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Abstract. One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm 

energy and maximum 30-min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like 10 

the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with 

rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a characteristic regional and 

seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modelling approach to assess 

simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual 

means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10-minute temporal resolution to 15 

calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-

validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for 

each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression 

equation and the corresponding residues of the regression which are interpolated by ordinary kriging (Regression-Kriging). 

As spatial covariates, a variety of precipitation indicator data has been included like snow depths, a combination product of 20 

hourly precipitation measurements and radar observations (CombiPrecip), daily alpine precipitation (EURO4M-APGD) and 

monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables 

for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with highest 

rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have lowest 

rainfall erosivity. A proportion of 62% of the total annual rainfall erosivity is identified within four months only (June to 25 

September). Highest erosion risk can be expected for July where not only rainfall erosivity but also erosivity density is high. 

In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different 

regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of 

susceptible seasons and regions. 
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1 Introduction 

Soil erosion by water is a major environmental issue in Switzerland which has been measured (Konz et al., 2012, Alewell et 

al., 2014), mapped (Mosimann, 1990; Prasuhn, 2011; Prasuhn, 2012), and modelled (Gisler et al., 2011; Prasuhn et al., 2013) 

extensively. In Switzerland, since the 1950s, soil erosion by water is increasing under arable land (Weisshaidinger & Leser, 

2006) as well as in mountain grasslands (Meusburger & Alewell, 2008). Mosimann et al. (1991) assessed a quantity of up to 5 

20% of all cultivated land in Switzerland to be affected by soil erosion. The costs of soil erosion for Switzerland’s arable 

land were estimated to be about 53 million CHF yr
-1

 (US $55.2 million yr
-1

; Ledermann, 2012). Increasing trends of water 

erosion are predicted for Switzerland under future climate change due to more frequent and heavy precipitation during winter 

month (Fuhrer et al., 2006). Trends towards increasing rainfall erosivity are already observable in the months May to 

October (Meusburger et al., 2012).  10 

Rainfall has direct impacts on soil mobilization by processes like rapid wetting or splash and runoff effects and is, therefore, 

one of the main driving forces of water erosion. The R-factor, as one of the five soil erosion risk factors (rainfall erosivity, 

soil erodibility, slope steepness and length, cover management, and support practices) of the Revised Universal Soil Loss 

Equation (RUSLE) (Renard et al., 1997; Foster et al., 2008) expresses the impact of rainfall on soils in form of rainfall 

erosivity. The RUSLE is widely used for calculating soil loss, but each of the 5 factors also has an essential message on its 15 

own. For instance, besides being an important driving factor of soil erosion, the R-factor can also be used to conclude on soil 

vulnerability, flood hazard, natural hazards, or probability of droughts (Panagos et al., 2015).  

Previously published studies on rainfall erosivity in Switzerland focused on national seasonal means (Panagos et al., 2015) 

or regional annual means (Friedli, 2006; Gisler et al., 2011; Meusburger et al. 2012; Prasuhn et al., 2013;). Since Switzerland 

has a high spatial climate variability (humid continental to oceanic climate; Köppen, 1936), seasonal and temporal variations 20 

of the weather are consequential. As such, these spatio-temporal climate variations can be expected to influence patterns in 

the rainfall erosivity. Spatial and temporal patterns of R-factors have not yet been established and mapped for Switzerland 

although Meusburger et al. (2012) already showed the presence of a strong seasonality of the rainfall erosivity for stations 

clustered at different elevation classes in Switzerland. So far the lack of significant spatial covariates impeded the mapping 

of intra-annual rainfall erosivity patterns. The availability of hourly radar rainfall observations for Switzerland (CombiPrecip 25 

data; Sideris et al., 2014) might offer a new possibility for the modelling of rainfall erosivity maps for individual months. 

These spatio-temporal patterns are decisive in combination with spatio-temporal patterns of vegetation cover in order to 

allow for an accurate soil erosion risk assessment and relevant for a monthly and seasonal management of agriculture 

practices and hazard controls. A rather static approach which aggregates either regionally or temporally R-factors like it was 

presented by Meusburger et al. (2012) is not suitable to model the dynamic soil erosion risk on a seasonal scale. 30 

Furthermore, the impact of precipitation on rainfall erosivity can be assessed by determining the monthly erosivity density. 

Here, we aim to assess the spatio-temporal variability of rainfall erosivity in Switzerland by 
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(i) extending the network of gauging stations from Meusburger et al. (2012) to obtain rainfall erosivity events 

for Switzerland 

(ii) producing monthly R-factor maps based on high resolution spatial covariates using a regression-kriging 

approach 

(iii) evaluating the spatio-temporal patterns of the seasonal R-factor dynamics and 5 

(iv) determining the spatio-temporal erosivity density in Switzerland. 

 

2 Material and Methods 

2.1 Rainfall erosivity (R-factor) calculation  

The rainfall erosivity expressed as R-factor in RUSLE is the summation of the total storm energy (E) of an erosive rainfall 10 

event times its corresponding maximum intensity over a time span of 30-minutes (I30) within a certain time period (Brown & 

Foster, 1987). We used the erosive rainfall event thresholds defined by Renard et al. (1997) which were modified by 

Meusburger et al. (2012). The unit rainfall energy (er) (MJ ha
-1

 mm
-1

) for each time interval is expressed as the intensity of 

rainfall (ir) (mm h
-1

) during that time interval. It is calculated by Brown and Foster (1987) as: 

er = 0.29[1 − 0.72 exp(−0.05ir)]                                (1) 15 

The erosive rainfall event erosivity (EI30) (MJ mm ha
-1

 h
-1

) is a product of the unit rainfall energy (er) (Eq. (1)) and its 

maximum rainfall amount within a 30-minutes interval (according to Wischmeier & Smith, 1978): 

EI30 = (∑ ervr
k
r=1 )I30                            (2) 

where vr is the rainfall volume (mm) during a time unit r and I30 is the maximum rainfall intensity within 30-minutes of the 

event (mm h
-1

).  20 

The monthly rainfall erosivity (Rmo) (MJ mm ha
-1

 h
-1

 month
-1

) is the mean of the accumulated event erosivity (EI30) (Eq. (2) 

within a month: 

Rmo =  
1

n
∑ ∑ (EI30)k

mj

k=1
n
j=1                   (3) 

where n is the recorded number of years with the number of erosive events (mj) within a certain month j. k is the index of a 

single event with its corresponding event erosivity.  25 

The event rainfall erosivity was calculated for each station by applying the algorithm of Meusburger et al. (2012) 

(http://eusoils.jrc.ec.europa.eu/themes/r-factor-switzerland-version-2012). The event rainfall erosivity was averaged by 

months to a long-term monthly mean R-factor (Rmo). Originally, the 30-minute maximum rainfall rate (I30) is obtained by 

breakpoint precipitation data which is recorded in intervals of fixed rainfall rates instead of fixed time intervals (Wischmeier 

& Smith, 1978; Hollinger et al., 2002). As stations recording breakpoints are rare in Switzerland, we used records with a 30 

fixed time interval of 10-minutes. Using small time intervals better represents breakpoint data and records the intensity more 

realistic. Longer intervals might underestimate rainfall intensity (Porto, 2016; Panagos et al., 2016a). For time intervals 

shorter than 15 minutes Porto (2016) reported an overestimation compared to the commonly used (EI30)15 (15-minutes 

http://eusoils.jrc.ec.europa.eu/themes/r-factor-switzerland-version-2012
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interval) and proposed a mean conversion factor of 0.97 for all investigated stations in southern Italy. This rather small 

deviation can mainly be explained by the fact, that the maximum intensity of the 10-minute record is upscaled to the whole 

30-minutes increment. To avoid this bias our algorithm uses a 30-minute moving average to identify the maximum I30 and as 

such resembles the original approach of Wischmeier & Smith (1978) to obtain the I30 from “successive increments of 

essentially uniform intensity” (Wischmeier & Smith, 1978). As we are working with the same 10-minute measuring interval 5 

at all 87 stations, no conversion factor was applied to homogenize the data (cf. Agnese et al., 2006; Porto, 2016; Panagos et 

al., 2016a). Usually, snow, snowmelt and rainfall on frozen soil are not assessed in the R-factor (Renard et al.; 1997). Thus, a 

temperature threshold of 0°C was set to obtain only rainfall and exclude snow water equivalents which are subject to 

uncertainty in rainfall erosivity assessments (Leek & Olsen, 2000). Temperature data was measured simultaneous to 

precipitation (for 71 stations) or was directly derived (for 16 stations) from the closest stations (within a distance of less than 10 

20 km) at similar elevation with an hourly resolution. We assumed only minor variation in temperature within that distance 

at a similar elevation level.  

Besides neglecting snow, we did not consider rainfall as hail which is mainly occurring during summer in Switzerland (Nisi 

et al., 2016; Punge & Kunz, 2016). Although, Hurni (1978) investigated the impact of hail on rainfall erosivity for single 

plots in Switzerland and concluded that a water equivalent amount of hail exceeds the one of rainfall, hail erosivity is not yet 15 

considered for this study.  

2.2 Stations 

We extended the gauging station network of Meusburger et al. (2012) (10-minutes measuring intervals) by 23% from 71 to 

an updated dataset of 87 stations (Fig. 1) and upgraded stations by longer time series if available.  

The additional 16 stations were previously investigated for rainfall erosivity by Nogler (2012). On average, the network 20 

represents one station each 22 km. The average distance of one station to all others is 113.6 km by a minimum distance to 

the closest station of 13.2 km and a maximum distance of two stations by 324.6 km. A majority of 72% of all stations (63) 

have recorded data of at least 22 yr. The mean length of observations is 19.5 yr and thus, meet the proposed minimum time-

scale requirements for rainfall erosivity calculations of a 15 yr measuring period (Foster et al. 2008). The stations are well 

distributed and were subject to a quality control (Begert et al., 2005; Nogler, 2012).  25 

2.3 Data and Covariates 

The high intra-annual variability of rainfall erosivity was already discussed in Meusburger et al. (2012), but not be spatio-

temporally mapped. The monthly erosivity mapping in a country with a high proportion of remote Alpine areas requests a 

variety of erosivity influencing covariates. High temporal information on snow cover and snow water equivalents, high 

spatio-temporal information on rainfall and high spatial information on topography are acquired as covariates (Table 1) for 30 

the monthly erosivity maps since rainfall erosivity is mainly controlled by precipitation and relief parameters (Meusburger et 

al., 2012; Panagos et al., 2015; Panagos et al., 2016b).  All spatial covariates have a much higher resolution (spatial and 
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temporal) than datasets used in previously R-factor studies for Europe (Panagos et al., 2015; 2016a) and Switzerland 

(Meusburger et al., 2012) and therefore the R-factor mapping is feasible at a higher spatial and temporal precision. 

The long-term snow depth (derived from mean monthly snow depth by MeteoSwiss) on a monthly resolution was used as an 

approximation for precipitation as snow. The monthly point data of snow depth was regionalized by Inverse Distance 

Weighting. Hourly Swiss CombiPrecip data (geostatistical combination of rain gauge measurements (150 automatic stations) 5 

and three C-band radar observations; Sideris et al., 2014) were aggregated and averaged to a long-term monthly mean. Long-

term mean daily precipitation per month was calculated based on the daily values of alpine precipitation in EURO4M-APGD 

(Isotta et al., 2014). Averaging the monthly spatial precipitation of RhiresM (MeteoSwiss, 2013) over the years leads to 

long-term monthly mean precipitation sums. The variables elevation, slope, and aspect are retrieved from a 2 m Digital 

Terrain Modell (SwissAlti3D) for Switzerland.  10 

2.4 Mapping the seasonal variability of rainfall erosivity in Switzerland 

Hanel et al. (2016) and Angulo-Martínez & Beguería (2009) tested different interpolation methods were tested for Czech 

Republic (Hanel et al., 2016) and the Ebro Basin in Spain (Angulo-Martínez & Beguería, 2009). Both studies could confirm 

that a combination of regression and residual kriging (regression-kriging) is among the most suitable methods to interpolate 

rainfall erosivity. We also used regression-kriging (Hengl et al., 2004; Hengl, 2007; Hengl et al., 2007) to map the monthly 15 

variability of rainfall erosivity in Switzerland. The regression-kriging approach employed on the monthly mean rainfall 

erosivity for each of the 87 stations (Rmo). In a first step a generalized linear regression (GLM) (Gotway & Stroup, 1997)is 

used to establish a regression between Rmo and the high resolution covariates. The GLM relates the rainfall erosivity (target 

variables) to the covariates (Table 1) and predicts rainfall erosivity at the same scale as covariates are available (Odeh et al., 

1995; McBratney et al., 2000). In an second step the residuals of the GLM are interpolated by an ordinary global kriging  20 

(McBratney et al. 2000; Hengl et al., 2004). Finally, the predicted rainfall erosivity by the GLM is summarized with the 

residuals map (established by the kriging procedure). The combination of interpolated Rmo with the spatial variation of its 

residuals enables the quantification of the standard error related to the erosivity mapping.  

Besides the standard error maps, leave-one-out cross-validation (LOOCV) was used as a second quality check of the 

mapping procedure (Efron & Tibishirani, 1997). However, data-splitting reduces the training observations and doesn’t show 25 

the same results by repetition due to bias and randomness (Steyerberg, 2009; Harrell, 2015). In contrast, LOOCV avoids a 

resampling-bias since it omits only one observation from the dataset per run and estimates the model from the remaining n-1 

observations.  It yields the same regression coefficients by repetation due its reproducibility (James & Witten, 2015). In 

contrast, data-split reduces the training observations and doesn’t show the same coefficients due to randomness (Steyerberg, 

2009; Harrell, 2015). To compensate for the low validation subset, the process was repeated 100 times.  30 

A log-transformation of Rmo resulted in a normal distribution of the data. The suitability of each covariate for the GLM was 

determined by an automated stepwise feature selection process according to the Akaike information criterion (AIC). The α-

to-enter significance level for covariate selection was set to 0.1 (Kutner et al., 2005; Gupta & Guttman, 2013). We also 
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tested Least Absolute Shrinkage and Selection Operator (LASSO) as an alternative feature selection method to the stepwise 

GLM, but it was less transparent for evaluation and showed inappropriate residual diagnostics (systematic error). Both, the 

LOOCV stepwise regression, as well as LASSO, were performed in the R-package “caret” (v6.0-68). Outliers (Bonferroni-

adjusted outlier test) and influential observations (Cook’s Distance) were omitted in the stepwise GLM.   

The goodness-of-fit of the model was described by the coefficient of determination (R²), the root mean square error (ERMS) 5 

and the deviance. Regression diagnostics to evaluate the model included normality, non-constant error variance 

(homoscedasticity), multicollinearity (variance inflation factor; vif) and autocorrelation.  

Twelve monthly maps of the long-term mean Rmo were derived by applying the regression equation with the covariates and 

their corresponding coefficients according to the individual monthly regression equation. The residuals of each months’ 

stepwise GLM were interpolated by an ordinary global kriging with a stable variogram model and added to the Rmo maps in 10 

ESRI ArcGIS (v10.2.2.) afterwards.  

Each monthly map is subject to an individual GLM. Therefore, a subset of individual covariates explains rainfall erosivity 

for each month separately. An averaging of three monthly maps leads to long-term seasonal mean R-factor (Rseas) maps for 

Switzerland with high spatial resolution. In addition, the sum of all 12 maps results in an updated (compared to Meusburger 

et al., 2012) long-term annual mean R-factor (Ryear) map.  15 

2.5 Cumulative daily R-factors 

The averaged cumulative percentage of R-factor within a year is obtained and grouped by Swiss biogeographic regions. The 

biogeographic regions were selected because they show distinct differences in climate, soils, elevation, steepness, and 

geographic location. The cumulative curve of rainfall erosivity enables the extraction of the annual share of rainfall erosivity 

on a daily scale and is required for the calculation of RUSLE C-factors. C-factors are based on the product of the soil loss 20 

ratio (for a specific time of the year and a specific crop) and the cumulative percentage of rainfall erosivity of distinct days of 

the year (Wischmeier & Smith, 1978; Schwertmann et al., 1987; Renard et al., 1997). Therefore, all recorded rainfall events 

of a certain station within an individual biogeographic unit and at a specified day in the year are averaged over the measuring 

period and with the other stations of the region on a long-term mean daily level.  That calculation of C-factors requires the 

percentage of the total annual rainfall erosivity of distinct days of the year which can be derived by that procedure. 25 

2.6 Monthly erosivity density 

Monthly erosivity density (EDmo) (MJ ha
-1

 h
-1

) is calculated by the ratio of the long-term Rmo (MJ mm ha
-1

 h
-1

 month
-1

) 

(neglecting rain as snow) to mean monthly precipitation amount (Pmo) (mm month
-1

) (including rain as snow) according to 

the equation proposed by Foster et al. (2008):  

EDmo =  
Rmo

Pmo
                    (4) 30 
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Small values (<1) of EDmo indicate that the influence of monthly precipitation on the monthly rainfall erosivity is mainly 

driven by its amount. On the other hand, high values of EDmo show, that relative to the absolute rainfall amount a high 

kinetic energy of rainfall was observed (e.g., strong storm events; Panagos et al., 2016b). Highest soil erosion risk is 

expected for areas where rainfall erosivity is high but related to a few intense rainfall events (high values of EDmo). As such, 

EDmo can reflect the temporal variability of rainfall intensity (Dabney et al., 2011) and can indicate how precipitation (short 5 

duration events with high intensities or high amounts of rainfall) controls the seasonality of rainfall. EDmo was calculated 

using i) the erosivity (Rmo87) and monthly precipitation sums (Pmo87) of each station (EDmo87) and ii) the 12 interpolated 

monthly rainfall erosivity maps Rmo and RhiresM as the monthly precipitation dataset (EDmo). RhiresM is an already 

available precipitation dataset of MeteoSwiss that includes most of the 87 gauging stations. For the spatial mapping of 

monthly erosivity density, the interpolated monthly datasets Rmo and RhiresM were chosen since an interpolation of EDmo87 10 

would require additional interpolation methods and spatial covariates which are explanatory for the monthly erosivity 

density. Additionally, a performed interpolation might still modify the EDmo87 in accordance to the values at neighbouring 

stations. According to Dabney et al. (2012), erosivity density is relatively independent of elevation up to a height of 3000 m 

a.s.l.. In Switzerland, only the station Piz Corvatsch (COV) exceeds that threshold of height. 

3 Results and Discussion 15 

3.1 Monthly rainfall erosivity at the 87 Swiss gauging stations 

Rmo-data averaged for all investigated stations show a bell-shaped curve over the 12 months (Fig. 2) with an increasing trend 

starting from February (17.3 MJ mm ha
-1

 h
-1

 month
-1

) to a maximum in July (289 MJ mm ha
-1

 h
-1

 month
-1

). The mean Rmo 

per month is 112 MJ mm ha
-1

 h
-1

 month
-1

. The meteorological season winter (Dec-Jan-Feb) has the lowest mean Rmo (33 MJ 

mm ha
-1

 h
-1

 month
-1

), followed by spring (Mar-Apr-May) (68 MJ mm ha
-1

 h
-1

 month
-1

), fall (Sep-Oct-Nov) (92 MJ mm ha
-1

 20 

h
-1

 month
-1

) and summer (Jun-Jul-Aug) (257 MJ mm ha
-1

 h
-1

 month
-1

). Most of the monthly R-factors (96%) of the lowest 

10% of all monthly values are part of the period between November and April whereas 97% of the highest 10% are monthly 

rainfall erosivity in the period of May to October.  

The “Monthly Rainfall Erosivity” for Europe by Panagos et al. (2016a) and the national observations of Mosimann et al. 

(1990) for a single station in Switzerland (Bern, Swiss Midland) comply with the present calculations with highest rainfall 25 

erosivity for the season from June/July to August. The Swiss monthly rainfall erosivity in the European assessment (Panagos 

et al., 2016a) are on average by 3 MJ mm ha
-1

 h
-1

 month
-1 

smaller (after rescaling with the calibration factors from 30 to 10 

minutes). That discrepancy by 5% mainly arises due to the different numbers and time series of gauging stations (87 vs. 71).  

Seasonality of Rmo on a continental scale is observed for Europe (Panagos et al., 2016a) and Africa (Vrieling et al., 2014), on 

a national scale for Brazil (da Silva, 2004), Cape Verde (Mannaerts & Gabriels, 2000), Chile (Bonilla & Vidal, 2011), 30 

Denmark (Leek & Olsen, 2000), El Salvador (da Silva et al., 2011), Greece (Panagos et al., 2016b), Iran (Sadeghi et al., 

2011; Sadeghi & Hazbavi, 2015; Sadeghi & Tavangar, 2015), Italy (Diodato, 2005; Borrelli et al., 2016), Korea (Lee & 
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Won, 2013), New Zealand (Klik et al., 2015), and inter alia for regions of Australia (Yang et al., 2015; Yang & Yu, 2015), 

Belgium (Verstraeten et al., 2006), Brazil (da Silva et al., 2013), Cape Verde (Sanchez-Moreno et al., 2014), China (Jing et 

al., 2009; Zhu et al., 2011; Wang et al., 2013; Zhao et al., 2015; Lai et al., 2016), England and Wales (Davison et al., 2005), 

Ethiopia (Meshesha et al., 2015), Japan (Laceby et al., 2015), the Himalayas (Ma et al., 2014), Italia (Terranova & Gariano, 

2015), South Korea (Arnhold et al., 2014), Malaysia (Shamshad et al., 2008), Poland (Banasik & Górski, 1993; Banasik et 5 

al., 2001), Slovenia (Petkovšek & Mikoš , 2004; Mikoš et al., 2006), Spain (Renschler et al., 1999; Angulo-Martínez & 

Beguería, 2009), Turkey (Özşahin, 2014) and the United States of America (Wilkes & Sawada, 2005). However, the timing 

of the maximum and minimum erosivity varies considerably. Some of the above mentioned studies show highest values in 

fall and winter (e.g. Greece), highest values in March and lowest values in July (e.g. Iran), or highest values in January and 

lowest values in July (e.g. Australia). The seasonal  Rmo in Italy and Greece have lower ranges (209 and 121 MJ mm ha
-1

 h
-1

 10 

month
-1

 compared to 272 MJ mm ha
-1

 h
-1

 month
-1

 in Switzerland), and the peak of the R-factor is shifted from July to 

September for Italy and to November for Greece, respectively.  

3.2 Mapping of monthly rainfall erosivity and related uncertainties 

All covariates – aspect excluded – were significant (p-value < 0.1) within the stepwise regressions for at least one month to 

explain Rmo (Table 2). For each month, an individual selection of covariates was achieved by the stepwise GLM. The higher 15 

the ratio of the null deviance to the residual deviance, the better the model fits by including the covariates. The residual 

deviance is lower than the null deviance in all 12 investigated months. Monthly model efficiency and omitted influential 

outliers to increase the model's goodness of fit are summarized in Table 3. The monthly observations of Rmo at the 87 

locations (exclusive outliers) as well as the residuals are normally distributed after the log-transformation. A non-constant 

error (homoscedasticity), multicollinearity and non-autocorrelation were determined for all observations of the 12 months. 20 

H0, which tests that all error variances are equally, was accepted by the Breusch-Pagan-test in all cases and confirms 

homoscedasticity. Regression diagnostics further show a vif<4 for each month. Therefore, we could not identify collinear 

data. According to a Durbin-Watson-test, the Swiss Rmo-dataset is not autocorrelated.   

Model efficiency, averaged over all 12 months has a mean R² of 0.51 and a mean ERMS of 93.27 MJ mm ha
-1 

h
-1

 month
-1

. 

Among that period, R² varies between 0.10 (Nov) and 0.66 (July). ERMS ranges from 6.98 to 330.16 MJ mm ha
-1 

h
-1

 month
-1

 25 

within a year. Regression functions for November and December are most uncertain with lowest R² and highest ERMS. The 

low R² are arising due to the generally low rainfall erosivity in winter that is mainly caused by lower rainfall amounts and 

higher amounts of snow (neglected in this study), which make it more challenging to predict R. The same constrain was 

observed in a study for Greece where the lowest R² was observed for the month with lowest rainfall erosivity (Panagos et., 

2016b). Even though, the spatial erosivity prediction for the winter month related to high uncertainties, the latter will will 30 

have little effects on soil erosion assessment since rainfall erosivity has the lowest impact on soils in winter.  

After adding the kriging interpolation of the residuals to the regionalization of monthly R-factors (based on the stepwise 

GLM),  R² are increased in all months. As such, the regression-kriging improves the prediction of R-factors especially for 
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months with low R² as in the case for November and December.  The ranges of the stable variograms exceed the minimum 

distance (approx. 13.2 km) of neighboring stations in all months. The average prediction error of all 12 months is -0.0055. 

The used stable semivariogram models are represented by 12 lag classes. Common patterns of increasing standard deviations 

with distances from gauging stations are recognizable in the standard deviation maps.  

3.3 Monthly rainfall erosivity maps for Switzerland 5 

Regionalized temporal patterns of modelled Rmo show a distinct seasonality with national means being lowest in January 

(10.5 MJ mm ha
-1

 h
-1

 month
-1

) and highest in August (263.5 MJ mm ha
-1

 h
-1

 month
-1

) (Table 4 and Fig. 3). Fig. 3 represents 

Rmo on a stretch between 0 and 200 MJ mm ha
-1

 h
-1

 month
-1

 for a better spatial comparison of the colour schemes although 

the R-factors are higher than 200 MJ mm ha
-1

 h
-1

 month
-1

 in summer (cf. Table 4). Winter is the season (Fig. 4) with the 

lowest rainfall erosivity. The highest Rmo peak in summer is consistent with the map of extreme point rainfall of 1h duration 10 

(100-year return period; Spreafico & Weingartner, 2005), where the strong influence of extreme rainfall events on rainfall 

erosivity is indicated. Meusburger et al. (2012) already pointed to the relationship of thunderstorm activity to annual rainfall 

erosivity. The thunderstorm season in Switzerland lasts from late spring (May) to early fall (September). Thunderstorms are 

at least partly responsible for the high values of rainfall erosivity in summer. Starting from early fall (September), a 

decreasing trend of Rmo is noticeable all over Switzerland. 15 

Averaged months are aggregated to representative seasons (Rseas) to identify spatial differences (Fig. 4). Spatially, mean 

winter rainfall erosivity show highest values in the Jura Mountains, western and eastern parts of the Northern Alps and the 

Southern Alps (canton Ticino). High winter rainfall erosivity can be explained by rainfall resulting from low-pressure areas 

in Northern Europe and weather fronts moved by north-westerly winds. These fronts are uplifted at the Jura Mountains what 

results in orographic rainfall. In spring, the Northern and the Southern Alps become more affected by high rainfall erosivity. 20 

The spatial variability of rainfall erosivity in spring in the Southern Alps (canton Ticino) corresponds to the air flow from the 

south and the onset of the thunderstorm season in that region which causes intense rainfall. High rainfall erosivity are 

persisting from spring to fall in the Southern Alps. The generally high summer R-factors in the Southern Alps, the Jura 

Mountains and the Northern alpine foothill are driven by thunderstorms (van Delden, 2001; Perroud & Barder, 2013; Nisi et 

al., 2016; Punge & Kunz, 2016) and particularly in the Southern Alps by high intense rainfall originating from orographic 25 

uplifts (Schwarb et al. 2001; Perroud & Barder, 2013). The cantons of Valais and Grisons remain with relatively low rainfall 

erosivity among all seasons due to lower convection and thereby lower rainfall erosivity in summer. 

The degree of maximal variation at a certain location along a year (expressed as the difference between minimum and 

maximum monthly rainfall erosivity of all 12 months; Fig. 5) indicates the highest intra-annual range (up to 6086 MJ mm ha
-

1
 h

-1
 month

-1
) in the canton Ticino at the Southern Alps. Also the Northern Alps, Swiss Midland and Jura Mountains show a 30 

high erosivity variation within a year. The Eastern and Western Central Alps have lowest ranges in accordance with their 

relatively low rainfall erosivity among the year. While the range map displays the absolute values of variation, the 

coefficient of variation map (ratio of standard deviation to the mean of all 12 months; Fig. S1) indicates the relative degree 
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of erosivity variation (in percent) at a certain location along a year. According to this map, highest variation of up to 207% 

can be observed in the Eastern Alps (canton Grisons) were monthly rainfall erosivity is low and standard deviation is high. 

In the Muamba catchment in Brazil, high seasonal variations are also observed in regions with relatively low rainfall 

erosivity (da Silva et al., 2013).   

Compared to the rainfall erosivity evaluation by Meusburger et al. (2012) on an annual scale, the observed mean Ryear and 5 

spatial patterns did only change slightly due to the extended station network and higher resolution spatial covariates 

(aggregated by all 12 monthly R-factor-maps). Improvements of the new map are the extended network of gauging stations, 

the cross-validation of the regression-kriging approach, and the inclusion of new high spatio-temporal covariates in order to 

increase the spatial resolution of the maps. 

3.4 Cumulative daily rainfall erosivity 10 

Generally, steepest slopes of the cumulative rainfall erosivity curve for Switzerland can be noticed from June to September 

with a share of 62% of the total annual rainfall erosivity within these four months (Fig. 6). That proportion complies with the 

cumulative sum of southwest Slovenia (63,2%; Petkovšek & Mikoš , 2004) and exceeds the average share of Europe of 53% 

(Panagos et al., 2016a) during the same period. A much larger proportion (90%) of cumulative percentage of daily rainfall 

erosivity was observed for Bavaria (Schwertmann et al., 1987) and eastern Poland (78%; Banasik & Górski, 1993). 15 

Mosimann et al. (1990) showed in a single-station approach (Bern, Swiss Midland) that a proportion of 80% of the total 

annual erosivity occurs in the period from April to September, which complies with the national share (resulting from the 

multi-station (87) calculation ) of 77% during the same period of a year.  

All biogeographic units in Switzerland have similar trends of the cumulative daily rainfall erosivity. However, a Wilcoxon 

signed rank showed that all pairs of the sum curves of biogeographic regions have significant differences (significance level 20 

0.05). Highest proportions (from Jun to Sep) and, therefore, steepest slopes can be identified for the Southern Alps with a 

share of 70% of the total sum. This high percentage of rainfall erosivity within a short period of time (four months) is likely 

to have a large impact on the soil erosion susceptibility since it may coincide with lowest (after harvesting of crops, carrots, 

etc.) and unstable vegetation cover (after late sowing) (Hartwig & Ammon, 2002; Wellinger et al., 2006; Torriani et al., 

2007; Prasuhn, 2011). Furthermore, fully grown pre-harvest field crops (e.g. cereals, maize) might suffer by bend-over of 25 

corn stalks due to high intensity storms. In addition, water saturated conditions which are usual in May and 

September/October makes soils even more erodible. Highly susceptible soils in summer may also be expected in areas where 

forest fires occured in spring and soils are uncovered by vegetation (which is the case especially for Ticino) (Marxer, 2003). 

The combination of the monthly rainfall erosivity maps with dynamic monthly C-factors might enable a monthly soil erosion 

risk assessment for Switzerland.  30 
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3.5 Monthly erosivity density 

Erosivity density (expressed as ratios of R to P) can be used to distinguish between high rainfall erosivity which is mainly 

influenced by high rainfall amounts and those which is influenced by relatively low rainfall amounts but highly intense 

rainfalls. That distinction helps to evaluate the potential consequences of rainfall erosivity for each month. The EDmo maps 

(Fig. 7) show that the influence of rainfall intensity on rainfall erosivity also underlies seasonal and spatial variations.  5 

Interpolated and spatially averaged EDmo in winter is lower than 1 MJ ha
-1

 h
-1

 (Fig. 7) for Switzerland. Therefore, rainfall 

intensity is not the driving factor for rainfall erosivity in these months where low rainfall erosivity meets high rainfall 

amounts. The relative high Rmo in the Jura Mountains is therefore mainly driven by large amounts of rainfall instead of high 

intensity rains. Interpolated and spatially averaged EDmo has a maximum for Switzerland in July (1.8 MJ ha
-1

 h
-1

) which 

results from a relatively low rainfall amount indicating that rainfall erosivity is mainly controlled by high intensified events. 10 

Intense summer rainfall has its maximum in the regions of Jura, Swiss Midland, northern Alpine foothill, and Southern Alps. 

In these regions, Rmo is high accompanied by relative low precipitation amounts. As such, the erosivity risk is the highest 

within the year especially when soils are dry during periods of rare but high rainfall intensities and therefore, infiltration is 

reduced due to crusts. 

The distribution of the Swiss mean EDmo (Fig. 8) is bell-shaped as it is also the case for investigated stations in the United 15 

States, Italy and Austria (Foster et al., 2008; Dabney et al., 2012; Borrelli et al., 2016; Panagos et al., 2016a). The monthly 

erosivity density of the neighbouring country Austria complies with the Swiss values only with minor variability. Greece, 

Italy and the stations of the US are characterized by higher EDmo values than Switzerland. Nonetheless, the conclusion 

Panagos et al. (2016b) drew for Greece that “rainfall erosivity is not solely dependent on the amount of precipitation” is also 

generally valid for Switzerland.  20 

In addition to the EDmo-maps, EDmo87 at the 87 stations (Table S1) were calculated.  EDmo87 show generally higher values 

than EDmo calculated from the interpolated raster maps, since the interpolated R-factors are smoothed and adapted according 

to the surrounding values. This fact is also visible in Fig. S2, where the relationship of absolute R-factors at the 87 stations 

(Rmo87) and the interpolated R-factors at the 87 stations (extracted after the interpolation with Regression-Kriging; RRegression-

Kriging) is presented.  25 

4 Conclusion and Outlook 

The main aim of the current study was to investigate the seasonal and regional variability of rainfall erosivity in Switzerland. 

A crucial advancement of the present research was to identify spatial and temporal windows of high erosivity. Through the 

spatial-temporal mapping, it was possible to determine regions that are hardly affected by rainfall erosivity, such as Grisons 

and Wallis, and it was also possible to determine those that are only affected in a certain months, such as Jura Mountains. 30 

The spatio-temporal variability of rainfall erosivity of Switzerland enables the controlled and time-dependent management of 

agriculture (like crop selection, time-dependent sowing) and droughts, ecosystem services evaluation, as well as the use for 
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seasonal and regional hazard prediction (e.g. flood risk control, landslide susceptibility mapping). Rainfall erosivity based on 

high erosivity density has more severe impacts on soils, agriculture, droughts, and hazards in summer than in winter due the 

high impact of intense rainfalls. 

In contrast to previous studies for Switzerland which were either limited spatially (to a few stations) or temporally (to 

annual) we were able to produce 12 monthly spatio-temporal R-factor maps. The maps are based on high resolution 5 

covariates in combination with an extended database of 87 automated gauging-stations recording in 10 min intervals, 

showing simultaneously spatial and temporal variations of R-factors. Regression-Kriging based on high resolution covariates 

was a successful method for most of the months (mean R²=0.51, ERMS=93.27 MJ mm ha
-1 

h
-1

 month
-1

). It was used to map 

the long-term monthly mean R-factors based on an extended database of rain-gauging stations. The spatio-temporal mapping 

of rainfall erosivity and erosivity density revealed that intense rainfall events in August trigger the highest national monthly 10 

mean rainfall erosivity value (263.5 MJ mm ha
-1

 h
-1

 month
-1

). Especially the regions of Jura, Swiss Midland, northern Alpine 

foothill, and Ticino at the Southern Alps show pronounced rainfall erosivity during that month. The months June to 

September have a total share of 62% of the total annual rainfall erosivity in Switzerland. 

The current data highlight that rainfall erosivity has a very high variability within a year. These trends of seasonality vary 

between regions and consequently support that a dynamic soil erosion and natural hazard risk assessment is crucial. The 15 

combination of the temporally varying RUSLE-factors (R- and C-factor) will lead to a more realistic and time-dependent 

estimation of soil erosion within a year which is valuable for the identification of more susceptible seasons and regions. A 

mapping of the seasonality of the C-factor for a subsequent synthesis to a dynamic soil erosion risk assessment for 

Switzerland is envisaged in a later study. 

The findings of this study have a number of important implications for soil conservation planning. Based on the knowledge 20 

of the variability of rainfall erosivity, agronomists can introduce selective erosion control measures, a change in crop or crop 

rotation to weaken of the rainfalls impact on soils and vegetation by increasing soil cover or stabilizing topsoil during these 

susceptible months. As such, a targeted erosion control for Switzerland does not only reduce the direct costs of erosion by 

mitigation but also shrinks the costs for the implementation of control measures to a requested minimum.  
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Tables 

Table 1: Datasets used as covariates for the spatio-temporal mapping of rainfall erosivity. 

dataset derived information 
temporal 

resolution 

spatial 

resolution 

measuring 

period 
source information 

Total snow depth long-term monthly snow depth hourly 58 stations 1988 – 2010 MeteoSwiss - 

CombiPrecip long-term monthly mean rainfall amount from 

measured and radar data 

hourly 1 km 2005 – 2015 MeteoSwiss Sideris et al., 2014 

EURO4M-APGD long-term mean daily precipitation per month monthly 5 km 1971 – 2008 MeteoSwiss Isotta et al., 2014 

RhiresM long-term mean monthly precipitation sums monthly 1 km 1961 – 2015 MeteoSwiss MeteoSwiss, 2013 

SwissAlti3D elevation, slope, aspect - 2 m - SwissTopo - 
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Table 2: Regression equations and selected covariates for estimating mean monthly rainfall erosivity in Switzerland. 

Month Regression equation 

January RJan = 2.101 - 4.150·CombiPrecipJan - 0.006·Snow depthJan +  0.017·RhiresJan - 0.001·Elevation 

February RFeb = 2.702 - 13.812·CombiPrecipFeb - 0.007·Snow depthFeb + 0.019·RhiresFeb + 0.211·Alpine PrecipFeb - 0.001·Elevation  

March RMar = 2.534 - 7.735·CombiPrecipMar - 0.006·Snow depthMar + 0.018·RhiresMar + 0.170·Alpine PrecipMar - 0.001· Elevation 

April RApr = 2.330 - 3.319·CombiPrecipApr - 0.008·Snow depthApr + 0.023·RhiresApr - 0.001·Elevation - 0.019·Slope  

May RMay = 2.965 + 2.072·CombiPrecipMay - 0.002·Snow depthMay + 0.015·RhiresMay - 0.001·Elevation 

June RJun = 3.890 + 0.014·RhiresJun - 0.001·Elevation 

July RJul = 3.926 + 5.710·CombiPrecipJul + 0.251·Alpine PrecipJul - 0.001·Elevation 

August RAug = 3.627 + 0.010·RhiresAug + 0.194·Alpine PrecipAug - 0.001·Elevation 

September RSep = 2.760 + 2.243·CombiPrecipSep + 0.539·Alpine PrecipSepb - 0.001·Elevation 

October ROct = 2.753 + 0.0161·RhiresOct - 0.001·Elevation 

November RNov = 2.665 + 3.787·CombiPrecipNov - 0.034·Snow depthNov + 0.166·Alpine PrecipNov 

December RDec = 2.437 + 0.013·RhiresDec - 0.001·Elevation 
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Table 3: Model efficiency by R² and ERMS as well as omitted outliers and influential observations per month. 

Month Excl. outlier stations R² 
ERMS (MJ mm  

ha
-1

 h
-1

 month
-1

) 

Null 

Deviance 

Res. 

deviance 

January Mathod  0.52 6.98 70.36 20.65 

February Monte Generoso, Napf, Saetis 0.53 12.96 79.28 31.82 

March Col du Grand St-Bernard, Saetis 0.49 13.10 61.45 21.84 

April Col du Grand St-Bernard, Saetis, Weissfluhjoch 0.65 21.01 63.69 15.90 

May Davos, Col du Grand St-Bernard 0.60 73.39 56.28 16.83 

June Col du Grand St-Bernard 0.58 126.03 51.61 19.31 

July Monte Generoso, Col du Grand St-Bernard, Stabio 0.66 138.77 38.58 11.57 

August Col du Grand St-Bernard, Stabio 0.47 330.16 50.47 21.75 

September Col du Grand St-Bernard, Stabio 0.64 81.91 61.23 16.27 

October Piz Corvatsch, Col du Grand St-Bernard, Stabio 0.62 81.60 37.86 12.07 

November Piz Corvatsch, Col du Grand St-Bernard, Saetis 0.10 55.72 58.85 47.22 

December Col du Grand St-Bernard 0.26 177.65 73.90 50.66 
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Table 4: Monthly national rainfall erosivity in MJ mm ha-1 h-1 month-1. 

Month Minima Maxima Mean 

January 0.2 71.3 10.5 

February 0.0 247.3 13.5 

March 0.0 179.0 20.1 

April 0.2 1014.4 28.8 

May 8.3 1717.8 120.2 

June 3.6 1262.1 174.8 

July 12.6 1481.1 255.4 

August 8.3 1994.9 263.5 

September 6.8 6107.9 147.7 

October 5.7 977.0 57.0 

November 4.9 357.1 41.6 

December 1.3 234.4 24.9 
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Figures 

 

Figure 1: Biogeographic units and used gauging stations in Switzerland. 
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Figure 2: Mean monthly rainfall erosivity for all 87 Swiss stations. 
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Figure 3: Monthly rainfall erosivity maps for Switzerland (equal stretch from 0 to 200 MJ mm ha-1 h-1 month-1) derived by 

regression-kriging. 
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Figure 4: Seasonal rainfall erosivity maps for Switzerland derived by regression-kriging. The following months were averaged to 

derive seasonal maps: winter (Dec-Feb), spring (Mar-May), summer (Jun-Aug), fall (Sep-Nov). 
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Figure 5: Range map (maximum Rmo minus minimum Rmo) for Switzerland showing the variability of rainfall erosivity among a 

year. 
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Figure 6: Cumulative daily rainfall erosivity proportion for Swiss biogeographic units, Switzerland and monthly rainfall erosivity 

for Europe (linear smoothed, European data from Panagos et al., 2016a). 
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Figure 7: Monthly erosivity density (EDmo) for Switzerland as ratio of monthly rainfall erosivity (Rmo) to monthly precipitation 

amount (Pmo based on RhiresM).  
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Figure 8: Mean monthly erosivity density (EDmo) as ratios of Rmo (interpolated erosivity maps based on regression-kriging) to Pmo 

(precipitation sums from RhiresM) for Switzerland. 


