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Abstract. One major controlling factor of water erosion is rainfall erosivity, which is quantified by the kinetic energy of a 

rainfall event and its maximum 30-min intensity. Rainfall erosivity is often expressed as R-factor in soil erosion risk models 

like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated 10 

with dynamic rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a characteristic 

regional and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modelling 

approach to assess simultaneously spatial and monthly pattern of rainfall erosivity. So far only national seasonal means and 

regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10-minute 

temporal resolution to calculate long-term monthly mean R-factors. Stepwise regression and Leave-one-out cross-validation 15 

(LOOCV) were used to select spatial covariates which explain the spatial and temporal pattern of the R-factor for each 

month across Switzerland. The monthly R-factor is mapped by its specific regression equation and the ordinary kriging 

interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included 

like snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily 

alpine precipitation (EURO4M-APGD) and monthly precipitation sums (RhiresM). Topographic parameters (elevation, 20 

slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity 

maps showed a distinct seasonality with highest rainfall erosivity in summer (June, July, and August) influenced by intense 

rainfall events. Winter months have lowest rainfall erosivity. A proportion of 62% of the total annual rainfall erosivity is 

identified within four months only (June to September). Highest erosion risk can be expected for July where not only rainfall 

erosivity but also erosivity density is high. Additionally to the intra-annual temporal regime, a spatial variability of this 25 

seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor 

is valuable for the identification of susceptible seasons and regions. 
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1 Introduction 

Soil erosion by water is a major environmental issue in Switzerland which has been measured (Konz et al., 2012, Alewell et 

al., 2014), mapped (Mosiman, 1990; Prasuhn, 2011; Prasuhn, 2012), and modelled (Gisler et al., 2011; Prasuhn et al., 2013) 

extensively. Since the 1950s, soil erosion by water is increasing in Switzerland on land under arable land (Weisshaidinger & 

Leser, 2006) as well as in mountain grasslands (Meusburger & Alewell, 2008). Mosimann et al. (1991) assessed a quantity 5 

of up to 20% of all cultivated land in Switzerland to be affected by soil erosion. The costs of soil erosion for Switzerland’s 

arable land were estimated to be about 53 million CHF yr-1 (US $55.2 million yr-1; Ledermann, 2012). Increasing trends of 

water erosion are predicted for Switzerland under future climate change due to more frequent and heavy precipitation during 

winter month (Fuhrer et al., 2006). Trends towards increasing rainfall erosivity are already observable in the months May to 

October (Meusburger et al., 2012).  10 

Rainfall has direct impacts on soil mobilization by processes like rapid wetting or splash and runoff effects and is, therefore, 

one of the main driving forces of water erosion. The R-factor, one of the five soil erosion risk factors (rainfall erosivity, soil 

erodibility, slope steepness and length, cover management, and support practices) of the Revised Universal Soil Loss 

Equation (RUSLE) (Renard et al., 1997; Foster et al., 2008) expresses the impact of rainfall on soils as rainfall erosivity. The 

RUSLE is widely used for calculating soil loss, but each of the five factor maps also has an essential message on its own. 15 

Besides being an important driving factor of soil erosion, the R- factor can also be used to conclude on soil vulnerability, 

flood hazard, and natural hazards or probability of droughts (Panagos et al.; 2015a).  

Previously published studies on rainfall erosivity in Switzerland focused on national seasonal means (Panagos et al., 2015a) 

or regional annual means (Friedli, 2006; Gisler et al., 2011; Meusburger et al. 2012; Prasuhn et al., 2013;). Since Switzerland 

has large regional and altitudinal variety in climatic conditions (humid continental to oceanic climate; Köppen, 1936) 20 

seasonal and temporal variations of the weather are consequential. As such, these spatio-temporal variations can be expected 

to influence patterns in the rainfall erosivity. Meusburger et al. (2012) already showed the presence of a strong seasonality of 

the rainfall erosivity for clustered stations at different altitudinal classes in Switzerland. However, simultaneously spatial and 

temporal pattern of the R-factors seasonality have not yet been established. These spatio-temporal patterns are decisive in 

combination with spatio-temporal patterns of vegetation cover in order to allow for an accurate soil erosion risk assessment 25 

and relevant for a monthly and seasonal management of agriculture practices and hazard controls.  

Here, we aim to assess the spatio-temporal seasonal variability of rainfall erosivity in Switzerland by 

(i) extending the network of gauging stations from Meusburger et al. (2012) to obtain rainfall erosivity events 

for Switzerland 

(ii) producing monthly R-factor maps based on high resolution spatial covariates using a regression-kriging 30 

approach 

(iii) evaluate the spatio-temporal patterns of the seasonal R-factor dynamic in Switzerland 
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2 Material and Methods 

2.1 Rainfall erosivity (R-factor) calculation  

The rainfall erosivity expressed as R-factor in RUSLE is a product of the kinetic rainfall energy (er) of an erosive rainfall 

event and its corresponding maximum intensity over a time span of 30 minutes (I30) (Brown & Forster, 1987). We used the 

erosive rainfall event thresholds defined by Renard et al. (1997) which were modified by Meusburger et al. (2012). The unit 5 

rainfall energy (er) (MJ ha-1 mm-1) for each time interval is expressed as the intensity of rainfall (ir) (mm h-1) during that 

time interval. It is calculated by Brown and Forster (1987) as: 

er = 0.29[1 − 0.72 exp(−0.05ir)]                                (1) 

The erosive rainfall event erosivity (EI30) (MJ mm ha-1¬ h-1¬) is a product of the unit rainfall energy (er) (Eq. (1)) and its 

maximum rainfall amount within a 30 minutes interval (according to Wischmeier & Smith, 1978): 10 

EI30 = (∑ ervr
k
r=1 )I30                            (2) 

where vr is the rainfall volume (mm) during a time unit r and I30 is the maximum rainfall intensity within 30 minutes of the 

event (mm h-1).  

The monthly rainfall erosivity (R) (MJ mm ha-1¬ h-1¬ month-1) is the mean of the accumulated event erosivity (EI30) (Eq. 

(2) within a month: 15 

R =  
1

n
∑ ∑ (EI30)k

mj

k=1
n
j=1                    (3) 

where n is the recorded number of years with the number of erosive events (mj) within a certain month j. k is the index of a 

single event with its corresponding event erosivity.  

The event rainfall erosivity was calculated from the 10-min precipitation data for each station by applying the algorithm of 

Meusburger et al. (2012). The event rainfall erosivity was averaged by months to a long-term monthly mean R-factor (Rmo). 20 

Usually, snow, snowmelt and rainfall on frozen soil are not assessed in the R-factor (Renard et al.; 1997). Thus, a 

temperature threshold of 0°C was set to obtain only rainfall and exclude snow water equivalents which are subject to 

uncertainty in rainfall erosivity assessments (Leek & Olsen, 2000). Temperature data was measured simultaneous to 

precipitation (for 71 stations) or was directly derived (for 15 stations) from the closest stations (within a distance of less than 

20 km) with similar elevation. We assumed only minor variation in temperature within that distance at a similar elevation 25 

level.  

Besides neglecting snow, we did not consider rainfall as hail which is mainly occurring during summer in Switzerland (Nisi 

et al., 2016; Punge & Kunz, 2016). Hurni (1978) investigated the impact of hail on rainfall erosivity in Switzerland and 

concluded that the erosivity of hail exceeds the one of rainfall. 

2.2 Stations 30 

We extended the gauging station network of Meusburger et al. (2012) (10 minutes measuring intervals) from 71 to an 

updated dataset of 87 stations (Fig. 1).  
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The additional 16 stations were previously investigated for rainfall erosivity by Nogler (2012). On average, the network 

represents one station each 22 km x 22 km. The average distance of one station to all others is 113.6 km by a minimum 

distance to the closest station of 13.2 km. A majority of stations (63) have recorded data of at least 22yr. The mean length of 

observations is 19.5yr and thus, meet the proposed minimum time-scale requirements for rainfall erosivity calculations of a 

15yr measuring period (Forster et al. 2008). The stations are well distributed and were subject to a quality control (Begert et 5 

al., 2005; Nogler, 2012).  

2.3 Data and Covariates 

High temporal information on snow cover and snow water equivalents, high spatio-temporal information on rainfall and high 

spatial information on topography are acquired as covariates (Table 1) for the monthly erosivity maps since rainfall erosivity 

is mainly controlled by precipitation and relief parameters (Meusburger et al., 2012; Panagos et al., 2015a; Panagos et al., 10 

2016b).  All data have a much higher resolution than datasets used in previously R-factor studies for Europe (Panagos et al., 

2015a; 2016a) and Switzerland (Meusburger et al., 2012). 

The long-term snow depth (derived from total snow depth monthly mean by MeteoSwiss) on a monthly resolution was used 

as an approximation for precipitation as snow. The monthly point data of snow depth was regionalized by Inverse Distance 

Weighting. Hourly Swiss CombiPrecip data (geostatistical combination of rain gauge measurements (150 automatic stations) 15 

and three C-band radar observations; Sideris et al., 2014) was aggregated and averaged to a long-term monthly mean. Long-

term mean daily precipitation per month was calculated based on the daily values of alpine precipitation in EURO4M-APGD 

(Isotta et al., 2014). Averaging the monthly spatial precipitation of RhiresM (MeteoSwiss, 2013) over the years leads to 

long-term monthly mean precipitation sums. The variables elevation, slope, and aspect are retrieved from a Digital Terrain 

Modell (SwissAlti3D) for Switzerland.  20 

2.4 Mapping the seasonal variability of rainfall erosivity in Switzerland 

We used regression-kriging (Hengl et al., 2004; Hengl, 2007; Hengl et al., 2007) to map the monthly variability of rainfall 

erosivity. The regression-kriging approach relies on the monthly mean rainfall erosivities for each of the 87 stations which 

are going to be explained by a generalized linear regression (GLM). Later, the GLM is used for interpolating Rmo for 

Switzerland based on the spatial covariates. In an ordinary global kriging, the residuals of the regression are interpolated. 25 

The combination of Rmo with its residuals also enables the consideration of the standard error. Meusburger et al. (2012) 

discussed different interpolation methods for an annual mapping of rainfall erosivity in Switzerland. Their results show that 

regression-kriging is an adequate method for Switzerland if significant relations between rainfall erosivity and spatial 

covariates exist.  

Leave-one-out cross-validation (LOOCV) (Efron & Tibishirani, 1997) was used to avoid a resampling-bias of the 87 Rmo for 30 

each month in the regression. Data-split is only valid for large n, otherwise it reduces the training observations, is random 

and limited in reproducibility (Steyerberg, 2009; Harrell, 2015). In consideration of the low number of n (n=87), LOOCV 
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omits only one observation from the dataset per run and estimates the model from the remaining n-1 observations. The 

process was repeated 100 times for a better accuracy.  

A log-transformation of Rmo resulted in a normal distribution of the data. The suitability of each covariate for the GLM was 

determined by an automated stepwise feature selection process according to the Akaike information criterion (AIC). The 

significance threshold for covariate selection was set to 0.1. We also tested Least Absolute Shrinkage and Selection Operator 5 

(LASSO) as an alternative feature selection method to the stepwise GLM, but it was less transparent for evaluation and 

showed inappropriate residual diagnostics (systematic error). Both, the LOOCV stepwise regression, as well as LASSO, 

were performed in the R-package “caret” (v6.0-68). Outliers (Bonferroni-adjusted outlier test) and influential observations 

(Cook’s Distance) were omitted in the stepwise GLM.   

The goodness-of-fit of the model was described by the coefficient of determination (R²), the root mean square error (ERMS) 10 

and the deviance. Regression diagnostics to evaluate the model included normality, non-constant error variance 

(homoscedasticity), multicollinearity (variance inflation factor; vif) and autocorrelation.  

Twelve monthly maps of the long-term mean Rmo were derived by applying the regression equation with the covariates and 

their corresponding coefficients according to the individual monthly regression equation. The residuals of each month 

stepwise GLM were interpolated by an ordinary global kriging with a stable variogram model and added to the Rmo maps in 15 

ESRI ArcGIS (v.10.2.2.) afterwards.  

Each monthly map is subject to an individual GLM. Therefore, a subset of individual covariates explains rainfall erosivity 

for each month separately. A combination of three monthly maps leads to long-term seasonal mean R-factor (Rseas) maps for 

Switzerland with high spatial resolution. In addition, the sum of all twelve maps results in an updated (compared to 

Meusburger et al., 2012) long-term annual mean R-factor (Ryear) map. Improvements of the new map are the extended 20 

network of gauging stations, the cross-validation of the regression-kriging approach, and the inclusion of new high spatio-

temporal covariates in order to increase the spatial resolution of the maps. 

2.5 Cumulative daily R-factors 

The cumulative percentage of R-factor is obtained and grouped by Swiss biogeographic regions to obtain the share of the 

total annual rainfall erosivity for Switzerland by seasons. These regions show distinct differences in climate, soils, elevation, 25 

steepness, and geographic location. The cumulative curve of  rainfall erosivity events enables the extraction of the annual 

share of rainfall erosivity on a daily scale. Therefore, all recorded rainfall events measured at stations within an individual 

biogeographic unit are averaged on a daily level.  

2.6 Monthly erosivity density 

Monthly erosivity density (EDmo) (MJ ha
-1

 h
-1

) is calculated by the long-term ratio of Rmo (MJ mm ha
-1

 h
-1

 month
-1

) to mean 30 

monthly precipitation amount (Pmo) (mm month
-1

) (Foster et al., 2008):  
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EDmo =  
Rmo

Pmo
                    (4) 

Smaller values of EDmo indicate that the influence of monthly precipitation on the monthly rainfall erosivity is mainly driven 

by its amount. On the other hand, high values of EDmo show that relative to the absolute rainfall amount a high kinetic 

energy of rainfall was observed (e.g., strong storm events; Panagos et al., 2016b). Highest soil erosion risk is expected for 

areas where rainfall erosivity is high but related to a few intense rainfall events (small Pmo) instead of a high monthly 5 

precipitation amount. As such, EDmo can reflect the temporal variability of rainfall intensity (Dabny et al., 2011) and can 

indicate how precipitation (short duration events with high intensities or high amounts of rainfall) controls the seasonality of 

rainfall. For the calculation of EDmo, we used RhiresM as the monthly precipitation dataset. According to Dabny et al. 

(2012), erosivity density is relatively independent of elevation up to a height of 3000 m a.s.l.. Only the station Piz Corvatsch 

exceeds that threshold of height (Dabny et al., 2012). 10 

3 Results and Discussion 

3.1 Monthly rainfall erosivity at the 87 Swiss gauging stations 

Rmo data averaged for all investigated stations show a bell-shaped curve over the twelve months (Fig. 2) with an increasing 

trend starting from February (17.3 MJ mm ha
-1

 h
-1

 month
-1

) to a maximum in July (289 MJ mm ha
-1

 h
-1

 month
-1

). The mean 

Rmo per months is 112 MJ mm ha
-1

 h
-1

 month
-1

. The meteorological season winter (Dec-Jan-Feb) has the lowest mean Rmo 15 

(33 MJ mm ha
-1

 h
-1

 month
-1

), followed by spring (Mar-Apr-May) (68 MJ mm ha
-1

 h
-1

 month
-1

), fall (Sep-Oct-Nov) (92 MJ 

mm ha
-1

 h
-1

 month
-1

) and summer (Jun-Jul-Aug) (257 MJ mm ha
-1

 h
-1

 month
-1

).  

Most of the monthly R-factors (96%) of the lowest 10% of all monthly values are part of the period between November and 

April whereas 97% of the highest 10% are monthly rainfall erosivities from May to October.  

The recently published “Monthly Rainfall Erosivity” for Europe by Panagos et al. (2016a) and the national observations of 20 

Mosimann et al. (1990) for a single station in Switzerland (Bern, Swiss Midland) fit the present calculations with highest 

rainfall erosivity for the season from June/July to August. The Swiss monthly rainfall erosivities in the European assessment 

(Panagos et al., 2016a) are smaller on average by 3 MJ mm ha
-1

 h
-1

 month
-1 

(after rescaling with the calibration factors from 

30 to 10 minutes). That discrepancy by 5% mainly arises due to the different numbers and time series of gauging stations (87 

vs. 71).  25 

Seasonality of Rmo is also observed for Italy (Borrelli et al., 2016), Greece (Panagos et al., 2016b), Iran (Sadeghi et al., 

2011), Chile (Bonilla & Vidal, 2011), El Salvador (da Silva et al., 2010) and regions of Australia (Yang & Yu, 2015), China 

(Zhao et al., 2015), Korea (Arnhold et al., 2014), the Himalayas (Xing et al., 2014), and Brazil (da Silva et al., 2013). 

However, the timing of the maximum and minimum erosivity varies considerably. Some of the other studies show highest 

values in fall and winter (Greece), highest values in March and lowest values in July (Iran), or highest values in January and 30 

lowest values in July (Australia). The seasonal  Rmo in Italy and Greece have lower ranges (209 and 121 MJ mm ha
-1

 h
-1
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month
-1

, respectively,
 
compared to 272 MJ mm ha

-1
 h

-1
 month

-1
 in Switzerland), and the peak of the R-factor is shifted from 

July to September for Italy and  November for Greece respectively.  

3.2 Mapping of monthly rainfall erosivity and related uncertainties 

All covariates – aspect excluded – were significant (p-value < 0.1) within the stepwise regressions for at least one month to 

explain Rmo (Table 2). For each month, an individual selection of covariates was achieved by the stepwise GLM.  5 

Model efficiency averaged over all twelve months has a mean R² of 0.51 and a mean ERMS of 0.61 MJ mm ha
-1 

h
-1

 month
-1

. 

R² varies between 0.10 (Nov) and 0.66 (July). ERMSs ranges from 0.93 to 0.42 MJ mm ha
-1 

h
-1

 month
-1

. Regression functions 

for November and December are the most uncertain ones with lowest R² and highest ERMS which need to be improved by 

additional covariates in the future, explaining rainfall erosivity in winter better. The low R²s are arising due to the lower 

rainfall erosivity mainly caused by the higher amount of snow (neglected in this study), which makes it more challenging 10 

obtain better results. The same constrain was observed in a study for Greece with lowest rainfall erosivities and at the same 

time lowest R² (Panagos et al., 2016b). The higher the ratio of the null deviance to the residual deviance, the better the model 

fits by including the covariates. The residual deviance is lower than the null deviance in all twelve investigated months. 

Monthly model efficiency and omitted influential outliers to increase the model's goodness of fit are summarized in Table 3.  

The monthly observations of Rmo at the 87 locations (exclusive outliers) as well as the residuals are normally distributed after 15 

the log-transformation. A non-constant error (homoscedasticity), multicollinearity and non-autocorrelation were determined 

for all observations of the twelve months. H0 was rejected by the Breusch-Pagan-test in all cases to confirm 

homoscedasticity. Regression diagnostics further show a vif<4 for each month. Therefore, we could not identify collinear 

data. According to a Durbin-Watson-test, the Swiss Rmo-dataset is not autocorrelated.   

The kriging of the residuals based on a stable variogram improved the interpolation in all months. The ranges of the 20 

variograms exceed the mean distance (approx. 13.2 km) of neighboring stations in all months. The average prediction error 

of all 12 months is -0.0055 by an averaged root mean square standard error of 1.046 MJ mm ha
-1

 h
-1

 month
-1

. The used stable 

semivariogram models are represented by 12 lag classes. The standard deviation maps of the monthly residual kriging show 

the usual pattern with lowest standard deviations close to the stations and higher standard deviations with increasing distance 

from the gauging stations.  25 

3.3 Monthly rainfall erosivity maps for Switzerland 

Temporal patterns of modelled Rmo show a distinct seasonality with national means being lowest in January (10.5 MJ mm ha
-

1
 h

-1
 month

-1
) and highest in August (263.5 MJ mm ha

-1
 h

-1
 month

-1
) (Table 4, Fig. 3).  

Winter is the season with the lowest rainfall erosivity. The highest Rmo peak in summer is consistent with the map of extreme 

point rainfall of 1h duration (100-year return period; Spreafico & Weingartner, 2005), where the strong influence of extreme 30 

rainfall events on rainfall erosivity is indicated. Meusburger et al. (2012) already pointed to the relationship of thunderstorm 

activity to annual rainfall erosivity. The thunderstorm season in Switzerland lasts from late spring (May) to early fall 
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(September). Thunderstorms cause high amounts of rainfall within a short time-period (intense rainfall) and, therefore, are at 

least partly responsible for the high values of rainfall erosivity in summer. Starting from early fall (September), a decreasing 

trend of Rmo is noticeable all over Switzerland. 

Averaged months are aggregated to representative seasons (Rseas) to identify spatial differences (Fig. 4).  

Mean winter rainfall erosivity shows highest values in the Jura Mountains, western and eastern parts of the Northern Alps 5 

and the Southern Alps (canton Ticino). High winter rainfall erosivity can be explained by rainfall resulting from low-

pressure areas in Northern Europe and weather fronts moved by north-westerly winds. These fronts are uplifted at the Jura 

Mountains what results in orographic rainfall. In spring, the Northern and the Southern Alps become more affected by high 

rainfall erosivity. The spatial variability of rainfall erosivity in spring in the Southern Alps (canton Ticino) corresponds to 

the air flow from the south and the onset of the thunderstorm season in that region which causes intense rainfall. High 10 

rainfall erosivities are persisting from spring to fall in the Southern Alps. High summer R-factors in the Southern Alps, the 

Jura Mountains and the Northern alpine foothill are influenced by thunderstorms which have their main impacts in these 

regions (van Delden, 2001; Perroud & Barder, 2013; Nisi et al., 2016; Punge & Kunz, 2016). Furthermore, the high rainfall 

erosivity in summer in the Southern Alps can be explained by high intense rainfall originating from orographic uplifts 

(Schwarb et al. 2011; Perroud & Barder, 2013). The cantons of Valais and Grisons remain with relatively low rainfall 15 

erosivity among all seasons. This is due to lower convection and thereby lower rainfall erosivity in summer. 

The map showing the range (Fig. 5) indicates the degree of maximal variation at a certain location along a year and is the 

difference between minamum and maximum monthly rainfall erosivity of all 12 months. The highest range (up to 6086 MJ 

mm ha
-1

 h
-1

 month
-1

) is apparent in the canton Ticino at the Southern Alps. Also the Northern Alps, Swiss Midland and Jura 

Mountains show a high variation within a year. The Eastern and Western Central Alps have lowest ranges in accordance 20 

with their relatively low rainfall erosivity among the year.  

Compared to the rainfall erosivity evaluation by Meusburger et al. (2012) on an annual scale, the range of the observed mean 

Ryear and spatial pattern did only change slightly due to the extended station network and high resolution spatial covariates 

(aggregated by all twelve monthly R-factor-maps).  

3.4 Cumulative daily rainfall erosivity 25 

Generally, steepest slopes of the cumulative rainfall erosivity curve for Switzerland is from June to September with a share 

of 62% of the total annual rainfall erosivity within these 4 months (Fig. 6). This proportion exceeds the average share of 

Europe of 53% during the same period (Panagos et al., 2016a). A much larger proportion (90%) of cumulative percentage of 

daily rainfall erosivity was observed by Schwertmann et al. (1987) for Bavaria. Mosimann et al. (1990) showed in a single-

station approach (Bern, Swiss Midland) that a proportion of 80% of the total annual erosivity occurs in the period from April 30 

to September, which complies with the mean of 77% during the same period of a year resulting from the presented multi-

station (87) calculation.  
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All biogeographic units in Switzerland have similar trends of the cumulative daily rainfall erosivity. Highest proportions 

(from Jun to Sep) and, therefore, steepest slopes can be identified for the Southern Alps with a share of 70% of the total sum. 

This high percentage of rainfall erosivity within a short period of time (4 months) is likely to have a large impact on the soil 

erosion susceptibility since it may coincide with lowest (after harvesting of crops, carrots, etc.) and unstable vegetation cover 

(after late sowing) (Hartwig & Ammon, 2002; Wellinger et al., 2006; Torriani et al., 2007; Prasuhn 2011). Furthermore, 5 

fully grown pre-harvest field crops (e.g. cereals, maize) might suffer by bend-over of corn stalks due to high intensity 

storms. In addition, water saturated conditions which are usual in May and September/October makes soils even more 

erodible. Highly susceptible soils may also be expected in areas cleared by forest fires in summer (which is the case 

especially for Ticino) (Marxer, 2003). The combination of the monthly rainfall erosivity maps with dynamic monthly C-

factors might enable a monthly soil erosion risk assessment for Switzerland.  10 

3.5 Seasonal erosivity density 

Erosivity density (expressed as monthly ratios of Rmo to Pmo) can be used to distinguish between high rainfall erosivity which 

is mainly influenced by high rainfall amounts and those which is influenced by relatively low rainfall amounts but highly 

intense rainfalls. That distinction helps to evaluate the potential consequences of rainfall erosivity for each month. The 

combination of high rainfall erosivity and low precipitation amounts (high erosivity density value) is severe for soils since 15 

extreme rainfalls might meet dry and thus unstable soil and vegetation systems. The maps (Fig. 7) show that the influence of 

rainfall intensity on rainfall erosivity also underlies seasonal and spatial variations.  

EDmo in winter is lower than 1 MJ ha
-1

 h
-1

 (Fig. 7) for Switzerland. Therefore, rainfall intensity is not the driving factor for 

rainfall erosivity in these months where low rainfall erosivity meets high rainfall amounts. The relative high Rmo in the Jura 

Mountains is therefore mainly driven by large amounts of rainfall instead of high intensified rains. 20 

EDmo has a maximum for Switzerland in July (1.8 MJ ha
-1

 h
-1

) which results from a relatively low rainfall amount indicating 

that rainfall erosivity is mainly controlled by high intensify events. Intense summer rainfall has its maximum in the regions 

of Jura, Swiss Midland, northern Alpine foothill, and Ticino. In these regions, Rmo is high accompanied by relative low 

precipitation amounts. As such, the erosivity risk is the highest within the year especially when soils are dry during periods 

of rare but high rainfall intensities and therefore, infiltration is reduced due to crusts. 25 

The distribution of the Swiss EDmo (Fig. 8) marks a bell-shaped curve as it also the case for investigated stations in the 

United States, Italy and Austria (Forster, 2008; Dabny et al., 2012; Borrelli et al., 2016; Panagos et al., 2016a). The monthly 

erosivity density of the neighboring country Austria complies with the Swiss values only with minor variability. Greece, 

Italy and the stations of the US are characterized by higher EDmo values than Switzerland. Nonetheless, the conclusion 

Panagos et al. (2016b) drew for Greece (Panagos et al., 2016b) that “rainfall erosivity is not solely dependent on the amount 30 

of precipitation” is also generally valid for Switzerland.  
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4 Conclusion and Outlook 

The main goal of the current study was to investigate the seasonal and regional variability of rainfall erosivity in 

Switzerland. A crucial advancement of the present research was to identify spatial and temporal windows of high erosivities. 

Through the spatial-temporal mapping, it was possible to identify regions that are hardly affected by rainfall erosivity such 

as Grisons and Wallis and it was also possible to identify regions that are affected in a certain month, such as Jura 5 

Mountains. The spatio-temporal variability of rainfall erosivity of Switzerland enables the controlled and time-dependent 

management of agriculture (like selective erosion measures, crop selection, time-dependent sowing) and droughts, ecosystem 

services evaluation, as well as the use for seasonal and regional hazard prediction (e.g. flood risk control, landslide 

susceptibility mapping). Rainfall erosivity based on high erosivity density has more severe impacts on soils, agriculture, 

droughts, and hazards in summer than in winter due the high impact of intense rainfalls. 10 

In contrast to previous studies for Switzerland which were either limited spatially (to a few stations or a country) or 

temporally (to annual or seasonal R-factors) we were able to produce 12 monthly spatio-temporal maps. The maps are based 

on high resolution covariates in combination with an extended database of 87 automated gauging-stations recording in 10 

min intervals, showing simultaneously spatial and temporal variations of R-factors. Regression-Kriging based on high 

spatio-temporal resolved covariates was successfully for most of the months (mean R²=0.51, ERMS=0.61 MJ mm ha
-1 

h
-1

 15 

month
-1

). It was used to map the long-term monthly mean R-factors based on an extended database of rain-gauging stations. 

The spatio-temporal mapping of rainfall erosivity and erosivity density revealed that intense rainfall events in August trigger 

the highest national mean value (263.5 MJ mm ha
-1

 h
-1

 month
-1

). Especially the regions of Jura, Swiss Midland, northern 

Alpine foothill, and Ticino on the Southern Alps show pronounced rainfall erosivity during that month. The months June to 

September have a total share of 62% of the total annual rainfall erosivity in Switzerland. 20 

The current data highlight that rainfall erosivity has a very high variability within a year. These trends of seasonality vary 

between regions and consequently support that a dynamic soil erosion and natural hazard risk assessment is crucial. The 

combination of the dynamic RUSLE-factors (R- and C-factor) will lead to a more realistic and time-dependent estimation of 

soil erosion within a year which is valuable for the identification of more susceptible seasons and regions as well as for the 

application of selective erosion control measures. A mapping of the seasonality of the C-factor for a subsequent synthesis to 25 

a dynamic soil erosion risk assessment for Switzerland is envisaged in a later study. 

The findings of this study have a number of important implications for soil conservation planning. Based on the knowledge 

of the variability of rainfall erosivity, agronomists can introduce selective erosion control measures, a change in crop or crop 

rotation to weaken of the rainfalls impact on soils and vegetation by increasing soil cover or stabilizing topsoil during these 

susceptible months. As such, a targeted erosion control for Switzerland does not only reduce the direct costs of erosion by 30 

mitigation but also shrinks the costs for the implementation of control measures to a requested minimum.  
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Figure 1: Biogeographic units and used gauging stations in Switzerland. 
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Table 1: Datasets used as covariates for the spatio-temporal mapping of rainfall erosivity. 

dataset derived information 
temporal 

resolution 

spatial 

resolution 

measuring 

period 
source 

Total snow depth long-term monthly snow depth hourly 58 stations 1988 – 2010 MeteoSwiss 

CombiPrecip long-term monthly mean rainfall amount from 

measured and radar data 

hourly 1 km 2005 – 2015 Sideris et al., 2014 

EURO4M-APGD long-term mean daily precipitation per month monthly 5 km 1971 – 2008 Isotta et al., 2014 

RhiresM long-term mean monthly precipitation sums monthly 1 km 1961 – 2015 MeteoSwiss, 2013 

SwissAlti3D elevation, slope, aspect - 2 m - SwissTopo 

 

  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-208, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



19 

 

 

 

Figure 2: Mean monthly rainfall erosivity for all 87 Swiss stations. 
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Table 2: Regression equations and selected covariates for estimating mean monthly rainfall erosivity in Switzerland. 

Month Regression equation 

January RJan = 2.101 - 4.150·CombiPrecipJan - 0.006·Snow depthJan +  0.017·RhiresJan - 0.001·Elevation 

February RFeb = 2.702 - 13.812·CombiPrecipFeb - 0.007·Snow depthFeb + 0.019·RhiresFeb + 0.211·Alpine 

PrecipFeb - 0.001·Elevation  

March RMar = 2.534 - 7.735·CombiPrecipMar - 0.006·Snow depthMar + 0.018·RhiresMar + 0.170·Alpine 

PrecipMar - 0.001· Elevation 

April RApr = 2.330 - 3.319·CombiPrecipApr - 0.008·Snow depthApr + 0.023·RhiresApr - 0.001·Elevation - 

0.019·Slope  

May RMay = 2.965 + 2.072·CombiPrecipMay - 0.002·Snow depthMay + 0.015·RhiresMay - 0.001·Elevation 

June RJun = 3.890 + 0.014·RhiresJun - 0.001·Elevation 

July RJul = 3.926 + 5.710·CombiPrecipJul + 0.251·Alpine PrecipJul - 0.001·Elevation 

August RAug = 3.627 + 0.010·RhiresAug + 0.194·Alpine PrecipAug - 0.001·Elevation 

September RSep = 2.760 + 2.243·CombiPrecipSep + 0.539·Alpine PrecipSepb - 0.001·Elevation 

October ROct = 2.753 + 0.0161·RhiresOct - 0.001·Elevation 

November RNov = 2.665 + 3.787·CombiPrecipNov - 0.034·Snow depthNov + 0.166·Alpine PrecipNov 

December RDec = 2.437 + 0.013·RhiresDec - 0.001·Elevation 
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Table 3: Model efficiency by R² and ERMS and omitted outliers and influential observations per month. 

Month Excl. outlier stations R² ERMS Null 

Deviance  

Res. 

deviance 

January Mathod  0.52 0.66 70.36 20.65 

February Monte Generoso, Napf, Saetis 0.53 0.72 79.28 31.82 

March Col du Grand St-Bernard, Saetis 0.49 0.63 61.45 21.84 

April Col du Grand St-Bernard, Saetis, Weissfluhjoch 0.65 0.52 63.69 15.90 

May Davos, Col du Grand St-Bernard 0.60 0.53 56.28 16.83 

June Col du Grand St-Bernard 0.58 0.54 51.61 19.31 

July Monte Generoso, Col du Grand St-Bernard, Stabio 0.66 0.42 38.58 11.57 

August Col du Grand St-Bernard, Stabio 0.47 0.61 50.47 21.75 

September Col du Grand St-Bernard, Stabio 0.64 0.54 61.23 16.27 

October Piz Corvatsch, Col du Grand St-Bernard, Stabio 0.62 0.42 37.86 12.07 

November Piz Corvatsch, Col du Grand St-Bernard, Saetis 0.10 0.93 58.85 47.22 

December Col du Grand St-Bernard 0.26 0.85 73.90 50.66 
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Table 4: Monthly national rainfall erosivity in MJ mm ha-1 h-1 month-1. 

Month Minima Maxima Mean 

January 0.2 71.3 10.5 

February 0.0 247.3 13.5 

March 0.0 179.0 20.1 

April 0.2 1014.4 28.8 

May 8.3 1717.8 120.2 

June 3.6 1262.1 174.8 

July 12.6 1481.1 255.4 

August 8.3 1994.9 263.5 

September 6.8 6107.9 147.7 

October 5.7 977.0 57.0 

November 4.9 357.1 41.6 

December 1.3 234.4 24.9 
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Figure 3: Monthly rainfall erosivity maps for Switzerland (equal stretch from 0 to 200 MJ mm ha-1 h-1 month-1) derived by 

regression-kriging. 
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Figure 4: Seasonal rainfall erosivity maps for Switzerland derived by regression-kriging. The following months were averaged to 

derive seasonal maps: winter (Dec-Feb), spring (Mar-May), summer (Jun-Sep), fall (Oct-Nov). 
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Figure 5: Range map for Switzerland showing the variability of monthly rainfall erosivity among a year. 
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Figure 6: Cumulative daily rainfall erosivity proportion for Swiss biogeographic units, Switzerland and monthly rainfall erosivity 

for Europe (linear smoothed, European data from Panagos et al., 2016a). 
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Figure 7: Monthly erosivity density for Switzerland as ratio of monthly rainfall erosivity to monthly precipitation amount.  
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Figure 8: Monthly erosivity density for Switzerland. 
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