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We thank the Referee 3 for their thorough and thoughtful review. The reviewer was very
critical of several aspects of our paper, and identified issues that they believe warrant
several important revisions. We agree with many of the points the reviewer makes,
and we plan to make significant revisions to address these points, which we detail
below in our response to the reviewer’s comments. However, we disagree with the
reviewer’s perspective that these represent “fundamental issues” with the manuscript
and the research presented in it. We believe that the research represents a meaningful
and novel contribution to the field, as indicated by the other two referees who reviewed
our manuscript. We believe that the major revisions that we plan to make, detailed
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below, will clarify our position and improve our acknowledgement of certain limitations
and caveats. We hope these clarifications and revisions will satisfy the reviewer, but
we would be happy to engage in an ongoing dialogue with this reviewer as well as the
community at large if there are any unresolved issues.

Below, we address the reviewer’s general and specific comments by quoting each com-
ment in italicized font, providing our response in roman font, and quoting our proposed
revisions as indented roman font.

Main comments:

1) My first main comment has to do with the metric used. First, the brevity of the
time period of analysis is obviously an issue. The metrics are essentially interannual
correlations over 13 years, i.e., correlations over 13 data points. That’s very short. I am
not sure I have seen many studies looking at interannual variability over 13 years only,
in particular in terms of land-atmosphere studies. Accordingly, results for the feedback
metrics appear very noisy. First, I believe a discussion of field significance is warranted
here: patches of apparently significant values may still be random in that context (e.g.,
see Livezey and Chen (1983)).

Second, note that recent research underscores the need for long-record datasets to es-
tablish land-atmosphere coupling, that coupling metrics require more data than single-
variable simple statistics (e.g., mean and variance) to be robustly estimated, and finally
that, unlike single-variable statistics, coupling metrics are actually degraded by obser-
vational uncertainty (Findell et al. 2015). The latter point, in particular, is in my view a
much likelier explanation for the weaker correlations found here in observations – be-
tween uncertain observation datasets that are independent of each other – compared
to correlations computed with model outputs, which are by definition perfectly consis-
tent with each other. The authors touch on the issue of observational uncertainty by
computing correlations with the ERA reanalysis, but I don’t think enough is made of
that.
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So, given the brevity and uncertainty of observations, even without consideration of any
other issues (but, see below), I am really uncomfortable with the approach proposed by
this paper, which is to consider the observational estimate as a benchmark for model
evaluation. Personally, I think an approach where observations and model results are
used together to try to infer the “real” coupling would make more sense here. But, this
would lead to a very different paper. Overall, if the authors are going to go on with
their approach, I would recommend much more caution in how things are presented,
including in the title of the study and the conclusions.

The reviewer makes several excellent points, and we are appreciative of the thoughtful
perspective. We acknowledge that several of these points warrant revisions and addi-
tions to the text (detailed below) in order to clarify the goals of our approach and more
appropriately emphasize its limitations. However, we believe that despite these limita-
tions, our approach still represents a valuable and novel system for evaluating model
performance using observational constraints.

We recognize that the relatively short time series available from the satellite record
warrants caution while interpreting these results. We agree with the reviewer that the
findings of Findell et al. (2015) emphasize this limitation and suggest that observational
uncertainty would be expected to decrease correlations. As such, we plan to discuss
this in Section 4.3 with the following addition:

One important factor contributing toward stronger feedback metrics in mod-
els relative to observations is the effect of observational uncertainty com-
bined with a relatively short time series. Adding error to one or more vari-
ables in a correlation analysis will reduce the correlation coefficient, and this
degradation has been shown to be sensitive to the length of data sets used
to establish metrics of land–atmosphere interactions (Findell et al., 2015).
Given the relatively short time series available for the current analysis, the
correlation coefficients from remote sensing data may be reduced due to
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observational uncertainty, unlike those derived from internally-consistent
models. We obtained a qualitative estimate of the influence of observational
uncertainty on derived feedback metrics by replacing the atmospheric re-
mote sensing data with reanalysis data from ERA-Interim. We found that
both sets of observationally based metrics were weaker than those from
LENS and several other models, suggesting that some of the overestimated
feedback metrics in models may not be fully explained by observational un-
certainty.

This acknowledgement further supports our argument that the utility of these metrics
will increase as the time series of global satellite data grows longer with continuations
of current missions and initiation of new missions (i.e., GRACE follow on) as mentioned
in Section 4.5:

Furthermore, we acknowledge that observational error over an insufficiently
long time series could reduce the apparent strength of correlations (Find-
ell et al., 2015). Therefore, the utility of the feedback metrics will increase
alongside the length of the time series available from remote sensing plat-
forms. This emphasizes the importance of the GRACE follow-on mission
(Flechtner et al., 2014) and the need for continuity in the record between
missions.

We do not believe the issue of field significance is relevant in the current context. Our
metrics compare a single time series of TWS anomalies with a single time series of
atmospheric data in the same region. We are not calculating correlations between a
single explanatory variable and a geographically distributed field of dependent vari-
ables. Therefore, we are not engaging in the type of hypothesis testing that would
warrant consideration of field significance.

C4



We agree with the reviewer that “an approach where observations and model results
are used together to try to infer the “real” coupling” would be valuable, and represents
a research priority for the community. Our intention was not to present the obser-
vationally derived forcing metric as representing the “real” land–atmosphere coupling
strength. Instead, it represents the combined effects of land–atmosphere coupling (the
“real” coupling strength) along with the remote effects of SST forcing on both the at-
mosphere and land surface. We believe that despite the relatively short time series,
these metrics provide a useful constraint on models’ ability to represent this combined
set of processes. The reviewer’s recommendation of greater caution in our presenta-
tion is appreciated, and we plan to add the following clarification to section 2.2 when
introducing the metrics:

We note that while these metrics provide information about land–
atmosphere coupling as a forcing mechanism on the atmosphere and the
response of the land surface to the atmosphere, they are potentially in-
fluenced by atmospheric and soil moisture persistence, as well as remote
forcing from sea surface temperatures (SST) (Orlowsky and Seneviratne,
2010; Mei and Wang, 2011). Nevertheless, these metrics still provide use-
ful benchmarks against which to evaluate the ability to ESMs to reproduce
the proper relationships based on the combination of these factors.

We plan to further clarify this in a major revision to the first paragraph of Section 4.1

The metrics developed here from satellite observations provide a means
for evaluating land–atmosphere feedback strength on seasonal to interan-
nual timescales in coupled ESMs. The use of correlation coefficients in this
study does not enable a direct assessment of whether the relationships are
directly causal, as correlation between atmospheric and terrestrial condi-
tions could result from atmospheric persistence and remote forcing from
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SST (Orlowsky and Seneviratne, 2010; Mei and Wang, 2011). Nonethe-
less, the satellite-derived metrics provide a meaningful constraint against
which coupled models can be benchmarked, as these models need to cor-
rectly represent the combined effects of persistence, remote SST forcing,
and land–atmosphere coupling.

We also plan to emphasize the importance of disentangling the influence of land–
atmosphere coupling from that of atmospheric persistence and remote SST forcing
with the following addition to Section 4.5:

Finally, the issue of causality and the possibility that correlations result pri-
marily from atmospheric persistence and remote forcing from SST rather
than land–atmosphere interactions may be addressed using sensitivity ex-
periments similar to those of GLACE and GLACE-CMIP. While the previous
experiments have tested the importance of soil moisture interaction with
the atmosphere, additional experiments could expand upon these meth-
ods by treating SST variability similar to terrestrial soil moisture availability.
Such experiments could determine the relative importance of remote SST,
including the effect of atmospheric persistence, and local land–atmosphere
coupling in explaining correlations between TWS and atmospheric condi-
tions.

We believe that despite the limitations of a relatively short time series and the inability to
attribute the sources of covariability, our approach is still valuable. We believe that the
revisions described above emphasize our goal of conceptually illustrating an approach
towards model benchmarking that will become increasingly useful with longer time
series from remote sensing. At this point, we would prefer to retain our title, which
we believe is succinct and accurately conveys the content of our paper.
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2) Another issue with the metrics involves the definition of the (feedback) metric. The
way it is defined, it is looking at the impact of TWS at the end or peak of the rainy
season on climate in the subsequent months. The authors indicate as much, and
say they want to consider, in the Tropics, the impact of late-rainy season TWS on dry-
season climate. I see two issues with that. First, in my view, while that may useful in the
deep Tropics where the dry season is short, this approach is problematic in monsoon
regions, or regions of the Tropics that have a well defined rainy season (i.e., outside
of the deep Tropics): basically, after the rainy season, there is not much rain to look at
any more. For instance, over the Sahel, what the authors are computing is the impact
of September TWS on precipitation over September-May. But it doesn’t rain much over
that time period.

We believe that focusing on the drawdown interval is an important part of our approach.
Our algorithm is novel in allowing a global-scale analysis across ecosystems. In mid-
latitudes, the drawdown interval contains the summer season that has been the focus
of research in land–atmosphere coupling. In tropical latitudes, the drawdown interval
contains the dry season, during which precipitation recycling is important for maintain-
ing ecosystems, allowing forests to persist in the absence of circulation-driven pre-
cipitation [Keys et al., 2016]. In the example of the Sahel, our algorithm is working
as intended, by measuring how variations in TWS at the onset of the dry season are
related to atmospheric conditions during the dry season.

In my view, it would be much more interesting to look at the impact of end-of-dry season
TWS on the subsequent rainy season to see if, in these regions, available land moisture
feeds back on precipitation during the rainy season. Second, in the same example over
West Africa, whatever rainfall there is over Sept-May is actually probably the end of the
monsoon, Sept-Nov. Because TWS in September is likely to be influenced by precip in
September, and Sept. precip is likely to represent large part of the ‘response’ variable,
the causation is muddied a little bit: a clearer temporal offset would be needed in such
a case. But more importantly, even precip in the months following September (Oct,
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Nov) is likely to be correlated with precip in the previous months – for instance, a year
with a strong monsoon that has more rain in Jun-Sept may well tend to also have more
rain in Sept-Nov. Because September TWS will largely reflect JJAS rainfall, the TWS-
based metric will then show a strong feedback - but the inferred causation would be a
misinterpretation.

We believe that ET in the wet season tropics would be energy limited, and therefore
would not reflect the influence of land surface moisture availability on the atmosphere.
We acknowledge the issue with persistence, which we expand upon below.

This brings me to a more general point: the authors do not discuss how autocorrela-
tion, here at the seasonal time scale, of climate variables, may impact their estimate
of land-atmosphere coupling. This is a major issue affecting all empirical studies of
land-atmosphere coupling – see, for instance, Wei et al. (2008) and Orlowsky and
Seneviratne (2010). The authors do cite the latter study, but, it seems, simply to say
that if models underestimate SSTs influence on land climate, they will then appear to
overestimate local L-A coupling. They somehow miss the point of that paper in how
it should apply to to their own results. I just gave one example above (the Sahel) of
how that might be the case. Other monsoon regions (e.g., India) might similarly be
affected. Interannual variability in the coupled ocean-atmosphere (eg., ENSO) might
also the source of confounding influence at the time scales investigated here. So, over-
all, I recommend these caveats be considered and discussed by the authors in their
interpretation of their results. Personally, I would need to see some further analysis
to be more convinced of the physical reality of the land-atmosphere feedbacks the au-
thors claim to show (e.g,. some sensitivity test to the months and time lags considered,
some investigation of atmospheric variability and persistence, etc.).

The reviewer’s point is well taken, and has already been partially addressed above in
the additions to Section 2.2 and Section 4.5 (quoted above). In addition, we plan to
discuss these issues more explicitly in a revision of Section 4.3 to include the following:
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Another possible explanation stems from the fact that our feedback metrics
include the influence of both direct interactions between the land-surface
and the atmosphere as well as indirect covariability due to atmospheric
persistence and remote forcing by SST (Orlowsky and Seneviratne, 2010;
Mei and Wang, 2011). For this reason, we caution that overestimates of
feedback metrics do not imply that the land–atmosphere feedback is nec-
essarily stronger, but could be due to an overestimate of SST-driven cor-
relations between the land surface and the atmosphere. Wei et al. (2008)
demonstrated that negative correlations between soil moisture and subse-
quent precipitation can be explained by precipitation persistence combined
with negative temporal autocorrelation of precipitation associated with sub-
seasonal modes such as the Madden-Julian Oscillation (MJO). Poor rep-
resentation of the MJO period in CMIP5 models leads to unrealistic pat-
terns of precipitation persistence (Hung et al, 2013). If models are failing to
capture MJO-driven negative correlations, this could lead to overly strong
positive correlations relative to observations. However, this would depend
on the length of the drawdown season relative to persistence time and the
period of intra-seasonal modes.

This supports our planned addition to Section 4.5 (quoted above), discussing the im-
portance of modeling experiments to determine relative importance of remote SST
forcing, including the effect of atmospheric persistence, and local land–atmosphere
coupling in explaining correlations between TWS and atmospheric conditions.

3) Another main comment has to do with the discussion section. The authors discuss
why models might exhibit stronger feedback (and forcing) metrics than observations.
As mentioned above, I think uncertainty in observations should be mentioned as a
primary reason.

We now more explicitly address observational uncertainty as well as uncertainty due
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to the short time series in Section 4.5 quoted above.

The authors propose that ET may be consistently overestimated in climate models,
and a large part of the discussion then consists in speculation as to why that may be
the case. First, while I appreciate the effort to discuss things further and not just show
results, I found this whole section a bit too speculative. IF the models overestimate ET,
then IF stomatal conductance, IF convection, IF bare soil, etc. . . Can the authors
actually point to any evidence that ET is consistently overestimated in climate models,
in the first place (or at least in CESM)?

These points are well taken, and while this section is speculative by its very nature,
we agree that it warrants revision. We plan to modify the discussion so that it does
not center on models overestimating ET, but instead focuses on ways in which models
could make moisture too readily available for ET. We plan to clarify the basis of our
argument with the following revision to Section 4.3:

A set of possible explanations involves models overestimating the amount
of water available for ET during the drawdown interval. The land surface
influence on the atmosphere requires water to be a limiting factor to ET but
not limiting enough to prevent it altogether. Under more moisture-limited
conditions, a drawdown interval may experience multiple shorter time pe-
riods during which ET is inhibited due to insufficient water, and the terres-
trial moisture state exerts no control over flux partitioning. These periods
of insufficient moisture would tend to reduce the overall feedback strength
integrated across the duration of the drawdown interval. Model shortcom-
ings that make water too readily available for ET could reduce the amount
of time spent in a periods of insufficient moisture during the drawdown in-
terval, thereby unrealistically strengthening the longer-term feedback. We
note that the opposite could take place under near-saturated conditions if a
model overestimates the amount of time in which ET is energy-limited, but
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we would not expect these conditions to be as prevalent during the draw-
down interval that was the time period of focus in our analysis.

We also plan to add further discussion to Section 4.5 citing evidence of models over-
estimating ET:

CMIP5 models are known to have a high ET bias (Mueller and Seneviratne,
2014), which could be due in part to the explanations proposed as possible
reasons for overestimated feedback metrics in models.

Second, if soil water is too readily available in models, and ET is overestimated,
wouldn’t that actually mean that feedbacks should be underestimated in models? In-
deed, ET would then be less water-limited and more energy-limited, with less potential
for soil moisture-atmosphere feedbacks.

We designed our metrics around the drawdown interval in order to specifically consider
the time of year during which ET would be water-limited. The issues we discuss with
insufficient representation of bare soil processes and big leaf parameterizations would,
during this time of year, unrealistically make too much water available for ET. This would
allow ET to take place in the model when in reality that water would have run off or is
unavailable for transpiration. Under these conditions, the atmosphere in the model
would be influenced by moisture availability when in reality no moisture is available.
These points will be clarified with the revision to Section 4.3 quoted above.

Surface climate variability would then be influenced by the atmosphere to a greater
extent. Along the same lines, the authors claim that their results, showing an overesti-
mation of land-atmosphere feedback by models, are consistent with prior studies, and
have implications for projected warming (e.g., Cheruy et al., 2014). However, these
previous studies, it seems to me, point to ET being underestimated in these models,
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and models getting to easily “locked” in a dry and warm surface mode. So, in ef-
fect, while the authors agree with prior studies that land-atmosphere feedbacks are
overestimated in models, they provide opposite reasons for that (overestimated versus
underestimated of ET). I would like to see the authors clarify that apparent contradic-
tion.

We plan to modify our discussion, described above, that clarifies our point so as not to
rely on whether models overestimate or underestimate ET.

4) Finally, the author interpret the relationship they find between the strength of the
feedback and forcing metrics in CMIP5 models as showing that: “the response limb
of the feedback loop is important for understanding how conditions are set up for sub-
sequent forcing via land–atmosphere coupling”. They claim that it highlights “the im-
portance of the land surface response in priming the system for subsequent forcing on
the atmosphere”. I am not convinced by this interpretation, which sounds a bit hand-
wavy to me. I don’t see a strong physical reason why a model where, for instance,
TWS responds strongly to precipitation, should have a strong feedback of TWS onto
precipitation.

Conceptually, we disagree with this perspective. The strength of land–atmosphere cou-
pling depends on moisture availability enabling some ET while still limiting it. Models
must therefore simulate the correct moisture availability in order to simulate the proper
amount of land–atmosphere coupling. The response metrics reflect whether models
simulate the right moisture availability based on precipitation and evaporative demand,
and whether this is the right amount to set up subsequent land–atmosphere coupling.
We plan to clarify our reasoning with the following modification to Section 4.1:

The inclusion of the response metrics allows the full feedback loop to be
considered by recognizing the two-way dependence between the land sur-
face and the atmosphere. The generally higher correlation coefficients in
observed response metrics indicates the importance of the land surface re-
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sponse in priming the system for subsequent forcing on the atmosphere.
For example, if TWS response too strongly coupled to atmospheric forc-
ing, a small change in atmospheric conditions could yield an unrealistically
large change in TWS. The unrealistically large TWS anomaly would have
the potential to impart a larger land surface forcing of the atmosphere in
subsequent time steps. That models and ensemble members with high
forcing metrics were also generally found to have high response metrics
(Figure 10) highlights the need to consider this.

Couldn’t the relationship on Figure 10 be due to intermodel differences in what TWS (or
its estimate, here) encompasses in each model? For instance, different soil depths?
A deeper soil would lead to weaker links between TWS and climate both in terms of
response and feedback to the atmosphere.

No, because we are using the total terrestrial water storage column. In the case of
LENS, this is an explicitly output field that includes this entire column. In the case of the
CMIP5 output, we used the accumulated residuals of the surface water balance (i.e.,
the integral of precipitation minus evaporation and runoff) to approximate this quantity.

In any case, I found Figure 10 to be insufficiently explained and encourage the authors
to discuss this further.

We plan to add the following to the figure caption in order to clarify how TWS was
determined for each model.

For CMIP5 models, we estimated TWSA using the accumulated residuals
of the surface water balance. For LENS, TWSA values were internally cal-
culated from water masses in soils and other terrestrial reservoirs

Specific comments:
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- p.2 line 4: “cloud radiative coupling”: please explain and clarify.

We plan to clarify the text as follows:

Cloud radiative coupling can likewise lead to positive or negative feedbacks,
as enhanced (suppressed) cloud formation decreases (increases) insola-
tion and evaporative demand (Betts, 2009; Cheruy et al., 2014).

- P.2 line 24: actually, no: a surprising result of GLACE II was that predictive skill was
not enhanced over the Great Plains “hot spot” from GLACE I, but rather to the North of
it (see Koster et al. 2011). Consider rephrasing.

We thank the reviewer for pointing out this discrepancy, which plan to correct by re-
moving the reference to GLACE II

- P.3 line 5: the text should make it clear that GLACE-like metrics cannot be directly
compared to observations, and that other more simple metrics, not strictly equivalent,
have to be used, like SM-ET correlations, etc.

We agree that this warrants clarification, and we plan to modify the text as follows:

GLACE metrics are based on model experiments with no direct observa-
tional equivalents. However, correlation based metrics that do enable direct
comparison with observations suggest that models may overestimate land–
atmosphere coupling strength (Dirmeyer et al., 2006).

- P.3 line 20: Findell et al. 2011 is actually based on reanalysis data, not “modeling”.
Also, Findell et al. 2015 should be included in this discussion, to highlight the issue,
discussed above, of data length requirements to estimate land-atmosphere coupling.

We reference Findell et al. (2011) in the context of Guillod et al. (2014), which empha-
sizes that the surface state and fluxes are still model based, even if the atmosphere
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is constrained by some observations. However, to avoid confusion, we now omit the
word “modeling” from the description of Findell et al. (2011). Furthermore, as dis-
cussed above, we now include Findell et al. (2015) in the discussion in Section 4.3
(quoted above).

- P.5 line 15: is that version of the GRACE data downscaled in any way, and if so, how?
I thought the basic GRACE data was at coarse resolution (e.g., 500km).

The GRACE gridded land product that we use is provided at a 1-degree resolution. We
plan to clarify this in the methods section by rewording the beginning of Section 2.1
Remote sensing data as follows:

We obtained Level-3 TWSA data from GRACE using the University of Texas
at Austin Center for Space Research (CSR) spherical harmonic solutions
(Swenson, 2012). Global land data at a 1◦ resolution were scaled using the
coefficients provided by Landerer and Swenson (2012).

- P.5 line 17: “the TWS time series”. I read that GRACE data are actually anomalies
compared to the mean over 2004-2009. How is that accounted for in the computation
of the metrics? Are the other variables centered on the same years? Does that affect
results in any way? What about model outputs?

In the context of our metrics, the baseline against which GRACE Anomalies are com-
pared is arbitrary. In our calculations, the baseline only affects the intercepts of the
linear correlations; it does not affect the correlation coefficients that comprise our met-
rics.

- P.6 line 32: see main comment above: I am not sure this is the most relevant time of
year to investigate, and they are issues of rainfall autocorrelations.

We have addressed this in our response to the reviewer’s main comment above, in
which we explain why we chose to focus on this time of year.
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- P.7 lines 12-15: that is, if the feedback is actually a positive moisture feedback. In
other words, the authors adopt the a priori view that they are looking at a positive,
moisture recycling feedback. This should be stated more explicitly, and perhaps earlier
in the manuscript.

This point is well taken, and we plan to modify the Methods section to more explicitly
state this assumption by removing lines 12–15 and 19–20 on page 7, and replacing
them with the following:

Here we note that our evaluation of both the forcing and response metrics
will follow a nomenclature that considers strong coupling as acting in the
direction of an overall positive feedback loop. In regions with a strong pos-
itive feedback, higher than average TWS would be followed by lower than
average VPD, as more available water is able to fulfill evaporative demand.
Therefore, strong TWS forcing on VPD would be associated with a nega-
tive correlation coefficient. Higher VPD during the drawdown interval would
increase evaporative demand, potentially leading to a lower TWS anomaly,
therefore a strong response of the land surface to VPD would also be as-
sociated with a negative correlation coefficient.

Because the partitioning of surface fluxes can, depending on the spatiotem-
poral scale, cause a change of either sign to both cloudiness and precip-
itation (Taylor et al., 2012; Guillod et al., 2015), correlation coefficients of
either sign could indicate strong land surface forcing on PPT and SW↓.
However, the response metrics would be expected to show greater con-
sistency. Higher PPT during the drawdown interval would be expected to
increase TWS (positive correlation), while higher SW↓ would increase evap-
orative demand, thereby decreasing TWS (negative correlation). Therefore,
to maintain consistent nomenclature based on evaluating the strength of a
positive moisture feedback, we consider strong coupling in both the forc-
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ing and response metrics to be associated with a positive correlation in the
case of PPT and a negative correlation in the case of SW↓.

- P.8 line 18: what about AMIP simulations?

Correlations in our forcing metric come from both land–atmosphere coupling and the
effects of remote SST forcing. AMIP simulations could reduce internal variability, but
will not capture ocean-atmosphere interactions. We are interested in evaluating fully
coupled models that are used for 21st century projections.

- P.8 line 28: It’s unclear to me why the authors restrict themselves to the GLACE-
CMIP5 models. There is no further comparison in the manuscript, on a model-by-
model basis, with results from that experiment. So why not use the whole CMIP5
ensemble?

The purpose of this manuscript is not to evaluate the entire CMIP5 ensemble, but rather
to introduce a new approach toward model benchmarking using a small ensemble of
models as an example.

- P.9 line 9: so what? What is made of that? What are the implications for the
correlation-based metrics? This comment applies to the whole sub-section, actually,
including the result about climate variability. If anything, higher variability in model out-
puts would point to lower correlations, if the covariance between TWS and climate is
similar.

This point is well taken, and we address this with an addition to this section that clarifies
the implications of this analysis:

Comparing both the timing of TWS dynamics and the interannual variabil-
ity of TWS and the atmospheric variables between the observations and
model output provides context for interpreting the correlation-based met-
rics we present next. Although there are some inconsistencies, as noted
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above, the model largely reproduces the same patterns evident in the re-
mote sensing data. In most regions, interannual variability in model output
is within an order of magnitude of the observed variability, indicating that
CESM can reasonably simulate the baseline properties (timing and vari-
ability) that influence the feedback dynamics.

- P.9 line 11: aren’t trends removed from this data? Please clarify.

Trends are removed only for the purpose of generating the annual climatology, as indi-
cated in the methods section, are retained in the correlation analysis in order to capture
decadal-scale variability that would represent a trend in the relatively short time series.

- P.9 line 26: still, why would the covariance be positive?

We plan to address this question by adding the following text to this section:

Positive correlations are unlikely to reflect direct land–atmosphere interac-
tions. Instead, they demonstrate how remote SST forcing can, depending
on lag times, lead to apparent negative relationships such as those demon-
strated by Wei et al. (2008).

- P.9 whole section 3.2: this whole subsection feels very descriptive. On the other hand,
there is not much description of the processes themselves. This might feel obvious to
the authors, but some further discussion of what the correlations mean physically, when
describing the figures, may be welcome.

The purpose of this section is to help the reader understand how the metrics work
for a single ensemble member before we present the aggregated results for the whole
ensemble. We feel this is a critical step in explaining how our metrics work and justifying
their use in comparing models with observations.

C18



- P.10 line 13: the link with cloud cover and precipitation should be explicitly mentioned
here.

The link is now explicitly mentioned:

This is consistent with coupling between cloud cover and terrestrial mois-
ture being both positive and negative on shorter time scales, which some-
times yields negative coupling over shorter time scales (Taylor et al., 2012;
Guillod et al., 2015).

- P. 11 lines 14-15: see main comment 4 above.

We have addressed this in the response to the reviewer’s comment 4 above.

- P.11 line 23: “Discussion”.

Thank you for pointing out this typographical error, which has been corrected.

- P.11 line 28: as mentioned above, these “well understood mechanisms” are actually
never really explained.

The planned revision to Section 4.1, described above in the response to the first gen-
eral comment, removes this phrase and more clearly describes what is being shown.

- P.12 lines 3-4: that’s exaggerated. Feedback results on Figures 5-7 are very noisy,
and even from a simply qualitative perspective, it is a stretch to say that they agree with
results from GLACE 1. One could just as well point out all the regions on Figures 5-7
that do NOT show up in GLACE 1 and say results are completely different. Besides,
I find it a bizarre impulse (or maybe, a testament to the strength of the GLACE 1
study) that every land-atmosphere study seemingly feels the need to point out some
level of agreement with GLACE results, even when, as is the case here, the match
is very weak at best, and more importantly, when different data (observations versus
models), processes and spatio-temporal scales are considered. Consider removing
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that comparison.

The reviewer’s point is well taken, and we do not believe the comparison with GLACE
1 is a necessary component of our discussion. As part of the major revision of the
discussion section, as described above, we plan to remove this reference to GLACE.

- P.12 line 16: see main comment 4 above.

We have addressed this in the response to main comment 4 above.

- P.12 line 26: the authors could still look at this in models results, though. In fact,
showing the link between TWS and ET, for instance, would reinforce their results and
the physical interpretation that they propose.

This is limited by the lack of a global remote sensing ET data set spanning the study
period.

- P. 13, first paragraph: this is unclear. Do the author mean that that the models
underestimate remote influences of SSTs, for instance, and thus appear to have too
strong a coupling?

Along side the other major revisions to our discussion section, we plan to remove this
passage from the text and replace it with a clearer explanation, which we have quoted
above in response to main comment 2.

- P.13 lines 16-18: see main comment 3 above.

This is addressed in major revisions to this section, quoted above in the response to
main comment 3.

- P. 14 line 18: but here observations show positive coupling, too! Please clarify.

The observational metrics in this study include the effects of remote SST forcing as well
as land–atmosphere interactions integrated across seasonal time scales. The nega-
tive soil moisture–precipitation coupling mechanism found from observations by Taylor
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et al. (2013) would tend to reduce the overall positive correlation. If parameterized
convection prevents models from correctly capturing this mechanism, then the corre-
lations may be overestimated. We plan to clarify this with the following addition to the
discussion:

If negative coupling mechanisms are present in reality but absent from mod-
els, this could contribute to an overestimate of feedback metrics and under-
representation of negative feedbacks in models.

- P. 14 line 21: but reduced stomatal opening would be associated with reduced ET,
too. Please clarify.

We plan to remove the discussion of stomatal opening, both for the sake of brevity and
to prevent any confusion.

- P. 14 lines 18-30: See main comment 2. There is a fundamental issue with the
manuscript here.

We plan to make major revisions to this section, as addressed above in the response
to main comments 1 and 2. As we explained above, we do not feel that this represents
a fundamental issue with our approach or our manuscript.

- P.15 line 3: see main comment 3.

We have addressed this above in our response to comment 3.

- P.15 lines 8-9. not really: Seneviratne etal. (2013) show that long-term soil mois-
ture change leads to more warming, differently across models in the GLACE-CMIP5.
That, in and of itself, could be considered an estimate of (long-term) soil moisture-
atmosphere coupling in these models; but, in any case, there is no comparison to
estimates of present-day coupling.

We agree that the linkage between our metrics and the results of GLACE-CMIP5 are
C21

too speculative. For this reason and for the sake of brevity, we plan to remove this
portion of the discussion section.

- P.15 lines 11: No. Warmer air “holding” more water vapor and leading to more pre-
cipitation would lead to positive temperature-precipitation correlations – not negative.

We thank the reviewer for pointing out this erroneous characterization of the results
of Berg et al. (2015). The phrase “in which higher air temperatures can hold more
precipitable water” was intended to read “cloud cover variability drives precipitation
and temperature in opposite directions” However, as mentioned in the response to the
previous comment, we intend to remove this portion of the text from our discussion.

- P.15 line 13: “determined”: not really. What Berg et al. (2015) show is that because of
land-atmosphere interactions, the interannual negative temperature-precipitation rela-
tionship that they identify in present-day climate holds on longer time scales, including
in the case of climate change. This may be interpreted as suggesting, as the authors
say here, that models with too strong a coupling will then overestimate future warming;
however, it is not directly shown by that study. Consider rephrasing.

As mentioned in the response to the previous two comments, we plan to remove this
portion of the text from our discussion.

- P.16 line 10: see comment above on P.12

As mentioned in the response to the comment above, we plan to remove the assertion
that our observed metrics reflect the patterns found in GLACE. In addition to the revi-
sions to the discussion section, mentioned above, we also plan to revise the conclusion
section to remove this portion.

- P.16 line 11: “regions of strong RESPONSE metrics”, I believe.

We thank the reviewer for pointing out this typographical error

- P.16 line 14: the implication is bit too implicit here. Consider being more explicit.
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We plan to make this statement more explicit with the following revision:

Modeled feedback metrics are generally found to be stronger than those
observed in the satellite record. If this discrepancy is due to models over-
estimating the two-way feedback between the land surface and the at-
mosphere, this could lead to models incorrectly projecting future warming
trends and climatic extremes.

Figures:

- Figure 1: nice figure that helps understand the study. The y-axis on a) refers to
anomalies, I presume – see comment on GRACE values above.

Correct, as we mentioned in response to the comment above. We plan to clarify this
by replacing “TWS” with “TWSA” in the caption to Figure 1.

- As noted above, Figure 3 and 4 are nice, but not much is made of them in the analysis.

As described in response to the reviewer’s comment above, we plan to add some ad-
ditional text to expand upon and clarify the purpose of these figures. As quoted above,
we feel these figures are important for demonstrating that LENS is able to capture the
baseline properties of our analysis (timing and variability) before presenting the corre-
lation coefficients.

- Figure 5-7: I suggest the authors modify the color legend here. More color shades
is not always better. It is actually not easy to see differences in color shades on a
continuous bi-color palette like here, and for the reader things essentially end up being
two colors, one positive (green) and one negative (red). It would actually be easier to
have fewer shades, more clearly separated, and with perhaps several different colors
as well.

After experimenting with several color and shading schemes, we determined that the
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spatial variability in Figures 5–7 are best illustrated using the employed color scheme
combined with crosshatching to indicate statistically significant correlations.

- Figure 8: I suggest showing the mean of the CESM distribution as well.

We considered including this, but determined that it made the figures too busy without
adding useful information.
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