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Author’s responses to reviewers’ comments 
 

We thank each of the three reviewers for their consideration of our manuscript and for their helpful comments. Referee #1 

and Referee #2 each presented a positive perspective on our analysis in their general comments, and provided several 

constructive criticisms in their specific comments. Referee #3 was critical of several aspects of our paper, and identified 5 

issues that they believe warrant important revisions. We agree with many of the points this reviewer makes, and we have 

made significant revisions to address these points, which we detail below in our response to the reviewer's comments. 

However, we disagree with the reviewer's perspective that these represent “fundamental issues” with the manuscript and the 

research presented in it. We believe that the major revisions that we have made, detailed below, serve to clarify our position 

and improve our acknowledgement of certain limitations and caveats. 10 

 

Specifically, we have clarified that we do not consider our observational metrics as measuring the “true” strength of land–

atmosphere coupling, but instead recognize that it represents the effects of land–atmosphere coupling combined with remote 

forcing and atmospheric persistence. This combination of factors comprises a useful set metric that can be derived using 

remote sensing data and which models must still be able to realistically simulate. In addition, we have greatly enhanced our 15 

assessment of observational uncertainty, having given it unique subsections in the Methods and Results sections, and 

incorporating additional analysis with supplementary figures indicating the implications for our analysis. We believe that 

with these significant changes to the manuscript, the research represents a meaningful and novel contribution to the field.  

 

Below, we have responded to each of the general and specific comments made by each reviewer. We have included each 20 

reviewer comment in italics, and have responded to each one in roman font. In several instances, we have included quoted 

passages from our revised manuscript with reduced margins so that these sections can be visually distinguished with ease. 

Following the point-by-point responses, we have included a marked up revision of the document comparing it with the 

original submission. 

Point-by-point responses to Referee #1 25 

This manuscript evaluates the strength in the two-way relationship between total water storage (TWS) and atmospheric 

conditions within a suite of satellite remote sensing, reanalysis, and climate model systems. The correlation method for 

evaluating the coupling strength is not novel, but the concurrent assessment of both response and feedback "limbs" is. 

Further, comparison of the response and feedback strengths with model and satellite datasets provides additional evidence 

of the dichotomy in the apparent strength (and in some documented cases, the sign) of soil moisture-atmosphere coupling 30 

between model and observational frameworks. As the authors allude to, these model system issues can influence estimates of 
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future warming/drying trends. I enjoyed reading this very well written manuscript. The results and implications are 

international in scope, and it will make a worthy contribution to the land-atmosphere interaction body of knowledge. The 

outstanding issues I outline below are mostly minor, and the manuscript will be suitable for publication once they are 

addressed/clarified appropriately. 

 5 

We thank the reviewer for these positive comments 

 

Methods: Page 5, line 16: “with temporal gaps filled using linear interpolation.” More detail is needed here. How many 

months in the data record are filled? What was the typical time interval of missing data; for example, were the “gaps” filled 

predominantly just 1 month or multiple consecutive missing months of data? Is a linear interpolation reasonable for 10 

temporal gap-filling GRACE data? 

 

Missing months in the GRACE record are discussed at the following webpage: http://grace.jpl.nasa.gov/data/grace-months/. 

We limited the time series to September, 2002 through November, 2014, in order to reduce the number of temporal gaps. 

Within this time range, there are eight non-consecutive gaps of one single month and one gap of two missing months. Linear 15 

interpolation was chosen based on personal communication with colleagues experienced in the use of gridded land data from 

GRACE Tellus. We clarified this with the following revised text: 

 

We obtained Level-3 TWSA data from GRACE using the University of Texas at Austin Center for Space 

Research (CSR) spherical harmonic solutions (Swenson, 2012). Global land data at a 1° resolution were 20 

scaled using the coefficients provided by Landerer and Swenson (2012). The study period was limited to 

September 2002 through November 2014, in order to minimize temporal gaps. GRACE data during the 

study period included eight non-consecutive and two consecutive missing months, which were filled using 

linear interpolation. 

 25 

Page 5, lines 20-22: “...the use of TWS data allows us to include surface storage, canopy storage... all of which may be 

sources of moisture that are potentially limiting factors for ET”. This is just one specific instance of discussing TWS for 

land-atmosphere analysis, but in general I think the paper would be better served with a more complete discussion of the 

advantages and limitations of using TWS for this purpose. For example, is the groundwater component of TWS a limiting 

factor for ET if the rooting depth does not reach the water table? In many temperate agrarian or grassland landscapes this 30 

is the case. How do you think these issues could potentially affect the results, or more specifically do you think your findings 

would be different if you just used (e.g.,) surficial soil moisture or root-zone soil moisture? 
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These points are well taken. The primary advantage of using TWS data from GRACE is the fact that it is the only multi-year 

global remote sensing product that includes root-zone soil moisture, unlike AMSR-E and others that only include near-

surface soil moisture. The importance of including root-zone soil moisture is mentioned in the Introduction section, which 

we have revised, as detailed below, in order to clarify the use of TWS instead of surface soil moisture. 

 5 

Regarding groundwater, if the rooting depth does not reach the water table, then groundwater would not serve as a limitation 

on ET. However, in agricultural and other inhabited areas, aquifer withdrawal for irrigation does provide a connection 

between groundwater and the atmosphere. Furthermore, the rate of aquifer recharge depends on how much available water is 

removed via ET. Finally, rooting depths are not always well understood, and the boundary between rooting zone and aquifer 

may not be known. Each of these points indicates an advantage to including the aquifer component of TWS. The 10 

disadvantage of including groundwater is that the metrics could be sensitive to long-term trends in groundwater, but these 

changes are likely to be relatively small on seasonal timescales and therefore do not provide a strong disadvantage. 

 

We have removed segment in question, Page 5, lines 20–22, from the Methods section and have added the following text to 

the Introduction section in order to clarify and expand upon the importance of including the full TWS column for capturing 15 

root-zone soil moisture and other important components: 

 

Until recently, studies using remote sensing data to look for evidence of land–atmosphere coupling relied 

on products that provide information about surface soil moisture (Ferguson et al., 2012; Taylor et al., 

2012). Consideration of root-zone soil moisture has recently been accomplished only indirectly via data-20 

assimilated estimates (Guillod et al., 2015). The inability to directly consider root-zone soil moisture has 

been suggested as an explanation for the relatively weak coupling observed using remote sensing data 

(Hirschi et al., 2014). In order to include root-zone soil moisture, as well as other sources of moisture 

available across entire seasons, here we analyzed remote sensing data of the entire terrestrial water storage 

(TWS) column.  25 

 

The metrics introduced here were specifically designed to use the monthly TWS anomaly (TWSA) 

anomaly product from the Gravity Recovery and Climate Experiment (GRACE) mission (Landerer and 

Swenson, 2012; Wahr et al., 2004). The GRACE TWSA product integrates soil moisture at all layers along 

with surface, canopy, snow/ice, and aquifer storage, as each of these components represents a potential 30 

source of moisture for fulfilling evaporative demand. For example, in areas where agricultural ecosystems 

are important, diversion of lake and river water resources and withdrawal from aquifers may contribute to 

irrigation fluxes and thus ET. Furthermore, surface storage of liquid water and snow represent sources of 
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water that are available for and potentially limiting to ET. Under these conditions, month-to-month TWS 

anomalies capture portions of the terrestrial water cycle that soil moisture alone may not. 

 

Results: Page 10, lines 23-26: you find consistently weaker forcing relationships in boreal regions and attribute this to 

“high levels of climate variability in many high latitude regions” because of AO, NAO, and the like. However, do you think 5 

the predominantly energy-limited evaporative regime of many boreal regions contributes to limiting the feedback connection 

between soil moisture and atmospheric conditions? I would not expect the forcing “limb” to match the strength of the 

“response” limb in such conditions where evaporative fraction is more a function of incoming radiation than soil moisture 

availability. 

 10 

This is a very good point, and we have added the following to address this:  

 

Furthermore, at high latitudes, ET is generally energy limited rather than moisture limited, which would 

lead to weak forcing metrics as moisture availability would not strongly influence atmospheric conditions.  

 15 

Page 11, lines 28-29: `”Furthermore, the well-understood physical mechanisms allow causality to be inferred even when not 

directly demonstrated.” The argument in the previous sentence is well-taken, but I disagree with the premise of this 

statement, particularly inferring causality in the forcing “limb” in the absence of discussion/analysis of possible 

confounding effects. At the very least I would like to see some assessment or acknowledgement of the role of atmospheric 

persistence as a confounding factor when quantifying the forcing limb. For example, is a strong forcing limb caused by the 20 

physical constraint of soil moisture on energy partitioning and modification of boundary layer dynamics and 

thermodynamics (as suggested by the authors), or is it the result of large-scale atmospheric circulation and persistence of 

synoptic-scale patterns that modify precipitation and atmospheric demand throughout the duration of the TWS draw down 

season? A correlation coefficient cannot adequately address the question of large-scale atmospheric persistence vs. soil 

moisture feedback, and indeed this is beyond the scope of this manuscript. However, this does also mean that one cannot 25 

infer causality and mechanistic connections between soil moisture and VPD/PPT/SW based on the evidence provided here. 

 

This point is well taken, and we have removed the sentence in question so as not to claim any indication of causality. We 

have expanded the discussion just prior to the sentence in question to address the issue of persistence: 

 30 

The metrics developed here from satellite observations provide a means for evaluating land–atmosphere 

feedback strength on seasonal to interannual timescales in coupled ESMs. The use of correlation 

coefficients in this study does not enable a direct assessment of whether the relationships are directly 

causal, as correlation between atmospheric and terrestrial conditions could result from atmospheric 
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persistence and remote forcing from SSTs (Orlowsky and Seneviratne, 2010; Mei and Wang, 2011). 

Nonetheless, the satellite-derived metrics provide a meaningful constraint against which coupled models 

can be benchmarked, as these models need to correctly represent the combined effects of persistence, 

remote SST forcing, and land–atmosphere coupling. 

 5 

We also have addressed this by adding a paragraph to Section 4.5 Uncertainties and future applications: 

 

Finally, the issue of causality and the possibility that correlations result primarily from atmospheric 

persistence and remote forcing from SST rather than land-atmosphere interactions may be addressed using 

sensitivity experiments similar to those of GLACE and GLACE-CMIP. While the previous experiments 10 

have tested the importance of soil moisture interaction with the atmosphere, additional experiments could 

expand upon these methods by treating SST variability similar to terrestrial soil moisture availability. Such 

experiments could determine the relative importance of remote SST forcing, including the effect of 

atmospheric persistence, and local land–atmosphere coupling in explaining correlations between TWS and 

atmospheric conditions. 15 

 

Page 12, lines 14-16: “That models and ensemble members with high forcing metrics were also found to have high response 

metric... highlights the importance of the land surface response in priming the system for subsequent forcing on the 

atmosphere...” I don’t understand how the land surface response “primes the system” for subsequent forcing when your 

analysis (and Figure 2) suggest the forcing occurs prior to the response. What am I missing? Can you please expound? 20 

 

We have clarified the discussion by replacing the lines in question with the following: 

 

The inclusion of response metrics in our analysis allows the full feedback loop to be considered by 

recognizing the two-way dependence between the land surface and the atmosphere. The generally higher 25 

correlation coefficients in observed response metrics indicates the importance of the land surface response 

in priming the system for subsequent forcing on the atmosphere. For example, if the TWS response is too 

strongly coupled to the atmosphere, a small change in atmospheric conditions could yield an unrealistically 

large change in TWS. The unrealistically large TWS anomaly, in turn, would have the potential to impart a 

larger land surface forcing of the atmosphere in subsequent time steps. That models and ensemble members 30 

with high forcing metrics were also generally found to have high response metrics (Figure 10) highlights 

the need to consider this.  
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Conclusion: Page 16, lines 13-14: “...which suggests that some of these models may have difficulty properly predicting 

warming trends and climatic extremes.” You include an excellent discussion of the potential links between model 

overestimation of land surface forcing and warming trends, founded in the body of literature. However, you do not explicitly 

quantify this linkage in this manuscript. The ability of models to “properly” predict warming trends and climatic extremes is 

not evaluated here, so this statement should probably be removed. 5 

 

This point is well taken. We have rephrased this section as follows, to qualify our conclusion and avoid making conclusions 

that were not evaluated in our manuscript:  

 

Modeled coupling metrics are generally found to be stronger than those observed in the satellite record. If 10 

this discrepancy is due to models overestimating the two-way feedback between the land surface and the 

atmosphere, this could lead to models incorrectly projecting future warming trends and climatic extremes 

(e.g., Hirschi et al., 2011; Seneviratne et al., 2013; Cheruy et al., 2014; Miralles et al., 2014). 

 

Page 11: I’m going to guess the section 4 title should be "Discussion" and not "Introduction" 15 

 

Page 12, line 21: parentheses should only be around the publication year - Guo et al., (2006)... 

 

We thank the reviewer for pointing out these typographical errors, which have been corrected 

Point-by-point responses to Referee #2 20 

This paper describes a new methodology for the analysis of land-atmosphere coupling that focuses on the seasonal time 

scale and that addresses both the widely-studied impact of the land surface on the atmosphere and the somewhat less often 

considered (in this context) sensitivity of the land surface to atmospheric forcing. This methodology is applied to remote-

sensing data of terrestrial water storage (TWS), the CESM Large Ensemble (LENS) and a few CMIP5 models. 

 25 

Although many methodologies to quantify land-atmosphere coupling already exist, the focus on seasonal time scales and the 

investigation of both the forcing and feedback loop of land-atmosphere coupling make this methodology valuable. The use of 

LENS is also valuable and in particular is useful to consider potential impacts of internal variability on the metrics. 

 

The manuscript is very well written and very clear. The authors have done a good job at keeping the text relatively short and 30 

straightforward despite substantial analyses. Most of my comments below are minor and I think the manuscript can be 

published after considering these. 
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We thank the reviewer for these supportive comments. 

 

Page 4, line 16-17: “Until recently, studies using remote sensing data to look for evidence of land–atmosphere coupling 

relied on data products that provide information about surface soil moisture.” There are some exceptions and some remote-5 

sensing products also estimate soil moisture in the whole root zone (for instance, I recall that Guillod et al. (2015) used such 

estimates). 

 

We re-read the Guillod et al. (2015) paper, and found that while they did account for root-zone soil moisture in their 

estimation of evaporative stress, this was done indirectly through a data-assimilated estimate. Their direct observations of 10 

soil moisture were of surface soil moisture in the top few cm of the soil column from AMSR-E. We have added the 

following explanation of these details to the text in order to clarify the distinction between direct and indirect observations of 

root-zone soil moisture:  

 

Consideration of root-zone soil moisture has recently been accomplished only indirectly via data-15 

assimilated estimates (Guillod et al., 2015). 

 

Section 3.3: These results on the role of internal variability are interesting. Another source of discrepancy between a single 

model run and observations can be observational error combined with short record (e.g., Findell et al., 2015), which may 

artificially decrease the coupling found in observations. Together, this effect and internal variability probably tell us 20 

something about the data length required to robustly assess land-atmosphere coupling. 

 

This point is well taken, and we have expanded upon this issue by performing a Monte Carlo simulation in order to test the 

effects of observational uncertainty combined with our relatively short time series. We have made additions to the Methods 

and Results sections to report on the details of this approach, as well as an addition to our Discussion section, as follows, in 25 

which we acknowledge the relevance of Findell et al., 2015: 

 

One factor that could contribute toward stronger coupling metrics in models relative to observations is the 

effect of observational uncertainty combined with a relatively short time series. Adding random error to 

one or more variables in a correlation analysis will reduce the correlation coefficient, and this degradation 30 

has been shown to be sensitive to the length of data sets used to establish metrics of land–atmosphere 

coupling (Findell et al., 2015). Given the relatively short time series available for the current analysis, the 

correlation coefficients derived from remote sensing data may be reduced due to observational uncertainty, 

unlike those derived from internally consistent models. We found that adding random noise to LENS at 
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25% of the standard deviation of the original data caused some degradation of our area-averaged coupling 

metrics, but only by a small amount relative to the difference between LENS and the observations (Figures 

S1 and S2). We chose 25% as a qualitative upper bound on likely uncertainties introduced from random 

observational error within the TWSA and atmospheric variable time series. This highlights the need for 

developing more quantitative error estimates in remote sensing and reanalysis products. More generally, 5 

this sensitivity analysis suggests that our coupling metrics, when averaged across large areas, may be useful 

in identifying robust data-model differences.  

 

This addition serves to strengthen the conclusion that the utility of our approach will increase as the satellite data record 

grows longer, and reinforces the importance of the GRACE follow-on mission in lengthening the time series of TWS 10 

anomalies. We have further modified our discussion section to emphasize this point as follows: 

 

Furthermore, we acknowledge that observational error over an insufficiently long time series could reduce 

the apparent strength of correlations (Findell et al., 2015). Therefore, the utility of the coupling metrics we 

present will increase alongside the length of the time series available from remote sensing platforms. This 15 

emphasizes the importance of the GRACE follow-on mission (Flechtner et al., 2014) and the need for 

continuity in the record between missions. 

 

Page 8, line 24 and Page 11, line 5: Supplementary figures references could be more specific. I think that the first mention 

on page 8 refers to Fig. S3 while the second mention (page 11) refers to Figs. S1 and S2. The order of the supplementary 20 

figures could also be adapted so they are cited in sequence. 

 

We thank the reviewer for pointing out the need to clarify our references to the supplementary figures and the order in which 

we present them. The first mention, on page 8, was intended to refer generally to all three figures, but the lack of specificity 

did not yield clarity in our order of presentation. We have modified our references to the supplementary figures to be more 25 

specific, and have made sure that the supplementary figures are numbered in the order in which they are referred to in the 

text. 

 

Page 13, line 20-29: The authors write that overestimating ET would lead to excessive land-atmosphere coupling. This is a 

bit confusing: if the coupling is strongest in transitional regions between wet and dry climate, why would a too high ET in an 30 

already wet region lead to an increase in coupling? I agree that model errors with respect to the distribution of water 

between storage reservoirs can be an issue; however I do not think that this necessarily leads to stronger coupling, but 

maybe I am missing something here. 
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We thank the reviewer for pointing out the need to clarify the basis of this argument. We have replaced the paragraph in 

question with the following: 

 

A set of possible explanations involves models overestimating the amount of water available for ET during 

the drawdown interval. The land surface influence on the atmosphere requires water to be a limiting factor 5 

to ET but not limiting enough to prevent it altogether.  Under more moisture-limited conditions, a 

drawdown interval may experience multiple shorter time periods during which ET is inhibited due to 

insufficient water, and the terrestrial moisture state exerts no control over flux partitioning. These periods 

of insufficient moisture would tend to reduce the overall feedback strength integrated across the duration of 

the drawdown interval. Model shortcomings that make water too readily available for ET could reduce the 10 

amount of time spent in a periods of insufficient moisture during the drawdown interval, thereby 

unrealistically strengthening the longer-term feedback. We note that the opposite could take place under 

near-saturated conditions if a model overestimates the amount of time in which ET is energy-limited, but 

we would not expect these conditions to be as prevalent during the drawdown interval that was the time 

period of focus in our analysis. 15 

  

Page 11, line 23: I assume that “Introduction” should in fact be “Discussion”. 

 

Page 12, line 22: “(Guo et al., 2006) explain...” should be “Guo et al. (2006) explain. . .”. 

 20 

Page 13, line 13: “and underestimation of and remote SST forcing” should be “and underestimation of remote SST forcing” 

(?). 

 

Page 16, line 11: “Regions of strong coupling metrics”: I think the authors mean “Regions of strong response metrics” 

here. 25 

 

We thank the reviewer for pointing out these typographical errors, which have been corrected. 

Point-by-point responses to Referee #3 

In this study, the authors aim to assess the feedbacks between terrestrial water storage (TWS) and the atmosphere in remote 

sensing observations (using GRACE data for TWS), and they aim to use the estimate they obtain to evaluate climate model 30 

simulations from the CESM large-ensemble and from (a subset of) CMIP5 models. They use correlations at the interannual 

time-scale, with lead-lags of a few months between TWS and atmospheric variables, to assess both how the atmosphere 
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(during months of TWS decrease) influences the minimum annual TWS (the forcing response), and how TWS (at time of 

maximum annual TWS) feeds back on the atmosphere in the following months (the feedback response). Their main result 

include some characterization of these relationships in model and observations, which show that the CESM model, and most 

CMIP5 models, appear to overestimate both forcing and feedback relationships. Some discussion is then proposed on the 

possible reasons for that. 5 

 

Although I like the idea of trying to use GRACE observations to derive a large scale “land-atmosphere moisture coupling” 

metrics to compare to models, I see a number of issues with the study as it stands, that I think warrant some major revision. 

 

We thank the reviewer for their thorough and thoughtful analysis of our manuscript. While we disagree with several of the 10 

issues raised by this reviewer, many of their comments proved to be highly constructive criticism. We have addressed these 

comments with some major revisions to our manuscript as well as several minor corrections and clarifications, all of which 

we detail below in our point-by-point responses. In particular, we have made significant revisions in order to clarify the 

goals of our approach and more appropriately emphasize its limitations. We hope these clarifications and revisions will 

satisfy the reviewer, and we believe that despite the limitations, our approach still represents a valuable and novel system for 15 

evaluating model performance using observational constraints. 

 

1) My first main comment has to do with the metric used. First, the brevity of the time period of analysis is obviously an 

issue. The metrics are essentially interannual correlations over 13 years, i.e., correlations over 13 data points. That's very 

short. I am not sure I have seen many studies looking at interannual variability over 13 years only, in particular in terms of 20 

land-atmosphere studies. Accordingly, results for the feedback metrics appear very noisy. First, I believe a discussion of 

field significance is warranted here: patches of apparently significant values may still be random in that context (e.g., see 

Livezey and Chen (1983)). 

 

We do not believe the issue of field significance is relevant in the current context. Our metrics compare a single time series 25 

of TWS anomalies with a single time series of atmospheric data in the same region. We are not calculating correlations 

between a single explanatory variable and a geographically distributed field of dependent variables. Therefore, we are not 

engaging in the type of hypothesis testing that would warrant consideration of field significance. 

 

Second, note that recent research underscores the need for long-record datasets to establish land-atmosphere coupling, that 30 

coupling metrics require more data than single-variable simple statistics (e.g., mean and variance) to be robustly estimated, 

and finally that, unlike single-variable statistics, coupling metrics are actually degraded by observational uncertainty 

(Findell et al. 2015). The latter point, in particular, is in my view a much likelier explanation for the weaker correlations 

found here in observations – between uncertain observation datasets that are independent of each other – compared to 
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correlations computed with model outputs, which are by definition perfectly consistent with each other. The authors touch on 

the issue of observational uncertainty by computing correlations with the ERA reanalysis, but I don't think enough is made of 

that. 

 

We recognize that the relatively short time series available from the satellite record warrants caution while interpreting these 5 

results. We agree with the reviewer that the findings of Findell et al. (2015) emphasize this limitation and suggest that 

observational uncertainty would be expected to decrease correlations. We have addressed this using a Monte Carlo approach, 

which we describe in the revised manuscript and present the results of in additional supplementary figures. In summary, we 

treated the CESM Large Ensemble (LENS) as “truth” in order to test how much the correlation coefficients that comprise 

our metrics are degraded by random noise as a proxy for observational uncertainty. We added random noise with a mean of 10 

zero and a standard deviation equal to 25% of the standard deviation of the variables in question before performing the 

correlation analysis. We found that perturbing the data did reduce the correlation coefficients by a small amount, but the 

difference between the metrics from the original and perturbed model data is much smaller than the difference between the 

metrics from the model and the remote sensing observations. We therefore conclude that while observational uncertainty 

combined with the relatively short time series is a caveat that must be considered, it does not invalidate the overall findings 15 

of our analysis. 

 

Along with the addition of this Monte Carlo approach, we have made major revisions to the presentation of our uncertainty 

analysis in the manuscript. There are now dedicated subsections in both the Methods and Results section detailing our 

uncertainty analysis, as well as the following addition to our Discussion section, in which we specifically reference Findell et 20 

al. (2015): 

 

One factor that could contribute toward stronger coupling metrics in models relative to observations is the 

effect of observational uncertainty combined with a relatively short time series. Adding random error to 

one or more variables in a correlation analysis will reduce the correlation coefficient, and this degradation 25 

has been shown to be sensitive to the length of data sets used to establish metrics of land–atmosphere 

coupling (Findell et al., 2015). Given the relatively short time series available for the current analysis, the 

correlation coefficients derived from remote sensing data may be reduced due to observational uncertainty, 

unlike those derived from internally consistent models. We found that adding random noise to LENS at 

25% of the standard deviation of the original data caused some degradation of our area-averaged coupling 30 

metrics, but only by a small amount relative to the difference between LENS and the observations (Figures 

S1 and S2). We chose 25% as a qualitative upper bound on likely uncertainties introduced from random 

observational error within the TWSA and atmospheric variable time series. This highlights the need for 

developing more quantitative error estimates in remote sensing and reanalysis products. More generally, 
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this sensitivity analysis suggests that our coupling metrics, when averaged across large areas, may be useful 

in identifying robust data-model differences.  

 

This acknowledgement further supports our argument that the utility of these metrics will increase as the time series of 

global satellite data grows longer with continuations of current missions and initiation of new missions (i.e., GRACE follow 5 

on) as mentioned in the Discussion section: 

 

The current study demonstrates the utility of the coupling metrics presented here, but conclusions are 

limited by the time span of the satellite record. While LENS enables the internal variability of these 

relationships to be investigated within the model, it is unclear how much natural climate variability affects 10 

these relationships in reality on timescales longer than the satellite record. Furthermore, we acknowledge 

that observational error over an insufficiently long time series could reduce the apparent strength of 

correlations (Findell et al., 2015). Therefore, the utility of the coupling metrics we present will increase 

alongside the length of the time series available from remote sensing platforms. This emphasizes the 

importance of the GRACE follow-on mission (Flechtner et al., 2014) and the need for continuity in the 15 

record between missions. 

 

So, given the brevity and uncertainty of observations, even without consideration of any other issues (but, see below), I am 

really uncomfortable with the approach proposed by this paper, which is to consider the observational estimate as a 

benchmark for model evaluation. Personally, I think an approach where observations and model results are used together to 20 

try to infer the “real” coupling would make more sense here. But, this would lead to a very different paper. Overall, if the 

authors are going to go on with their approach, I would recommend much more caution in how things are presented, 

including in the title of the study and the conclusions. 

 

We agree with the reviewer that “an approach where observations and model results are used together to try to infer the ‘real’ 25 

coupling” would be valuable, and represents a research priority for the community. Our intention was not to present the 

observationally derived forcing metric as representing the “real” land–atmosphere coupling strength. Instead, it represents 

the combined effects of land–atmosphere coupling (the “real” coupling strength) along with the remote effects of SST 

forcing on both the atmosphere and land surface. We believe that despite the relatively short time series, these metrics 

provide a useful constraint on models' ability to represent this combined set of processes. The reviewer's recommendation of 30 

greater caution in our presentation is appreciated, and we have added the following clarification to Methods section when 

introducing the metrics: 
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We note that these metrics do not provide distinctive information for measuring the strength of land–

atmosphere coupling or the land surface response. While the metrics include the influence of direct land-

atmosphere interactions, they are also potentially influenced by atmospheric and soil moisture persistence, 

as well as remote forcing from sea surface temperatures (SSTs) (Orlowsky and Seneviratne, 2010; Mei and 

Wang, 2011). Nevertheless, these metrics may still serve as useful benchmarks against which to evaluate 5 

the ability to ESMs to reproduce the proper relationships based on the combination of these factors. 

 

We further clarify this point in the following addition to the Discussion section: 

 

The metrics developed here from satellite observations provide a means for evaluating land–atmosphere 10 

feedback strength on seasonal to interannual timescales in coupled ESMs. The use of correlation 

coefficients in this study does not enable a direct assessment of whether the relationships are directly 

causal, as correlation between atmospheric and terrestrial conditions could result from atmospheric 

persistence and remote forcing from SSTs (Orlowsky and Seneviratne, 2010; Mei and Wang, 2011). 

Nonetheless, the satellite-derived metrics provide a meaningful constraint against which coupled models 15 

can be benchmarked, as these models need to correctly represent the combined effects of persistence, 

remote SST forcing, and land–atmosphere coupling. 

 

We also plan to emphasize the importance of disentangling the influence of land–atmosphere coupling from that of 

atmospheric persistence and remote SST forcing with the following addition to the Discussion section: 20 

 

Finally, the issue of causality and the possibility that correlations result primarily from atmospheric 

persistence and remote forcing from SST rather than land-atmosphere interactions may be addressed using 

sensitivity experiments similar to those of GLACE and GLACE-CMIP. While the previous experiments 

have tested the importance of soil moisture interaction with the atmosphere, additional experiments could 25 

expand upon these methods by treating SST variability similar to terrestrial soil moisture availability. Such 

experiments could determine the relative importance of remote SST forcing, including the effect of 

atmospheric persistence, and local land–atmosphere coupling in explaining correlations between TWS and 

atmospheric conditions. 

 30 

We believe that despite the limitations of a relatively short time series and the inability to attribute the sources of 

covariability, our approach is still valuable. We believe that the revisions described above emphasize our goal of 

conceptually illustrating an approach towards model benchmarking that will become increasingly useful with longer time 
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series from remote sensing. At this point, we would prefer to retain our title, which we believe is succinct and accurately 

conveys the content of our paper. 

 

2) Another issue with the metrics involves the definition of the (feedback) metric. The way it is defined, it is looking at the 

impact of TWS at the end or peak of the rainy season on climate in the subsequent months. The authors indicate as much, 5 

and say they want to consider, in the Tropics, the impact of late-rainy season TWS on dry-season climate. I see two issues 

with that. First, in my view, while that may useful in the deep Tropics where the dry season is short, this approach is 

problematic in monsoon regions, or regions of the Tropics that have a well defined rainy season (i.e., outside of the deep 

Tropics): basically, after the rainy season, there is not much rain to look at any more. For instance, over the Sahel, what the 

authors are computing is the impact of September TWS on precipitation over September-May. But it doesn't rain much over 10 

that time period. 

 

We believe that focusing on the drawdown interval is an important part of our approach. Our algorithm is novel in allowing a 

global-scale analysis across ecosystems. In mid-latitudes, the drawdown interval contains the summer season that has been 

the focus of research in land–atmosphere coupling. In tropical latitudes, the drawdown interval contains the dry season, 15 

during which precipitation recycling is important for maintaining ecosystems, allowing forests to persist in the absence of 

circulation-driven precipitation (Keys et al., 2016). In the example of the Sahel, our algorithm is working as intended, by 

measuring how variations in TWS at the onset of the dry season are related to atmospheric conditions during the dry season. 

 

In my view, it would be much more interesting to look at the impact of end-of-dry season TWS on the subsequent rainy 20 

season to see if, in these regions, available land moisture feeds back on precipitation during the rainy season. Second, in the 

same example over West Africa, whatever rainfall there is over Sept-May is actually probably the end of the monsoon, Sept-

Nov. Because TWS in September is likely to be influenced by precip in September, and Sept. precip is likely to represent 

large part of the `response' variable, the causation is muddied a little bit: a clearer temporal offset would be needed in such 

a case. But more importantly, even precip in the months following September (Oct, Nov) is likely to be correlated with precip 25 

in the previous months – for instance, a year with a strong monsoon that has more rain in Jun-Sept may well tend to also 

have more rain in Sept-Nov. Because September TWS will largely reflect JJAS rainfall, the TWS-based metric will then show 

a strong feedback - but the inferred causation would be a misinterpretation. 

 

We believe that ET in the wet season tropics would be energy limited, and therefore would not reflect the influence of land 30 

surface moisture availability on the atmosphere. We acknowledge the issue with persistence, which we expand upon below.  

 

This brings me to a more general point: the authors do not discuss how autocorrelation, here at the seasonal time scale, of 

climate variables, may impact their estimate of land-atmosphere coupling. This is a major issue affecting all empirical 
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studies of land-atmosphere coupling – see, for instance, Wei et al. (2008) and Orlowsky and Seneviratne (2010). The authors 

do cite the latter study, but, it seems, simply to say that if models underestimate SSTs influence on land climate, they will 

then appear to overestimate local L-A coupling. They somehow miss the point of that paper in how it should apply to to their 

own results. I just gave one example above (the Sahel) of how that might be the case. Other monsoon regions (e.g., India) 

might similarly be affected. Interannual variability in the coupled ocean-atmosphere (eg., ENSO) might also the source of 5 

confounding influence at the time scales investigated here. So, overall, I recommend these caveats be considered and 

discussed by the authors in their interpretation of their results. Personally, I would need to see some further analysis to be 

more convinced of the physical reality of the land-atmosphere feedbacks the authors claim to show (e.g,. some sensitivity test 

to the months and time lags considered, some investigation of atmospheric variability and persistence, etc.). 

 10 

The reviewer's point is well taken, and has already been partially addressed above in the additions and revisions to the 

Methods and Discussion sections (quoted above). In addition, we discuss these issues more explicitly in an additional 

revision to the Discussion section: 

 

Another possible explanation stems from the fact that our coupling metrics include covariability due to 15 

atmospheric persistence and remote forcing by SST (Orlowsky and Seneviratne, 2010; Mei and Wang, 

2011) alongside the direct influence of land-atmosphere interactions. For this reason, we caution that 

overestimates of coupling metrics do not imply that the land–atmosphere feedback is necessarily stronger, 

but could be due to an overestimate of SST-driven correlations between the land surface and the 

atmosphere. Wei et al. (2008) demonstrated that negative correlations between soil moisture and 20 

subsequent precipitation can be explained by precipitation persistence combined with negative temporal 

autocorrelation of precipitation associated with intra-seasonal modes such as the Madden-Julian Oscillation 

(MJO). Poor representation of the MJO period in CMIP5 models leads to unrealistic patterns of 

precipitation persistence (Hung et al, 2013). If models are failing to capture MJO-driven negative 

correlations, this could lead to overly strong positive correlations relative to observations. However, this 25 

would depend on the length of the drawdown interval relative to persistence time and the period of intra-

seasonal modes. 

 

This supports our addition the Discussion section (quoted above), discussing the importance of modeling experiments to 

determine relative importance of remote SST forcing, including the effect of atmospheric persistence, and local land–30 

atmosphere coupling in explaining correlations between TWS and atmospheric conditions. 
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3) Another main comment has to do with the discussion section. The authors discuss why models might exhibit stronger 

feedback (and forcing) metrics than observations. As mentioned above, I think uncertainty in observations should be 

mentioned as a primary reason. 

 

We now more explicitly address observational uncertainty as well as uncertainty due to the short time series in the 5 

Discussion section, quoted above. 

 

The authors propose that ET may be consistently overestimated in climate models, and a large part of the discussion then 

consists in speculation as to why that may be the case. First, while I appreciate the effort to discuss things further and not 

just show results, I found this whole section a bit too speculative. IF the models overestimate ET, then IF stomatal 10 

conductance, IF convection, IF bare soil, etc. . . Can the authors actually point to any evidence that ET is consistently 

overestimated in climate models, in the first place (or at least in CESM)? 

 

These points are well taken, and while this section is speculative by its very nature, we agree that it warrants revision. We 

have modified this part of the Discussion section so that it does not center on models overestimating ET, but instead focuses 15 

on ways in which models could make moisture too readily available for ET. We have clarified the basis of our argument with 

the following revision to the Discussion section: 

 

A set of possible explanations involves models overestimating the amount of water available for ET during 

the drawdown interval. The land surface influence on the atmosphere requires water to be a limiting factor 20 

to ET but not limiting enough to prevent it altogether.  Under more moisture-limited conditions, a 

drawdown interval may experience multiple shorter time periods during which ET is inhibited due to 

insufficient water, and the terrestrial moisture state exerts no control over flux partitioning. These periods 

of insufficient moisture would tend to reduce the overall feedback strength integrated across the duration of 

the drawdown interval. Model shortcomings that make water too readily available for ET could reduce the 25 

amount of time spent in a periods of insufficient moisture during the drawdown interval, thereby 

unrealistically strengthening the longer-term feedback. We note that the opposite could take place under 

near-saturated conditions if a model overestimates the amount of time in which ET is energy-limited, but 

we would not expect these conditions to be as prevalent during the drawdown interval that was the time 

period of focus in our analysis. 30 

 

We have also added the following to the Discussion section, citing evidence of models overestimating ET: 
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CMIP5 models are known to have a high ET bias (Mueller and Seneviratne, 2014), which could be due in 

part to the explanations proposed as possible reasons for overestimated feedback metrics in models. 

 

Second, if soil water is too readily available in models, and ET is overestimated, wouldn't that actually mean that feedbacks 

should be underestimated in models? Indeed, ET would then be less water-limited and more energy-limited, with less 5 

potential for soil moisture-atmosphere feedbacks. 

 

We designed our metrics around the drawdown interval in order to specifically consider the time of year during which ET 

would be water-limited. The issues we discuss with insufficient representation of bare soil processes and big leaf 

parameterizations would, during this time of year, unrealistically make too much water available for ET. This would allow 10 

ET to take place in the model when in reality that water would have run off or is unavailable for transpiration. Under these 

conditions, the atmosphere in the model would be influenced by moisture availability when in reality no moisture is 

available. These points have been clarified with the revision to the Discussion section quoted above. 

 

Surface climate variability would then be influenced by the atmosphere to a greater extent. Along the same lines, the authors 15 

claim that their results, showing an overestimation of land-atmosphere feedback by models, are consistent with prior studies, 

and have implications for projected warming (e.g., Cheruy et al., 2014). However, these previous studies, it seems to me, 

point to ET being underestimated in these models, and models getting to easily “locked” in a dry and warm surface mode. 

So, in effect, while the authors agree with prior studies that land-atmosphere feedbacks are overestimated in models, they 

provide opposite reasons for that (overestimated versus underestimated of ET). I would like to see the authors clarify that 20 

apparent contradiction. 

 

We have revised our Discussion section, described above, so as not to rely on whether models overestimate or underestimate 

ET. 

 25 

4) Finally, the author interpret the relationship they find between the strength of the feedback and forcing metrics in CMIP5 

models as showing that: “the response limb of the feedback loop is important for understanding how conditions are set up 

for subsequent forcing via land–atmosphere coupling”. They claim that it highlights “the importance of the land surface 

response in priming the system for subsequent forcing on the atmosphere”. I am not convinced by this interpretation, which 

sounds a bit hand-wavy to me. I don't see a strong physical reason why a model where, for instance, TWS responds strongly 30 

to precipitation, should have a strong feedback of TWS onto precipitation. 

 

Conceptually, we disagree with this perspective. The strength of land–atmosphere coupling depends on moisture availability 

enabling some ET while still limiting it. Models must therefore simulate the correct moisture availability in order to simulate 
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the proper amount of land–atmosphere coupling. The response metrics reflect whether models simulate the right moisture 

availability based on precipitation and evaporative demand, and whether this is the right amount to set up subsequent land–

atmosphere coupling. We have clarified our reasoning with the following modification to the Discussion section: 

 

The inclusion of response metrics in our analysis allows the full feedback loop to be considered by 5 

recognizing the two-way dependence between the land surface and the atmosphere. The generally higher 

correlation coefficients in observed response metrics indicates the importance of the land surface response 

in priming the system for subsequent forcing on the atmosphere. For example, if the TWS response is too 

strongly coupled to the atmosphere, a small change in atmospheric conditions could yield an unrealistically 

large change in TWS. The unrealistically large TWS anomaly, in turn, would have the potential to impart a 10 

larger land surface forcing of the atmosphere in subsequent time steps. That models and ensemble members 

with high forcing metrics were also generally found to have high response metrics (Figure 10) highlights 

the need to consider this.  

 

Couldn't the relationship on Figure 10 be due to intermodel differences in what TWS (or its estimate, here) encompasses in 15 

each model? For instance, different soil depths? A deeper soil would lead to weaker links between TWS and climate both in 

terms of response and feedback to the atmosphere. 

 

No, because we are using the total terrestrial water storage column. In the case of LENS, this is an explicitly output field that 

includes this entire column. In the case of the CMIP5 output, we used the accumulated residuals of the surface water balance 20 

(i.e., the integral of precipitation minus evaporation and runoff) to approximate this quantity. 

 

In any case, I found Figure 10 to be insufficiently explained and encourage the authors to discuss this further. 

 

We have revised the caption for Figure 10 to more clearly explain what it comprises: 25 

 

Scatter plots of forcing and response metrics for LENS and CMIP5 models with observations, averaged 

across land regions within different latitude bands. For LENS, we show metrics calculated using the 

explicit TWS output (darker grey) and TWSA estimates from the accumulated residuals of the surface 

water balance (lighter grey). For CMIP5 models, we calculated metrics using TWSA estimates from the 30 

accumulated residuals of the surface water balance. 

 

p.2 line 4: “cloud radiative coupling”: please explain and clarify. 
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We have clarified this as follows: 

 

Cloud radiative coupling can likewise lead to positive or negative feedbacks as insolation and evaporative 

demand, as a function of cloud cover, are either enhanced or suppressed (Betts, 2009; Cheruy et al., 2014). 

 5 

P.2 line 24: actually, no: a surprising result of GLACE II was that predictive skill was not enhanced over the Great Plains 

“hot spot” from GLACE I, but rather to the North of it (see Koster et al. 2011). Consider rephrasing 

 

We thank the reviewer for pointing out this discrepancy, which we have corrected by removing the reference to GLACE II 

 10 

P.3 line 5: the text should make it clear that GLACE-like metrics cannot be directly compared to observations, and that 

other more simple metrics, not strictly equivalent, have to be used, like SM-ET correlations, etc. 

 

We agree that this warrants clarification, and we have done so with the following revision:  

 15 

The metrics developed for GLACE are based on model experiments with no direct observational 

equivalents. However, correlation-based metrics that do enable direct comparison with observations 

suggest that models may overestimate land–atmosphere coupling strength (Dirmeyer et al., 2006a). 

 

P.3 line 20: Findell et al. 2011 is actually based on reanalysis data, not “modelling”. Also, Findell et al. 2015 should be 20 

included in this discussion, to highlight the issue, discussed above, of data length requirements to estimate land-atmosphere 

coupling. 

 

We reference Findell et al. (2011) in the context of Guillod et al. (2014), which emphasizes that the surface state and fluxes 

are still model based, even if the atmosphere is constrained by some observations. However, to avoid confusion, we now 25 

omit the word “modelling” from the description of Findell et al. (2011). Furthermore, as discussed above, we now include 

Findell et al. (2015) in the discussion in Section 4.3 (quoted above). 

 

P.5 line 15: is that version of the GRACE data downscaled in any way, and if so, how? I thought the basic GRACE data was 

at coarse resolution (e.g., 500km). 30 

 

The GRACE gridded land product that we use is provided at a 1-degree resolution. We have clarified this by rewording the 

beginning of the Methods section as follows: 
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We obtained Level-3 TWSA data from GRACE using the University of Texas at Austin Center for Space 

Research (CSR) spherical harmonic solutions (Swenson, 2012). Global land data at a 1° resolution were 

scaled using the coefficients provided by Landerer and Swenson (2012). 

 

P.5 line 17: “the TWS time series”. I read that GRACE data are actually anomalies compared to the mean over 2004-2009. 5 

How is that accounted for in the computation of the metrics? Are the other variables centered on the same years? Does that 

affect results in any way? What about model outputs? 

 

In the context of our metrics, the baseline against which GRACE Anomalies are compared is arbitrary. In our calculations, 

the baseline only affects the intercepts of the linear correlations; it does not affect the correlation coefficients that comprise 10 

our metrics. 

 

P.6 line 32: see main comment above: I am not sure this is the most relevant time of year to investigate, and they are issues 

of rainfall autocorrelations. 

 15 

We have addressed this in our response to the reviewer's main comment above, in which we explain why we chose to focus 

on this time of year. 

 

P.7 lines 12-15: that is, if the feedback is actually a positive moisture feedback. In other words, the authors adopt the a 

priori view that they are looking at a positive, moisture recycling feedback. This should be stated more explicitly, and 20 

perhaps earlier in the manuscript. 

 

This point is well taken, and have modified the Methods section to more explicitly state this assumption by removing lines 

12–15 and 19–20 on page 7, and replacing them with the following: 

 25 

Here we note that our evaluation of both the forcing and response metrics will follow a nomenclature that 

considers strong coupling as acting in the direction of an overall positive feedback loop. In regions with a 

strong positive feedback, higher than average TWS would be followed by lower than average VPD, as 

more available water is able to fulfill evaporative demand. Therefore, strong TWS forcing on VPD would 

be associated with a negative correlation coefficient. Higher VPD during the drawdown interval would 30 

increase evaporative demand, potentially leading to a more negative TWS anomaly, therefore a strong 

response of the land surface to VPD would also be associated with a negative correlation coefficient. 
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Because the partitioning of surface fluxes can, depending on the spatiotemporal scale, cause a change of 

either sign to cloudiness and precipitation (Taylor et al., 2012; Guillod et al., 2015), correlation coefficients 

of either sign could indicate strong land surface forcing on PPT and SW↓. However, the response metrics 

would be expected to show greater consistency. Higher PPT during the drawdown interval would be 

expected to increase TWS (positive correlation), while higher SW↓ would increase evaporative demand, 5 

thereby decreasing TWS (negative correlation). Therefore, to maintain consistent nomenclature based on 

evaluating the strength of a positive moisture feedback, we consider strong coupling in both the forcing and 

response metrics to be associated with a positive correlation in the case of PPT and a negative correlation in 

the case of SW↓. 

 10 

P.8 line 18: what about AMIP simulations? 

 

Correlations in our forcing metric come from both land–atmosphere coupling and the effects of remote SST forcing. AMIP 

simulations could reduce internal variability, but will not capture ocean-atmosphere interactions. We are interested in 

evaluating fully coupled models that are used for 21st century projections. 15 

 

P.8 line 28: It's unclear to me why the authors restrict themselves to the GLACE- CMIP5 models. There is no further 

comparison in the manuscript, on a model-by-model basis, with results from that experiment. So why not use the whole 

CMIP5 ensemble? 

 20 

The purpose of this manuscript is not to evaluate the entire CMIP5 ensemble, but rather to introduce a new approach toward 

model benchmarking using a small ensemble of models as an example. 

 

P.9 line 9: so what? What is made of that? What are the implications for the correlation-based metrics? This comment 

applies to the whole sub-section, actually, including the result about climate variability. If anything, higher variability in 25 

model outputs would point to lower correlations, if the covariance between TWS and climate is similar. 

 

This point is well taken, and we have addressed this with an addition to this section that clarifies the implications of this 

analysis: 

 30 

Comparing both the timing of TWS dynamics and the interannual variability of TWS and the atmospheric 

variables between the observations and model output provides context for interpreting the correlation-based 

metrics we present next. Although there are some inconsistencies, as noted above, the model largely 

reproduced the same patterns evident in the remote sensing data. In many regions, the interannual 
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variability in model output was similar to the observed variability, indicating that CESM was able to 

simulate reasonably well the baseline properties (timing and variability) that influence feedback dynamics. 

 

P.9 line 11: aren't trends removed from this data? Please clarify. 

 5 

Trends are removed only for the purpose of generating the annual climatology, as indicated in the methods section, are 

retained in the correlation analysis in order to capture decadal-scale variability that would represent a trend in the relatively 

short time series. 

 

P.9 line 26: still, why would the covariance be positive? 10 

 

We have addressed this question with the following addition to this section: 

 

Positive correlations are unlikely to reflect direct land–atmosphere interactions. Instead, they demonstrate 

how remote SST forcing can, depending on lag times, lead to apparent negative relationships such as those 15 

demonstrated by Wei et al. (2008). 

 

P.9 whole section 3.2: this whole subsection feels very descriptive. On the other hand, there is not much description of the 

processes themselves. This might feel obvious to the authors, but some further discussion of what the correlations mean 

physically, when describing the figures, may be welcome. 20 

 

The purpose of this section is to help the reader understand how the metrics work for a single ensemble member before we 

present the aggregated results for the whole ensemble. We feel this is a critical step in explaining how our metrics work and 

justifying their use in comparing models with observations. 

 25 

P.10 line 13: the link with cloud cover and precipitation should be explicitly mentioned here. 

 

The link is now explicitly mentioned: 

 

The forcing metrics for SW↓ showed a mixture of positive and negative correlations, indicating that higher 30 

TWSAmax was either positively or negatively coupled with shortwave radiation (Figure 7a). This finding is 

consistent with both positive and negative coupling between cloud cover and terrestrial moisture observed 

over shorter time scales (Taylor et al., 2012; Guillod et al., 2015). 
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P. 11 lines 14-15: see main comment #4 above. 

 

We have addressed this in the response to the reviewer's comment #4 above. 

 

P.11 line 23: “Discussion”. 5 

 

We thank the reviewer for pointing out this typographical error, which has been corrected. 

 

P.11 line 28: as mentioned above, these ``well understood mechanisms'' are actually never really explained. 

 10 

Our revised Discussion section, described above in the response to the first general comment, removes this phrase and more 

clearly describes what is being shown. 

 

P.12 lines 3-4: that's exaggerated. Feedback results on Figures 5-7 are very noisy, and even from a simply qualitative 

perspective, it is a stretch to say that they agree with results from GLACE 1. One could just as well point out all the regions 15 

on Figures 5-7 that do NOT show up in GLACE 1 and say results are completely different. Besides, I find it a bizarre 

impulse (or maybe, a testament to the strength of the GLACE 1 study) that every land-atmosphere study seemingly feels the 

need to point out some level of agreement with GLACE results, even when, as is the case here, the match is very weak at 

best, and more importantly, when different data (observations versus models), processes and spatio-temporal scales are 

considered. Consider removing that comparison. 20 

 

The reviewer's point is well taken, and we do not believe the comparison with GLACE 1 is a necessary component of our 

discussion. As part of the major revision of our Discussion section, as described above, we have removed this reference to 

GLACE. 

 25 

P.12 line 16: see main comment #4 above. 

 

We have addressed this in the response to main comment #4 above.  

 

P.12 line 26: the authors could still look at this in models results, though. In fact, showing the link between TWS and ET, for 30 

instance, would reinforce their results and the physical interpretation that they propose. 

 

This is limited by the lack of a global remote sensing ET data set spanning the study period. 
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P. 13, first paragraph: this is unclear. Do the author mean that that the models underestimate remote influences of SSTs, for 

instance, and thus appear to have too strong a coupling? 

 

Along with the other major revisions to our Discussion section, we have removed this passage from the text and replaced it 

with a clearer explanation, which we have quoted above in response to main comment #2. 5 

 

P.13 lines 16-18: see main comment #3 above. 

 

This is addressed in major revisions to the Discussion section, quoted above in the response to main comment #3. 

 10 

P. 14 line 18: but here observations show positive coupling, too! Please clarify. 

 

The observational metrics in this study include the effects of remote SST forcing as well as land–atmosphere interactions 

integrated across seasonal time scales. The negative soil moisture–precipitation coupling mechanism found from 

observations by Taylor et al. (2013) would tend to reduce the overall positive correlation. If parameterized convection 15 

prevents models from correctly capturing this mechanism, then the correlations may be overestimated. We have clarified this 

with the following addition to the Discussion section: 

 

Taylor et al. (2013) similarly found parameterized convection in an RCM yielding a positive coupling in 

contrast to the negative coupling found in both observations and model runs with explicitly simulated 20 

convection. If negative coupling mechanisms are present in reality but absent from models, this could 

contribute to an overestimate of coupling metrics and underrepresentation of negative feedbacks in models. 

 

P. 14 line 21: but reduced stomatal opening would be associated with reduced ET, too. Please clarify. 

 25 

Here we are suggesting that if model parameterizations cause stomatal conductance to be overly sensitive to soil moisture, 

this would lead to unrealistically high model feedbacks. This is a separate explanation than the possibility that too much 

water is available for ET, which we describe in the previous paragraphs. 

 

P. 14 lines 18-30: See main comment #2. There is a fundamental issue with the manuscript here. 30 

 

We have made major revisions to the manuscript, and particularly the Discussion section, as addressed above in the response 

to main comments #1 and #2. As we explained above, we do not feel that this represents a fundamental issue with our 

approach or our manuscript. 
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P.15 line 3: see main comment #3. 

 

We have addressed this above in our response to comment #3. 

 5 

P.15 lines 8-9. not really: Seneviratne etal. (2013) show that long-term soil moisture change leads to more warming, 

differently across models in the GLACE-CMIP5. That, in and of itself, could be considered an estimate of (long-term) soil 

moisture-atmosphere coupling in these models; but, in any case, there is no comparison to estimates of present-day 

coupling. 

 10 

We agree that the linkage between our metrics and the results of GLACE-CMIP5 are too speculative. For this reason and for 

the sake of brevity, we have removed this portion of the Discussion section as part of our major revisions. 

 

P.15 lines 11: No. Warmer air “holding” more water vapor and leading to more precipitation would lead to positive 

temperature-precipitation correlations – not negative. 15 

 

We thank the reviewer for pointing out this erroneous characterization of the results of Berg et al. (2015). The phrase “in 

which higher air temperatures can hold more precipitable water” was intended to read “cloud cover variability drives 

precipitation and temperature in opposite directions” However, as mentioned in the response to the previous comment, we 

have removed this portion of the text from our discussion. 20 

 

P.15 line 13: “determined”: not really. What Berg et al. (2015) show is that because of land-atmosphere interactions, the 

interannual negative temperature-precipitation relationship that they identify in present-day climate holds on longer time 

scales, including in the case of climate change. This may be interpreted as suggesting, as the authors say here, that models 

with too strong a coupling will then overestimate future warming; however, it is not directly shown by that study. Consider 25 

rephrasing. 

 

As mentioned in the response to the previous two comments, we have removed this portion of the text from our Discussion 

section. 

 30 

P.16 line 10: see comment above on P.12 

 



26 
 

As mentioned in the response to the comment above, we have removed the assertion that our observed metrics reflect the 

patterns found in GLACE. In addition to the revisions to the Discussion section, mentioned above, we have also revised the 

Conclusions section to remove this portion. 

 

P.16 line 11: “regions of strong RESPONSE metrics”, I believe. 5 

 

We thank the reviewer for pointing out this typographical error, which has been corrected 

 

P.16 line 14: the implication is bit too implicit here. Consider being more explicit. 

 10 

We have made this statement more explicit with the following revision: 

 

Modeled coupling metrics are generally found to be stronger than those observed in the satellite record. If 

this discrepancy is due to models overestimating the two-way feedback between the land surface and the 

atmosphere, this could lead to models incorrectly projecting future warming trends and climatic extremes 15 

(e.g., Hirschi et al., 2011; Seneviratne et al., 2013; Cheruy et al., 2014; Miralles et al., 2014). 

 

Figure 1: nice figure that helps understand the study. The y-axis on a) refers to anomalies, I presume – see comment on 

GRACE values above. 

 20 

Correct, as we mentioned in response to the comment above. We have clarified this by replacing “TWS” with “TWSA” in 

the caption to Figure 1. 

 

As noted above, Figure 3 and 4 are nice, but not much is made of them in the analysis. 

 25 

As described in response to the reviewer’s comment above, we have included some additional text to expand upon and 

clarify the purpose of these figures. As quoted above, we feel these figures are important for demonstrating that LENS is 

able to capture the baseline properties of our analysis (timing and variability) before presenting the correlation coefficients. 

 

Figure 5-7: I suggest the authors modify the color legend here. More color shades is not always better. It is actually not easy 30 

to see differences in color shades on a continuous bi-color palette like here, and for the reader things essentially end up 

being two colors, one positive (green) and one negative (red). It would actually be easier to have fewer shades, more clearly 

separated, and with perhaps several different colors as well. 
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After experimenting with several color and shading schemes, we determined that the spatial variability in Figures 5–7 are 

best illustrated using the employed color scheme combined with crosshatching to indicate statistically significant 

correlations. 

 

Figure 8: I suggest showing the mean of the CESM distribution as well. 5 

 

We considered including this, but determined that it made the figures too busy without adding useful information. 
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Abstract. The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications 

for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits 

evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. 

Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a 10 

novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by 

variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, 

solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship 

between TWS anomalies and climate globally on a seasonal to interannual time scale. Metrics derived from the satellite data 

were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) 15 

Large Ensemble (LENS) and in six models that contributed simulations to Phase 5 of the Coupled Model Intercomparison 

Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the 

satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those 

found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with 

previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate 20 

the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that 

may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity 

of ET to TWS. 

1 Introduction 

Land–atmosphere feedbacks can result from the coupling of the terrestrial moisture state with temperature, precipitation, or 25 

radiation (Betts et al., 2014; Findell and Eltahir, 1997; Guillod et al., 2015; Koster et al., 2004). Land–atmosphere coupling 

occurs when terrestrial moisture anomalies influence the partitioning of surface energy between latent and sensible heat 

fluxes that, in turn, influence the development of the planetary boundary layer (PBL) (Seneviratne et al., 2010). Temperature 

coupling generally leads to a positive feedback, with wetter soil contributing to a higher evaporative fraction (EF, the ratio of 

the latent heat flux to the sum of the sensible and latent heat fluxes), a lower surface temperature, and decreased evaporative 30 
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demand (Hirschi et al., 2011; Miralles et al., 2012). Precipitation coupling can lead to both positive and negative feedbacks, 

as the influence of EF on the development of the PBL can serve to either enhance or suppress cloud formation and 

precipitation (Findell and Eltahir, 2003; Guillod et al., 2015). Cloud radiative coupling can likewise lead to positive or 

negative feedbacks as insolation and evaporative demand, as a function of cloud cover, are either enhanced or suppressed 

(Betts, 2009; Cheruy et al., 2014). Temperature, precipitation, and radiation feedbacks each stem from coupling between 5 

terrestrial moisture and evapotranspiration (ET), which occurs most strongly in conditions of intermediate moisture 

availability (Seneviratne et al., 2010). 

 

Evidence of these feedbacks has been observed in both in situ and remotely sensed data (Eltahir, 1998; Findell and Eltahir, 

1997; Guillod et al., 2014, 2015).  Some observational analyses have found land–atmosphere feedback strength to be 10 

relatively weak compared to the influence of large-scale atmospheric forcing (Alfieri et al., 2008; Phillips and Klein, 2014). 

Other observational studies have highlighted the role of these feedback mechanisms in the initiation and exacerbation of 

climatic extremes such as droughts and heat waves (Hirschi et al., 2011; Miralles et al., 2014; Whan et al., 2015). 

 

Large-scale land–atmosphere coupling in general circulation models has been demonstrated by a series of experiments from 15 

the Global Land Atmosphere Coupling Experiment (GLACE) project (Guo et al., 2006; Koster et al., 2004, 2006). The 

GLACE efforts found that coupled climate models differed greatly in the extent to which soil moisture variations affect 

precipitation and surface air temperature, but models generally agreed on the spatial distribution of relative coupling 

strength, with “hotspots” of strong coupling during boreal summer found in the central United States, northern Amazonia, 

the Sahel, western Eurasia, and northern India. These hotspots were found in regions of intermediate soil wetness, which is 20 

consistent with the understanding that strong land–atmosphere coupling occurs under conditions in which terrestrial moisture 

availability limits ET (Seneviratne et al., 2010). GLACE efforts also showed that correct soil moisture initialization 

improves seasonal forecast skill of temperature and, to a lesser extent, precipitation, particularly in cases with a large initial 

soil moisture anomaly (Koster et al., 2010, 2011). 

 25 

Additional studies have considered land–atmosphere feedbacks in the coupled earth system models (ESMs) used by the 

Intergovernmental Panel on Climate Change (IPCC) (Dirmeyer et al., 2013; Notaro, 2008; Seneviratne et al., 2006, 2013). 

Notaro (2008) was able to confirm the boreal summer GLACE hotspots, as well as identify several additional austral 

summer hotspots, in the models used for the IPCC Fourth Assessment Report (AR4). Analysis of long-term projections from 

the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) indicated an increased control of land surface 30 

moisture on boundary layer conditions with climate change (Dirmeyer et al., 2013). The GLACE Coupled Model 

Intercomparison Project (GLACE–CMIP5) experiment found that modeled coupling strength plays an important role in 

simulated response to global warming, with greater warming evident in more strongly coupled models due to interactions 

between soil moisture, temperature, and precipitation (Berg et al., 2015; May et al., 2015; Seneviratne et al., 2013). 
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Despite the importance of land–atmosphere coupling in both short-term predictability of climatic extremes and long-term 

uncertainty in climate change, validation efforts have suggested that climate models may not be correctly representing the 

strength, and in some cases even the sign, of these feedbacks (Ferguson et al., 2012; Hirschi et al., 2014). The metrics 

developed for GLACE are based on model experiments with no direct observational equivalents. However, correlation-based 5 

metrics that do enable direct comparison with observations suggest that models may overestimate land–atmosphere coupling 

strength (Dirmeyer et al., 2006a). Zeng et al. (2010) found that version 3 of the Community Climate System Model 

(CCSM3) showed a higher coupling strength than reanalysis or observational data. Mei and Wang (2012) found that 

coupling strength was reduced when the Community Atmosphere Model (the land surface component of CCSM3) was 

updated from version 3 (CAM3) to version 4 (CAM4), though the coupling strength of the updated version was still stronger 10 

than observations and reanalysis. 

 

The Local Land–Atmosphere Coupling (LoCo) Project has focused on developing a suite of metrics for diagnosing land–

atmosphere coupling strength in observations and models. LoCo metrics consider both the influence of soil moisture on EF, 

and the influence of EF on diurnal-scale boundary layer development (Santanello et al., 2009). Ferguson et al. (2012) used 15 

the LoCo approach to compare global remote sensing data sets of soil moisture, EF, and lifting condensation level with 

several land surface models and reanalyses.  They found that even though the models were able to simulate the correct 

spatial pattern of stronger coupling in moist–arid transitional regions, the models tended to simulate a stronger influence of 

soil moisture on surface turbulent fluxes than what was observed in the satellite data. Guillod et al. (2014) used a 

combination of flux tower, remote sensing, and reanalysis data sets to demonstrate that measured strength of coupling 20 

between EF and precipitation depends greatly on the data source and scale, and that strong coupling apparent in a previous 

analysis (Findell et al., 2011) was not consistent with the observations. 

 

While many of the previously mentioned studies have confirmed the long-standing suspicion that models may overestimate 

coupling strength relative to observations, more recent work has indicated that observations and models may not even agree 25 

on the sign of the precipitation feedback. Taylor et al. (2012) performed a spatial analysis of the relationship between soil 

moisture and afternoon precipitation using data from remote sensing, reanalysis, and coupled models.  They found evidence 

of a negative feedback in the remote sensing observations, with afternoon rain being more likely over regions of drier soil, as 

opposed to the positive feedback that was apparent in the models. Guillod et al. (2015) addressed these findings by 

replicating the spatial analysis and complementing it with a temporal analysis. They found a negative spatial feedback, 30 

consistent with the one found by Taylor et al. (2012), but a positive temporal feedback, with afternoon precipitation at a 

given location being more likely after mornings of relatively moist soil. 
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These studies highlight the need for continued efforts toward evaluating the coupling strength of models relative to 

observations using a wide array of data sources at a range of spatiotemporal scales. Apparent coupling strength depends 

greatly on the spatial scales of analysis (Hohenegger et al., 2009), indicating that observations at the scale of flux towers 

should not be expected to yield the same coupling strength as those at the scale of global climate models (Guillod et al., 

2014). Consistency between the spatial scale of observations and models is greatly assisted by earth observation satellites 5 

that have been continuously monitoring several relevant land surface and atmospheric variables over multiple years (Teixeira 

et al., 2014). Measured or modeled coupling strength will also depend on the time scales in question (Guillod et al., 2015), 

and while the LoCo efforts have improved the understanding of synoptic and diurnal scale mechanisms, there in an 

additional need to examine these processes on seasonal to interannual time periods. 

 10 

Here we introduce a set of metrics for measuring the strength of land-atmosphere interactions on seasonal timescales by 

combining satellite remote sensing datasets of terrestrial water storage, precipitation, shortwave radiation, and surface 

atmospheric temperature and water vapor during 2002–2014.  These new metrics complement previous studies and are 

unique in several ways. In particular, we designed our metrics to consider interannual variability of entire seasons in order to 

complement the temporal resolution of LoCo metrics, which focus on day-to-day variability within one or more seasons. 15 

Land–atmosphere coupling on seasonal timescales has been shown to be essential in enabling tropical forests to survive 

during the dry season in the Amazon (Lee et al., 2005) and as a mechanism enabling seasonal forecasts of fire risk (Chen et 

al., 2013, 2016). 

 

Until recently, studies using remote sensing data to look for evidence of land–atmosphere coupling relied on products that 20 

provide information about surface soil moisture (Ferguson et al., 2012; Taylor et al., 2012). Consideration of root-zone soil 

moisture has recently been accomplished only indirectly via data-assimilated estimates (Guillod et al., 2015). The inability to 

directly consider root-zone soil moisture has been suggested as an explanation for the relatively weak coupling observed 

using remote sensing data (Hirschi et al., 2014). In order to include root-zone soil moisture, as well as other sources of 

moisture available across entire seasons, here we analyzed remote sensing data of the entire terrestrial water storage (TWS) 25 

column.  

 

The metrics introduced here were specifically designed to use the monthly TWS anomaly (TWSA) anomaly product from 

the Gravity Recovery and Climate Experiment (GRACE) mission (Landerer and Swenson, 2012; Wahr et al., 2004). The 

GRACE TWSA product integrates soil moisture at all layers along with surface, canopy, snow/ice, and aquifer storage, as 30 

each of these components represents a potential source of moisture for fulfilling evaporative demand. For example, in areas 

where agricultural ecosystems are important, diversion of lake and river water resources and withdrawal from aquifers may 

contribute to irrigation fluxes and thus ET. Furthermore, surface storage of liquid water and snow represent sources of water 
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that are available for and potentially limiting to ET. Under these conditions, month-to-month TWS anomalies capture 

portions of the terrestrial water cycle that soil moisture alone may not. 

 

Previous studies have largely focused on land surface moisture availability as a forcing mechanism on the atmosphere, as 

this relationship has important implications for seasonal predictability as well as the projection of the frequency and severity 5 

of climatic extremes. However, the land surface response to the atmosphere is governed by many of the same processes 

through which terrestrial moisture availability forces atmospheric conditions, and it determines the conditions that drive 

subsequent land surface forcing.  It is therefore critical to assess the response of land surface moisture to atmospheric 

conditions, as an accurate representation of these processes is essential for generating the correct terrestrial moisture 

variability that will go on to influence the atmosphere. As far as we can tell, this response limb of the land surface feedback 10 

loop has not been systematically integrated with existing analyses of land–atmosphere coupling strength. 

 

Our globally applicable approach used the annual cycle of TWS drawdown and recharge to isolate the months of the year 

during which the land surface loses moisture, which we refer to as the drawdown interval (Figure 1a).  We selected this 

interval because past work has shown that the land surface’s influence on the atmosphere is most prevalent during summer in 15 

the northern hemisphere (Cheruy et al., 2014; Phillips and Klein, 2014) and during the dry season in tropical forests (Harper 

et al., 2013; Lorenz and Pitman, 2014). This approach allowed us to investigate land surface coupling at a global scale, and 

to extend metrics developed in previous work for pre-defined monthly intervals corresponding to boreal summer (e.g., Guo 

and Dirmeyer, 2013; Koster et al., 2006) to be applicable to any seasonality. 

 20 

In our analysis, separate metrics were calculated to consider the influence of TWS at the onset of the drawdown interval on 

atmospheric conditions in subsequent months, and simultaneously, the influence of atmospheric conditions during the 

drawdown interval on terrestrial water storage at the end of the season. We refer to these two relationships as the forcing and 

response limbs, respectively, of the fully coupled feedback loop between the land surface and the atmosphere (Figure 1b). 

We estimated the strength of these feedbacks during 2002–2014 using GRACE and other satellite remote sensing data (Table 25 

1). We then used the satellite observations to evaluate the strength of these feedbacks in the Community Earth System Model 

(CESM) Large Ensemble (LENS) (Kay et al., 2014) and in several models that contributed simulations to CMIP5 (Table 2). 

2 Methods 

2.1 Remote sensing data 

We obtained Level-3 TWSA data from GRACE using the University of Texas at Austin Center for Space Research (CSR) 30 

spherical harmonic solutions (Swenson, 2012). Global land data at a 1° resolution were scaled using the coefficients 

provided by Landerer and Swenson (2012). The study period was limited to September 2002 through November 2014, in 
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order to minimize temporal gaps. GRACE data during the study period included eight non-consecutive and two consecutive 

missing months, which were filled using linear interpolation. At each grid cell, the TWSA time series was decomposed into 

linear trend, seasonal cycle, and interannual variability components using ordinary least squares regression. This 

decomposition allowed us to estimate a mean annual cycle at each grid cell with minimal influence of any long-term trend.  

 5 

Level-3 near-surface temperature and relative humidity were obtained globally at a monthly, 1° resolution from the 

ascending (daytime) orbit of the Atmospheric Infrared Sounder (AIRS) platform (Susskind et al., 2014). Vapor pressure 

deficit (VPD) was calculated from the AIRS data using the August–Roche–Magnus approximation to the Clausius–

Clapeyron relation (Lawrence, 2005). Precipitation (PPT) data were obtained from the Global Precipitation Climatology 

Project (GPCP), a merged satellite and gauge-based data set (Huffman et al., 2009) at a daily, 1° resolution and then 10 

integrated monthly. Downwelling shortwave radiation (SW↓) was obtained globally at a monthly, 1° resolution from the 

Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced And Filled (EBAF) Surface product (Loeb et al., 

2009). More information describing the remote sensing and reanalysis data products used in our analysis is summarized in 

Table 1. 

2.2 Drawdown interval 15 

As a first step, we used the mean annual cycle from GRACE to determine the months of the maximum and minimum TWS 

anomalies in order to define the drawdown interval at each 1° land grid cell (Figure 2). Northern hemisphere middle and 

high latitudes exhibited a drawdown interval beginning in the spring (MAM) and ending in the late summer or fall (ASO), 

reflecting the timing of the boreal summer growing season. At lower latitudes, the North American, African, and Asian 

monsoons were evident, with Mexico, India, and the Sahel showing a drawdown interval beginning in September, after the 20 

monsoonal precipitation has peaked, and ending the following spring after the winter dry season. The onset of the drawdown 

interval reversed abruptly at the equator in Africa and Asia, with the drawdown interval reflecting a winter dry season in the 

austral low latitudes transitioning to a summer growing season in the austral midlatitudes. Within the months of our study 

period, the portion of land grid cells that experience 11, 12, and 13 complete drawdown intervals are 9.4%, 90.5%, and 0.1% 

respectively. 25 

2.3 Coupling metrics 

Existing literature generally defines “land–atmosphere coupling” as the extent to which atmospheric conditions are forced by 

the land surface state, and would use the term “atmosphere–land coupling” to refer to the land surface response to 

atmospheric drivers (Seneviratne et al., 2010). In this study, we develop what we refer to as “coupling metrics” to indicate 

the strength of both limbs of the fully coupled land–atmosphere feedback loop. We use the terms “forcing” and “response” to 30 

indicate whether we are considering the forcing of the atmosphere by the land surface, or the response of the land surface to 

the atmosphere (Figure 1b). 
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We defined our forcing metric as the Pearson product-moment correlation coefficient between the TWS anomaly at the onset 

of the drawdown interval (TWSAmax) and the surface atmospheric conditions during the drawdown interval (ATMdi). In our 

analysis, we selected 3 variables to represent the atmospheric state: VPD, SW↓, and PPT. These atmospheric variables were 

averaged during the drawdown interval, including during the months of climatological maximum and minimum TWSA. We 5 

chose these variables because they represent various aspects of evaporative supply (PPT) and demand (VPD and SW↓).  

 

Similarly, we defined our response metric as the correlation coefficient between atmospheric conditions during the 

drawdown interval (ATMdi) and the land surface state at the end of the drawdown interval (TWSAmin). Although most 

previous diagnoses of land–atmosphere coupling has focused on the forcing limb, we argue the response limb is equally 10 

important as a metric for model evaluation. Specifically, if variability in the balance between evaporative supply and demand 

does not lead to the correct TWS variability, then the incorrect TWS response will feed back into subsequent forcing on the 

atmosphere. 

  

We note that these metrics do not provide distinctive information for measuring the strength of land–atmosphere coupling or 15 

the land surface response. While the metrics include the influence of direct land-atmosphere interactions, they are also 

potentially influenced by atmospheric and soil moisture persistence, as well as remote forcing from sea surface temperatures 

(SSTs) (Orlowsky and Seneviratne, 2010; Mei and Wang, 2011). Nevertheless, these metrics may still serve as useful 

benchmarks against which to evaluate the ability to ESMs to reproduce the proper relationships based on the combination of 

these factors. 20 

 

Here we note that our evaluation of both the forcing and response metrics will follow a nomenclature that considers strong 

coupling as acting in the direction of an overall positive feedback loop. In regions with a strong positive feedback, higher 

than average TWS would be followed by lower than average VPD, as more available water is able to fulfill evaporative 

demand. Therefore, strong TWS forcing on VPD would be associated with a negative correlation coefficient. Higher VPD 25 

during the drawdown interval would increase evaporative demand, potentially leading to a more negative TWS anomaly, 

therefore a strong response of the land surface to VPD would also be associated with a negative correlation coefficient. 

 

Because the partitioning of surface fluxes can, depending on the spatiotemporal scale, cause a change of either sign to 

cloudiness and precipitation (Taylor et al., 2012; Guillod et al., 2015), correlation coefficients of either sign could indicate 30 

strong land surface forcing on PPT and SW↓. However, the response metrics would be expected to show greater consistency. 

Higher PPT during the drawdown interval would be expected to increase TWS (positive correlation), while higher SW↓ 

would increase evaporative demand, thereby decreasing TWS (negative correlation). Therefore, to maintain consistent 

nomenclature based on evaluating the strength of a positive moisture feedback, we consider strong coupling in both the 
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forcing and response metrics to be associated with a positive correlation in the case of PPT and a negative correlation in the 

case of SW↓. 

2.4 Community Earth System Model Large Ensemble 

We used the metrics described above to evaluate feedback strength in the Community Earth System Model (CESM) Large 

Ensemble (LENS). LENS comprises an ensemble of 38 fully coupled runs in which air temperature initial conditions are 5 

perturbed slightly (by an amount less than round-off error) to reveal the internal variability inherent within the coupled 

climate model.  LENS has demonstrated that the uncertainty in climate projections due to internal climate variability inherent 

in CESM is comparable to the ranges of output within the entire CMIP5 experiment (Kay et al., 2014). LENS uses version 1 

of CESM (CESM1) with version 5 of the Community Atmosphere Model (CAM5) and version 4 of the Community Land 

Model (CLM4) at a horizontal resolution of 1°. The ensemble run follows protocols from the CMIP5 experiment, with 10 

historical radiative forcing for the 20th century and representative concentration pathway 8.5 (RCP8.5) forcing for the 21st 

century. 

 

The LENS data were chosen as a starting point for feedback evaluation for two reasons. First, the availability of a TWS 

variable in these simulations enabled a direct comparison with metrics derived using data from GRACE. The TWS field in 15 

CLM4 included water from surface and canopy storage, snow and ice, soil moisture, and a dynamic aquifer, in addition to 

river water storage terms from the coupled River Transport Module (RTM). The coupling of CLM4 with RTM has been 

shown to be important for simulating both the annual cycle and interannual variability of TWS in comparison with GRACE 

(Kim et al., 2009). 

 20 

  

Second, the ensemble allowed us to test the importance of internal model variability for the diagnosis of feedback strength. 

Because the complete satellite record was relatively short (containing no more than 12 drawdown intervals at any location), 

comparison with an equivalent single time series of model output could be influenced by a model’s internal decadal-scale 

variability (Kay et al., 2014). Analyzing the full ensemble from LENS enabled us to assess the sensitivity of our forcing and 25 

response metrics to this variability. We extracted from each ensemble member the equivalent months of the satellite record 

(September 2002 through November 2014), with data prior to December 2005 coming from the historical runs, and data 

from January 2006 onward coming from the RCP8.5 simulations. 

2.5 Assessment of uncertainty 

To assess the sensitivity of our metrics to observational uncertainty, we used a Monte Carlo sampling approach. For each of 30 

the 38 members of LENS, we calculated coupling metrics ten times with random noise added to both TWSA and 

atmospheric variable time series at each grid cell. The noise was randomly generated from a Gaussian distribution with a 
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mean of zero and a standard deviation equal to 25% of the standard deviation of the original data. Comparing these results 

with those from the unaltered data provided some indication of how much our coupling metrics are degraded by random 

noise as an approximation of observational uncertainty.  

 

In addition, to assess how our analysis may be influenced by uncertainty due to the selection of satellite data, we substituted 5 

data from the European Centre For Medium-range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-Interim) (Dee 

et al., 2011) in place of AIRS, GPCP, and CERES-derived variables. We only used atmospheric reanalysis data for this 

sensitivity analysis, as these data benefit from assimilation of observations, while we continued to use GRACE for TWSA. 

Comparing results from this GRACE–reanalysis hybrid to those using only satellite data provided a general indication of 

how sensitive our coupling metrics were to the data source. 10 

2.6 CMIP5 analysis 

To extend our analysis to models that did not output an explicit TWS field, we compared accumulated residuals of 

precipitation, evapotranspiration, and total runoff (surface and subsurface) with the explicit TWS variable in the LENS 

simulations. We also compared coupling metrics calculated from LENS using accumulated residuals with those calculated 

from the explicit TWS field. After we determined that the accumulated residuals of the water balance represented much of 15 

the variability in the explicit TWS variable and yielded coupling metrics with similar distributions within LENS, we 

calculated equivalent metrics for several model simulations in the CMIP5 archive (Table 2). We selected the CMIP5 models 

that were similar to LENS (CESM1-CAM5 and CESM1-BGC) as well as the models that participated in the GLACE–

CMIP5 experiment (Seneviratne et al., 2013) for which each necessary output field was available (CCSM4, GFDL-ESM2M, 

GFDL-ESM2G, IPSL-CM5A-MR, and IPSL-CM5A-LR). 20 

3 Results 

3.1 Drawdown interval and interannual variability 

A comparison of the months of maximum and minimum terrestrial water storage as determined by climatologies of GRACE 

and the LENS ensemble mean indicated that the model largely reproduces the timing of TWSA seasonality evident in the 

satellite observations (Figure 2). Geographic patterns of seasonality were consistent between the model and observations, 25 

though a phase shift in the drawdown interval is apparent in eastern Canada and central Eurasia where LENS had a one-

month early bias for both the maximum and minimum TWSA, in southeast North America where the onset of the modeled 

drawdown interval was slightly later than the observations, and in parts of east Asia and Australia where the modeled 

drawdown interval ended earlier than in the observations. However, despite capturing generally correct timing, the model 

exhibited higher interannual variability of TWSAmax and TWSAmin across the 11-12 drawdown intervals compared with the 30 

satellite data (Figure 3) particularly in the southern United States, southern South America, central and eastern Africa, 
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southern Asia, and eastern Australia. One possible explanation for this is the presence of multi-year trends in aquifer storage 

in CLM that are not consistent with GRACE (Swenson and Lawrence, 2015). 

 

A comparison of the interannual variability of atmospheric variables across multiple drawdown intervals between the model 

and satellite data showed various degrees of consistency (Figure 4). The magnitude and geographic pattern of VPDdi was 5 

generally consistent, though LENS showed greater interannual variability than AIRS in central and western North America, 

South America, northern and southern Africa, and southern Asia. In the case of PPTdi, LENS showed less interannual 

variability than GPCP in Southeast North America and much of South America, but the two were largely consistent 

elsewhere. SW↓di was the least consistent between the model and satellite data, as LENS showed greater interannual 

variability than CERES in southern North America, northern Eurasia, most of Africa, and most of Australasia. 10 

 

Comparing both the timing of TWS dynamics and the interannual variability of TWS and the atmospheric variables between 

the observations and model output provides context for interpreting the correlation-based metrics we present next. Although 

there are some inconsistencies, as noted above, the model largely reproduced the same patterns evident in the remote sensing 

data. In many regions, the interannual variability in model output was similar to the observed variability, indicating that 15 

CESM was able to simulate reasonably well the baseline properties (timing and variability) that influence feedback 

dynamics. 

3.2 Evaluating feedbacks for a single model simulation 

The forcing metric for VPD derived from GRACE and AIRS showed regions of strong coupling, in which TWSAmax was 

negatively correlated with VPDdi, in the northern Great Plains, northern South America, southern Africa, southern and 20 

western India, north central Eurasia, and northern Australia (Figure 5a). Regions with strong positive correlation were much 

less common, and were largely confined to areas of very low GRACE-derived TWSAmax variability (Figure 3a). Positive 

correlations are unlikely to reflect direct land–atmosphere coupling. Instead, they demonstrate how remote SST forcing can, 

depending on persistence and time delays with atmospheric responses, lead to apparent negative relationships such as those 

demonstrated by Wei et al. (2008). In comparison with the satellite data, the VPD forcing metrics from the first ensemble 25 

member of LENS (Figure 5c) showed much stronger coupling in the southern and eastern Amazon, and marginally stronger 

coupling strength across many regions in temperate Asia. 

 

The response metrics for VPD showed much stronger coupling than the forcing metric in both the satellite data and the 

model (Figure 5b,d). Satellite data yielded negative correlation coefficients nearly everywhere, with positive correlations 30 

found only in arid regions of low TWS variability. Particularly strong response metrics were found in eastern North 

America, northern South America, western Eurasia, the Sahel, India, and eastern Australia. The first ensemble member from 

LENS showed widespread negative correlations, and did not show the positive correlations found in the satellite data. 
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Response coupling in LENS was much more spatially homogeneous than in the satellite data, though northern South 

America and western Eurasia still showed stronger coupling than elsewhere. 

 

Many of the areas that showed a strong forcing metric for VPD also showed a relatively strong forcing metric for PPT, 

though the PPT forcing metric was overall weaker than that for VPD (Figure 6a). The response metric for PPT was generally 5 

positive, indicating that for much of the globe, a more positive TWSAmin was associated with higher precipitation rates 

(Figure 6b). Both the forcing and response metrics were somewhat stronger in the LENS member relative to those evident in 

the satellite data (Figure 6c,d). 

 

The forcing metrics for SW↓ showed a mixture of positive and negative correlations, indicating that higher TWSAmax was 10 

either positively or negatively coupled with shortwave radiation (Figure 7a). This finding is consistent with both positive and 

negative coupling between cloud cover and terrestrial moisture observed over shorter time scales (Taylor et al., 2012; 

Guillod et al., 2015). The response metrics for SW↓ were generally negative, indicating that greater seasonal shortwave 

radiation was associated with more negative TWSAmin (stronger coupling), with West Africa being a notable exception 

(Figure 7b). The LENS member showed generally stronger coupling in both the forcing and response metrics for SW↓ 15 

(Figure 7c,d). 

3.3 Evaluating the CESM Large Ensemble 

In temperate and tropical regions, forcing metrics were generally stronger in LENS (more positive correlations for PPT, 

more negative for VPD and SW↓) than in the satellite and reanalysis data, indicating a stronger land surface forcing of the 

surface atmospheric state in the model than in the observations (Figure 8). In boreal regions, forcing metrics were much 20 

weaker (closer to zero) than at lower latitudes in both the satellite data and in LENS, indicating very little relationship 

between TWSAmax and ATMdi. This is consistent with high levels of climate variability in many high latitude regions driven 

by the Arctic Oscillation, the North Atlantic Oscillation, and other dynamical modes (Cohen and Barlow, 2005). 

Furthermore, at high latitudes, ET is generally energy limited rather than moisture limited, which would lead to weak forcing 

metrics as moisture availability would not strongly influence atmospheric conditions.  25 

 

Response metrics were also generally higher in LENS than in both the satellite and reanalysis data (Figure 9). Noticeable 

exceptions were the VPD and PPT response metrics in the tropics, which were close to the satellite observations, and the 

boreal SW↓ and tropical PPT response metrics, which were close to the reanalysis estimates. Despite the internal variability 

evident within the model ensemble, and the difference between metrics as measured by the satellite data compared with the 30 

reanalysis data, the general pattern indicated that modeled response metrics were higher than those from observations and 

reanalysis. 
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3.4 Analysis of uncertainty 

The internal variability across the ensemble of simulations in LENS yielded a distribution of forcing and response metrics 

with a spread on the same order of magnitude as the difference between modeled and satellite-derived zonal averages. The 

distribution of coupling metrics from LENS revealed the sensitivity of the relationships to decadal climate variability given 

the relatively short TWS time series. Comparing this distribution with the spread between the purely satellite-derived metrics 5 

and GRACE-reanalysis hybrid indicated the sensitivity of our metrics to the choice of data source. The differences between 

satellite and reanalysis metrics were generally higher in the tropics, particularly for VPD and SW↓, and in mid-latitude VPD 

for both forcing and response variables. Elsewhere, the differences were generally similar to or less than the differences 

between the observationally constrained zonal averages and the LENS distributions. 

 10 

Comparing the original LENS forcing and response metrics with those calculated after adding random noise to LENS 

(Figures S1 and S2) provided an estimate of the metrics’ sensitivity to observational uncertainty. Adding random noise with 

25% of the standard deviation of the original data to the model time series of TWSA and atmospheric variables at each grid 

cell does degrade the metrics slightly, causing areal averages to be closer to zero, but the differences are relatively small 

compared to the differences between observed and modeled averages as well as the spread of the ensemble itself. This 15 

sensitivity analysis provided evidence that observational errors likely have a relatively small impact on the quality of our 

satellite-derived metrics. 

3.5 Evaluating CMIP5 models 

Comparison of the explicit TWS field from LENS with the accumulating residuals of the surface water budget (Figure S3), 

as well as the forcing and response metrics calculated using both (Figures S4 and S5), indicated that the alternative 20 

formulation provides an acceptable substitute when an explicit TWS field is not available from an ESM. More specifically, it 

suggests that water storage in rivers, lakes, and other parts of the terrestrial hydrologic system that are downstream from grid 

cell-level runoff did not significantly degrade the set of metrics evaluated here. Some degradation of the forcing metrics for 

PPT was apparent in the middle and low latitudes, but the remaining metrics are not highly sensitive to TWS formulation. 

This suggests that metrics calculated for CMIP5 output using accumulating residuals could be reasonably and effectively 25 

compared with the metrics derived from LENS and the observations (Figure 10). 

 

As with LENS, the metrics derived from CMIP5 output indicated generally stronger coupling metrics than the observations 

for both the forcing and response limbs. Exceptions include the VPD response metric in the tropics, the boreal PPT and SW↓ 

forcing metrics, and the midlatitude SW↓ response metrics. The spread between various models was generally greater than 30 

the spread within any single model with a multi-member ensemble. Of the four models that use CLM4 for the land surface, 

the two that use CAM5 for the atmosphere (LENS and CESM1-CAM5) were clustered close together, and exhibited 
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generally the strongest forcing and response metrics. The two that use CAM4 (CCSM4 and CESM1-BGC) were close to 

each other, but with lower metrics in both forcing and response than the CAM5 models. The two GFDL models were both 

within the general ensemble range in the metrics for both VPD and PPT, but GFDL-ESM2M was an extreme outlier in both 

forcing and response metrics for SW↓. 

 5 

Comparison of CMIP5 and LENS models indicated a mostly positive relationship between forcing and response metrics in 

temperate and tropical latitude bands. In boreal latitudes, there was little distinction between the forcing metrics of the 

different models, all of which were close to zero, though there were some clear differences within the response metrics. In 

temperate and tropical latitudes, models that showed the strongest forcing metrics generally also showed the strongest 

response metrics for a given variable. This relationship suggests that analysis of the response limb of the feedback loop is 10 

important for understanding how conditions are set up for subsequent forcing via land–atmosphere coupling. 

4 Discussion 

4.1 Benchmarking models with observed coupling metrics 

The metrics developed here from satellite observations provide a means for evaluating land–atmosphere feedback strength 

on seasonal to interannual timescales in coupled ESMs. The use of correlation coefficients in this study does not enable a 15 

direct assessment of whether the relationships are directly causal, as correlation between atmospheric and terrestrial 

conditions could result from atmospheric persistence and remote forcing from SSTs (Orlowsky and Seneviratne, 2010; Mei 

and Wang, 2011). Nonetheless, the satellite-derived metrics provide a meaningful constraint against which coupled models 

can be benchmarked, as these models need to correctly represent the combined effects of persistence, remote SST forcing, 

and land–atmosphere coupling. 20 

 

The forcing metrics, by indicating the relationship between antecedent TWS and subsequent atmospheric characteristics, 

provide observational constraints to complement previous research in large-scale land–atmosphere coupling in global models 

(e.g., Guo and Dirmeyer, 2013; Koster et al., 2006; Seneviratne et al., 2013). Observed forcing metrics were found to be 

strong in some of the regions of intermediate wetness in which ET is limited by terrestrial moisture availability, in addition 25 

to some regions in the moist tropics in which ET is generally considered to be energy-limited. Recent observational analyses 

by (Hilker et al., 2014) demonstrate that at least in the Amazon, deep rooting zone water supplies can become seasonally 

depleted, leading to a stronger land–atmosphere coupling. This is consistent with findings that deep rooted plants vertically 

redistribute soil water to shallower layers, allowing higher levels of evapotranspiration to be sustained during the dry season 

(Lee et al., 2005). It is also consistent with recent work demonstrating that TWSAs can be used as predictors for fire season 30 

severity in the Amazon (Chen et al., 2013).  
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The inclusion of response metrics in our analysis allows the full feedback loop to be considered by recognizing the two-way 

dependence between the land surface and the atmosphere. The generally higher correlation coefficients in observed response 

metrics indicates the importance of the land surface response in priming the system for subsequent forcing on the 

atmosphere. For example, if the TWS response is too strongly coupled to the atmosphere, a small change in atmospheric 

conditions could yield an unrealistically large change in TWS. The unrealistically large TWS anomaly, in turn, would have 5 

the potential to impart a larger land surface forcing of the atmosphere in subsequent time steps. That models and ensemble 

members with high forcing metrics were also generally found to have high response metrics (Figure 10) highlights the need 

to consider this.  

  

Both the forcing and response 10 

 metrics as calculated from the output of the ESMs analyzed in the current study indicated generally stronger coupling 

compared with those derived from the satellite observations. There are exceptions to this pattern, but it holds generally true, 

particularly across middle and lower latitudes, and particularly in the LENS data. This is consistent with previous studies 

conducted at finer temporal resolutions (Ferguson et al., 2012) and across more limited spatial domains (Hirschi et al., 2011). 

As described below, there are several possible explanations as to why models may simulate a stronger feedback than is 15 

observed in the satellite record. 

4.2 Possible explanations for enhanced feedback strength in models 

One set of possible explanations for the stronger coupling metrics in models relative to observations involves models 

overestimating the amount of water available for ET during the drawdown interval. The land surface influence on the 

atmosphere requires water to be a limiting factor to ET but not limiting enough to prevent it altogether.  Under more 20 

moisture-limited conditions, a drawdown interval may experience multiple shorter time periods during which ET is inhibited 

due to insufficient water, and the terrestrial moisture state exerts no control over flux partitioning. These periods of 

insufficient moisture would tend to reduce the overall feedback strength integrated across the duration of the drawdown 

interval. Model shortcomings that make water too readily available for ET could reduce the amount of time spent in a 

periods of insufficient moisture during the drawdown interval, thereby unrealistically strengthening the longer-term 25 

feedback. We note that the opposite could take place under near-saturated conditions if a model overestimates the amount of 

time in which ET is energy-limited, but we would not expect these conditions to be as prevalent during the drawdown 

interval that was the time period of focus in our analysis. 

  

ESMs are known to simulate unrealistically homogeneous rainfall intensity, with overestimates of drizzle and underestimates 30 

of large infrequent events (Dai, 2006). Infrequent high-intensity rainfall events would yield much more runoff from saturated 

soil, which would lead to a weaker connection between the land and atmosphere than frequent low-intensity drizzle. If a 

model simulates too much drizzle, precipitation could lead to too much storage, which would cause a model to overestimate 
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the response metrics. Too much storage also could allow water to be too readily available for ET, causing an overestimate of 

the forcing metrics. Contributions from drizzle could be offset if insufficient rainfall intensity does not allow high enough 

throughfall or soil moisture recharge. The issue of rainfall intensity is related to issues of convective parameterization 

(described below), and may be addressed in future versions of ESMs through atmospheric superparameterization, in which a 

model’s convective parameterization is replaced with embedded cloud resolving models (Kooperman et al., 2016). 5 

 

A misrepresentation of either the amount of bare soil or of bare soil processes also could lead to overestimates of the amount 

of water available for ET and thereby coupling strength. Current land surface schemes of ESMs are based on the “big leaf” 

model paradigm, which could lead to overestimates of ET if runoff and groundwater recharge are underestimated as a 

consequence of too small of a bare soil fraction. In addition, even if bare soil fraction were correct, overestimates of ET due 10 

to an incomplete representation of surface resistance of bare soil, as found in CLM by Swenson and Lawrence (2014), would 

amplify positive feedbacks.  

 

Additional explanations for why models may overestimate feedback strength include the parameterization of convection in 

the PBL or stomatal conductance responses to soil moisture. Previous work using a regional climate model (RCM) with a 15 

higher spatial resolution have determined that convective parameterizations are as important as spatial resolution in the 

simulation of precipitation coupling (Hohenegger et al., 2009). Taylor et al. (2013) similarly found parameterized convection 

in an RCM yielding a positive coupling in contrast to the negative coupling found in both observations and model runs with 

explicitly simulated convection. If negative coupling mechanisms are present in reality but absent from models, this could 

contribute to an overestimate of coupling metrics and underrepresentation of negative feedbacks in models. Similarly, the 20 

diversity of stomatal conductance parameterizations in CMIP5 ESMs is relatively low (Medlyn et al., 2011; Swann et al., 

2016, in press), and if stomatal apertures close too rapidly in response to an initial deficit in terrestrial water storage, 

transpiration–humidity feedbacks may be intensified in an unrealistic manner. 

 

One factor that could contribute toward stronger coupling metrics in models relative to observations is the effect of 25 

observational uncertainty combined with a relatively short time series. Adding random error to one or more variables in a 

correlation analysis will reduce the correlation coefficient, and this degradation has been shown to be sensitive to the length 

of data sets used to establish metrics of land–atmosphere coupling (Findell et al., 2015). Given the relatively short time series 

available for the current analysis, the correlation coefficients derived from remote sensing data may be reduced due to 

observational uncertainty, unlike those derived from internally consistent models. We found that adding random noise to 30 

LENS at 25% of the standard deviation of the original data caused some degradation of our area-averaged coupling metrics, 

but only by a small amount relative to the difference between LENS and the observations (Figures S1 and S2). We chose 

25% as a qualitative upper bound on likely uncertainties introduced from random observational error within the TWSA and 

atmospheric variable time series. This highlights the need for developing more quantitative error estimates in remote sensing 
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and reanalysis products. More generally, this sensitivity analysis suggests that our coupling metrics, when averaged across 

large areas, may be useful in identifying robust data-model differences.  

 

Another possible explanation stems from the fact that our coupling metrics include covariability due to atmospheric 

persistence and remote forcing by SST (Orlowsky and Seneviratne, 2010; Mei and Wang, 2011) alongside the direct 5 

influence of land-atmosphere interactions. For this reason, we caution that overestimates of coupling metrics do not imply 

that the land–atmosphere feedback is necessarily stronger, but could be due to an overestimate of SST-driven correlations 

between the land surface and the atmosphere. Wei et al. (2008) demonstrated that negative correlations between soil 

moisture and subsequent precipitation can be explained by precipitation persistence combined with negative temporal 

autocorrelation of precipitation associated with intra-seasonal modes such as the Madden-Julian Oscillation (MJO). Poor 10 

representation of the MJO period in CMIP5 models leads to unrealistic patterns of precipitation persistence (Hung et al, 

2013). If models are failing to capture MJO-driven negative correlations, this could lead to overly strong positive 

correlations relative to observations. However, this would depend on the length of the drawdown interval relative to 

persistence time and the period of intra-seasonal modes. 

4.3 Uncertainties and future applications 15 

The current study demonstrates the utility of the coupling metrics presented here, but conclusions are limited by the time 

span of the satellite record. While LENS enables the internal variability of these relationships to be investigated within the 

model, it is unclear how much natural climate variability affects these relationships in reality on timescales longer than the 

satellite record. Furthermore, we acknowledge that observational error over an insufficiently long time series could reduce 

the apparent strength of correlations (Findell et al., 2015). Therefore, the utility of the coupling metrics we present will 20 

increase alongside the length of the time series available from remote sensing platforms. This emphasizes the importance of 

the GRACE follow-on mission (Flechtner et al., 2014) and the need for continuity in the record between missions. 

 

Furthermore, incorporating additional remote sensing products can reduce uncertainties inherent in the satellite-derived data 

sets. We presented metrics derived using ERA-Interim in place of AIRS, GPCP, and CERES in order to qualitatively 25 

illustrate this uncertainty. We found a non-negligible amount of uncertainty in both forcing and response metrics due to 

inconsistencies between the remote sensing and reanalysis products. Future work will address these uncertainties by 

incorporating additional observations and observationally constrained data sets such as those from the Global Soil Wetness 

Project (Dirmeyer et al., 2006b) and the Global Land Data Assimilation System (Rodell et al., 2004). In addition, as 

increasingly long time series of data become available from the Soil Moisture-Ocean Salinity (Mecklenburg et al., 2012) and 30 

Soil Moisture Active Passive (Panciera et al., 2014) missions, the metrics developed here can be applied to those data sets as 

well, which will elucidate the importance of surface soil moisture relative to the total TWS column in these interactions. 
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Finally, the issue of causality and the possibility that correlations result primarily from atmospheric persistence and remote 

forcing from SST rather than land-atmosphere interactions may be addressed using sensitivity experiments similar to those 

of GLACE and GLACE-CMIP. While the previous experiments have tested the importance of soil moisture interaction with 

the atmosphere, additional experiments could expand upon these methods by treating SST variability similar to terrestrial 

soil moisture availability. Such experiments could determine the relative importance of remote SST forcing, including the 5 

effect of atmospheric persistence, and local land–atmosphere coupling in explaining correlations between TWS and 

atmospheric conditions. 

 

As these sources of uncertainty are diminished, the coupling metrics introduced here may be used to assess whether 

improvements to model biogeophysics and parameterizations yield relationships that are more consistent with observations. 10 

CMIP5 models are known to have a high ET bias (Mueller and Seneviratne, 2014), which could be due in part to the 

explanations proposed as possible reasons for overestimated coupling metrics in models. As data become available from 

Phase 6 of the Coupled Model Intercomparison Project (CMIP6), these metrics could provide an assessment of whether 

improvements to ET processes in models also improves the relationship between the land surface and the atmosphere. 

5 Conclusion 15 

We have developed a new approach for measuring the strength of the two-way feedback relationships between TWS and the 

atmosphere. This approach was designed specifically to take advantage of TWSA data from the GRACE mission, along with 

concurrently collected remote sensing and reanalysis data sets of atmospheric variables, in a manner that could then be 

applied to earth system models. The coupling metrics described here quantify the relationships between both antecedent 

TWS and subsequent atmospheric conditions, as well as antecedent atmospheric conditions and subsequent TWS. 20 

 

Regions of strong forcing, in which the TWSA at the beginning of the drawdown interval was related to the subsequent 

atmospheric state, coincided with the semi-arid zones previously found to be hot spots of land atmosphere coupling, as well 

as some new tropical zones that may have moisture limited ET regimes. Regions of strong response metrics, in which the 

TWSA at the end of the drawdown interval is related to the atmosphere, are much more widespread. Modeled coupling 25 

metrics are generally found to be stronger than those observed in the satellite record. If this discrepancy is due to models 

overestimating the two-way feedback between the land surface and the atmosphere, this could lead to models incorrectly 

projecting future warming trends and climatic extremes (e.g., Hirschi et al., 2011; Seneviratne et al., 2013; Cheruy et al., 

2014; Miralles et al., 2014). 

 30 

The results of this study are consistent with previous studies at smaller temporal scales indicating land–atmosphere coupling 

strength may be stronger in models than in observations. There are several possible mechanisms that may contribute to the 
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overestimation of land–atmosphere coupling in models, and future studies may incorporate the metrics introduced here to 

assess the role of these mechanisms. These metrics will become increasingly useful as the temporal coverage of the remote 

sensing record grows longer and additional missions come online. 
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Table 1: Remote sensing and reanalysis products used for analysis. 

Variable Abbr. Data product Spatial 
resolution 

Temporal 
resolution 

Reference 

Terrestrial water storage TWS GRACE Tellus RL05.1 1° monthly Landerer and Swenson (2012) 
Vapor pressure deficit VPD AIRS AIR3XSTM v6 1° monthly Susskind et al. (2014) 
Precipitation PPT GPCP v2.1 1 ° daily Huffman et al. (2009) 
Downwelling shortwave 
radiation 

SW↓ CERES EBAF Ed2.8 1° monthly Loeb et al. (2009) 

 

Table 2: CMIP5 models used for analysis. 

Model acronym Atmospheric model Land surface model Horizontal 
resolution 

Ens. 
size 

Reference(s) 

CCSM4 National Center for 
Atmospheric Research 
(NCAR) Community 
Atmospheric Model 
version 4 (CAM4) 

Community Land 
Model (CLM4) 

288 x 192 6 Lawrence et al. (2011); 
Neale et al. (2013) 

CESM1-CAM5 NCAR Community 
Atmosphere Model 
version 5 (CAM5) 

CLM4 288 x 192 3 Lawrence et al. (2011); 
Meehl et al. (2013) 

CESM1-BGC NCAR CAM4 with 
biogeochemistry 

CLM4  288 x 192 1 Lawrence et al. (2011); 
Lindsay et al. (2014); 
Neale et al. (2013) 

IPSL-CM5A-LR Laboratoire de 
Météorologie 
Dynamique atmospheric 
model (LMDZ5A) 

Organizing Carbon and 
Hydrology in Dynamic 
Ecosystems 
(ORCHIDEE) 

96 x 96 3 Cheruy et al. (2013); 
Dufresne et al. (2013); 
Hourdin et al. (2013)  

GFDL-ESM2G Geophysical Fluid 
Dynamics Laboratory 
(GFDL) Earth System 
Model 2 (ESM2) 

Land Model 3.0 
(LM3.0) 

144 x 90 1 Dunne et al. (2012); 
Shevliakova et al. (2009) 

GFDL-ESM2G GFDL ESM2 LM3.0 144 x 90 1 Dunne et al. (2012); 
Shevliakova et al. (2009) 
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Figure 1: Conceptual description of coupling metrics: a) Example TWSA climatology from a typical mid-latitude location in central North 
America (38° N, 92° W) illustrating the definition of the drawdown interval as the months from the maximum TWSA through the 
minimum TWSA. TWSAmax and TWSAmin are the TWSA values (in units of water height) during the maximum and minimum months 
respectively, and ATMdi is the atmospheric variable of interest averaged across the months of the drawdown interval. b) Representation of 5 
the interactions between TWS and atmospheric component, demonstrating the forcing limb of the feedback loop, in which TWSAmax forces 
subsequent atmospheric conditions, as well as the response limb, in which TWSAmin responds to the atmospheric state during the drawdown 
interval. 
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Figure 2: Month of maximum and minimum TWSA and the length of the drawdown interval from GRACE (a–c) and the LENS ensemble 
mean (d–f). Months of maximum and minimum were based on the climatology of detrended TWSA over the 146 months in the GRACE 
record. 

 5 

Figure 3: Interannual variability (standard deviation) of TWSAmax and TWSAmin from GRACE (a and b) and the LENS ensemble mean (c 
and d). 
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Figure 4: Interannual variability (standard deviation) of VPDdi from AIRS (a), PPTdi from GPCP (b), SW↓di from CERES (c) and the 
equivalent quantities from the LENS ensemble mean (d–f). 

 

Figure 5: Forcing and response metrics for VPD from GRACE/AIRS (a and b) and LENS ensemble member 001 (c and d). Crosshatching 5 
indicates a correlation coefficient that is statistically significant at p ≤ 0.05 (one-tailed Student’s t-test). 
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Figure 6: Forcing and response metrics for PPT from GRACE/GPCP (a and b) and LENS ensemble member 001 (c and d). Crosshatching 
indicates a correlation coefficient that is statistically significant at p ≤ 0.05 (one-tailed Student’s t-test). 

 

Figure 7: Forcing and response metrics for SW↓ from GRACE/CERES (a and b) and LENS ensemble member 001 (c and d). 5 
Crosshatching indicates a correlation coefficient that is statistically significant at p ≤ 0.05 (one-tailed Student’s t-test). 
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Figure 8: Ensemble histogram of forcing metrics from the 38 simulations in LENS (grey bars) compared to satellite observations from 
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate set of observations from GRACE and ERA-Interim (dashed black line), 
averaged across land regions within different latitude bands. 
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Figure 9: Ensemble histogram of response metrics from the 38 simulation in LENS (grey bars) compared to satellite observations from 
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate set of observations from GRACE and ERA-Interim (dashed black line), 
averaged across land regions within different latitude bands. 
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Figure 10: Scatter plots of forcing and response metrics for LENS and CMIP5 models with observations, averaged across land regions 
within different latitude bands. For LENS, we show metrics calculated using the explicit TWS output (darker grey) and TWSA estimates 
from the accumulated residuals of the surface water balance (lighter grey). For CMIP5 models, we calculated metrics using TWSA 
estimates from the accumulated residuals of the surface water balance. 5 
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Figure S1: Ensemble histogram of forcing metrics from LENS (grey bars) and LENS plus random noise (white bars), with the satellite 
observations from GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations from GRACE and ERA-Interim (dashed 
black line), averaged across land regions within different latitude bands. 
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Figure S2: Ensemble histogram of response metrics from LENS (grey bars) and LENS plus random noise (white bars), with the satellite 
observations from GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations from GRACE and ERA-Interim (dashed 
black line), averaged across land regions within different latitude bands. 
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Figure S3: Ensemble histogram of forcing metrics from LENS with explicit TWS (grey bars) and accumulating residuals of the water 
balance (white bars) with the satellite observations from GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations 
from GRACE and ERA-Interim (dashed black line), averaged across land regions within different latitude bands. 
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Figure S4: Ensemble histogram of response metrics from LENS with explicit TWS (grey bars) and accumulating residuals of the water 
balance (white bars) with the satellite observations from GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations 
from GRACE and ERA-Interim (dashed black line), averaged across land regions within different latitude bands. 

 5 
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