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Abstract. The theory of travel time and residence time distributions is reworked from the point of

view of the hydrological storages and fluxes involved. The forward and backward travel time distri-

bution functions are defined in terms of conditional probabilities. We explain Niemi’s formula and

show how it can be interpreted as an expression of the Bayes theorem. Some connections between

this theory and population theory are identified by introducing an expression which connects life5

expectancy with travel times. The theory can be applied to conservative solutes, including a method

of estimating the storage selection functions. An example, based on the Nash hydrograph, illustrates

some key aspects of the theory.

1 Introduction

Hydrological travel times have been studied extensively for many years. Various investigators have10

published different aspects of the time of travel (Rodriguez-Iturbe and Valdes (1979), Rinaldo and

Rodriguez-Iturbe (1996), Rodriguez-Iturbe et al. (1999), Rigon et al. (2015)), but the recent work of

Rinaldo and others (Rinaldo et al. (2011), Botter et al. (2011)) started a new branch of the theoretical

framework, which is the focus of the present work. In particular, Botter et al. (2010) and Botter

et al. (2011) introduced a newly formulated storage selection function (called SAS by them, but15

denoted as SSF here) related to the backward probability density function (pdf) of the water age or

travel-time distribution. Although the concept of the SSF was introduced previously, aspects of the

relationship between backward and forward pdfs remain unclear in the literature. Furthermore, older

applications of the SSF mostly assumed the simplest case of complete mixing within a watershed or

control volume of study. Others (van der Velde et al. (2012),Benettin et al. (2013) Benettin (2015),20

Harman (2015b)) introduced a new form of the SSF and the age-ranked distribution of water and
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associated compounds. First, van der Velde et al. (2012) made the SSF a function of the residence

time PDFs using actual time, rather than using the “injection time”. Subsequently, Harman (2015b)

reformulated the SSF to be a function of the watershed storage and actual time.

These were valuable advances to the theory, but the literature remains obscured by different termi-25

nologies and notations, as well as model assumptions that are not fully explained. Thus there remains

a need for theoretical developments that are clearly explained and developed using a consistent set

of notations. Questions also remain about how to apply the theory of age-ranked distributions in

terms of the model form and parameter estimation. Harman (2015b) noted the importance of select-

ing an appropriate SSF, but until very recently ((Harman, 2015a)) there was no proposed method for30

selecting the form of an SSF and estimating it from available data. Selection of a SSF for a given

watershed remains a topic of importance, because it should not be imposed arbitrarily.

Here, we explore some complex cases of the SSF that are consistent with the theoretical advances

and can be estimated from available data in some watersheds. In the following sections, the theory

to date is reviewed and synthesized into a framework with consistent notation. This alone will ad-35

vance the reader’s understanding of how to solve the travel-time distribution problem. The SSF is

also defined within the theoretical framework, and the concepts of forward and backward PDFs are

fully explored. These conceptual developments are followed by improved methods for selecting the

appropriate form of a SSF and estimating its parameters. Guidance for hierarchical approaches to

parameter estimation is given based on available data. Finally, the proposed framework and methods40

are illustrated using data from experimental watersheds.

2 Definitions of age-ranked quantities

Residence time, travel time and life expectancy of water and associated constituents flowing through

watersheds are three related quantities whose meaning is well defined by the following equation:

T = (t− τ)︸ ︷︷ ︸
Tr

+(ι− t)︸ ︷︷ ︸
Le

(1)45

where T [T] ([T] means time units) is the travel time, t [T] is the actual time measured by a clock, τ

[T] is the injection time (i.e., the time in which a certain amount of water enters the control volume)

and ι [T] is the exit time (i.e., the time in which a certain amount of water exits the control volume).

Based upon these definitions, Tr := t− τ [T] is the so called residence time, or the age of water

entered at time τ , and Le := ι− t [T] is the life expectancy of the same water molecules which are50

inside of the control volume.

Consider, for example, a control volume as the one shown in figure 1. Its (bulk) water budget is

written as:

dS(t)
dt

= J(t)−Q(t)−AET (t) (2)
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Figure 1. A single control volume is considered in which the fluxes are the total precipitation, evapotranspira-

tion and discharge.

where S(t) [L3] is the time evolution of the water storage, ([L] denotes length units), but instead55

of volume, we can measure the storage either as mass, or a depth of water [L] (volume per unit area),

J(t) is the precipitation, usually a given (measured) quantity, while the discharge and the actual

evapotranspiration, Q(t) and AET (t), are modeled. Common simple estimates for the two latter

quantities are:

Q(t) =
1
λ
Sb(t) (3)60

and

AET (t) =
S(t)
Smax

E(t) (4)

where λ [T ] and b are the parameters of the non-linear reservoir model, Smax is the maximum water

storage and E(t) is the potential ET, temporal function of the radiation inputs and atmospheric

conditions. Assuming that radiation and various parameters used to model Q and AET are given,65

eq.(2) can be solved and S(t) obtained. If b= 1 the budget is a linear ordinary differential equation,

and its solution is analytical as in Coddington and Levinson (1955); otherwise, the solution can be

obtained through an appropriate numerical solver (e.g. Butcher (1987)).

Being interested in knowing the age of water we need to consider a more general set of equations.
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Assume that the water storage S(t) can be decomposed in its sub-volumes s(t,τ) [L3 T−1] which70

refer to water injected into the system at time τ . Thus:

S(t) =

t∫

0

s(t,τ)dτ (5)

where the initial time t= 0 comes before any input into the control volume. Analogously, Q(t) [L3

T−1] is the discharge out of the control volume, and q(t,τ) [L3 T−2] is the part of the discharge

exiting the control volume at time t composed of water molecules that entered at time τ :75

Q(t) =

t∫

0

q(t,τ)dτ (6)

Actual evapotranspiration, AET (t) [L3 T−1], is the sum of its parts aeT (t,τ) [L3 T−2] as:

AET (t) =

t∫

0

aeT (t,τ)dτ (7)

Finally, let J(t) [L3 T−1] denote the input to the control volume. This input can have an "age", and

therefore, it can be defined80

J(t) =

t∫

0

j(t,τ)dτ (8)

All these bivariate functions of t and τ , s(t,τ), q(t,τ), and aet(t,τ) are null for t < τ and can present

a derivative discontinuity at the origin (t= τ ) . Given the above definitions, we can rewrite the water

budget as a set of age-ranked budget equations:

ds(t,τ)
dt

= j(t,τ)− q(t,τ)− aeT (t,τ), (9)85

These equations were introduced first by van der Velde et al. (2012) and named by Harman (2015b).

3 Backward and forward approaches

"Backward" and "forward" are well known concepts in the study of travel time distributions. They

were firstly introduced by Niemi (1977), Cornaton and Perrochet (2006), to cite few, and recently

refined by Benettin (2015). Benettin (2015), in particular, related the concept of backward to the90

travel times analysis and forward to the life expectancy analysis. However, according to us, these

previous works didn’t fully disclose the inner meaning of the two concepts. In fact, in our theory, the

probabilities are defined as backward when they "look" in time to the history of water molecules and

forward when they "look" in time till their exit from the control volume. According to the previous

statements, we can define a backward travel time probability, which is conditioned to t and "looks"95

backward to τ , and a forward travel time probability, which is conditioned to τ and "looks" forward
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to t. In the same way, we can define a backward life expectancy probability, which is conditioned to

ι and "looks" backward to t, and a forward life expectancy probability, which is conditioned to t and

"looks" forward to ι. All these concepts will be better clarified in the following sections.

4 Backward Probabilities100

Based on the previous definitions, it is easy to define the pdfs of the residence time, travel time and

evapotranspiration time. In particular, the pdf of residence time conditional on the actual time t,

p(Tr|t), can be defined as:

p(Tr|t)≡ p(t− τ |t) :=
s(t,τ)
S(t)

[T−1] (10)

where "≡" means equivalence, and ":=" a definition. Benettin (2015) denoted p(Tr|τ) as←−p (Tr, t)105

but since this probability density is conditional to the actual time, standard probability notation is

clear and unambiguous.

It is evident that this probability is time variant, since the integral in equation (1) that gives S(t)

stops at the actual time t.

The pdf of travel time for water exiting the control volume as discharge, pQ(t−τ |t), can be defined110

as:

pQ(t− τ |t) =
q(t,τ)
Q(t)

[T−1], (11)

Eventually, the pdf of travel time for water exiting the control volume as water vapor, pET (t− τ |t),

can be defined as:

pET (t− τ |t) =
aeT (t,τ)
AET (t)

[T−1], (12)115

It is also possible to define the mean age of water for any of the two outlets, which is given by:

〈Tr(t)〉i =

t∫

0

(t− τ)pi(t− τ |t)dτ (13)

for i ∈ {Q,ET }, which is a function of the sampling time.

After the above definitions, the age-ranked equation (9), can be rewritten as:

d

dt
S(t)p(Tr|t) = J(t)δ(t− τ)−Q(t)pQ(t− τ |t)−AEt(t)pET (t− τ |t) (14)120

when a single "new water" injection of mass is considered, and the bulk quantities S(t), Q(t),

AET (t) are known as soon as the bulk water budget, equation (2), is solved. The travel time proba-

bilities on the right side of (14) are not known. Consequently Botter et al. (2011) introduced a storage

selection function, ω(t,τ) [-], for each of the outputs, so that:

pQ(t− τ |t) := ωQ(t,τ)p(Tr|t) (15)125
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and:

pET (t− τ |t) := ωET (t,τ)p(Tr|t) (16)

Therefore equation (14), after the proper substitutions, becomes:

d

dt
S(t)p(Tr|t) = J(t)δ(t− τ |t)−Q(t)ωQ(t,τ)p(Tr|t)−AEt(t)ωET (t,τ)p(Tr|t) (17)

Once assigned the ω(t,τ) values on the basis of some heuristic, as in Botter et al. (2011), equation130

(17) represents a linear ordinary differential equation and can be solved exactly as:

p(Tr|t) = e−
∫ t
τ
g(x,τ)dx

[
p(0|t) +

t∫

τ

J(y)δ(y− τ)
S(y)

e
∫ t
τ
g(x,τ)dxdy

]
(18)

where :

g(x,τ) =
1

S(x)

[
dS(x)
dt

+Q(x)ωQ(x,τ) +AEt(x)ωET (x,τ)
]

(19)

and p(0|t) is the initial condition. Figures 2 and 3 show, respectively, a representation of P (Tr|t),135

as function of t (so it does not integrate to one), and of p(Tr|t), obtained by considering three

different injection times, named generically τ1, τ2 and τ3, and assuming ωQ(t,τ) = ωET (t,τ) =

1. In particular, what is evident from figure 2 is that for those time intervals in which J(t) = 0,

P (Tr|t) = const. In fact, if we consider ωQ(t,τ) = ωET (t,τ) = 1, equation (17) is simplified in:

d

dt
S(t)p(Tr|t) =−Q(t)p(Tr|t)−AEt(t)p(Tr|t) (20)140

and, therefore,

dp(Tr|t)
dt

=−p(Tr|t)
S(t)

[
dS(t)
dt
−Q(t)−AEt(t)

]
= 0 (21)

Figure 4 shows the evolution of p(Tr|t) with the actual time t, obtained for the same three injection

times. The integral of the area under the curves, in this case, is not equal to 1 and the three functions

shown in the figure are not pdfs.145

5 Forward Probabilities

Consider again the budget age-ranked equation (9) in its integral form:

s(t,τ) = J(τ)−
t∫

0

q(t,τ)dt−
t∫

0

aeT (t,τ)dt (22)

It can be rewritten as a probability conditional to τ :

P [t− τ |τ ] := 1− s(t,τ)
J(τ)

=
VQ(t,τ)
J(τ)

+
VET (t,τ)
J(τ)

(23)150
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Figure 2. Representation of the backward cumulative distribution function for three injection times (τi, where

i = 1,3), as varying with the actual time t
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Figure 3. Representation of the evolution of the backward pdf as varying with the injection time τ .
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Figure 4. Representation of the evolution of the backward pdf versus the actual time t. In this case, the area

below the curves is not equal to 1.

having defined:

VQ(t,τ) :=

t∫

0

q(t,τ)dt (24)

and

VAET (t,τ) =

t∫

0

aeT (t,τ)dt (25)

P [t− τ |τ ], as shown in figure 5, varies (with t), as expected, between 0 and 1 and has density:155

p(t− τ |τ) =− 1
J(τ)

ds(t,τ)
dt

=
q(t,τ)
J(τ)

+
aeT (t,τ)
J(τ)

(26)

It can be observed instead that:

F(t− τ |τ) :=
VQ(t,τ)
J(τ)

(27)

and

G(t− τ |τ) :=
VET (t,τ)
J(τ)

(28)160

are not probability functions, because, their asymptotic value is not 1. Because the forward prob-

abilities are derived, in the case we are describing, on empirical bases from the budgets terms, and
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0.00

0.25

0.50

0.75

1.00

Time

Fo
rw

ar
d 

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n,
 P

[t-
τ|
τ]

Figure 6. Representation of the forward probability of the outputs: in pink the relative storage, s(t,τ), in light

blue the output probability, P [t− τ |τ ] and in red the relative discharge function F , defined in the text. The

difference between P [t−τ |τ ] and F is the function G, defined in the text. The green dashed line represents the

generic instant t, after which P [t− τ |τ ] and F are unknown.

not assumed apriori, their complete shape is known only at t→∞. For any finite time the actual

knowledge we have, is better represented in Figure 6, which shows that the progress of the three

curves P , F and G is unknown for future times.165
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What is necessary to normalize F and G and define therefore probabilities function is the asymp-

totic value of the partition coefficient among the two fluxes:

Θ(τ) := lim
t→∞

Θ(t,τ) := lim
t→∞

VQ(t,τ)
VQ(t,τ) +VET (t,τ)

(29)

Then, it is easy to show that:

pQ(t− τ |τ) :=
q(t,τ)

Θ(τ)J(τ)
(30)170

and

pET (t− τ |τ) :=
aeT (t,τ)

(1−Θ(τ))J(τ)
(31)

are the forward probabilities density function of discharges and evapotranspiration, which properly

normalize to 1 when integrated over t. The missing knowledge of Θ at any finite time, obviously

does not prevent to know the actual state of the system, which is obtained by solving the budget175

equation. More information and details on this partition coefficient are provided in Appendix A.

6 Niemi’s relation

As a results of definitions made in sections (4) and (5) there exist two relations involving q(t,τ),

i.e. equations (11) and (30), and aeT (t,τ), i.e. equations 12 and 31. Equating the correspondent two

expression, it results:180

Q(t)pQ(t− τ |t) = Θ(τ)pQ(t− τ |τ)J(τ) (32)

and:

AET (t)pET (t− τ |t) = [1−Θ(τ)]pET (t− τ |τ)J(τ) (33)

The above relations are known in literature as Niemi’s relations or formulas, after Niemi (1977) and

also reworked by Botter et al. (2010).185

Dividing, for instance (32), for the total volume of water:

S =

∞∫

0

J(τ)dτ =

∞∫

0

Q(t) +AET (t)dt (34)

and observing that:

p(τ) :=
J(τ)
S

(35)

can be considered the marginal pdf of the injection times, and:190

pQ(t) :=
Q(t)

Θ(τ)S
(36)
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the marginal pdf of the outflow as discharge, Niemi relation becomes:

pQ(t− τ |t)pQ(t) = pQ(t− τ |τ)p(τ) (37)

which has the form of the well known Bayes theorem. More than being of some practical utility, this

shows that the interpretation of the backward and forward probabilities as conditional ones is fully195

consistent. On the other hands, this reveals that the joint probability of Tr and t is:

p(Tr, t) = pQ(t− τ |t)p(t) = pQ(t− τ |τ)p(τ) (38)

Following what written in section 5 there should be a working Niemi’s relation for any finite time

t, which does not require the knowledge of the asymptotic value Θ(τ). This can be easily derived

after having defined:200

g(t− τ |τ) :=
aet(t,τ)
J(τ)

≡ dG
dt

(39)

and

f(t− τ |τ) :=
q(t,τ)
J(τ)

≡ dF
dt

(40)

From these definitions, it is trivially:

q(t,τ) = f(t− τ |τ)J(τ) (41)205

and

aet(t,τ) = g(t− τ |τ)J(τ) (42)

and, therefore,

Q(t)pQ(t− τ |t) = f(t− τ |τ)J(τ) (43)

for discharges and210

AET (t)pAET (t− τ |t) = g(t− τ |τ)J(τ) (44)

for evapotranspiration.

These relations become useful when the backward probabilities are the known quantities (up to

time t) and can be used to obtain the forward functions, f and g. As a by product, the SSF and the

forward functions are also shown to be related, because, for instance, for the discharges is, for any215

time t:

f(t− τ |τ) =
Q(t)ωq(t,τ)p(t− τ |t)

J(τ)
(45)
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7 Residence times, travel times and life expectancy

The forward probabilities can be put in relation with the life expectancy, i.e. the expected time the

water molecules remain in the storage, and their probability.220

In the control volume, we can conceptually denote the subsets of the storage which contains the

water molecules expected to exit at time ι as:

sι(t, ι) (46)

Analogous to what was done before, we can observe that the quantity

pι(ι− t|t) :=
sι(t, ι)
S(t)

(47)225

has the structure of a probability density function once integrated over all ι-s, and it is reasonable to

call it the probability density of storage-life expectancy for particles in the control volume at time t.

Based on equation (1) for any t:

p(T |t) = pι(ι− t|t) ? p(t− τ |t) (48)

where ? indicates convolution among the probability density functions.230

However, pι(ι− t|t) can also be related to the forward probabilities discussed in the previous sec-

tion. In fact, it can be observed that the probability of storage-life expectancy satisfies the following

relation with the age-ranked forward quantities:

sι(t, ι) =

t∫

0

[q(ι,τ) + aet(ι,τ)]dτ =

t∫

0

[Θ(τ)pQ(ι− τ |τ) + (1−Θ(τ))pAEt(ι|τ)]J(τ)dτ (49)

The integral spans the time interval up to t because we are considering the storage at this time. In (49)235

the first equality says that the life-storage at time time is equal to the water injected at time τ which

is expected to exit as discharge or evapotranspiration at time ι, integrated over all τs. This integral is

not effectively known, at time t, because, what is happening between time t and ι is unknown, and

so the pdfs (as in Figure 6), unless they are specified from some educated guess, as made in the last

section of this paper. Then, it follows:240

p(ι− t|t) =

∫ t
0

[Θ(τ)pQ(ι− τ |τ) + (1−Θ(τ))pAEt(ι|τ)]J(τ)dτ
S(t)

(50)

Thus, either as a convolution (i.e. as in equation (48)) or as related to forward probabilities, (i.e.

as in equation (50)), the relation between the storage-life expectancy and the previously introduced

backward and forward probabilities, is mediated by an integral.

8 Passive and reactive solutes245

The formalism developed in section 2 to 6 is applicable, in principle to any substance, say indicated

by a superscript i. Therefore we have a bulk budget equation for substance i, and age-ranked budget
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for the same substance:

dSi(t)
dt

= J i(t)−Qi(t) (51)

and250

dsi(t)
dt

= ji(t,τ)− qi(t,τ) (52)

which represent trivial extensions of equations (2) and (9), where for making the illustration sim-

pler, we have neglected evapotranspiration, which will be re-introduced eventually. However, if the

substance is diluted in water, it is usually treated as concentration in water (either in term of mass,

moles or volume). Because we have various terms in the equations, concentrations are possibly as255

many as the terms that appear. In this case, three:

CiS(t) :=
Si(t)
S(t)

(53)

for the concentration in storage;

CiJ(t) :=
J i(t)
J(t)

(54)

for concentration in input;260

Ci(t) :=
Qi(t)
Q(t)

(55)

for discharges. The latter is actually the one which is usually covered by literature, since it is the one

measured at the outlet of a control volume/catchment. For the solute discharge, in fact, it is usually

assumed the validity of an integral expression like:

Qi(t) =

t∫

0

Θ(t)p(t− τ |τ)J i(τ)dτ (56)265

with the usual interpretation of the symbols, and where the i has been dropped from the probability

distribution function, assuming that a passive solute moves like water does. Dividing (56) by the

water discharge, it is obtained:

Ci(t) =

t∫

0

p(t− τ |τ)
Q(t)

J i(τ)dτ (57)

and, finally, applying the Niemi’s formula:270

Ci(t) =

t∫

0

p(t− τ |t)J
i(τ)
J(τ)

dτ =

t∫

0

p(t− τ |t)CiJ(τ)dτ (58)

Therefore the concentration of the passive solute in discharge is known once the concentration of

the solute in input is known together with the backward probability [Rinaldo et al. (2011)]. The
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concentration estimated in this way groups substance injected at any time, in agreement with the

measure practice. When a sample is taken, the action implies perfect mixing of all the age-ranked275

water and their load of substance. The bulk substance budget can instead be written as:

dSi(t)
dt

= J i(t)−Qi(t) = J i(t)−Ci(t)Q(t) (59)

and the missing concentration CiS(t) can be easily estimated with the help of (53) since S(t) is also

known.

However, the age-ranked formalism can be used to understand a little more about the processes280

in action. Starting from the quantities that appear in equation (52), the backward probability can be

defined as:

pi(t− τ |t) :=
si(t,τ)
Si(t)

(60)

and analogous definitions (e.g. equation 11) can be given for the discharge and the inputs, such as to

obtain, after the appropriate substitutions:285

d

dt
Si(t)p(t− τ |t) = J i(t)piJ(t− τ |t)−Qi(t)ωQ(t,τ)p(t− τ |t) (61)

which is the master equation (equation 17) for the substance i. Many of the superscripts i where

dropped, accordingly to the fact that the i-substance is a passive tracer (i.e., it behaves like water).

Surprisingly, in (61) all the quantities are known, either because solution of the solute budget (51) or

the water master equation (equation 17), or a known input (J(t)). The only quantity that is unknown290

(and usually guessed) is the SSF ωQ(t,τ). However, (61) and (17) can be seen as two coupled

equations, in p(t−τ |t) and ωQ(t,τ) and we can conclude that the SSF cannot be arbitrarily imposed,

but viceversa, derived.

From a practical point of view there could be some obstacles in the correct determination of the

SSF, because, the distribution of the input of the substance can be unknown. In this case (61) can be295

used to back-trace the the passive solute injection, after educated guesses on the SSF.

For sake of simplicity we neglected evapotranspiration. However, now that the concepts are hope-

fully fixed, we can observe that AET re-introduction back brings in the formalism a second SSF,

which remain undetermined. Various closures can be chosen to overcome this fact. For instance, it

can be assumed ωQ(t,τ) = ωET (t,τ). Nevertheless the main experimental way to determine would300

be to find a second passive tracer transported trough vegetation. In this case, if a third equation,

similar to (61), but containing evapotranspiration, would hold, it would permit the determination of

the missing SSF coefficient.

Finally, reactions that transform the substance i into another or fix it to the matrix, can be seen as a

further output. If, for instance, we assume that the rate of decreasing of a substance due to chemical305

reactions follows a first order kinetic, independent from τ , then this output (to be subtracted from,

for instance, equation 61), could be:

ri(t,τ) := k1(si(t,τ)− k2s
i
eq) (62)
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where k1 and k2 are suitable reaction’s constants and sieq represents an equilibrium storage. Whilst

more complex type of reactions can be envisioned, this type of reaction (or sink term), being linear,310

do no alter the essential traits of the theory described above.

9 An example of the other way around

With the scope to further clarify the formalism, we assume in this section that the forward pdfs

introduced in the previous sections are assigned. To this scope we use the concept of linear reservoir,

which has a long history in surface hydrology, Dooge (2003).315

Let’s consider first just only one outflow.

The bulk equation for the water budget of a single linear reservoir is:

dS(t)
dt

=
n∑

τ=1

Rτ −
1
λ
S(t) (63)

where it has been assumed, for simplicity, that J(t) =
∑n
τ=1Rτ , i.e. that the precipitation is

accounted as a sequence of instantaneous impulses at different times τs. It is also, by definition320

of the linear reservoir:

Q(t) =
1
λ
S(t) (64)

where λ [T] is the mean travel time in the reservoir. If this is the case, the age-ranked water budgets

can be written as:

ds(t,τ)
dt

=Rτδ(t− τ)− 1
λ
s(t,τ) (65)325

where it is

q(t,τ) =
1
λ
s(t,τ) (66)

Equation (65), after integration over τ reduces to equation (63). By definition, it is s(t,τ) = 0 for

t < τ and the solution, for t > τ is well known as:

s(t,τ) =Rτe
τ−t
λ (67)330

The equivalent solution, for S(t) gives:

S(t) =

t∫

τ

Rτe
−(t−τ)/λdτ (68)

and the backward probability can be written, then as:

p(t− τ |t) =
Rτe

t−τ
λ

∫ t
τ
Rτe−(t−τ)/λdτ

(69)
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If, and only if, Rτ = const the probability simplifies, and it is time invariant, i.e. dependent only335

on the residence time Tr = t− τ . Please, notice that, in this case we did not appeal to equation (17)

to estimate the backward probability but we could use directly definitions in equation (69).

Because discharge is just linearly proportional to the storage, it is easy to show that pq(t− τ |t) =

p(t−τ |t) and, therefore, in this case, ω(t,τ) = 1. This shows that the linear reservoir case, where for

all injection times the mean residence time is equal (to λ), the SSF function is necessarily unitary.340

However, a more general case, can be set if the mean residence time is a function of τ , meaning that

equation (65) can be modified into:

ds(t,τ)
dt

=Rτδ(t− τ)− 1
λτ
s(t,τ) (70)

and its solution for t > τ is the same as (67), but with λ muted into λτ . However, due to the depen-

dence of λτ on the injection time, the SSF is not anymore a constant, being equal to:345

ωQ(t,τ) :=
pq(t− τ |t)
p(t− τ |t) = λ−1

τ

∫ t
τ
Rτe

−(t−τ)/λτ dτ
∫ t
τ
λ−1
τ Rτe−(t−τ)/λτ dτ

= λ−1
τ

∫ t
τ
Rτe

+τ/λτ dτ
∫ t
τ
λ−1
τ Rτeτ/λτ dτ

(71)

This seems to suggest that imposing the characteristics of the pdf could completely determine the

ωQ(t,τ). Viceversa as already known, assigning ωQ(t,τ) from some heuristic, obviously, would

determine a mean residence time dependence on the injection time.

Non trivial ω(t,τ) can also derive from assuming as a model for discharge a sequence of linear350

reservoir, as in the so called Nash model, Dooge (2003). Without entering in details, a sequence

of linear reservoirs implies that just le last reservoir maintain a linear relation between storage and

outflow. Instead a nonlinear relationship exists between the whole storage and the same outflow,

implying also a nonlinear SSF.

Using non-linear reservoirs does not allow to obtain semi-analytical results, but the fact suitably355

tuning the parameters of each age-ranked equation that control the mean residence time affects the

form of the SSF cannot change, as is also suggested by arguments below.

Other aspects come into play when the outputs are multiple. Expanding the previous linear case

to include evapotranspiration, the bulk equation, under liner hypothesis becomes:

dS(t)
dt

=
n∑

τ=1

Rτ −
(

1
λ
− aet(t)

)
S(t) (72)360

where, the further assumption made is that the actual evapotranspiration is equal to:

AET (t) = S(t)aet(t) (73)

with a linear dependence on the soil water content, as for instance in Rodriguez-Iturbe et al. (1999).

The equations of water budget for the generations becomes then:

ds(t,τ)
dt

=Rτδ(t− τ)−
(

1
λτ

+ ae(t,τ)
)
s(t,τ) (74)365
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where the bivariate dependence of ae(t,τ) on the actual time and the injection time can be justified

by arguing that, being the water of different ages not perfectly mixed in the control volume, plants

roots sample water of different ages in different modes, according to spatial arrangements. Since the

above equation (74) remains a linear ordinary differential equation, it is exactly solvable, and:

s(t,τ) =Rτe
−Λ(t,τ) (75)370

where:

Λ(t,τ) :=

t∫

τ

(
1
λτ

+ ae(t′, τ)
)
dt′ (76)

and:

S(t) =

t∫

0

Rτe
−Λ(t,τ)dτ (77)

Notably, soon as the outflows terms are expressible as a function of the storage multiplying the375

age-ranked storage:

q(t,τ) + aet(t,τ) = µ(t,τ)s(t,τ) (78)

the problem remains linear and analytically solvable. The quantity µ(t,τ) is usually called age and

mass-specific output rate, Calabrese and Porporato (2015). Solving equation (74) it is not even nec-

essary to show that:380

ωET (t,τ) 6= 1 (79)

The latter condition is regained if and only if aet(t,τ) = aet(t), i.e. it depends only on the current

time (which is a condition which requires the perfect mixing of aged waters). In fact, in case a

dependence on τ remains, then, trivial algebra says that:

pET (t− τ |t) =
ae(t,τ)s(t,τ)∫ t

τ
ae(t,τ)s(t,τ)dτ

(80)385

which implies:

ωET (t,τ) :=
pET (t− τ |t)
p(t− τ |t) =

ae(t,τ)
∫ t
τ
Rτe

−Λ(t,τ)

∫ t
τ
ae(t,τ)S(t,τ)dτ

(81)

Obviously these results, obtained by imposing a travel time probability, can be inconsistent with

tracers results, because both approaches pretend to establish what ωs are. However, this proves that

the theory is falsiable.390
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10 Conclusions

This paper reworked the concepts of the travel time and residence time distributions theory, trying,

first of all, to clarify the notation and unify concepts between previous related works. This was

necessary to the obtain understanding of the theoretical framework, which was in some aspects still

unclear. The theory in terms of age-ranked storages and fluxes was reworked to obtain a form of the395

master equation, which allows an easy computation of the backward pdfs.

The relationship between the backward and forward formulation was clarified better defining and

discussing the role of the partition coefficient between the two outputs, discharge and evapotran-

spiration. The importance of a correct estimate of the partitioning coefficient is a key point in the

description of the watershed processes, as explained in the appendix.400

Niemi’s relationship was rederived usign our new definitions, obtaining the Bayes theorem. The

consistency of the interpretation of the backward and forward pdfs as conditional ones was demon-

strated.

To complete the theory, the life expectancy pdf was also defined in two different ways, through

the convolution among the residence time and travel time pdfs and in relation with the forward pdfs.405

Some aspects connected with the predictability of life expectancy were singled out and discussed.

The extension of the theory to any passive substance diluted in water, showed how the SSF func-

tion can be determined by appropriate use of tracers. In fact, a new form of the master equation, in

case of the passive solutes, was obtained to be coupled with the master equation of water, showing

that the SSF functions cannot be imposed arbitrarily. This latter achievement clearly opens the way410

to new developments of the theory and applications of tracers.

Finally the abstract theory of age-ranked reservoirs was analyzed through the use of linear reser-

voirs, which hopefully clarifies the meaning and utility of SSFs for travel time analysis.

Appendix A: Symbols, Acronyms, and Notation

A1 The partition coefficient Θ415

Θ(τ) has been introduced to complete the algebra of probabilities, in presence of more that one

outflow. However studying it is important by itself, because it summarizes the relevant element of

hydrologic fluxes partition.

The first plot in figure 7 shows a time-series of Θ(τ) values obtained from a single injection

time, using data from the Posina River generated from the simulation of the hydrological budget420

reported in Abera et al. (a) and Abera et al. (b). At the beginning Θ(t,τ) (figure 7, top) shows large

oscillations due to hourly and daily oscillations, especially in evapotranspiration. Because Θ(t,τ)

is defined through integrals, these oscillation are progressively dumped and become irrelevant after
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Symbol Name Units

t actual time T

τ injection time T

ι exit time T

Tr travel time T

Le life expectancy T

S(t) volume of water stored in a control volume L 3

J(t) rainfall rates L 3 T −1

Q(t) discharge L 3 T −1

AET actual evapotranspiration L 3 T −1

λ coefficient of the non-linear reservoir model T

b exponent of the non-linear reservoir model −
Smax maximum value of the storage L 3

s(t,τ) age-ranked water storage L 3 T −1

j(t,τ) age-ranked rainfall rate L 3 T −2

q(t,τ) age-ranked discharge L 3 T −2

aeT (t,τ) age-ranked evapotranspiration L 3 T −2

p(Tr, t) residence time backward pdf −
pQ(t− τ, t) travel time backward pdf −
pET (t− τ, t) evapotranspiration time backward pdf −
ωQ(t,τ) SSF for discharge −
ωET (t,τ) SSF for evapotranspiration −
Θ(t) partitioning coefficient −
P (t− τ,τ) residence time forward probability function −
p(t− τ,τ) residence time forward pdf −
pQ(t− τ,τ) travel time forward pdf −
pET (t− τ,τ) evapotranspiration time forward pdf −
VQ(t,τ) time integral of the age-ranked discharge L 3 T −1

VAET (t,τ) time integral of the age-ranked evapotranspiration L 3 T −1

F(t− τ |τ) relative discharge function −
G(t− τ |τ) relative evapotranspiration function −
pι(ι− t, t) life expectancy forward pdf −
Rτ instantaneous rainfall impulses L 3 T −2

CiS(t) concentration in storage −
CiJ(t) concentration in input −
CiQ(t) concentration in discharge −
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Figure 7. Variation of the partitioning coefficient in time, for a single injection time: after a time scale of 5

months its oscillation became irrelevant and its value tends to its final value of 0.78

a couple of weeks (when discharge is still higher than baseflow, as appears from the age-ranked

disharge in figure 7, bottom).425

Figure 8 shows twelve different time-series of the partition coefficient: each curve represents the

time evolution of θ(t,τ) obtained considering twelve precipitation events, one for each month of one

year of rainfall data. The highest values of the coefficient (θ(t,τ) = 0.75, in this case, are achieved

during the coldest months of the year, in which the evapotranspiration flux is lower. On the contrary,

smaller θ(t,τ) values were obtained in the summer months, with a minimum in June around 0.25.430

A2 Reproducible research

In order interested researchers can replicate or extend our results, our codes are made available

at https://github.com/geoframecomponents. Instructions for using the code can be found at: http://

geoframe.blogspot.com. All the material, with further information, is also linked at http://abouthydrology.

blogspot.com/search/label/Residence%20time.435

Acknowledgements. The authors acknowledge the Trento University project CLIMAWARE, and the EU project

GLOBAQUA that partially financed this research.

20

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-210, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



0.25

0.50

0.75

1.00

Gen 1994 Apr 1994 Lug 1994 Ott 1994 Gen 1995
Time

P
ar

tit
io

ni
ng

 c
oe

ffi
ci

en
t Θ

January

February

March

April

May

June

July

August

September

October

November

Jan 94 Apr 94 Jan 95 Oct 94 Jul 94 

Figure 8. Evolution of the partitioning coefficient in one year of hourly simulation: the highest value are

achieved in January while the lowest in June.
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