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Abstract  

This study aims to analyse the characteristics of global virtual water trade (GVWT), such as the connectivity of each trader, 

vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006-2010. The 

degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the 

entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, 15 

because they imported large quantities of virtual water with low connectivity. In particular, Egypt had 15.3 Gm³/year blue 

water savings effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The 

entire GVWT network could be changed by a few countries, termed “influential traders.” We used eigenvector centrality to 

identify those influential traders. In GVWT for food crops, the U.S.A., Russian Federation, Thailand, and Canada had high 

eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and 20 

India had high eigenvector centrality. For feed crops, the green water trade in the U.S.A., Brazil, and Argentina was the most 

influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 % 

and 25.1 %), thus other traders should carefully consider water resource management in these exporters. 

 

Keyword: Virtual water trade; Water footprint; Degree centrality; Eigenvector centrality 25 

1 Introduction 

Water scarcity is a local phenomenon that is sensitive to global food production, since agriculture has the largest share of the 

consumption of global freshwater resources (Molden, 2007; Biewald et al., 2014). Most water demand is derived from 

http://www.sciencedirect.com/science/article/pii/S0921800914000391#bb0180
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agriculture, and crop trade could be considered as the main consumer of water because crop production accompanies water 

consumption, which is embedded water in crops (Aldaya et al., 2010).  

“Virtual water” indicates the embedded water in production and processing (Allan, 1993; Hoekstra, 2003; Yang and Zehnder, 

2007), and the virtual water concept has been expanded to include the product chain, and the “water footprint.” Building on 

the virtual water concept, we can convert the crop trade to embedded water trade, called virtual water trade (VWT) (Aldaya 5 

et al., 2010). In addition, food security is a significant issue in water-poor regions, because fresh water is a vital factor for 

growing crops (Konar et al., 2012; Hanjra and Qureshi, 2010; Hoekstra, 2003). The virtual water traded through various 

crops is regarded as an important variable for global water savings and regional water management, particularly in those 

regions where water resources are insufficient, such as the Middle East (Hoekstra, 2003; Hoekstra et al., 2011). Accordingly, 

the concept of VWT brings a new perspective for considering food security, water scarcity, and water resource management 10 

together (Novo et al., 2009). In addition, the global virtual water trade (GVWT) could lead to a global redistribution of fresh 

water and water savings (Konar et al., 2013).  

Several studies have been conducted regarding the virtual water trade at different spatial scales, in order to evaluate VWT 

impacts on water savings (Chapagain et al., 2006). Early studies focused on the water footprint and VWT. Hoekstra and 

Hung (2005) found that 13% of the total water used for global crop production from 1995 to 1999 was traded internationally, 15 

making the international crop trade the main water consumer in importing countries, and causing several researchers to try to 

estimate virtual water trade. For example, Hanasaki et al. (2010) estimated the global virtual water trade for major crops and 

livestock products, and Van Oel et al. (2009) quantified the virtual water trade in the Netherlands and evaluated the impact 

of VWT on water dependency in terms of external water footprint. Bulsink et al. (2010) explained that VWT could increase 

the resilience to water scarcity in Java, Indonesia. Fader et al. (2011) estimated the internal and external water footprint by 20 

VWT and evaluated the effect of VWT on national and global water savings. Therefore, virtual water trade could be the 

main issue for water security in importing countries such as the Middle East region, and the vulnerable structure of virtual 

water trade could cause water and food scarcity.  

Virtual water trade also has a water scarcity aspect in exporting countries, in terms of water “losses” by exporting 

commodity (Chapagain et al., 2006). Mubako et al. (2013) calculated water use intensities across economic sectors in 25 

California and Illinois, and quantified the water embodied in trade between several states (California, Illinois, and other U.S. 

states) and the rest of the world. In addition, externalities such as climate change or population change could affect virtual 

water trade, because virtual water is related to both crop production and water consumption, and the main issue in water 

resource management is climate change. For example, Konar et al. (2013) quantified the impacts of climate change on 

virtual water flow and found that the decrease in the total volume of virtual water trade is derived from climate change 30 

because of decreased crop trade and virtual water content.  

Recently, several studies were conducted to analyse the temporal change of VWT structure using a network system. For 

example, Konar et al. (2012) analysed the temporal dynamics of virtual water trade networks and found that global food 
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trade affects water savings and a specific crop network could be more efficient from a water resource perspective. Dalin et al. 

(2012) focused on the evolution of the GVWT network, considering the number of partners and the volume of virtual water.  

Generally, studies related to virtual water trade considered more structural change in the entire trade network and the volume 

of trade in each country. However, we need to understand which countries are vulnerable or influential in GVWT, in order to 

set a sustainable food trade and water management plan. In addition, crops could be divided into food and feed crops, even if 5 

there is not an exact standard for classifying them, because the trade structure of food crops, such as wheat, barley, and rice, 

have different characteristics from feed crops, such as maize (corn) and beans. The main areas of production and 

consumption vary greatly according to whether they are food or feed crops. In addition, feed crops are hardly substituted by 

food crops, and their respective impacts on food security or water security might differ. 

This study aims to analyse the characteristics of global virtual water trade (GVWT) of food and feed crops, respectively, 10 

through the application of network centrality. Specific objectives are to: 

1.     Evaluate trade vulnerability for each importing country through the connectivity and volume of GVWT. 

2.     Analyse the influential traders of GVWT who could strongly affect the entire trade network. 

The degree centrality of the GVWT network was computed to evaluate the connectivity of each country, and a vulnerable 

structure in importers indicated low connectivity with a large amount of virtual water imported, potentially causing water 15 

shortage problems for importers.  We also calculated the eigenvector centrality for measuring the importance and influence 

of a trader on the whole network, and traders should give pay attention to changes of trade policy and water management of 

the influential traders. 

2 Materials and Methods  

2.1 Water footprint (WFP) and global virtual water trade (GVWT) 20 

Water footprint (WFP, m³/ton) is the volume of water required to produce one ton of crops in the region, and it consists of 

green and blue water (Hoekstra and Chapagain, 2008). The green water footprint indicates the volume of rainwater 

consumed, while the blue water footprint indicates the volume of irrigation water (surface and groundwater) consumed. The 

WFP of a crop indicates the crop water requirement (m³/ha) per yield (kg/ha). It was estimated using Eq. (1), as follows: 

WFP[c] =
CWR[c]

Production [c]
          (1)  

where WFP (m³/ton) is the water required for the production of one ton of a given crop c, CWR is the crop water 25 

requirement, and the production is the yield per year. 

As the water footprint concept, VWT represents the amount of water embedded in products that are traded internationally. 

Therefore, it was calculated by multiplying the international crop trade by their associated water footprint, and quantifying 

the global scale of VWT through the water footprint and crops trade using Eq. (2), as follows: 

VWT[ne, ni, c, t] = CT[[ne, ni, c, t] × WFP[ne, c]          (2) 30 
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where VWT indicates that VWT from the exporting country ne to the importing country, ni, CT represents the crop trade, 

and WFP represents the water footprint. In addition, c and t indicate crop and year, respectively. 

2.2 Degree centrality of GVWT by network analysis  

GVWT consists of numerous links among nations, and the network approach could be an appropriate method to analyze the 

structural features of GVWT. In particular, the centrality concept was used to evaluate the main flows and the vulnerable 5 

countries. The degree of centrality is one of the simplest indices for evaluating network structure and is a count of the 

number of edges incident upon a given node (Freeman, 1979). A high level of degree centrality indicates the node has 

expended connections with various other nodes. The degree centrality has direction and thus, is divided to in-degree and out-

degree centrality. In-degree centrality means import in the GVWT network, while out-degree means the opposite. For 

example, a high level of in-degree centrality in GVWT indicates the country imports virtual water from various exporters, 10 

while a high level of out-degree centrality indicates the country exports virtual water to various importers. In other words, a 

country that has a high level of degree centrality could be identified as a main country in the expanded GVWT network. 

Therefore, degree centrality could be applied to quantify the connectivity of each country in GVWT. The degree centrality of 

each country in GVWT is calculated as: 

Ci = ∑ VWTij/(N − 1)N
j       (3) 15 

where Ci is the degree centrality of country i, and N is the number of total countries. VWTij indicates the virtual water trade 

between the ith and jth country. 

2.3 Eigenvector centrality of GVWT by network analysis  

GVWT comprises a complex network, but some countries could affect the entire network system: it is important to 

determine these countries. Thus, we applied eigenvector centrality to the GVWT network in order to find the most influential 20 

countries. Eigenvector centrality is used to measure the importance and influence of a node on the whole network (Ruhnau, 

2000). The eigenvector centrality represents relative centrality to all nodes in the network based on the principle that high-

level centrality nodes could contribute more to connected nodes than low-level centrality nodes. In other words, the 

centrality of a country not only depends on the number of trade partners adjacent to it, but also on their centrality values 

(Ruhnau, 2000). Accordingly, the eigenvector centrality could be used to determine influential countries and influence areas. 25 

Bonacich (1972) defined the centrality 𝑐(𝜐𝑖) of a node 𝜐𝑖as the positive multiple of the sum of adjacent centralities, as 

follows: 

𝜆𝑐(𝜐𝑖) = ∑ 𝛼𝑖𝑗𝑐(𝜐𝑗)𝑛
𝑗=1        ∀𝑖.    (4) 

In matrix notation, with c = (𝑐(𝜐𝑖), … . , 𝑐(𝜐𝑛)), the above equation yields 

Ac = λc       (5) 30 
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This type of equation is solved using eigenvalues and eigenvectors. An eigenvector of the maximal eigenvalue with only 

non-negative entries exists. We call a non-negative eigenvector  (c ≥ 0) of the maximal eigenvalue the principal eigenvector, 

and we 𝑐(𝜐𝑖) is the eigenvector-centrality of node 𝜐𝑖 (Ruhnau, 2000). The eigenvector centrality of a node is proportional to 

the sum of eigenvector centralities of the connected nodes (Bonacich, 1972). In addition, eigenvector centrality indicates the 

principal eigenvector that has the largest eigenvalue among all eigenvectors. We used NetMiner 3.0 5 

(http://www.netminer.com) to estimate the degree and the eigenvector centrality. 

2.4 Data for international trade and water footprint of study crops 

In this study, we compared the GVWT of food and feed crops, because food crops, such as wheat and rice, might have 

different trade characteristics from feed crops, such as maize and soybeans. For example, Konar et al. (2011) found the 

number of links and average degree of corn and soy were smaller than those of other food crops, such as wheat, barley, and 10 

rice.  

Although there is no exact classification for food and feed crops, food crops generally indicate crops for food, and 

representative crops are wheat, barley, and rice. Feed crops indicate crops that are cultivated primarily for animal feed, and 

the representative crops are maize (corn) and soybeans. In particular, East Asian countries such as China, Japan, and Korea 

have used maize and beans for animal feed. In this study, food crops included wheat, rice, barley, potatoes, sweet potatoes, 15 

rye, and grain sorghum. The feed crops included maize and beans crops. Table 1 lists specific crops. 

Country-scale import and export data of various commodities for every 5 years could be obtained from the Personal 

Computer Trade Analysis System (PC-TAS) produced by the United Nations Statistics Division (UNSD). These data are 

based on the Commodity Trade Statistics Data Base (COMTRADE) of the UNSD. According to the World Meteorological 

Organization report (WMO, 2013), there were several significant events related to food trade during 2000-2010. For 20 

example, Australia suffered severe drought damage in 2007, but the drought was solved in 2009, and Australia was 

noticeable as a main exporter in 2010. In addition, the Russian federation had the worst drought, and the government decided 

to stop exporting wheat, barley, and maize. This action could affect Middle East countries, and also the entire crop trade. We 

expected the global virtual water trade in these seasons could be important issues, and collected international trade data of 

food and feed crops during 2006-2010 from PC-TAS. 25 

The water footprint is defined as the total volume of water consumed within the territory of the nation. Mekonnen and 

Hoekstra (2010) quantified the average values of green and blue water footprints of crops and crop products at national and 

sub-national levels from 1996 to 2005. The water footprint data indicated the representative index using average value. 

Therefore, we applied the average value of water footprint during the period 1996-2005 from Mekonnen and Hoekstra 

(2010), even though this study focused on crop trade from 2006 to 2010. 30 
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3 Results and Discussion  

3.1 Estimation of the GVWT of food and feed crops  

The GVWT is dependent on the water footprint of each country, and a few countries cultivate and export water intensive 

crops. The different variability between green and blue water export was derived by the variance of water footprint, which is 

dependent on the climate features in the exporting country. Mekonnen and Hoekstra (2010) also mentioned the difference of 5 

water footprint for each country; for example, relatively smaller water footprints of cereal crops were estimated in Northern 

and Western Europe than in most parts of Africa. In this study, we showed the variability of green and blue water export, 

respectively, in crop export during the period 2006-2010 (Fig. 1). The dispersion of scattered points of green water export 

and crop export was smaller than those of blue water export. One of the reasons why a large dispersion was shown in blue 

water export might be that the volume of blue water is much smaller than that of green water. Thus, a small amount of blue 10 

water might derive a large change in this plot. However, the main issue in Fig. 1 was that the blue water footprint differed 

more depending on the exporting country, rather than on the green water footprint. Therefore, the variability of blue water 

export was larger than that of green water export, and crop export could bring differing impacts on irrigation water by 

country.  

In addition, we calculated the total amount of green and blue water trade of each country from 2006 to 2010. For food crops 15 

such as wheat, rice, barley etc., the total crop trade between 2006 and 2010 was 985.6 Mton, and the GVWT was 1631.0 

Gm³ (green water: 1453.1 Gm³, blue water: 177.9 Gm³). The GVWT of wheat had the highest proportion, totalling 1057.8 

Gm³, but the largest amount of blue water was traded by rice. About 136.7 Gm³ of blue water was traded through the rice 

trade, 4 times higher than that traded through wheat. Barley presented as a less water intensive crop than either wheat or rice. 

Feed crops between 2006 and 2010, such as maize and beans crops, totaled 1243.8 Mton, with the GVWT at 1811.9 Gm³. 20 

The beans crops were representative water intensive crops, and about 1360.4 Gm³ of virtual water was traded between 2006 

and 2010. In contrast, the amount of maize traded was 531.2 Mton, but the virtual water that was involved was only 451.5 

Gm³.  

3.2 Analysis of the connectivity and intensity of GVWT using degree centrality 

3.2.1 Analysis of connectivity in GVWT  25 

The GVWT network includes both the volume of virtual water and the connection among countries. Fig. 2 shows only the 

main GVWT network of food and feed crops in 2010 using the threshold value of virtual water trade, as we could not display 

these networks with all links, because it is impossible to distinguish each connection between countries. Therefore, we 

showed the main links that were over a threshold value of 1.0 Gm³ of total virtual water trade in 2010. Some countries were 

eliminated from the figure, because they only had connections of virtual water trade that were less than the threshold value. 30 

GVWT for food crops has a dispersed network, but GVWT for feed crops is more centralized with a few main exporters, 
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such as the U.S.A., Argentina, Brazil, and China. In other words, the food and feed crop trades have a different structure, and 

we need to consider not only volume, but also the connectivity of the virtual water trade. 

In this study, degree centrality was applied to understand the connectivity of GVWT. The degree centrality was divided into 

in- and out- degree by the direction of GVWT. In-degree means imports, and out-degree means exports. We analysed the in- 

and out-degree centrality of the GVWT of food and feed crops during the period 2006-2010, and Fig. 3 shows the results. 5 

The exporters in GVWT for food crops had more connectivity with expanded structure than the exporters in GVWT for feed 

crops. In addition, importers in the GVWT of the food trade had various connections with exporters.  

Considering the out-degree centrality of GVWT for food crops, the U.S.A. displays expanded connectivity with various 

importers, followed by Asian countries, such as Thailand, Pakistan, Vietnam, and India. Ukraine also had high connectivity 

to various importers characterized by large amounts of virtual water export. These countries play the main role for virtual 10 

water supply in the GVWT. In contrast, the Russian Federation, Kazakhstan, and Australia had lower connectivity, even 

though they exported a lot of virtual water by the food crops trade. Considering the out-degree centrality of the GVWT for 

feed crops, the exporters who exported a lot of virtual water had high connectivity as well. For example, the U.S.A., Brazil, 

and Argentina had high ranks in both the volume and connectivity of GVWT.  These countries exported the largest amount 

of virtual water to eastern Asian countries, such as China, Japan, and The Republic of Korea, but also had various 15 

connections with importers. Konar et al. (2011) aggregated the virtual water trade of 5 crops and 3 animal products, and 

measured the node degree of the virtual water trade, which indicated the number of trade partners. They found that the 

U.S.A., the Netherlands, France, Italy, and the U.K. were the top 5 exporters who had large connections. On the other hand, 

China and Thailand were the only Asian countries in the top 15 exporters according to the number of connections. However, 

in this study, we found that Pakistan, India, and Vietnam also had high connectivity in virtual water export through food 20 

crops, because we analysed the connectivity of the virtual water trade of food and feed crops, respectively.  

In-degree centrality indicated the connection of virtual water import according to the importer’s perspective. Therefore, the 

importer with a high rank of in-degree centrality imports virtual water from various exporters, meaning that this importer has 

a robust trade structure. If the importer has a low rank of in-degree centrality with a larger volume of virtual water import, 

then this importer might be highly dependent on just a few exporters. For example, Egypt and Japan imported a lot of virtual 25 

water by food crops trade, but the rank of in-degree centrality was 21st and 33rd, respectively. Egypt imported over 50% of 

wheat from only the U.S.A. and Russian Federation. In terms of feed crops trade, most virtual water was imported to China, 

but the connectivity was very low. In contrast, the Netherlands, Spain, and Germany had high ranks in both the volume and 

connectivity of virtual water import through the feed crops trade: results indicating that these countries have robust trade 

structures. In fact, the European countries have a robust internal trade network with various connections among European 30 

countries. Konar et al. (2011) also found that the U.S.A., U.K., Germany, Canada, and Netherlands were the top 5 importers. 

On the other hand, Saudi Arabia and Hong Kong were the only Asian countries in the top 15 importers. These results are 

similar in this study; for example, European countries had higher connectivity than Asian countries. 
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3.2.2 Evaluation of vulnerability of virtual water importers through the connectivity and volume of GVWT 

In the trend of the increase of crop trade, when the GVWT is concentrated in a few countries, the main exporters could 

dominate a few importers. This means that these importers might be dependent on a few exporters with a low resilience 

structure. Therefore, we evaluated the vulnerability of virtual water importers through the connectivity and volume of 

GVWT. Fig. 4 shows the average virtual water import from one exporter. In terms of GVWT for food crops, Mexico 5 

imported an average 8.1 Gm³ from one exporter, meaning that Mexico is highly dependent on a few exporters. In the case of 

feed crops trade, China has the largest average quantity of virtual water imported from one exporter, followed by Mexico 

and Uruguay. Konar et al. (2011) analysed the strength of each link in the VWT, and found that the link between the U.S.A. 

and Mexico was the second largest link. In these importers, virtual water import could be a main issue for sustainable water 

management, but the VWT, which is highly dependent on a few exporters, could be regarded as a vulnerable trade structure. 10 

Therefore, it is important to understand the vulnerability of VWT with consideration of the connectivity and volume of 

virtual water import.   

In this study, the importers of VWT were classified in terms of both connectivity and volume of virtual water import. Tables 

2 and 3 classify importing countries according to the volume (I-III) and connectivity (A-C) of GVWT, respectively.  

We considered the vulnerability of virtual water trade to be more related to importers with the larger volume of virtual water 15 

import. Therefore, the top 10 percentile of total virtual water import was used as the threshold. After that, we classified these 

countries into 3 groups, according to the top 1, 5, and 10 percentiles of total virtual water import. 

The small volume group (I) includes countries that imported above the top 10 percentile and below the top 5 percentile of 

total virtual water import; the medium group (II) includes the countries that imported over the top 5 percentile and below the 

top 1 percentile of total virtual water import. Finally, the large volume group (III) includes countries that imported over the 20 

top 1 percentile of total virtual water import.  

In addition, the vulnerable virtual water trade could be related to the connectivity; therefore, we classified the importers into 

high, medium, and low connectivity groups, using the degree centrality of links. The importers who have a low degree 

centrality of links could be regarded as relatively vulnerable importers, and we use the maximum degree centrality of links as 

the standard for evaluating the connectivity of each country. Therefore, the importers who have the upper one third of 25 

maximum degree centrality are classified as the high connectivity group (C), and the importers who have the lower one third 

of maximum degree centrality are classified as the low connectivity group (A). The importers who are classified in the 

medium connectivity group have a degree centrality between the upper one third and lower one third of maximum degree 

centrality. When importers are classified into the A-III sector, we considered that they had intensive virtual water import 

with vulnerable structure.  30 

In food crops, the upper 10% of virtual water import, 25.1 Gm³ was set as the threshold value, and the upper 5 and 1 

percentiles of virtual water import were 37.3 and 72.9 Gm³, respectively. Therefore, the importers in the large volume group 

imported over 72.9 Gm³ of virtual water during 2006-2010 through food crops. The maximum value of degree centrality was 
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0.22. Therefore, the high connectivity group included those importers who had a degree centrality between 0.22 and 0.15. 

The low connectivity group included those importers who had lower than 0.07 degree centrality. Mexico, which was located 

in the A-II sector, was a vulnerable importer in GVWT. In addition, the phenomenon of low in-degree centrality with links 

of GVWT was shown in Asia countries, even if they imported a lot of virtual water. For example, Iran and the Philippines 

were classified into B-II sector, and even Japan was classified into B-III. However, European countries, such as Spain, 5 

Turkey, and the Netherlands, were classified into C-I sector. These results represented that the Asian countries imported a lot 

of virtual water from just a few exporters, and the European countries were connected to various exporters, even if they 

imported a comparable quantity of virtual water.  

In feed crops, the upper 10% of virtual water import, 23.8 Gm³ was set as the threshold value, and the upper 5 and 1 

percentiles of virtual water import were 42.3 and 103.6 Gm³, respectively. Therefore, the importers in the large volume 10 

group imported over 103.6 Gm³ of virtual water during 2006-2010 through food crops. The maximum value of degree 

centrality was 0.17. Therefore, the high connectivity group included importers who had a degree centrality between 0.17 and 

0.11. The low connectivity group included the importers who had lower than 0.06 degree centrality. Mexico, The Republic 

of Korea and Germany were in sector II, but Mexico (A-II sector) and The Republic of Korea (B-II sector) had lower 

connectivity than that of Germany (C-II sector); that is, Mexico and The Republic of Korea imported large amounts of 15 

virtual water from a few countries, and had a vulnerable GVWT structure. In addition, China was regarded as an exclusive 

importer in the GVWT network. In contrast, European countries, such as the Netherlands, Spain, France, Italy and Germany, 

had a more distributed structure than eastern Asian countries, who imported large volumes of virtual water by feed crops 

trade.  

3.2.3 GVWT impacts on water savings in importing countries  20 

Virtual water trade could help the importers save water resources by crops import. For example, if the importing country 

replaces crop import with domestic production, this will be accompanied by additional water use. Table 4 shows the water 

savings by virtual water import in main importers from 2006 to 2010. China and Japan, respectively saved 24.7 and 18.7 

Gm³/yr of green water by crops import, while Egypt and Iran, respectively saved 15.3 and 10.1 Gm³/yr of blue water by 

crops import, depending on irrigation water for domestic crop production. In particular, Egypt and Iran have few water 25 

resources, therefore, the virtual water impacts on water resource savings in these countries might be larger than on other 

importers.   

Accordingly, VWT is a very important issue for these importers; thus the vulnerable structure of VWT could cause water 

shortage problems to importing countries. For example, in 2010, Russia banned wheat export because of severe drought, and 

the global wheat price rose. Oxfam Research Reports analysed the impacts of the Russian ban of wheat export on global and 30 

local areas in terms of economic impacts (Welton, 2011). Wheat import in Egypt has high dependency on the Russian 

federation’s export, which we regarded as a vulnerable structure, and the insufficient import of crops due to the export ban in 

the Russian Federation could bring not only economic impacts but also serious water consumption for increasing domestic 
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food production. Chapagatin et al. (2006) found the import of wheat in Egypt contributed to a national water saving of 3.6 

Gm³/yr during 1997-2001, which according to the 1959 agreement was about seven percent of the total volume of water to 

which Egypt was entitled. Fader et al. (2011) also found that some water-scarce countries, such as China and Mexico, the 

Netherlands and Japan, would need relatively high amounts of water to produce the goods they otherwise import: meaning 

that they save high amounts of water by importing goods. Therefore, if they stopped importing and exporting agricultural 5 

products, these countries would need to use more water in their agricultural sectors (Fader et al., 2011). In other words, a 

vulnerable trade structure with low connectivity could be one of the main reasons for water shortage problems. 

3.3 Analysis of influential countries in GVWT using Eigenvector centrality 

GVWT is complicated to understand and it is difficult to estimate the influence of each trader on GVWT. A country that has 

relationships with main exporters and importers could influence the GVWT, even if the volume of trade is small. Apart from 10 

degree centrality, such a country would have distinctive centrality in terms of the influence on the entire GVWT network.  

Accordingly, we estimated the eigenvector centrality of green and blue water trade in GVWT, and used degree and 

eigenvector centrality to analyse the influential importers and exporters. The degree centrality shows the connectivity and 

volume of the VWT, and the eigenvector centrality shows the influence of countries on the entire GVWT network structure. 

Therefore, the most influential traders have high degree and eigenvector centrality at the same time, and the other traders 15 

should pay attention to changes of trade policy and water management of the influential traders.  

Tables 5 and 6 indicate the eigenvector centrality in green and blue water trade, and the degree centrality in connection and 

volume of the GVWT network, respectively. The U.S.A. showed high out-degree centrality and high eigenvector centrality, 

which indicates the U.S.A. was the most influential exporter in the green water trade through the food crops trade. The green 

water trade also had secondary influential exporters, such as Canada, the Russian Federation, Thailand, and Australia. In 20 

terms of import, Japan, Mexico and Egypt represented the influential importers for green water trade, and the influence 

importing area of green water trade was distributed between South America, Europe, western Asia, and East Asia.  

In contrast, the influential exporters and importers of the blue water trade differed from the green water trade. The influential 

global blue water exporters by food crops were the U.S.A., Pakistan, India, and Thailand, while global blue water import was 

dominated by western Asia, including Iran, Saudi Arabia, and the U.A.E. 25 

For feed crops, the green water in the U.S.A., Brazil, and Argentina was exported to eastern Asian countries, such as China, 

the Republic of Korea, and Japan. In particular, Brazil and Argentina were dependent on green water. However, the U.S.A. 

overwhelmingly used a lot of blue water to export maize and beans crops. The U.S.A., Mexico, China, and Japan constructed 

influential lines from the Americas to eastern Asia.  

Crop production is accompanied by water consumption; thus the crop trade could also be affected by the water resource 30 

status in the exporting country. Table 7 shows the water resources and virtual water use for domestic crop production and 

export in the influential countries. In terms of water resources and virtual water use, over 30 % of internal water resources 

were used for exporting crops in Argentina, followed by Pakistan (25.1%), and the Ukraine (19.4 %).  In addition, some 
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countries used a lot of water to export crops, for example, over 50 % of virtual water used for food and feed crop production 

was used for export crops in Argentina, Canada, and Paraguay. In addition, Thailand and Paraguay used 39.5% and 54.2% of 

domestic virtual water use, respectively, for virtual water export, and the dependence on internal water resources was over 

10 % in both countries. Therefore, virtual water export of these countries could be strongly affected by internal water 

resources, and this could have a negative impact on importers. 5 

4. Conclusions 

Crop production is accompanied by water consumption; thus the water resource status in the exporting country could also 

affect the crop trade. The virtual water trade could help importers save national water resources by importing crops. For 

example, if the importing country replaced imported crops with domestic production, this would be accompanied by 

additional water use. National water savings achieved by the virtual water trade are equal to the import volume multiplied by 10 

the volume of water required to domestically produce the commodity. However, the virtual water trade could cause water 

“losses” for the exporting countries (Chapagain et al., 2006). For example, countries whose major industry is agriculture 

spend their water resources on the food trade. In addition, the available global freshwater is decreasing due to climate change, 

suggesting that water should be considered a precious natural resource.  

Virtual water trade is the main component for water management for both exporters and importers; thus, it is important to 15 

understand the characteristics of virtual water trade. In this study, we used degree and eigenvector centrality to analyse the 

global virtual water trade (GVWT) during the period 2006-2010, and using the structural characteristics, such as the 

connectivity of each trader, vulnerable importers, and influential countries. This study only considered the recent 5 years 

trade, and is limited in terms of prediction. In addition, the global crop trade is related to various factors, such as price, 

climate, and policy; thus it is very hard to predict the future trade condition. However, the virtual water concept could 20 

provide an extended perspective with which to better understand the food, water, and trade relationship. In particular, 

importers who had a vulnerable GVWT structure were classified according to their connectivity and volume of GVWT. 

Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they had low 

connectivity and imported a lot of virtual water. VWT could bring national water savings, but the vulnerable structure of 

VWT could cause problems of water security for importers. For example, Egypt had 15.3 Gm³/year blue water savings 25 

effects through GVWT, thus its vulnerable structure could cause water shortage problems. 

A few countries that we term influential countries could change the entire GVWT network. In addition, if the influential 

countries have water shortages, it becomes not only a national scale problem, but also a global threat. Therefore, we 

classified the influential countries in GVWT using eigenvector centrality, which is generally used to measure influence on an 

entire network. For the food crops trade, the influential traders were distinguished by green and blue water trades. For 30 

example, the U.S.A., Russian Federation, Thailand, and Canada were classified as influential traders in green water trade. 

However, western Asia, Pakistan, and India were classified as influential traders in blue water trade. The feed crops trade 
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was much more dominated by green water than by blue water, and the U.S.A., Brazil, and Argentina were classified as the 

most influential traders. In particular, Argentina and Pakistan used a high proportion of internal water resources for virtual 

water export (32.9% and 25.1%, respectively); thus the other traders should consider the water resource management in these 

exporters carefully. This study could provide information for an integrated global water strategy, and arouse the main 

importers attention of the risk of serious dependency on foreign water resources.  5 

Acknowledgments 

The international trade data are available at a Personal Computer Trade Analysis System (PC-TAS), produced by the United 

Nations Statistics Division (UNSD). The results data for this study are freely available by contacting the corresponding 

author. 

References 10 

Aldaya, M. M., Allan, J., and Hoekstra, A. Y.: Strategic importance of green water in international crop trade, Ecol. Econ., 

69, 887-894, 2010. 

Allan, J.: Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible In: Priorities 

for water resources allocation and management, ODA, London 13-26, 1993. 

Biewald, A., Rolinski, S., Camoen, H., Schmitz, C., and Dietrich, J.: Valuing the impact of trade on local blue water, Ecol. 15 

Econ., 101, 43-53, 2014. 

Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical 

Sociology, 2, 113-120, 1972. 

Bulsink, F., Hoekstra, A. Y., and Booij, M. J.: The water footprint of Indonesian provinces related to the consumption of 

crop products, Hydrol. Earth Syst. Sci., 14(1), 119-128, 2010. 20 

Chapagain, A. K., and Hoekstra, A.Y.: The blue, green and grey water footprint of rice from production and consumption 

perspectives, Ecol. Econ., 70, 749-758, 2011. 

Chapagain, A. K., Hoekstra, A. Y., and Savenije, H.: Water saving through international trade of agricultural products, 

Hydrol. Earth Syst. Sci., 10, 455-468, 2006. 

Dalin, C., Konar, M., Hanasaki, N. , Rinaldo, A., and Rodriguez-Iturbe, I.: Evolution of the global virtual water trade 25 

network, Proc. Natl. Acad. Sci. U.S.A., 109(16), 5989-5994, 2012. 

Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-

blue agricultural water footprints of nations, and related water and land savings through trade, Hydrol. Earth Syst. Sci., 15, 

1641-1660, 2011. 

Freeman, L. C.: Centrality in social network: conceptual clarification, Social Networks, 1, 215-239, 1979. 30 



13 

 

Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global virtual water flow and sources of water 

withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232-244, 2010. 

Hanjra, M. A., and Qureshi, M. E.: Global water crisis and future food security in an era of climate change, Food 

Policy. 35(5), 365-377, 2010. 

Hoekstra, A. Y.: Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Value of 5 

Water Research Report Series No. 12, UNESCO-IHE, 2003. 

Hoekstra, A. Y., and Chapagain, A. K.: Globalization of Water: Sharing the Planet’s Freshwater Resources, Blackwell Publ., 

Oxford, U.K., 224, 2008. 

Hoekstra, A. Y., Chapagain, A. K., and Aldaya, M. M.: The water footprint assessemnt manual, Earthscan, London, UK, 

2011. 10 

Hoekstra A. Y., and Hung, P. Q.: Globalisation of water resources: international virtual water flows in relation to crop trade, 

Global Environ. Change, 15, 45–56, 2005. 

Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo A., and Rodriguez-Iturbe, I.: Water for food: The global virtual 

water trade network, Water Resources Research, 47(5), 2011 

Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A., and Rodriguez-Iturbe, I.: Temporal dynamics of blue and green virtual 15 

water trade networks, Water Resources Research, 48(7), 2012. 

Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D.L., and Rodriguez-Iturbe, I.: Virtual water trade flows and savings under 

climate change, Hydrol. Earth Syst. Sci., 17, 3219-3234, 2013. 

Mekonnen, M.M., and Hoekstra, A. Y.: The green, blue and grey water footprint of crops and derived crop products, Value 

of Water Research Series No.47, UNESCO-IHE, 2010. 20 

Molden, D.: Water for food, water for life: a comprehensive assessment of water management in agriculture, Colombo 

ISBN-13:978-1844073962, 2007. 

Mubako, S., Lahiri, S., and Lant, C.: Input-output analysis of virtual water transfers: Case study of California and Illinois, 

Ecol. Econ., 93, 230-238, 2013. 

Novo, P., Garrido, A., and Varela-Ortega, C.: Are virtual water “flows” in Spanish grain trade consistent with relative water 25 

scarcity?, Ecol. Econ., 68, 1454-1464, 2009. 

Ruhnau, B.: Eigenvector-centrality: a node-centrality? Social Networks, 22, 357-365, 2000. 

Van Oel, P. R., Mekonnen, M. M., and Hoekstra, A. Y.: The external water footprint of the Netherlands: Geographically-

explicit quantification and impact assessment. Ecol. Econ., 69(1), 82-92, 2009. 

Welton, George: The impact of Russia’s 1020 grain export ban. Oxfam Research Reports, 2011. 30 

World Meteorological Organization (WMO): The Global Climet 2000-2010, A decade of climate extremes summary report. 

2013. 

Yang, H., and Zehnder, A.: “Virtual water”: An unfolding concept in integrated water resources management, Water Resour. 

Res., 43(12), 2007. 



14 

 

 

  

(a) Crop export and green water export (b) Crop export and blue water export 

Figure 1: A comparison between virtual water export and crop export during the period 2006-2010 (wheat, barley, 

rice, rye, sorghum, maize, and beans crops). 

 

 

 

(a) Food crops (wheat, barley, rice, rye, and sorghum) (b) Feed crops (maize and soybean) 

Figure 2: The GVWT network through food and feed crops trade in 2010. 5 
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(a) Out-degree centrality (b) In-degree centrality 

Figure 3: Out- and in-degree centrality in connection network of GVWT for food and feed crops during the period 

2006-2010. 

 

  

(a) Food crops (wheat, barley, rice, rye, and sorghum) (b) Feed crops (maize and soybean) 

Figure 4: The intensive inflow of virtual water by food and feed crops import. 

 5 
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Table 1: Study crops for food and feed crops. 

Crops Harmonized 

System Codes  

(HS Code)  
Description of crop commodity 

Food 

Crops 
Wheat 

100190 Wheat 

100110 Durum wheat                                                                                

Rice 

100610 Rice in the husk (paddy or rough) 

100620 Rice, husked (brown) 

100630 Rice, semi-milled or wholly milled 

100640 Rice, broken 

Barley 100300 Barley                                                                                     

Others 

070190 Potatoes  

071420 Sweet potatoes 

100200 Rye                                                                                        

100700 Grain sorghum                                                                              

Feed 

crops 
Maize 

100590 Maize (corn)                                                                          

100510 Maize (corn) seed                                                                          

Beans  

crops 

071332 Beans, small red (Adzuki)  

071390 Leguminous vegetables  

120100 Soya beans                                                                                 

230400 Soya-bean oil-cake & solid residues 

 

 

Table 2: Classification of importers by connectivity and volume of GVWT for food crops (wheat, barley, rice, and 

others). 5 

GVWT of  

food crops 

Connectivity of GVWT 

Low (A) 

(lower 1/3 of maximum 

degree centrality) 

 

Medium (B) 

(between 1/3 and 2/3  

of maximum degree 

centrality) 

High (C) 

(above 2/3 of maximum 

degree centrality) 

 

V
o

lu
m

e o
f G

V
W

T
 

Small (Ⅰ) 

(between 10 and 5 

percentile) 

 

BANGLADESH 

KOREA REP. 

YEMEN 

SPAIN 

TURKEY 

USA 

NETHERLANDS 

ALGERIA 

GERMANY 

UAE 

Medium (Ⅱ) 

(between 5 and 1 

percentile) 

MEXICO 

INDONESIA 

IRAN 

IRAQ 

NIGERIA 

PHILIPPINES 

BRAZIL  

ITALY 

Large (Ⅲ) 

(top 1percentile) 
 

EGYPT 

JAPAN 
SAUDI ARABIA 
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Table 3: Classification of importers by connectivity and volume of GVWT for feed crops (maize and soybean). 

GVWT of  

feed crops 

Connectivity of GVWT 

Low (A) 

(lower 1/3 of maximum 

degree centrality) 

 

Medium (B) 

(between 1/3 and 2/3  

of maximum degree 

centrality) 

High (C) 

(above 2/3 of maximum 

degree centrality) 

 

V
o

lu
m

e o
f G

V
W

T
 

Small (Ⅰ) 

(between 10 and 5 

percentile) 

COLOMBIA 

URUGUAY 

TAIWAN 

IRAN 

THAILAND 

VIET NAM 

EGYPT 

MALAYSIA 

UK 

Medium (Ⅱ) 

(between 5 and 1 

percentile) 

MEXICO 
INDONESIA 

KOREA REP 

ITALY 

FRANCE 

SPAIN 

GERMANY 

Large (Ⅲ) 

(top 1percentile) 
 

CHINA 

JAPAN 
NETHERLANDS 

 

 

Table 4: Water resource and virtual water savings by importing crops. 

Importers 

Water resource 

(Gm³) 
VWI* by crop trade 

(Gm³/yr) 

VWU* for producing 

imported crops 

(Gm³/yr) 

Water savings 

(Gm³/yr) 

Internal 

(1) 

External 

(2) 

Green 

water 

(3) 

Blue 

water 

(4) 

Green 

water 

(5) 

Blue water 

(6) 

Green 

water 

(3)-(5) 

Blue 

water 

(4)-(6) 

CHINA 221 65 105.3 10.6 80.6 2.1 24.7 8.5 

EGYPT 65 5 3.2 16.2 23.4 0.9 -20.2 15.3 

IRAN 2 56 9.8 11.6 15.8 1.5 -6 10.1 

JAPAN 409 48 53.1 1.3 34.4 2.7 18.7 -1.4 

MEXICO 129 9 36.1 5.5 21.1 2.2 15 3.3 

* VWI: virtual water import 

* VWU: virtual water use 

 5 
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Table 5: Eigenvector centrality of green water trade and degree centrality of GVWT. 

Countries 

Eigenvector 

centrality 
In-degree centrality Out-degree centrality 

Green water 

trade 

Volume of 

GVWT 

Connection of 

GVWT 

Volume of 

GVWT 

Connection of 

GVWT 

GVWT for food crops     

USA 0.62 0.14 0.16 1.64 0.74 

Japan 0.34 0.34 0.11 0.00 0.11 

Canada 0.29 0.02 0.08 0.68 0.41 

Mexico 0.28 0.23 0.03 0.02 0.08 

Egypt 0.23 0.40 0.14 0.01 0.24 

Nigeria 0.23 0.23 0.12 0.00 0.01 

Russian Federation 0.17 0.05 0.13 0.81 0.41 

Thailand 0.17 0.05 0.11 0.66 0.65 

Philippines 0.15 0.21 0.09 0.00 0.00 

Iraq 0.13 0.17 0.10 0.00 0.00 

Korea Rep. 0.12 0.15 0.09 0.00 0.01 

Indonesia 0.11 0.19 0.09 0.00 0.03 

Australia 0.10 0.01 0.09 0.44 0.28 

GVWT for feed crops     

China 0.62 1.83 0.08 0.10 0.17 

USA 0.47 0.03 0.10 2.49 0.60 

Brazil 0.45 0.07 0.02 2.16 0.42 

Argentina 0.26 0.06 0.04 1.78 0.52 

Japan 0.17 0.52 0.11 0.00 0.01 

Netherlands 0.15 0.48 0.17 0.20 0.20 

Mexico 0.11 0.31 0.04 0.01 0.06 

Spain 0.10 0.39 0.14 0.02 0.07 

Korea Rep. 0.10 0.30 0.10 0.00 0.03 
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Table 6: Eigenvector and degree centrality of blue water trade and degree centrality of GVWT. 

Countries 

Eigenvector 

centrality of  

Blue water 

trade 

In-degree centrality Out-degree centrality 

Volume of 

GVWT 

Connection of 

GVWT 

Volume of 

GVWT 

Connection of 

GVWT 

GVWT for food crops     

Pakistan 0.63 0.05 0.10 0.33 0.56 

UAE 0.38 0.12 0.17 0.01 0.12 

Iran 0.27 0.22 0.10 0.01 0.05 

USA 0.22 0.14 0.16 1.64 0.74 

Kenya 0.19 0.06 0.15 0.00 0.04 

Afghanistan 0.17 0.04 0.03 0.00 0.00 

Saudi Arabia 0.17 0.34 0.20 0.00 0.04 

Thailand 0.16 0.05 0.11 0.66 0.65 

India 0.16 0.07 0.13 0.24 0.47 

Mozambique 0.13 0.04 0.09 0.00 0.02 

South Africa 0.11 0.11 0.11 0.01 0.07 

Mexico 0.11 0.23 0.03 0.02 0.08 

Iraq 0.10 0.17 0.10 0.00 0.00 

Philippines 0.10 0.21 0.09 0.00 0.00 

Oman 0.10 0.03 0.11 0.00 0.03 

GVWT for feed crops     

USA 0.70 0.03 0.10 2.49 0.60 

China 0.49 1.83 0.08 0.10 0.17 

Japan 0.38 0.52 0.11 0.00 0.01 

Mexico 0.26 0.31 0.04 0.01 0.06 

Korea Rep. 0.16 0.30 0.10 0.00 0.03 

Taiwan 0.12 0.19 0.07 0.00 0.04 

 

Table 7: Water resource and virtual water use for production and exporting crops. 

Exporters 

Water resource 

(Gm³) 
VWU* for crop 

production (Gm³/yr) 

VWE* by crop 

trade (Gm³/yr) 

Proportion of 

VWE* (%) 

Internal 

(1) 

External 

(2) 

Green 

water 

(3) 

Blue 

water 

(4) 

Green 

water 

(5) 

Blue 

water 

(6) 

{(5)+(6)} 

/(1) 

{(5)+(6)} 

/{(3)+(4)} 

ARGENTINA 276 538 140.6 1.2 90.5 0.4 32.9 64.1 

BRAZIL 5,418 2,815 213.5 0.1 92.8 0.0 1.7 43.5 

CANADA 2,850 52 42.5 0.2 28.7 0.1 1.0 67.5 

FRANCE 200 11 34.2 1.6 15.4 0.6 8.0 44.9 

PAKISTAN 55 192 21.2 53.2 3.2 10.6 25.1 18.6 

PARAGUAY 94 242 19.1 0.0 10.4 0.0 11.0 54.2 

RUSSIAN FED 4,313 195 168.5 4.2 33.9 0.5 0.8 19.9 

THAILAND 226 214 59.4 12.1 23.4 4.8 12.6 39.5 

UKRAINE 53 86 48.1 0.7 9.9 0.4 19.4 21.1 

USA 2,818 251 423.7 42.8 162.3 15.0 6.3 38.0 

* VWU: virtual water use 

* VWE: virtual water export 

 


