia and they found that Levenberg-Marquardt (LM) 8 

was faster and more powerful than the other algorithms. In the present study, also, the LM is used 9 

for training ANN models. 10 

Fuzzy logic has also been successfully employed for suspended sediment estimation during 11 

recent years (Tayfur et al. 2003; Kisi 2009; Lohani et al. 2007; Kisi et al. 2006, 2008, 2009; 12 

Mirbagheri et al. 2010; Wieprecht et al. 2013; Kitsikoudis et al. 2014; Roushangar 2014). Tayfur 13 

et al. (2003) applied fuzzy logic approach for modeling runoff-induced sediment transport from 14 

bale soil surfaces and obtained satisfactory results. They compared the fuzzy model with those of 15 

the physics-based models in predicting the mean sediment loads from experimental runs. The 16 

results indicated that the fuzzy model performed better than the physically-based model under 17 

very high rainfall intensities over different slopes and over very steep slopes under different 18 

rainfall intensities. Kisi et al. (2006) applied fuzzy logic approach to 5-year period of continuous 19 

streamflow and sediment concentration data of Quebrada Blanca Station operated by the United 20 

States Geological Survey. They indicated that fuzzy rule based models performs better than the 21 

SRC models in prediction of daily suspended sediment concentration. Lohani et al. (2007) used 22 

adaptive neuro-fuzzy inference system (ANFIS) for developing stage-discharge-sediment 23 

concentration relationships by using data from two gauging sites in the Narmada basin in India. 24 
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Comparison results revealed that the ANFIS model significantly improved the magnitude of 1 

prediction accuracy and could be successfully applied for sediment concentration prediction. Kisi 2 

et al. (2008) modeled daily suspended sediment estimation by ANFIS models and compared with 3 

radial basis neural network (RBNN), feed-forward neural network (FFNN), generalized 4 

regression neural network (GRNN), MLR and SRC. They used daily streamflow and suspended 5 

sediment data of four stations in the Black Sea region of Turkey. They reported that the ANFIS 6 

model, in general, gave better estimates than the other models. Kisi et al. (2009) investigated the 7 

accuracy of an ANFIS computing technique in monthly suspended sediment estimation. They 8 

used monthly streamflow and suspended sediment data from two stations, Kuylus and Salur 9 

Koprusu, in Kizilirmak Basin in Turkey. They obtained better estimates than the conventional 10 

SRC. Mirbagheri et al. (2010) used ANFIS method for SSC prediction by using daily data from 11 

the Rio Rosario gauging station, Puerto Rico, USA. They found that proposed ANFIS model was 12 

able to improve on the RMSE value of the SRC method by about 44.32%. Roushangar (2014) 13 

applied ANFIS method for modeling of total bed material load through developing the accuracy 14 

level of the predictions of traditional models. They used data of Qotur River (Northwestern Iran). 15 

The comparison results indicated that the ANFIS models performed better than the sediment 16 

transport formulas in modeling total bed material load transport rate. They also found that the 17 

models based on stream power approach (used by Bagnold and Engelund-Hansen) were more 18 

reliable than those based on shear stress approach (used by Laursen) in estimating sediment 19 

transport rate. It is apparent from the literature that no work has reported the use of fuzzy genetic 20 

approach for modeling SSC. 21 

This study investigates the applicability of fuzzy genetic approach for predicting daily SSC. The 22 

evolutionary fuzzy (EF) models are compared with those of the ANN and ANFIS with fuzzy c-23 

means clustering (ANFIS-FCM) models. To the best knowledge of the author, this is the first 24 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-213, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



 7 

study that compares the accuracy of EF model with those of the ANN and ANFIS-FCM models 1 

in suspended sediment modeling. 2 

  3 

2. Methods and materials 4 

2.1. Fuzzy logic approach 5 

Fuzzy logic is firstly introduced by Zadeh (1965) and used different scientific researches. The 6 

fuzzy concepts and algorithms can be found in many related textbooks (Kosko 1993; Ross 1995). 7 

The fuzzy logic (FL) theory has a mechanism for representing linguistic constructs such as 8 

“high”, “low”, “medium”, “few” etc. The FL has an inference system that enables human 9 

reasoning capabilities while the conventional binary set theory defines crisp events. The FL 10 

theory is based upon the notion of relative graded membership degree between 0 and 1.0. The 11 

fuzzy sets have ability to model indistinct or ambiguous data, often faced in real life (Sivanandam 12 

et al. 2007). 13 

As seen from Figure 1, a typical fuzzy inference system is a rule-based system and composed of 14 

three conceptual components. These are; 1) a rule base comprising fuzzy IF-THEN linguistic 15 

rules relates the membership functions (MFs) of the input variables to the outputs’ MFs; 2) a 16 

database consisting membership functions used in fuzzy linguistic rules; 3) an inference 17 

mechanism that incorporate these rules to relate a set of outputs to a set of inputs and to obtain a 18 

reasonable output. In the fuzzification, input and/or output data are considered as having 19 

ambiguous characteristics and therefore, they are divided into subsets defined by linguistic terms 20 

(e.g., small, big) and membership degrees are determined. In the defuzzification, a crisp 21 

numerical value is computed from the fuzzy linguistic outputs obtained from the inference 22 

mechanism (Nayak et al. 2005). The part between IF and THEN is called antecedent, while the 23 

part after THEN is referred to consequent. 24 
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Let assume that the input and output variables are partitioned into subsets with Gaussian fuzzy 1 

MFs. If there are three input variables comprising two membership functions in the antecedent 2 

part, there should be 23 rules in the fuzzy rule base. Increasing number of subsets may results in 3 

better accuracy. In this case, however, the rule base gets larger and its construction will be 4 

difficult to construct (Şen 1998). Assume that we have two inputs with two fuzzy subsets or MFs 5 

labeled as “weak” and “strong” and one output then there should be four rules as follows: 6 

 R1: IF x1 is weak and x2 is weak THEN y1 7 

 R2: IF x1 is weak and x2 is strong THEN y2 8 

 R3: IF x1 is high and x2 is weak THEN y3 9 

 R4: IF x1 is strong and x2 is strong THEN y4 10 

where x1 and x2 are input1 and input2 and y1, y2, y3 and y4 are constant or linear equations. 11 

In each fuzzy model used in the present study, membership degrees, wn, for x1 and x2 are 12 

computed to be assigned to the corresponding output yn for each triggered rule. Thus, a single 13 

weighted output, y, is computed by weighting average of the outputs obtained from four rules as: 14 
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The output values, y, can be simply calculated from Eq. (1) for any input combination after 16 

setting up the rule base (Şen 1998). 17 

 18 

2.2. Genetic algorithm 19 

Holland (1975) explained in his book how to apply the principles of natural evolution to 20 

optimization problems and built the first genetic algorithms (GAs). In the last decades, GAs have 21 

been used as a powerful means for solving search and optimization problems (Sivanandam and 22 
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Deepa, 2008). The main idea in GAs is to simulate the natural evolution mechanisms of 1 

chromosomes, including the rudimentary elements of natural genetics for example reproduction, 2 

crossover, and mutation.  3 

Three core steps are included in a typical form of a GA (Preis and Ostfeld, 2008): 4 

i. Generation of initial population: GA produces a set of strings (or population), with each 5 

string (chromosome) containing a set of parameter values to be optimized. 6 

ii. Strings fitness calculation: GA assesses the fitness of each string (i.e., the objective 7 

function value). 8 

iii. Production of new generation: The next generation is produced by performing selection, 9 

crossover and mutation. Selection is used to choose chromosomes from the recent 10 

population for reproduction with respect to fitness values. 11 

One of the main reproduction operator employed is bit-string crossover (Figure 2). In this 12 

operator, two strings are used as parents and new individuals are generated by swapping a sub-13 

sequence between the two strings. The other main operator is bit-flipping mutation (Figure 3). In 14 

this operator, a single bit in the string is flipped to constitute a new offspring string. All operators 15 

in GA are delimited to manipulate the string in a parallel manner to the structural interpretation of 16 

genes. For instance, two genes in the same location on two strings may be exchanged between 17 

parents, but not merged based on their values. Individuals are usually selected to be parents 18 

probabilistically with respect to their fitness values, and the offspring that are formed replace the 19 

parents (Sivanandam and Deepa, 2008). 20 

GA is a powerful method with regard to search the optimum solution to complex 21 

problems such as the choice of the MFs where it is hard or almost impossible to test for 22 

optimality (Ahmed and Sarma, 2005). 23 

The main differences between GAs and conventional optimization methods are: 24 
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 The parameter sets are coded in GAs, not the parameters. 1 

 Local optimum is explored from a population in GAs, not a single point.  2 

 The objective function information is used in GAs, not adjutant knowledge (e.g. 3 

derivatives). 4 

 Probabilistic evolution rule is used in GAs, not deterministic rules (Goldberg, 1989). 5 

  The GA explores for the best potential solutions of a problem from existing solution sets. 6 

The problem is converted to binary form and the solutions are allowed to crossover and mate 7 

with a specified criterion to yield the optimal. The basics of the GA can be obtained from Wang 8 

(1991), Ahmed and Sarma (2005). 9 

 10 

2.3. Evolutionary Fuzzy Approach 11 

In this study, the EF was developed by the combination of two methods, fuzzy logic and genetic 12 

algorithm. The optimal parameters (e.g. antecedent and consequent parameters) of the fuzzy 13 

models were obtained by using genetic algorithms. Figure 4 demonstrates the flowchart of a 14 

fuzzy genetic model. Genetic algorithm optimization is done by minimizing the error (objective 15 

function) between model estimates and measured values. In this study, mean square error was 16 

used as objective function in genetic algorithm. The MSE can be expressed as      17 

 



N

i

modelobserved yiyi
N

MSE
1

21
       (2) 18 

where N is the number of training data. Here, the objective function given in Eq. 2 was 19 

minimized by adjusting the MF parameters of the input and outputs. The optimization of the MFs 20 

is a complex problem for the supervised learning scheme. Genetic algorithm, however, has a non-21 

supervised learning scheme and can be successfully applied to solve this problem (Goldberg 22 

1989, Ozger 2009). 23 
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 1 

2.4. Case Study 2 

The daily streamflow and SSC data from two stations, upstream station near Dos Rios (station 3 

No: 11147000) and the downstream station at Scotia (station No: 11472150), on the Eel River in 4 

California were used in the present study. The stations are operated by the US Geological Survey 5 

(USGS). The drainage areas of the upstream and downstream stations respectively are 1368 km2 6 

and 8063 km2. Daily data were downloaded from the web server of the USGS 7 

(http://webserver.cr.usgs.gov/sediment). In the both stations, the data from October 01, 1966 to 8 

September 30, 1971 were used for training, the data from October 01, 1971 to September 30, 9 

1974 were used for validation and the data from October 01, 1974 to September 30, 1977 were 10 

used for models’ testing. Streamflow and suspended sediment data of upstream and downstream 11 

stations are shown in Figures 5-6. In California rivers (e.g. Eel River), the geologic, climatic, 12 

physiographic, and land-use conditions are highly variable (Tramblay et al. 2010). An 13 

extraordinary flood was occurred on the Eel River near Scotia, California (downstream station, 14 

11477000) in 1964. This is one of the most widespread and destructive floods in the history of 15 

the West Coast (Waananen et al. 1971). The Eel River is the most exceptional flood-producing 16 

river in the United States (O’Connor and Costa 2004). On December 23, 1964, the Eel River at 17 

Scotia, California, peaked up at a stage of 72 ft and a discharge, designated by a rating curve 18 

extension, of 752,000 ft3/s. For measuring peak discharges above a threshold at this site, surface 19 

velocities measured by optical current meter are used. The Eel River is may be the only site in the 20 

US, where optical current meters are routinely used for high-flow discharge measurements (Costa 21 

and Jarrett 2008). Groundwater recharge, recreation, and industrial, agricultural and municipal 22 

water supply were supplied from the river (Brown and Ritter, 1971). The Eel River system is 23 

among the most dynamic in California due to the region's unsteady geology and the effect of 24 
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major Pacific storms. The discharge is highly variable in this river; average flows in January and 1 

February are over 100 times greater than in August and September (USGS 2013). The Eel River 2 

also conveys the highest suspended sediment load of any river of its size in the United States, in 3 

part as a result of the frequent landslides in the region. Unlike most areas, suspended sediment 4 

discharge per unit area in the river increases with catchment size (Brown and Ritter, 1971; Janda 5 

and Nolan, 1979). As a result of ongoing uplift, main channels are generally more deeply incised 6 

than their tributaries, and so streamside landslides, which are major sources of sediment, are 7 

mainly plentiful along main channels. Parent material is mostly soft and friable, and therefore, 8 

bed particles quickly break down into smaller sizes (Knott, 1971). Accordingly, suspended-9 

sediment load growths downstream at the expense of bedload (Brown and Ritter, 1971; Lisle 10 

2013). 11 

Statistical parameters of daily streamflow and SSC data are shown in Table 1 for the upstream 12 

and downstream stations. In this table, Sx, Cv, Csx, xmean, xmax and xmin are the standard deviation, 13 

variation coefficient, skewness coefficient, mean, maximum and minimum, respectively. From 14 

the table it is clear that the flow and SSC data have a considerably high skewed distribution 15 

(range 8.05-19.5 for the upstream station and range 7.11-14.5 for the downstream station). The 16 

validation and test data indicate much more skewed distribution than those of the training data for 17 

the both stations. The maximum-mean ratios (xmax/xmean) for SSC series are also quite high 18 

especially for the validation and test data (244-154 and 135-156 for the upstream and 19 

downstream, respectively). It is evident from these statistics that the discharge-sediment 20 

phenomenon has a highly complex behavior.  21 

 22 

3. Results and discussion 23 
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Different EF models were tried in terms of number of membership functions and generations. 1 

The EF models were compared with ANN and ANFIS-FCM models. Three different program 2 

codes, including fuzzy logic, genetic algorithm and neural network toolboxes, were written in 3 

MATLAB language for the simulations of EF, ANN and ANFIS-FCM models. 4 

Root mean square errors (RMSE), mean absolute errors (MAE) and determination 5 

coefficient (R2) were used for evaluation of the applied models. The RMSE, MAE and R2 6 

statistics are expressed as 7 


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 11 

 12 

in which N is the number of data, SSC is the suspended sediment concentration, SSC  is mean of 13 

the SSC. 14 

Various input combinations including previous streamflows (Table 2) were tried to 15 

estimate suspended sediment concentrations of the upstream station. In this table, Qt and Qt-1 16 

indicate the discharge at current and one previous days, respectively. Input combinations were 17 

determined according to the correlation analysis given in Table 2 and following the related 18 

literature (Jain, 2001; Kisi, 2005). For each input combination, optimum parameters of the EF, 19 

ANN and ANFIS-FCM models were obtained by minimizing the objective function (MSE error 20 

between calculated and observed SSC values) in validation period. The training and validation 21 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-213, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



 14 

results of the EF, ANN and ANFIS-FCM models are shown in Table 3 for the upstream station. 1 

The computing times required for the applied models are also compared in this table. In this 2 

table, the EF(3,gauss,5000) model has the 3 Gaussian MFs for the inputs, Qt, Qt-1, Qt-2 and Qt-3 3 

and 5000 generations. ANN(4,2,1) indicates an ANN model comprising 4 input, 2 hidden and 1 4 

output nodes. ANFIS-FCM(5) model has 5 cluster or 5 Gaussian MFs for each input. In all ANN 5 

models, the logarithm sigmoid activation function commonly used in the literature was used for 6 

the hidden and output nodes. It is evident from Table 3 that the ANFIS-FCM models generally 7 

perform better than the EF and ANN models in the validation period. The ANFIS-FCM models 8 

require less computing time for calibration than the other models. The EF models has the most 9 

computing time in calibration (training). Table 5 compares the accuracy of the applied models in 10 

the test period. It is obvious from the table that all the EF models generally have better accuracy 11 

than the ANN and ANFIS-FCM models. The relative RMSE and MAE differences between the 12 

optimal EF (input combination iii) and ANN (input combination iv) models are 13% and 50%, 13 

respectively. Figure 7 illustrates the scatterplots of the optimal EF, ANN and ANFIS-FCM 14 

models in the test period for the upstream station. The R2 value of ANN seems to be slightly 15 

higher than the EF model. However, the a and b fit line equation coefficients of the EF model 16 

(assume that the equation is y=ax+b) respectively closer to the 1 and 0 than those of the ANN 17 

model. Figure 8 demonstrates the log-scaled scatterplots of the optimal models in test period. The 18 

peak SSC estimates of the ANN model seem to be closer to the exact line than those of the EF 19 

and ANFIS-FCM. However, the EF and ANFIS-FCM models seem to be better the ANN model 20 

in low sediment estimation. It should be noted that the distribution of the EF and ANFIS-FCM 21 

models’ estimates are similar to each other. Table 6 reports the comparison of the models’ SSC 22 

peak-estimates. It is evident from the table that the EF model gives better estimates of peak SSC 23 

values than the ANN and ANFIS-FCM models. The ANFIS-FCM is the second best in 24 
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estimating peak SSC. The EF and ANN models respectively estimated the observed total 1 

sediment load, 20,289,369 ton, as 30,308,073 ton and 31,820,879 ton with overestimations of 2 

49.4% and 56.8% while the ANFIS-FCM model resulted in 9,514,219 ton with an 3 

underestimation of 53.1%. The EF model seems to be slightly better than the other models in 4 

estimating total sediment load. 5 

Same input combinations were used to estimate SSC values for downstream station. The 6 

training and validation results of the EF, ANN and ANFIS-FCM models are given in Table 4. 7 

The architectures of the EF, ANN and ANFIS-FCM models are also provided in the first column 8 

of this table. From the table, it is clear that the ANN models perform better than the EF and 9 

ANFIS-FCM in validation period. Here also ANFIS-FCM models require less computing time 10 

for calibration than the other models while the EF models has the most computing time in 11 

training. Comparison of Table 3 and 4 clearly reveals that the models’ accuracies are better in 12 

upstream station than the downstream. The reason of this may be the fact that the downstream has 13 

much larger drainage area than the upstream and the SSC in downstream may be much more 14 

affected by perturbations (urbanization, land-use change, slope failures, forest fires, earthquakes, 15 

etc.). Table 5 compares the test accuracy of the models with respect to RMSE, MAE and R2 16 

values. Here, also the EF models perform better than the ANN and ANFIS-FCM models. The 17 

relative RMSE and MAE differences between the optimal EF (input combination iii) and ANN 18 

(input combination iv) models are 15% and 65%, respectively. The observed and estimated SSC 19 

values by the optimal EF, ANN and ANFIS-FCM models in the test period are shown in Figure 9 20 

for the upstream station. It is evident from the fit line equations and R2 values that the EF 21 

estimates are closer to the exact line than those of the ANN and ANFIS-FCM models. The log-22 

scaled scatterplots of the optimal models are compared in Figure 10 for the test period. The EF 23 

model seems to have better accuracy in estimating average and low SSC values than the ANN 24 
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and ANFIS-FCM models. The comparison of the optimal models’ peak SSC estimates are made 1 

in Table 6 for the downstream station. The superior accuracy of the EF model to the ANN and 2 

ANFIS-FCM models is clearly seen from this table. The EF model estimated total sediment load 3 

as 6,252,171,710 ton instead of observed value of 5,051,074,055 ton, with an overestimation of 4 

24% while the ANN and ANFIS-FCM models resulted in 6,422,653,088 ton and 6,464,368,673 5 

ton with overestimations of 27% and 28%, respectively. The results indicate that all applied 6 

models generally provided overestimations for the peak and total SSC in both stations. The main 7 

reason of this may be the differences between training, validation and testing datasets. It is clear 8 

from Table 1 that the validation data set has much higher SSC values (661,000 ton for the 9 

upstream and 6,230,000 ton for the downstream) than those of the test data set (86,500 ton for the 10 

upstream 2,870,000 ton for the downstream) in both upstream and downstream stations. The 11 

significantly high streamflow and suspended sediment values are also clearly seen from Figures 12 

5-6. It is clear from the figures that the high floods (e.g. 1590 m3/s and 9170 m3/s in 16 Jan 1974 13 

for the upstream and downstream, respectively) occurred in validation period causes high SSC 14 

values (e.g. 661,000 mg/l and 6,230,000 mg/l in 16 Jan 1974 for the upstream and downstream, 15 

respectively). The great changeability of Eel River in space and time can be obviously seen from 16 

the figures. The optimal models were obtained according to their minimum MSE errors in the 17 

validation period. Therefore, the high SSC values in this period lead models to give 18 

overestimations in the test period. The difference between the validation and test data sets may be 19 

due to the fact that extreme SSCs in Californian Rivers show a great changeability in space and 20 

time, and are interrelated with some physiographic features at the station locality scale (Tramblay 21 

et al. 2010). O’Connor and Costa (2004) reported that the Eel River is the most exceptional 22 

flood-producing river in the United States. 23 
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In overall, the EF models seem to be more adequate than the ANN and ANFIS-FCM for 1 

estimating SSC. The main disadvantage of the ANN is its black-box structure. The other 2 

disadvantage is it uses backpropagation (BP) methodology for adjusting the weights and it is very 3 

easy for the training process to get trapped in a local minimum (Kumar et al., 2002; Sudheer et 4 

al., 2003). By combining ANN and fuzzy (neuro-fuzzy), the individual strengths of each 5 

approach can be employed in a synergistic way for the building effective and powerful intelligent 6 

systems. Neuro-fuzzy (e.g., ANFIS) methods have the ability to get the benefits of both these 7 

fields in a single system. The drawback of fuzzy system design (getting a set of fuzzy if-then 8 

rules) is amended by ANFIS system where the learning ability of an ANN is used, automatic 9 

fuzzy if-then rules are generated and parameters are optimized (Jang, 1993; Nayak et al., 2004). 10 

The EF and ANFIS models use transparent, linguistic representation of a fuzzy system and 11 

provide set of rules on which the model is based. This provides further insight into the modeled 12 

process (Sayed et al., 2003). In ANFIS, however, gradient descent algorithm is used for the 13 

determination of membership functions (MFs). The main disadvantage of this algorithm is that it 14 

uses BP methodology for amending the weights and it is very easy for the calibration process to 15 

get trapped in a local minimum (Kumar et al., 2002; Sudheer et al., 2003). The main advantage 16 

of EF compared to ANFIS is that it uses genetic algorithm. Genetic algorithm combines 17 

stochastic and directed search elements and they offer global optimum without being trapped in 18 

local optima (Mantoglou et al., 2004; Karterakis et al., 2007). The main disadvantage of the EF is 19 

that it requires long time for calibration. 20 

 21 

6. Conclusions 22 

In this paper, the applicability of fuzzy genetic approach for prediction of daily suspended 23 

sediment concentration was investigated. The EF models’ accuracy is compared with those of the 24 
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artificial neural networks and adaptive neuro-fuzzy inference system with fuzzy c-means 1 

clustering. The daily streamflow and SSC data from two stations on the Eel River in California 2 

were used in the applications. Various input combinations consisting previous streamflows were 3 

used as inputs to the EF, ANN and ANFIS-FCM models in order to estimate SSC of the upstream 4 

and downstream stations. For the both stations, the best EF and ANFIS-FCM models were 5 

obtained for the third input combination composed of current and two previous streamflow data 6 

while the ANN model gave the best accuracy for the inputs, Qt, Qt-1, Qt-2 and Qt-3 (fourth input 7 

combination). The comparison of the EF, ANN and ANFIS-FCM models showed that the EF 8 

models performed better than the ANN and ANFIS-FCM. The optimal EF, ANN and ANFIS-9 

FCM models were also compared with each other in estimating peak and total suspended 10 

sediments and results indicated that the EF model generally provided better accuracy than the 11 

ANN and ANFIS-FCM. The results suggest that the EF can be successfully used for developing 12 

streamflow-sediment relationship in the rivers where the geologic, climatic, physiographic, and 13 

land-use conditions are highly variable. 14 
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 1 

Figure Captions 2 

Figure 1 A typical fuzzy inference system 3 

Figure 2 Bit-string crossover of parents (i) and (ii) to form offspring (iii) and (iv) 4 

 5 
Figure 3 Bit-flipping mutation of parents (ii) to form offspring (ii) 6 

 7 

Figure 4 The flowchart of the fuzzy genetic model (Kisi and Tombul, 2013) 8 

Figure 5 Streamflow and suspended sediment data of upstream station. 9 

Figure 6 Streamflow and suspended sediment data of downstream station. 10 

Figure 7 Scatterplots of the observed and estimated SSC by EF, ANN and ANFIS-FCM - 11 

Upstream station. 12 

Figure 8 Scatterplots of the observed and estimated SSC by EF, ANN and ANFIS-FCM 13 

(logarithm scaled) - Upstream station. 14 

Figure 9 Scatterplots of the observed and estimated SSC by EF, ANN and ANFIS-FCM - 15 

Downstream station. 16 

Figure 10 Scatterplots of the observed and estimated SSC by EF, ANN and ANFIS-FCM 17 

(logarithm scaled) - Downstream station. 18 
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TABLES 2 

Table 1. The daily statistical parameters of data set for the stations. 3 

Data 

set 
Station 

Basin area 

(km2)  
Data type xmean Sx 

Cv 

(Sx/xmean) 
Csx xmax xmin meanx

maxx

 

T
ra

in
in

g
 Upstream 

(11472150) 
1368 

Flow (m3 s-1) 32.7 92.8 2.83 6.31 1270 0.05 38.8 

Sediment (mg l-1) 2790 17076 6.12 10.8 318000 0 114 

Downstream 

(11477000) 
8063 

Flow (m3 s-1) 266 625 2.35 5.01 7560 2.07 28.4 

Sediment (mg l-1) 60966 288396 4.73 8.50 4930000 0.23 80.9 

V
al

id
at

io
n
  Upstream 

(11472150) 
1368 

Flow (m3 s-1) 33.3 95.5 2.86 8.02 1590 0.08 47.7 

Sediment (mg l-1) 2706 25108 9.28 19.5 661000 0 244 

Downstream 

(11477000) 
8063 

Flow (m3 s-1) 296 693 2.34 6.32 9170 2.32 31.0 

Sediment (mg l-1) 46210 303083 6.55 14.4 6230000 0 135 

T
es

t 

Upstream 

(11472150) 
1368 

Flow (m3 s-1) 12.1 49.1 4.05 8.05 680 0 56.1 

Sediment (mg l-1) 561 4780 8.52 13.1 86500 0 154 

Downstream 

(11477000) 
8063 

Flow (m3 s-1) 131 408 3.12 7.11 5270 0.71 40.3 

Sediment (mg l-1) 18432 143023 7.76 14.5 2870000 0.06 156 

 4 
 5 
 6 
 7 
Table 2. The cross-corelations between disharge and SSC in the upstream and downstream 8 

stations. 9 
 10 
 11 
 12 
 13 
 14 

 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

 Qt Qt-1 Qt-2 Qt-3 Qt-4 Qt-5 

Upstream St 0.884 0.545 0.353 0.353 0.310 0.275 

Downstream St 0.873 0.524 0.358 0.358 0.317 0.259 
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 1 
 2 
 3 
 4 
Table 3. The traning and validation performances of the EF, ANN and ANFIS-FCM models in 5 

suspended sediment prediction – Upstream station  6 
 

Inputs 
Training 

time (sec) 

Training Validation 

Models RMSE 

(mg/l) 

MAE 

(mg/l) 

R2 RMSE 

(mg/l) 

MAE 

(mg/l) 

R2 

EF(2,gauss,10000) i)   Qt 1047 5482 1378 0.898 9704 1604 0.912 

EF(2,gauss,1000) ii)  Qt, Qt-1 144 4876 1190 0.919 9783 1415 0.908 

EF(3,gauss,5000) iii) Qt, Qt-1, Qt-2 2442 4579 983 0.928 9973 1259 0.908 

EF(3,gauss,5000) iv) Qt, Qt-1, Qt-2, Qt-3 5211 4436 1095 0.933 12232 1610 0.816 

ANN(1,1,1) i)   Qt 6.96 6175 2242 0.874 13097 2389 0.818 

ANN(2,2,1) ii)  Qt, Qt-1 7.64 4177 1149 0.941 11836 1568 0.824 

ANN(3,2,1) iii) Qt, Qt-1, Qt-2 7.78 4176 1152 0.941 11837 1567 0.838 

ANN(4,2,1) iv) Qt, Qt-1, Qt-2, Qt-3 7.92 4162 1173 0.941 11826 1593 0.841 

ANFIS-FCM(8) i)   Qt 0.75 4703 943 0.924 20784 1602 0.315 

ANFIS-FCM(7) ii)  Qt, Qt-1 0.31 3966 930 0.946 6390 1012 0.948 

ANFIS-FCM(5) iii) Qt, Qt-1, Qt-2 1.14 4379 1016 0.934 9032 1248 0.912 

ANFIS-FCM(5) iv) Qt, Qt-1, Qt-2, Qt-3 3.58 4319 1258 0.937 8524 1580 0.923 

 7 
  8 
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 1 
Table 4. The traning and validation performances of the EF, ANN and ANFIS-FCM models in 2 

suspended sediment prediction – Downstream station  3 
 

Inputs 
Training 

time (sec) 

Training Validation 

Models 
RMSE 

(mg/l) 

MAE 

(mg/l) 
R2 

RMSE 

(mg/l) 

MAE 

(mg/l) 
R2 

EF(2,gauss,20000) i)   Qt 2211 85898 23182 0.912 164866 32127 0.777 

EF(5,gauss,1000) ii)  Qt, Qt-1 327 63122 16028 0.952 168184 31977 0.698 

EF(2,gauss,50000) iii) Qt, Qt-1, Qt-2 10354 75041 19719 0.932 214455 40579 0.610 

EF(4,gauss,5000) iv) Qt, Qt-1, Qt-2, Qt-3 8768 72437 19282 0.937 182543 34471 0.701 

ANN(1,2,1) i)   Qt 7.56 93265 36014 0.898 160822 43381 0.734 

ANN(2,2,1) ii)  Qt, Qt-1 7.74 75190 25994 0.933 139047 37361 0.823 

ANN(3,1,1) iii) Qt, Qt-1, Qt-2 7.46 89231 34060 0.907 168271 44889 0.708 

ANN(4,1,1) iv) Qt, Qt-1, Qt-2, Qt-3 8.68 89035 34651 0.907 167950 45222 0.709 

ANFIS-FCM(2) i)   Qt 0.45 87038 24817 0.909 157874 34597 0.773 

ANFIS-FCM(8) ii)  Qt, Qt-1 0.35 73337 16598 0.935 177645 26975 0.751 

ANFIS-FCM(8) iii) Qt, Qt-1, Qt-2 1.53 80011 17997 0.923 202776 29772 0.712 

ANFIS-FCM(3) iv) Qt, Qt-1, Qt-2, Qt-3 0.88 78597 20174 0.926 176095 34031 0.731 

 4 
 5 
  6 
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 1 
Table 5. The test performances of the optimal EF, ANN and ANFIS-FCM models in suspended 2 

sediment prediction 3 

 
Inputs 

RMSE 

(mg/l) 

MAE 

(mg/l) 
R2 

Models 

Upstream station 
    

EF(2,gauss,10000) i)   Qt 2588 503 0.892 

EF(2,gauss,1000) ii)  Qt, Qt-1 2654 445 0.931 

EF(3,gauss,5000) iii) Qt, Qt-1, Qt-2 2583 413 0.933 

EF(3,gauss,5000) iv) Qt, Qt-1, Qt-2, Qt-3 2685 476 0.928 

ANN(1,1,1) i)   Qt 3206 1583 0.875 

ANN(2,2,1) ii)  Qt, Qt-1 2999 708 0.941 

ANN(3,2,1) iii) Qt, Qt-1, Qt-2 2989 709 0.941 

ANN(4,2,1) iv) Qt, Qt-1, Qt-2, Qt-3 2962 736 0.943 

ANFIS-FCM(8) i)   Qt 3172 449 0.904 

ANFIS-FCM(7) ii)  Qt, Qt-1 3065 401 0.926 

ANFIS-FCM(5) iii) Qt, Qt-1, Qt-2 2912 416 0.922 

ANFIS-FCM(5) iv) Qt, Qt-1, Qt-2, Qt-3 3022 499 0.935 

Downstream station     

EF(2,gauss,20000) i)   Qt 47773 10285 0.929 

EF(5,gauss,1000) ii)  Qt, Qt-1 44593 8414 0.939 

EF(2,gauss,50000) iii) Qt, Qt-1, Qt-2 42714 9032 0.947 

EF(4,gauss,5000) iv) Qt, Qt-1, Qt-2, Qt-3 45493 10149 0.948 

ANN(1,2,1) i)   Qt 53083 25489 0.927 

ANN(2,2,1) ii)  Qt, Qt-1 52215 18227 0.907 

ANN(3,1,1) iii) Qt, Qt-1, Qt-2 50986 24917 0.944 

ANN(4,1,1) iv) Qt, Qt-1, Qt-2, Qt-3 50491 25444 0.945 

ANFIS-FCM(2) i)   Qt 50499 10994 0.921 

ANFIS-FCM(8) ii)  Qt, Qt-1 54149 8591 0.919 

ANFIS-FCM(8) iii) Qt, Qt-1, Qt-2 45569 1498 0.940 

ANFIS-FCM(3) iv) Qt, Qt-1, Qt-2, Qt-3 51721 11229 0.937 
 4 
  5 
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Table 6.The comparison of EF, ANN and ANFIS-FCM peak-estimates for the test period-1 

Upstream station. 2 

 3 

Day 

Peaks 

> 15000 

(mg/l) 

EF 

(mg/l) 

ANN 

(mg/l) 

ANFIS-

FCM 

(mg/l) 

Relative Error  

EF 

(%) 

ANN 

(%) 

ANFIS-

FCM (%) 

% 
135 65100 52375 65890 60511 -19.5 1.2 -7.0 

136 86500 121380 124244 108905 40.3 43.6 25.9 

137 18000 15494 12534 24360 -13.9 -30.4 35.3 

168 29800 29905 27751 25478 0.4 -6.9 -14.5 

169 71300 101871 116166 120171 42.9 62.9 68.5 

170 33300 60004 73166 52681 80.2 120 58.2 

172 20800 30555 30703 35895 46.9 47.6 72.6 

175 15700 27199 29803 31601 73.2 89.8 101 

176 59800 108508 116646 120463 81.5 95.1 101 

514 23000 30997 27956 25787 34.8 21.5 12.1 

Total (Absolute) =  434 519 497 

 4 

 5 

 6 
 7 
 8 
 9 
 10 
 11 
  12 
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Table 7.The comparison of EF, ANN and ANFIS-FCM peak-estimates for the test period-1 

Downstream station. 2 
 3 

Day 

Peaks 

> 500000 

(mg/l) 

EF 

(mg/l) 

ANN 

(mg/l) 

ANFIS-

FCM 

(mg/l) 

Relative Error  

EF 

(%) 

ANN 

(%) 

ANFIS-

FCM (%) 

% 
132 538000 737820 700519 579618 37.1 30.2 7.7 

133 535000 806291 783917 892406 50.7 46.5 66.8 

135 822000 702169 631613 520127 -14.6 -23.2 -36.7 

136 2870000 2526702 2624083 2381486 -12.0 -8.6 -17.0 

137 649000 705882 802897 1004263 8.8 23.7 54.7 

143 560000 793386 752534 915272 41.7 34.4 63.4 

169 2560000 2920197 2922853 2976379 14.1 14.2 16.3 

170 1260000 1699105 2116979 2235129 34.8 68.0 77.4 

Total (Absolute) = 298 346 436 

   

 4 
 5 

 6 
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