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Abstract. As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and 15 

biological processes and is directly affected by water and land management, land use change and climate 

variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous 

landscapes; however, limitations on the spatial and temporal resolution of satellite data, combined with the 

effects of cloud contamination, constrain the amount of detail that a single satellite can provide. In this study, we 

describe an application of a multi-sensor ET data fusion system over a mixed forested/agricultural landscape in 20 

North Carolina, USA during the growing season of 2013.  The fusion system ingests ET estimates from a Two-

Source Energy Balance (TSEB) model applied to thermal infrared remote sensing retrievals of land surface 

temperature from multiple satellite platforms:  hourly geostationary satellite data at 4-km resolution, daily 1-km 

imagery from  the Moderate Resolution Imaging Spectroradiometer (MODIS), and bi-weekly Landsat thermal 

data sharpened to 30-m.  These multiple ET datastreams are combined using the Spatial-Temporal Adaptive 25 

Reflectance Fusion Model (STARFM) to estimate daily ET at 30-m resolution to investigate seasonal water use 

behavior at the level of individual forest stands and land cover patches.   A new method, also exploiting the 

STARFM algorithm, is used to fill gaps in the Landsat ET retrievals due to cloud cover and/or the scan-line 

corrector (SLC) failure on Landsat 7.  The retrieved daily ET timeseries agree well with observations at two 

AmeriFlux eddy covariance flux tower sites in a managed pine plantation within the modeling domain: US-NC2 30 
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located in a mid-rotation (20 year old) loblolly pine stand, and US-NC3 located in a recently clear cut and 

replanted field site. Root mean square errors (RMSE) for NC2 and NC3 were 0.99 mm d-1 and 1.02 mm d-1, 

respectively, with mean absolute errors of approximately 29% at the daily time step, 12% at the monthly time 

step, and 3% over the full study period at the two flux tower sites. Analyses of water use patterns over the 

plantation indicate increasing seasonal ET with stand age for young to mid-rotation stands up to 20 years, but 5 

little dependence on age for older stands. An accounting of consumptive water use by major land cover classes 

representative of the modeling domain is presented, as well as relative partitioning of ET between evaporation 

(E) and transpiration (T) components obtained with the TSEB. The study provides new insights about the effects 

of forest management and land use change on water yield hydrological water balance, and the method developed 

has the potential to be used to routinely monitor hydrology and water use over heterogeneous landscapes using 10 

thermal remote sensing dataover forested landscapes. 

1 Introduction 

Evapotranspiration (ET) is a major component of the water balance and connects hydrologic and biological 

processes (Hanson et al., 2004; Wilson et al., 2001). ET varies with different climate,  and vegetation types and 

phenological stage and is directly affected by land management strategies and climate change (Pereira et al., 15 

2002). ET is also a key variable in most ecohydrological models and ecosystem service assessments 

(Abramopoulos et al., 1988; Kannan et al., 2007; Olioso et al., 1999; Tague & Band 2004; Sun et al., 2011). In 

spite of the importance of ET, routine estimation of ET at high spatial (plot level) and temporal (daily) resolution 

has not yet been achieved with acceptable accuracy over landscape and regional scales (Wang and Dickinson, 

2012).  20 

Current forest ET estimation methods span a range of spatial scales: from individual plants, to tower 

footprints, to watershed scales (Fang et al., 2015). These methods include in situ measurement, simulation using 

hydrologic and land surface models which are normally driven by weather data, and estimation from satellite 

remote sensing data. Techniques for measuring ET include weighing lysimeters (Wullschleger et al., 1998), sap 

flow (Klein et al., 2014; Smith and Allen, 1996) and plant chambers (Cienciala and Lindroth, 1995), soil water 25 

budgets (Cuenca et al., 1997), eddy covariance (EC; Baldocchi et al., 2001) and catchment water balance (Pan et 

al., 2012). While EC is a widely used observation method and provides an important data source to many 

research fields (Baldocchi et al., 2001), it measures the flux in the turbulent fluxes over a relatively small 

footprint area (102-104 m2), which is determined by the micro-climate conditions around the flux tower and the 
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instrument height. Catchment water balance is also a frequently used method, calculating ET from long-term 

precipitation and streamflow observations with the assumption that the soil water storage change is negligible 

(Domec et al., 2012; Wilson et al. , 2001). All these observation methods have their inherent advantages and 

limitations, especially when considering both temporal and spatial resolution issues.  

Another group of forest ET estimation methods is empirically based, establishing a relationship between ET 5 

with other parameters; for example, precipitation, reference ET and vegetation indices (Leaf Area Index (LAI), 

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) (Johnson & Trout, 

2012; Mutiibwa & Irmak, 2013; Nemani & Running, 1988; Sun et al. , 2011; Zhang et al., 2004). Many studies 

have applied process-based eco-hydrological models to estimate ET (Chen & Dudhia, 2001; Tague & Band, 

2004; Tian et al., 2010).  These models usually estimate ET from potential ET, which is then down-regulated 10 

bybased on climateweather data and soil and vegetation characteristics. However, with the focus on predicting 

runoff and the soil water profile, studies using hydrologic models generally do not evaluate the performance of 

ET simulation. To simplify the physical processes, many models assume the plant growth ratestatus is static. This 

assumption can result in errors in simulating ET dynamics, especially over shorter time periods (seasonally, 
monthly, weekly or daily)  (Méndez‐Barroso et al., 2014; Tian et al., 2010). Often physical process-based models 15 

involve hundreds of input variables/parameters, many of which are not easily measured or known in a spatially 

distributed manner at watershed and regional scales. Although models can be calibrated using local or watershed 

scale observations, there is the often-mentioned problem of equifinality, where different sets of parameters during 

calibration give the same simulation results due to the inherent complexity of the system (von Bertalanffy, 1968; 

Beven and Freer, 2001).  20 

Mapping ET using satellite remote sensing data has been widely applied since the 1980s due to growing 

interest in the spatial dynamics of water use at the watershed and regional scales (Kalma et al., 2008).  Of 

particular interest in the water resource community are surface energy balance methods based on remotely sensed 

land-surface temperature (LST) retrieved from thermal infrared (TIR) imagery, which provides proxy 

information regarding the surface moisture status ( Hain et al., 2011; Anderson et al., 2012a). LST captures 25 

signals of crop stress and variable soil evaporation that are often missed by crop coefficient remote sensing 

techniques, which are based on empirical regressions with reflectance-basedshortwave vegetation indices. 

Furthermore, diagnostic estimates of ET from the surface energy balance provide an independent estimate of 

landscape water use that is a valuable benchmark for comparison with estimates based on water balance or 

hydrologic modeling (Hain et al. , 2015; Yilmaz et al. , 2014). Finally, the range in spatial resolution and coverage 30 
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of existing TIR data sources enables mapping of ET from the plot or field scale (<100 m resolution) up to 

continental or global coverage at 1-5 km resolution. 

The Atmosphere-Land Exchange Inverse model (ALEXI; Anderson et al., 1997, 2007) and associated flux 

disaggregation algorithm (DisALEXI; Anderson et al., 2004; Norman et al. , 2003) are examples of a multi-scale 

energy balance modeling approach that can utilize LST data from multiple satellite platforms with TIR sensing 5 

capabilities. The regional ALEXI model uses time-differential measurements of morning LST rise from 

geostationary satellites to estimate daily flux patterns at 3-10 km resolution and continental scales.  Using higher 

resolution LST information from polar orbiting systems, DisALEXI enables downscaling of ALEXI fluxes to 

finer scales, better resolving land-use and moisture patterns over the landscape, and better approximating the 

spatial scale of ground-based flux observations. Landsat data (30-120 m) can be used to retrieve ET at the field 10 

scale, which is particularly useful for water management applications.  However, due to the lengthy revisit 

interval (8 to 16 days), further lengthened by cloud contamination, the number of useful Landsat scenes that can 

be acquired during a growing season is limited. The Moderate Resolution Imaging Spectroradiometer (MODIS) 

has a shorter revisit interval (approximately daily) but is too coarse (1 km in the TIR bands) for field-scale ET 

estimation. Cammalleri et al.(2013) proposed a data fusion method to combine ET estimates derived from 15 

geostationary, MODIS and Landsat TIR data, attempting to exploit the spatiotemporal advantages of each class 

of satellite to map daily ET at a sub-field scale.  This ET fusion approach has been successfully applied over rain-

fed and irrigated corn, soybean and cotton fields (Cammalleri et al., 2013, 2014), as well as irrigated vineyards 

(Semmens et al., 2015).  The work described here constitutes the first application to forest land cover types, 

representing a substantially different roughness and physiological regime than that of shorter crops. This presents 20 

a modeling challenge in terms of accurately defining turbulent exchange coefficients, as well as describing 

radiation transport through the canopy. 

In this paper, ALEXI and DisALEXI are applied over a commercially managed loblolly pine (Pinus Taeda) 

plantation, representing a range in stand age, to estimate daily field scale ET using the data fusion methodology. 

Retrieved 30-m ET timeseries are evaluated at two flux tower sites, sited in mature and recently clear-cut pine 25 

stands. The primary science objectives areis to (1) study how wellthe accuracy of ALEXI and DisALEXI can be 

used to estimate ET retrievals over forested sites; (2) evaluate the models’ ability to capture the dynamics of 

fluxes over the contrasting canopy structures in both pine and the adjacent vegetation; and (3) investigate the 

utility of daily field-scale ET retrievals for water resource management in forested systems. Additionally, we 

present a novel methodological advancement, based on data fusion, for filling gaps in Landsat-based ET 30 

retrievals due to partial cloud cover as well as the scan-line corrector (SLC) failure in Landsat 7. This technique 
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facilitates more complete use of the existing Landsat archive for investigating water use dynamics at the 

landscape scale. We also present a new method, based on data fusion, for filling gaps in Landsat-based ET 

retrievals due to partial cloud cover as well as the scan-line corrector (SLC) failure in Landsat 7 imagery. 

2 Methods 

2.1 Thermal-based multi-scale ET retrieval 5 

The regional Atmosphere-Land Exchange Inverse (ALEXI) and the associated flux disaggregation model 

(DisALEXI) are based on the Two Source Energy Balance (TSEB) land-surface representation of Norman et al. 

(1995), with further refinements by Kustas and Norman (1999, 2000). The combined modeling system is 

described schematically in Fig. 1. Rather than treating the land-surface as a homogeneous surface, the TSEB 

partitions modeled surface fluxes and observed directional radiometric surface temperature between soil and 10 

vegetation components:  

𝑇𝑅𝐴𝐷(∅)4 = 𝑓(∅)𝑇𝑐
4 + [1 −𝑓(∅)]𝑇𝑠4                                                                                                     (1) 

where ∅ is the thermal view angle, 𝑓(∅) is the fractional vegetation cover apparent at the thermal view angle, 

𝑇𝑅𝐴𝐷  is the directional radiometric temperature, 𝑇𝑐 is the canopy temperature, and 𝑇𝑠 is the soil temperature (K). 

In remote sensing applications, 𝑓(∅) can be estimated from retrievals of leaf area index (LAI) using the Beer-15 

Lambert Law. The surface energy balance for the canopy, soil and combined system is represented in Eq. (2):  

𝑅𝑁𝑠 = 𝐻𝑠 + 𝜆𝐸𝑠 + 𝐺                                                                                                                                  (2a) 

 𝑅𝑁𝑐 = 𝐻𝑐 + 𝜆𝐸𝑐                 (2b) 

𝑅𝑁 = 𝐻+ 𝜆𝐸 +𝐺                                                                                                                                      (2c) 

where the subscripts “C” and “S” represent fluxes from the canopy and soil components; and RN is net radiation, 20 

𝜆𝐸 is latent heat flux, H is sensible heat flux and G is the soil heat flux (all in units of W m-2).  Component 

surface temperatures in Eq. 1 are used to constrain RN, H and G; canopy transpiration (𝜆𝐸𝑐) is initially estimated 

with a modified Priestley-Taylor approach under the unstressed conditions assumption, and then iteratively down 
regulated if 𝑇𝑐 indicates canopy stress, ruled by the assumption that condensation under daytime clear-sky 

conditions is unlikely; while soil evaporation (𝜆𝐸𝑠) is computed as a residual to the soil energy budget. Further 25 

information regarding the TSEB model formulation is provided by Kustas and Anderson (2009).  
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Roughness length (Zm) impacts the aerodynamic resistance (Ra), which is the resistance to heat transport 

across the layer between the nominal heat momentum exchange surface within the canopy and the height of the 

air temperature boundary condition (ZT (m)). The aerodynamic resistance (Ra) can be expressed as Eq. (3) 

(Brutsaert, 1982): 

  𝑅𝑎 =
�ln�𝑍𝑇−𝑑𝑍𝑚

�−𝜓ℎ��ln�
𝑍𝑢−𝑑
𝑍𝑚

�−𝜓𝑚�

𝑘2𝑢
+ 𝑅𝑒𝑥                                                                                                    (3) 5 

where k  is the von Karman constant (0.4); u (m s-1) is the wind speed measured at height Zu (m); ZT is the air 

temperature measured height; d (m) is the displacement height; Zm (m) is the roughness length, which can be 

estimated from the nominal canopy height (ℎ𝑐(m)),𝑍𝑚 ≈
ℎ𝑐

8�  (Shaw and Pereira, 1982); and 𝜓ℎ is the stability 

corrections for heat transport;and  𝜓𝑚 is are the stability corrections for heat and momentum transport, 

respectively; and 𝑅𝑒𝑥 is the excess aerodynamic resistance. Additional boundary layer resistances linking the 10 

bulk canopy and the soil surface to the in-canopy momentum exchange node (RX and RS, respectively, see Fig. 1) 

are defined as in the series TSEB model formulation described in Normal et al. (1995). 

The regional scale ALEXI model applies the TSEB in time-differential mode using measurements of 

morning LST rise obtained from geostationary platforms (Anderson et al. 1997; Anderson et al. 2007).  Energy 

closure over this morning period is obtained by coupling the TSEB with a simple model of atmospheric boundary 15 

layer (ABL) development (Fig. 1).  In this study, instantaneous morning fluxes from ALEXI have been upscaled 

to daily total latent heat flux by conserving the ratio of  λE to solar radiation, following the recommendations of 

Cammalleri et al. (2014). Daily latent heat flux (in energy units of MJ m-2 d-1) is converted to ET (in mass units of 

mm d-1) by dividing by the latent heat of vaporization (λ = 2.45 MJ Kg-1).  

This time-differential approach used in ALEXI reduces model sensitivity to errors in LST retrieval due to 20 

atmospheric and surface emissivity effects, but it does constrain ALEXI ET estimates to the relatively coarse 

spatial scales typical of geostationary satellites. To estimate ET at the finer scales required for many management 

applications, the ALEXI fluxes can be spatially disaggregated using the DisALEXI approach (Anderson et al., 

2004; Norman et al., 2003).  DisALEXI uses, as an initial estimate, air temperature estimates diagnosed by 

ALEXI at a nominal blending height at the interface between the TSEB and ABL submodels, along with high 25 

spatial resolution images of surface temperature data and vegetation cover fraction from polar orbiting or 

airborne systems, to run the TSEB at sub-pixel scales over each ALEXI pixel area.  The TSEB fluxes are 

reaggregated and compared with the ALEXI pixel flux, and the air temperature boundary condition is iteratively 
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modified until the fluxes are consistent at the ALEXI pixel scale.  More details on the ALEXI/DisALEXI multi-

scale modeling system can be found in Anderson et al., (2004, 2011 and 2012b).   

2. 2 Data processing and fusion system 

In this study, ET retrievals generated with DisALEXI using TIR data from MODIS (near daily, at 1 km 

resolution) and Landsat (periodic, sharpened to 30 m resolution) have been are gap-filled and then fused to 5 

produce daily Landsat-scale ET time seriesinto a daily time series at 30 m.  The major components of the 

processing stream are described in greater detail below, including a Data Mining Sharpener (DMS; Gao et al., 

2012b) tool that is used to improve the spatial resolution of the LST inputs to DisALEXI; the Spatial and 

Temporal Adaptive Reflectance Fusion Model (STARFM; Gao et al. 2006), which is used to combine temporally 

sparse Landsat and dense MODIS ET maps to produce daily Landsat-scale ET time series; and a gap-filling 10 

procedure that is applied to ALEXI and MODIS and Landsat DisALEXI retrievals prior to disaggregation and 

fusion. The gap-filling and fusion processes are schematically represented in Fig. 2. 

2.2.1 Data Mining Sharpener (DMS)  

In both the Landsat and MODIS imaging systems, the TIR sensors have significantly lower spatial resolution 

than the shortwave instruments on the same platform.   For Landsat, TIR resolution varies from 60 m (Landsat 7) 15 

to 100 m (Landsat 8) to 120 m (Landsat 5), while the shortwave images are processed to 30 m.  For MODIS, TIR 

resolution is 1km while the shortwave resolution is 250 m. Particularly for Landsat, there is benefit to mapping 

ET at 30 m rather than the native TIR resolution, as boundaries in land cover and moisture variability are much 

better defined. 

To enable higher resolution ET mapping, tThe DMS sharpening tool is implemented within the ET fusion 20 

package enables this higher resolution mapping. The DMS technique creates regression trees between TIR band 

brightness temperatures and shortwave spectral reflectances from both moving windows and the whole sceneboth 

globally across the full scene and within a localized moving window (Gao et al., 2012b). The original TIR data 

are sharpened from their native spatial resolution to finer resolution with DMS, with the choice of using all of the 

available shortwave bands or a subset of these bands or even a single vegetation index as input to the regression 25 

tree. The sharpened results from the global and local models are combined regression tree created by selecting 

samples locally from an overlapped moving window are then combined with the results from the regression tree 

created from the whole scene based on a weightinged factor, calculated from the residuals of the two sharpened 

results. 
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2.2.2 Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) 

The STARFM algorithm fusescombines the spatial information from Landsat imagery with temporal information 

from the coarser but more frequently collected MODIS imagery to produce daily estimates at Landsat-like scale.  

STARFM was originally designed to fusefor application to shortwavesurface reflectance dataimages, but has 

demonstrated utility in fusing higher order satellite products as well, as long as there is sufficient consistency 5 

between the Landsat and MODIS retrievals. 

First, ET data from both MODIS and Landsat retrievals are extracted onto a common 30-m grid.  A moving 

searching window method is then used in STARFM to estimate values at the center pixel of the moving window.   

L (xp/2, yp/2,t0) = ∑ ∑ ∑ 𝑊𝑖𝑗𝑘
𝑛
𝑘=1

𝑝
𝑗=1

𝑝
𝑖=1 × �𝑀�𝑥𝑖,𝑦𝑗, 𝑡0�+ 𝐿�𝑥𝑖 ,𝑦𝑗, 𝑡𝑘�−𝑀�𝑥𝑖,𝑦𝑗, 𝑡𝑘��                       (4) 

where p is the size of the moving window and (xp/2, yp/2) is the center pixel of the moving window that needs to 10 

be estimated at time t0. �𝑥𝑖 ,𝑦𝑗� is the pixel location, 𝑀�𝑥𝑖 ,𝑦𝑗, 𝑡0� is the MODIS pixel value at time t0, 

𝑀�𝑥𝑖 ,𝑦𝑗, 𝑡𝑘� is the MODIS pixel value at time tk and 𝐿�𝑥𝑖 ,𝑦𝑗, 𝑡𝑘� is the Landsat pixel value at time tk. 𝑊𝑖𝑗𝑘 is 

the weighting factor that determines how much each pixel in the moving window contributes to the estimation of 

the center pixel value.  In the ET fusion system, this study, STARFM uses the weighting function derived from 

Landsat ET and MODIS ET retrieved on the same date and MODIS ET on the prediction date to get Landsat-like 15 

ET estimations on all prediction dates between Landsat overpasses.  

 

2.2.3 ET Gap-filling Methods 

Spatiotemporal gaps in TIR-based ET retrievals occur for a variety of reasons, including cloud cover, frequency 

of sensor overpass, limitations imposed to avoid distortions in LST data acquired at large off-nadir view angles, 20 

and other sensor issues.   Prior to disaggregation and fusion, the input ET fields must behave been gap-filled, both 

spatially and temporally, to the extent possible to ensure relatively gap-free output time series.    

Due to the high temporal frequency of data acquisition from both geostationary and MODIS systems, the 

ALEXI and DisALEXI-MODIS retrievals can be reasonably gap-filled and interpolated to daily time steps in all 

but the cloudiest of circumstances.   Time intervals between clear-sky Landsat acquisitions are too lengthy in 25 

general, motivating the need for data fusion to fill temporal gaps.  Spatial gaps in Landsat ET retrievals have been 

filled using a method based on STARFM, as described below. 

ALEXI and MODIS-DisALEXI 
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Gaps in the daily ET maps from ALEXI and MODIS-DisALEXI were filled using the method described by 

Anderson et al. (2012b). Daily reference ET is first calculated using the Food and Agriculture Organization 

(FAO) Penman-Monteith formulation for a grass reference site (Allen et al., 1998). The ratio of actual-to-

reference ET (fRET) is computed and then filtered, smoothed and gap-filled at each pixel using a Savitzky-Golay 

filter. Gap-filled daily ET is recovered by multiplying this fRET series by daily reference ET.  5 

Landsat-DisALEXI 

To ensure optimal spatial coverage in the fused 30 m daily time series, the Landsat-based ET retrievals on 

Landsat overpass dates must also be gap-filled to the extent possible.  Gaps in Landsat ET result from cloud 

cover, or in the case of Landsat 7, missing pixels due to the SLC failure that occurred since May 2003, resulting 

in striped gaps in all but the center of each scene.  In the case of Landsat, the time intervalgap between usable 10 

overpasses may be too long to justifiably use the fRET approach applied to the ALEXI and MODIS time series.  

Therefore, an alternate method has been developed to fill cloud-gaps/stripes to create filled scenes for ingestion 

into STARFM.    

The method involves running STARFM for the partly cloudy or striped prediction date using Landsat 

retrieved ET from surrounding clear dates. The cloud/stripe-impacted areas in the Landsat retrieval are then filled 15 

as a weighted function of the STARFM estimated Landsat-like ET and the Landsat retrieved ET. This weighting 

is implemented to reduce impacts of bias that may exist between the STARFM estimate and the actual retrieval in 

the area of the gap, which could otherwise result in a notably patchy fill.  The weighting function is computed 

within a moving window, predicting ET at the center pixel. The weighting value of each pixel in the moving 

window is calculated based on land cover type, spatial distance to the center predicting pixel and pixel value and 20 

is then normalized to a 0-1 value. Pixels that have the same land cover type as the prediction pixel, are nearby 

and have a similar value are assigned a higher weighting score.  The resulting filled value is computed as 

𝐹𝑖𝑙𝑙𝑒𝑑𝑉𝑎𝑙𝑢𝑒 = 𝐴𝐿 −𝐴𝑆 +∑ ∑ �𝑊𝑖,𝑗 × 𝑆𝑖,𝑗�
𝑝
𝑗

𝑝
𝑖                                                                                            (5) 

where 𝐴𝐿 is the average of pixels in the moving window in Landsat retrieved ET, 𝐴𝑆 is the average of pixels in 

the moving window in STARFM fused ET on the same day as the Landsat-retrieved ET, i and j is the pixel 25 

location in the moving window, p is the moving window size, W is the weighting score and S is the STARFM 

value. 

The searching distance is predefined based on the heterogeneity of the study area. A larger searching distance 

normally requires a longer computing time and can result in more random noise. A sSearching distance that is too 
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small might not be able to provide enougha sufficient number of similar surrounding pixels to predict the value of 

the center pixel. As described above, pixels that are far away from the center pixel have lower weighting than 

pixels that are close to the center pixel. When the gap area is large and contiguous (more than 80% of the moving 

window), there are not enough good pixels that can provide useful information for the gap-fill. In this case, the 

gaps are left unfilledthere is no gap filling.  5 

Previous Landsat gap-filling techniques have focused on filling spectral reflectance fields. Chen et al. (2011) 

applied a similar weighting function in a moving window to fill the Landsat 7 SLC-off images using an 

appropriate TM image or SLC-on ETM+ image. Roy et al. (2008) used both MODIS BRDF/Albedo products and 

Landsat observations to predict Landsat reflectance with a semi-physical fusion approach. In contrast, the 

methods described here are a novel application of data fusion to filling SLC-off gaps in ET retrievals. 10 

The cloud mask used in this study is the Fmask (Function of mask) data from the Level 2 surface reflectance 

product distributed by EROS (Earth Resources Observation and Science) center. Fmask uses Landsat Top-of- 

Atmosphere reflectance and brightness temperature as inputs to produce cloud, cloud shadow, water and snow 

mask for Landsat images (Zhu and Woodcock, 2012). Cloud physical properties are first used to identify 

potential cloud pixels and clear-sky pixels and then normalized temperature, spectral variability and brightness 15 

probability functions are combined to estimate cloudy area. The cloud shadow area is derived from the darkening 

effect of the cloud shadows in the near-infrared band, view angle of the satellite sensor and the solar illumination 

angle. In this study, we flagged pixels with Fmask class 2 (cloud_shadow) and 4 (cloud) in the cloud mask file as 

cloud impacted.  

3 Experimental site and datasets 20 

3.1 Study area 

The study area (Fig. 3) is located over the Parker Tract in the lower coastal plain of North Carolina. The Parker 

Tract consists of loblolly pine plantations of different ages and native hardwood forests (Noormets et al., 2010). 

The loblolly pine plantations are commercially managed for timber production by Weyerhaeuser Company. The 

study area is flat, about 3 m above sea level, and has been ditched (4th order ditches at 100m spacing) to manage 25 

the water table and improve tree productivity (Domec et al., 2012). The soil is Belhaven series histosol, with a 

50-85 cm organic layer over coarse glacial outwash sand (Sun et al., 2010). The study area is classified as outer 

coastal plain mixed forest province (Bailey, 1995). The long-term (1945-2008) monthly temperature ranges 



11 
 

between 26.6 ºC in July to 6.4 ºC in January, with an annual mean temperature of 15.5 ºC. The long-term annual 

precipitation is around 1320 ± 211mm, relatively evenly distributed throughout the year.  

Evaluation of the DisALEXI ET estimates was performed at two AmeriFlux tower sites in this area: US-NC2 

(35º48´N, 76º40´W) and US-NC3 (35º48´N, 76º39´W). US-NC2 is a mid-rotation plantation stand with 90 ha 

area, which was established after clearcutting a previous rotation of loblolly pine, replanted with 2-year old 5 

seedlings at 1.5m by 4.5m spacing in 1992. The stand has been fertilized twice – at establishment, and in 2010, 

following a thinning in 2009. The tree density during the study periodat the time of the current study in 2013 was 

171 trees per hectare with a standing biomass of 42.6 t C ha-1 in the overstory and 6.5 t C ha-1 in the understory. 

The understory was composed of red maple, greenbrier and volunteer loblolly pine. US-NC3 was established in 

2013 in a stand that was clearcut in 2012, located approximately 1.5 km from US-NC2. US-NC3 was replanted 10 

with seedling loblolly pines after the clearcut. Trees in the US-NC2 site werewas 22 years old in 2013, 19.0 m 

tall, and had a mean LAI of 3.77 m2 m-2 , whereas NC3 was freshly planted with 2-year old seedlings, 0.2 m tall, 

and had no overstory leaf area. The mostly herbaceous understory contained 85±52 g C m-2 at NC3.  

Both NC flux towers are equipped with similar instrumentation, and biophysical data are collected routinely.  

These measurements are described below.  This study focuses on data collected during the 2013 growing season, 15 

starting after the launch of Landsat 8 on February 11, 2013 and continuing until November 8, 2013. 

3.2 Micrometeorological and land management data 

At both NC2 and NC3, energy fluxes were measured using an open-path eddy covariance system, which includes 

a CSAT3 three-dimensional sonic anemometer (Campbell Scientific Instrument-CSI, Logan, UT, USA1), a 

CR5000 data logger (CSI), an infrared gas analyzer (IRGA, Model LI-7500, LI-COR, Lincoln, NE, USA) and a 20 

relative humidity and air temperature sensor (model HMP-45C; Vaisala Oyj, Helsinki, Finland) (Sun et al., 

2010). Soil heat flux was measured at NC2 with three heat flux plates (model HFT3, CSI, Logan, UT, USA) at 

the depth of 2cm. The 3soil heat flux plates were placed in three contrasting microsites - one in a row of trees, in 

relative shade, another between rows in a mostly open environment and one about half-way in-between. 

Measurements of G at the NC3 site are not available for 2013 due to an instrument failure. Net radiation was 25 

measured with 4-component net radiometers (Kipp & Zonen CNR-1, Delft, Netherlands) at each of the two 

                                                                 
1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use 
does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural 
Research Service of any product or service to the exclusion of others that may be suitable. 
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towers. Precipitation was measured by two tipping bucket type of rain gages (TE-525, CSI; Onset Data Logging 

Rain Gauge, Onset Computer Corporation, USA).  

Flux observations at 30-min time steps were quality checked, as judged by atmospheric stability and flux 

stationarity (Noormets et al., 2008). The 30-min data were then gap-filled using the monthly regression between 

observed and potential ET models created from good quality observed data. The energy imbalance problem was 5 

checked and the average closure ratio of 30-min dataset at the NC2 site was 0.88 during daytime when net 

radiation is larger than 0. Since there were no soil heat flux observations at the NC3 site, there was no closure 

information and the observed latent heat was used to compare with the simulated data. The 30-min energy fluxes 

during the daytime were summed up to get daily energy fluxes for validation. 

Stand age maps and tree planting history for the study area were obtained from the Weyerhaeuser Company. 10 

The stand age ranges from 1 to 89 years, with most stands under 30 years of age. Since this information is 

proprietary, the stand age maps cannot be displayed; however, these data were used statistically to assess the 

relationships between water use and stand age. A 60 m buffer inside the edge of each field was applied to exclude 

the pixels mixed with roads or other fields. All the other pixels were used to assess the relationships between 

water use and stand age. 15 

3.3 ALEXI/DisALEXI model inputs 

The ET estimation process involves fusion of data from three major geostationary and polar orbiting satellite 

systems: GOES, MODIS and Landsat.  In addition, each ET retrieval pulled meteorological inputs (air 

temperature, wind speed, vapor pressure, atmospheric pressure and insolation) from a common gridded dataset, 

generated at hourly time steps and relatively coarse spatial resolution (32 km) as part of the North American 20 

Regional Reanalysis (NARR).  

Land-surface temperature (LST) data from the GOES Imager instruments were used to run ALEXI over the 

continental U.S. for 2013 at 4 km resolution (Anderson et al., 2007).  In addition, MODIS (4-day) LAI products 

(MCD15A3) were aggregated from 1 to 4-km and interpolated to daily using the smoothing algorithm developed 

by Gao et al. (2008). LAI is used in a Beer’s Law formulation to estimate 𝑓(∅) for Eq. 1, to compute radiation 25 

transmission to the soil surface and to assign land cover class dependent vegetation heights for roughness 

parameterization  (See Anderson, et al., 2007). 

MODIS products used in the MODIS disaggregation include instantaneous swath LST (MOD11_L2; Wan et 

al.,  2004), geolocation data (MOD03), NDVI (MOD13A2; Huete et al., 2002), LAI (MCD15A3, Myneni et al., 

2002), albedo (MCD43GF, Schaaf et al.,  2011), and land cover (MCD12Q1, Friedl et al., 2002). The LST swath 30 
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data, at 1 km spatial resolution, werewas converted to geographic coordinates using anthe IDL-based MODIS 

reprojection tool. The NDVI product (1 km spatial resolution) is produced at 16 day intervals, LAI (1 km) at 4 

days, and albedo (1 km) at 8 days. All data were quality checked using a data quality filter. The MODIS NDVI, 

LAI and albedo data were bilinearly interpolated to estimate daily values.  MODIS LST was sharpened using 

NDVI to reduce the off-nadir pixel smearing effect.  5 

Landsat 8 thermal infrared and shortwave surface reflectance data from 2013 used to run DisALEXI were 

obtained from USGS. Eight relatively cloud-free (> 75%) Landsat scenes (path 14 and row 35) and clear 

conditions over the tower site were available during the 2013 growing season, including one1 Landsat 7 scene 

and seven7 from Landsat 8 (Table 1). Landsat-scale LAI was retrieved from Landsat shortwave surface 

reflectance data using MODIS LAI products as reference (Gao et al., 2012a).  LST was sharpened to 30m using 10 

the blue, green, red, near infrared, SWIR1 and SWIR2 bands (refer to sec 2.2.1 for more details about Landsat 

LST sharpening). 

Land cover type was used in both the Landsat and MODIS disaggregations to set pixel-based vegetation 

parameters including seasonal maximum and minimum vegetation height (used in the surface roughness 

formulations), leaf size and leaf absorptivity in the visible, NIR and TIR bands following Cammalleri et al. 15 

(2013).  For DisALEXI using Landsat, the 30 m National Land Cover Dataset (NLCD) for 2006 (Fry et al., 2011, 

Wickham et al., 2013) was used. For the MODIS disaggregation, the NLCD was resampled to 1 km resolution 

using the dominant class in each pixel.  

4 Results 

4.1 Performance of the Landsat gap-filling algorithm 20 

Examples of results from Landsat gap-filling method are shown in Fig. 4 and Fig. 5. For DOY 96 (Fig. 4), L7 

SLC stripes and also a few cloudy areas were filled by combining the direct Landsat retrieval (left panel) with the 

STARFM ET prediction for DOY 96 generated using a Landsat-MODIS image pair from DOY 104. The cloudy 

areas in DOY 200 (Fig. 5) were filled using a Landsat-MODIS pair from DOY 152. In each case, the size of the 

overlapped moving window was 420 m by 420 m. This means that contiguous gaps larger than the window were 25 

not filled since there were not enough candidate pixels to create the statistical relationship needed between the 

direct Landsat retrieval and STARFM ET. The white rectangular box located in the northeast area of both figures 

contains no data because more than 40% of Landsat pixels within the 4-km ALEXI ET pixel were affected by a 

large water body.  
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In each of these cases, the spatial patterns within missing regions in the direct retrievals appear reasonably 

reconstructed with the ET gap-filling method, with no obviously patchy artifacts in the gap-filled ET images.  

Even linear structures were restored, for example roads and field boundaries. The gap-filling method works even 

better when the small or linear objects are very different from surrounding pixels. The choice of moving window 

size can affect the gap-filling results and may require scene-based adjustment, with the need to balance the risk of 5 

inappropriate candidate pixel selection if the window is too large, or with a lack of candidate pixels if the window 

is too small. 

Figure 6 shows a synthetic study used to assess the accuracy of the gap-filling procedure.  Here, a direct 

Landsat ET retrieval for DOY 152 was artificially masked using SLC stripes from DOY 96.   The final panel 

shows the gap-filled image. Comparing the original values with the gap-filled values yields an R2 of 0.89 and 10 

MAE is -0.01 mm d-1 , with the average of original values as 5.81 mm d-1 and the average of gap-filled values as 

5.80 mm d-1.  

The gap-filling method described in Sec. 2.2.3 relies on the inputs from both the original Landsat ET and the 

STARFM prediction, which in turn relies on a filled MODIS image on the target date as well as a MODIS-

Landsat image pair on a surrounding date.   If the Landsat image in the input pair also has gaps, additional pairs 15 

can be used to iteratively fill the target image.   

4.2. Evaluation of Daily ET Retrievals from DisALEXI at the Flux Tower Sites 

Modeled and measured instantaneous and daytime integrated surface energy fluxes on Landsat overpass dates are 

compared in Fig. 7, demonstrating good correspondence. Statistical performance metrics for each flux component 

for both sites are shown in Table 2, including mean absolute error (MAE), root mean square error (RMSE) and 20 

mean bias error (MBE).   The model performance for each flux is similar between sites, with somewhat lower 

errors obtained for the clear-cut site (NC3).  The latent heat/ET observed at the NC2 site is higher than that at 

NC3 with or without closure enforcement.  As mentioned earlier, closure could not be assessed at NC3 due to 

failure among the soil heat flux instrumentation.  At NC2, closure by residual resulted in an increase in observed 

ET by approximately 12% on average.  25 

Timeseries of ALEXI ET (4-km), Landsat ET retrieved on Landsat overpass dates and Landsat-MODIS fused 

ET (both at 30-m resolution) are compared in Fig. 8 with observed ET 3 site from DOY 50 - 330 forobserved at 

both the NC2 and NC3 sites from DOY 50 – 330. In addition, daily ET values generated using a simple Landsat-

only interpolation scheme are shown for comparison. These were generated using the MODIS and ALEXI gap-
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filling technique described in Sec 2.2, conserving the ratio of actual-to-reference ET between Landsat overpass 

dates.  Metrics of statistical performance at daily to seasonal timescales are listed in Table 3.    

Figure 8 highlights the value of disaggregation to the tower footprint scale for the purposes of model 

validation.  For NC2, ALEXI 4-km fluxes agree well with tower observations, suggesting that the tower footprint 

at NC2 is reasonably representative of the surrounding 4 km ALEXI pixel area.  The disaggregated 30 m fluxes 5 

are also similar to both ALEXI and observations at this site.  At NC3, however, the 4-km ALEXI fluxes are 

notably higher than the observed ET, while the disaggregated fluxes are comparable.  The NC3 tower site is not 

representative at the ALEXI pixel scale, and disaggregation to the tower footprint scale is required to account for 

local sub-pixel heterogeneity.  Even at 1 km resolution, the MODIS retrieval accuracy was degraded at NC3 in 

comparison with the Landsat-scale retrievals (Table 3).  Recall that NC3 was recently clearcut with surrounding 10 

areas still comprised by more mature forest stands. With the 4-km spatial resolution, ALEXI ET is able to capture 

the ET status of the major land cover type (i.e., mature forest), but not the particular patch of land where the NC3 

tower is located. This underscores the need for appropriate spatial resolution when comparing modeled with 

observed fluxes, especially for the more heterogeneous land surfaces (e.g., Anderson et al., 2004). 

Overall, the performance of the two Landsat retrievals (STARFM and Landsat-only) are comparable between 15 

sites, with RMSE at daily time steps of ~ 0.8 to 1.0 mm d-1 , and MAE of 0.6 to 0.8 mm d-1 (19-30% of the mean 

observed ET).  At monthly time steps, performance improves to 11% - 14%, due to averaging of random errors – 

including errors in daily insolation forcings from the NARR meteorological dataset.   Fluxes are somewhat 

underestimated at the end of the growing season at each site due largely to the Landsat retrieval on DOY 312. 

This highlights the importance of good temporal sampling at the Landsat scale – an additional Landsat scene 20 

around DOY 270 during the prolonged gap in coverage may have improved the seasonal water use estimates. A 

small negative mean model bias is observed for both sites, due primarily to underestimation at the end of growing 

season of the Landsat retrieval on DOY 312. This is also the reason that Landsat-only interpolated ET performs 

slightly better than STARFM. More details about the comparison of the two Landsat retrievals can be found in 

the discussion section.  25 

The seasonal cumulative ET at NC2 and NC3, calculated for DOY 90 – 330 from both the observed ET and 

the Landsat-MODIS fused timeseries is shown in Fig. 9. There are small divergences between day 120 and day 

150 and between day 210 and day 270. For NC3, the accumulation does not include values of modeled or 

measured ET during the period DOY 232 – 248 when flux tower data were not available, so these values do not 

represent the total seasonal water use at this site. Over the periods of accumulation at each site, the error in 30 

modeled cumulative ET was 3% of the total observed flux at NC2 and -4% at NC3.  The modeled cumulative 
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water use on DOY 330 agree with the observed values to within -0.9% at NC2 and 0.4% at NC3. Overall, the 

modeled and measured cumulative ET curves agree well throughout the growing season, indicating the remote 

sensing method has utility for water use management and assessment at sub-seasonal timescales.  

4.3   Spatiotemporal variability in seasonal water use 

4.3.1 ET Variations with Land Cover 5 

Figure 10 shows the land cover types over the study area as described in the NLCD from 20062. [Note:  an 

updated NLCD map for 2011 was published after the study was implemented, but there was no notable change in 

land cover types over the study area in comparison with NLCD 2006.] The major classes represented in the 

NLCD over the study area include crop land (including corn, cotton and soybeans), forest and woody wetland. 

The land cover in many plots within the Parker Tract plantation, including the NC2 site, was classified as woody 10 

wetland rather than evergreen forest.  This misclassification, however, had little impact on the model ET 

estimates at NC2 due in part to the normalization constraint imposed by the 4 km ALEXI ET output.  

Timeseries maps of monthly and cumulative ET in Fig. 11 over the study area exhibit spatiotemporal water 

use patterns that are related to land cover type (Fig. 10). The relatively high rates of ET during midseason in the 

riparian and more densely forested regions are readily apparent.  Water use patterns in the cultivated agricultural 15 

areas reflect the diversity of crops and water management strategies.  Within the Parker Tract plantation, a few 

fields with persistently low ET may be fresh clear-cuts, possibly with a layer of slash to inhibit emergence of new 

vegetation. In the summer of 2014, after the slash has been collected and pile, these plots may appear more like 

the recent clearcut near NC3.  

Seasonal ET timeseries were developed for five generalized land cover classes (crop land, natural forest, 20 

woody wetland, mature plantation and young plantation) to assess variability in water use with landuse/landcover 

type in the study area. The term “natural forest” is used to describe unmanaged mixed forested areas within the 

study domain. “Mature plantation” refers to managed stands of loblolly pine within the Parker Tract with ages 

ranging from 10–20 years, while “young plantation” indicates stand ages less than 3 years. Figure 12 shows the 

timeseries of modeled field scale ET averaged from 10 randomly sampled pixels associated with each generalized 25 

land cover class for 2013. For the woody wetland class, care was taken to select pixels that were correctly 

                                                                 
2 Note: an updated NLCD map for 2011 was published after the study was implemented, but there was no notable change 
in land cover types over the study area in comparison with NLCD2006. 
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classified by visual inspection of Google Earth imagery. A seven-day moving average was applied to the 

modeled daily ET to reduce noise and facilitate visual comparison.  

Pixels classified as woody wetland, natural forest, agriculture and mature plantation generally showed higher 

ET than did the young plantation pixels.  Water use in the woody wetland areas was the highest among all the 

different land cover types, but was similar to natural forest and mature managed forest during the peak growing 5 

season. The seasonal cumulative ET from these five land cover types is shown in Fig. 13. The woody wetlands 

tended to have higher seasonal ET than the other three classes, slightly exceeding that of natural forest and 

mature pine plantations. Modeled water use in crop lands exceeded that in young plantation stands, resulting from 

relatively higher LAI and lower LST observed over the cropped areas. 

Figure 14 shows the average cumulative ET between DOY 50 and 330 associated with the five different land 10 

cover types, computed from the 10 random samples per class, and the black bars represent the standard deviation 

among the samples. Natural forests showed the lowest variability in ET (30 mm), while the woody wetland and 

mature plantation pixels had the highest standard deviations (74 and 73 mm, respectively. The high variability in 

the latter classes may reflect both management effects and misclassification. Crop lands and young forest 

plantations showed moderate variability in water use, with standard deviations of 64 and 50 mm, respectively.  In 15 

terms of coefficient of variation in water use across the modeling domain, the crops and young plantation classes 

are relatively high at 7.1%, compared to natural forest at 2.8%.   Crops and young plantations also have higher 

coefficient of variation in LAI than other land cover types, leading to larger variability in water use demand 

through transpiration.  

Because the two-source land-surface representation in DisALEXI also provides estimates of the evaporation 20 

(E) and transpiration (T) components of ET, the model output can also be used to assess variability in E/T 

partitioning between landcover types and through the season (Fig. 15).  In general, soil evaporation losses 

account for a higher percentage of total ET early in the season, after the spring rains but before the canopies have 

completely leafed out.  On average through the season, the E/T ratio is highest for crop lands, young plantations 

and woody wetlands., Thiswhich is reasonable given the lower leaf area characteristic of these classes, and the 25 

abundant substrate moisture in the case of woody wetlands.  Partitioning to T is maximized during the peak 

growing season (DOY 152, 200 and 248) for all the land cover types. Natural forests and mature plantations tend 

to have higher rates of transpiration than other land cover types. 

4.3.2 ET variations with LAI 
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Many forest hydrology models (Lu et al., 2003; Scott et al. , 2006; Sun et al. , 2011a) assume seasonal ET is well-

correlated with LAI. This assumption was tested over the set of points chosen randomly chosen points from 

different land cover types. Sample points from mature plantations, young plantations and crop lands were all 

located in drained areas, while sample points from natural forest and woody wetland were in un-drained areas. 

However, LAI values from the sample points were not affected by drainage conditions. High LAI values were 5 

obtained from both drained mature plantations and un-drained natural forest, while relatively low LAI values 

were from both drained young plantations and un-drained woody wetlands. Figure 16 shows that some, but not 

all variability in ET as predicted by the fusion estimates is explained by variability in average LAI over the 

prediction time period (R2=0.59).  These results indicate that in 2013, increasing LAI added approximatelyup to  

350 mm of seasonal water use on top of nearly 800 mm from the soil evaporation contribution.  The is is high 10 

rates of ET at low LAI are reasonable, given that the study area was fairly wet during 2013 due to plenty of 

precipitation and shallow ground water tables. 

4.3.3 ET variations with plantation stand age 

Within the managed pine plantation at Parker Tract, we also examined variations in seasonal water use with stand 

age (Fig. 17). This has relevance to forest management practices and their impacts on the water yield of the 15 

watershed, which is the difference between precipitation and evapotranspiration over the long term. Higher water 

yield translates to higher streamflow available for downstream use. Many forest management practices, for 

example thinning and reforestation, need to consider the influence of stand age on the hydrological response. 

Plotting cumulative ET at DOY 330 from various sites against stand age (Fig. 17), there is a clearly positive 

linear relationship between water use and stand age for the younger stands, between a few years old till around 20 20 

years  (R2 is 0.82). As the stand age increases, more water is used as expected to sustain larger amounts of 

biomass. Differences in seasonal cumulative ET curves for different stand ages begin to significantly diverge 

after DOY 130 - around the middle of May (not shown). When the stand matures beyond 20 years, the water 

usage tends to plateau and may actually decrease slightly for stands with trees older than 75 years 

5 Discussion 25 

5.1 Utility of TIR-based data fusion as a daily ET estimation method  

 In this study, the STARFM modeling approach applied over a full growing season resulted in a relative errors in 

ET at the daily time step of 28% for the mid-rotation pine plantation site and 31% for the clear-cut site, and errors 

of 13.6% at the monthly time step. The accuracy of these results is comparable with earlier studies applying the 
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STARFM ET data fusion approach. Over rainfed and irrigated corn and soybean sites in central Iowa, STARFM 

yielded a relative error of about 11% over eight flux towers (Cammalleri et al., 2013). When STARFM was 

applied to the Bushland, TX, the daily ET estimation had a relative error of 26.6% for irrigated area and 27% for 

rainfed area (Cammalleri et al., 2014). For a study area near Mead, NE, the relative error is 20.8% for irrigated 

crops and 25.4% for rainfed crops (Cammalleri et al., 2014).  Semmens et al. (2015) estimated daily Landsat 5 

scale ET over California vineyards with relative error of 18% for an 8-year and 23% for a 5-year old vineyard.  

In the current study, we found that STARFM yielded similar or marginally lower accuracy than did a simple 

Landsat-only ET interpolation scheme in estimating fluxes between Landsat overpasses. This is in contrast with 

result from Cammalleri et al. (2013), who found the STARFM significantly outperformed the Landsat-only 

approach in comparison with flux measurements acquired over rainfed crops in central IA during the Soil 10 

Moisture Experiments in 2002 (SMEX02). There may be several factors that influence the potential value added 

by STARFM that can be deduced from this comparison. One  

Cammalleri et al. (2013) obtained better performance with STARFM over the rainfed agricultural sites 

studied in central IA in comparison with a Landsat-only interpolation scheme. By fusing MODIS, effects of a 

rainfall event that occurred between Landsat overpasses were captured as a period of enhanced ET.  In contrast, 15 

in the current study STARFM yielded marginally lower accuracy than the Landsat-only interpolation. Several 

factors may be influencing the difference in performance in these two circumstances.   

One factor may be differences in climate and moisture status between the two experimentswithin the target 

modeling domain.  During the first part of Soil Moisture Experiments in 2002 (SMEX02 experiment), conditions 

were becoming quite dry and the crops – particularly the corn fields – were becoming notably stressed, exhibiting 20 

leaf curl near the field edges.   A rainfall event near the beginning of July (between Landsat overpasses) 

significantly relieved the crop stress, and greatly impacted soil moisture conditions over the SMEX02 study area 

(Anderson et al., 2013).  In contrast, the climate of the Parker Tract study site studied here was very wet during 

2013, and vegetation condition was not water limited.  Consequently, as long as other factors do not affect the 

health of the vegetation (e.g., pest/disease infestation) or large variations in atmospheric demand (large 25 

oscillations in radiation, wind and temperature) the evapotranspiration process will remain near a constant 

fraction of potential and may be reasonably captured by a simple daily interpolation scheme.  At the NC sites 

studied here, tThere were no major changes in soil moisture status that were additionally captured by the MODIS 

ET retrievals. This might not be the case in severe drought years. Another factor to be considered is predominant 

landcover type. The NC sites are dominated by trees, with deeper rooting systems than perennial crops and able 30 

to  may be that the main and subdominant vegetation type of this study site are trees, which generally have deeper 
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roots than crops and can extract water available much deeper in the soil profile. This further reduces variability in 

vegetation response during the study period, in comparison with the SMEX02 study. 

 These two factors are consistent with the assumptions in the Landsat-only interpolation, which assumes the 

ratio between actual ET and reference ET is smoothly varyingconstant over time. However, for rainfed cropland  

areas  (like the central Iowa sites) that occasionally go through relatively dry and wet periods, STARFM may be 5 

better able to capture time variability in fRET in response to changing moisture conditions. Despite the limited 

value added by STARFM over standard methods in this case, Fig. 8 shows that both methods performed very 

well.  

For real-time applications in water management, STARFM can be used to project water-use information 

beyond the date of the last Landsat overpass within some limited time-range, assuming MODIS data are available 10 

with low time latency.  Practical limits to a viable projection time range may vary with site and season, and will 

depend on the rate of change in weighting factors governing the STARFM fusion process. 

 

5.2 Comparison with prior ET studies over the Parker Tract 

Direct measurements of ET and its components atwithin the Parker Tract study area are only available for pine 15 

plantations (NC2 and NC3 AmeriFlux sites) (Sun et al., 2010; Domec et al., 2012).  Reported aAnnual ET rates 

for the NC2 site reported by Sun et al. (2010) vary from 892 mm (a dry year, 2007)) to 1226 mm in a normal year 

(2006).  A process-based forest hydrological model (DRAINMOD-FOREST) has been calibrated for the NC2 

eddy flux site using drainage and groundwater table data for the period of 2005-2012. ET estimates by the 

calibrated model vary from 903 mm year-1 in 2008 to 1170 mm year-1 in 2006. These reported annual ET rates are 20 

consistent with results from the present study that shows, which indicate ET values of 1000-1200 mm year-1 for 

plantation pine plantations established in the (1990s).  

Monthly scale eEmpirical ET models of ET, operative at the monthly timescale, have been developed for the 

Parker Tract study area various ecosystems have been developed (Sun et al., 2011; Fang et al. , 2015) and the 

accuracy is generally uncertain due to the large variability of climate and ecosystem structure, and ET processes 25 

in general.  For example, Sun et al.(2011) proposed a general predictive model to estimate monthly ET using 

reference ET, precipitation and LAI over 13 ecosystems, which include the mid-rotation NC2 site and another 

clearcut site (NC1 in AmeriFlux database) also in our study area. The monthly ET estimates from that approach 

had a relative error of 23% and a RMSE of 15.1 mm month-1 , while STARFM relative errors from the current 

study were 13.6% at the monthly time step – a substantial improvement in accuracy.     30 
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5.3 Water use variations with stand age and land cover type 

Previous studies investigating the relationship between land cover and age of forest stands on water usage mainly 

focused on the resulting impact on the water balance via impacts on streamflow at the watershed scale 

(Matheussen et al., 2000; Vertessy et al., 2001; Williams et al., 2012). Matheussen et al. (2000) analyzed the 

hydrological effects of land cover change in the Columbia River basin and found a significant correlation 5 

between hydrological change and  the tree maturity in the forested areas. In the current study, we found that water 

use increased linearly with stand age between 1 and 20 years, then plateaued or decreased with age after about 20 

years. An investigation of mountain ash forests in Victoria, Australia found that annual ET from a nearly 35-year 

stand was 245 mm more than that from a 215-year stand (Vertessy et al., 2001). Similarly, another study of  three 

forest stands, aged 14, 45, and 160 years, found plot transpiration declined from 2.2 mm per day in the 14-year 10 

stand, 1.4mm per day in the 45-year stand to 0.8mm per day in the 160-year old forest (Roberts et al., 2001). In 

another study Kuczera (1987) found aquickly rapid decrease of mean annual water yield from a mountain ash 

forest watershed when stand age increased from 1-year to around 25-years, suggesting greater water use by the 

older forest stands. Murakami et al. (2000) used a Penman-Monteith equation based model to simulate an ET- 

stand age relationship, which also showed a clear upward trend for young forests and a peak in ET at 20 years. 15 

The sharp increase of seasonal ET with the increase of stand age from 1 year to around 20 years illustrated in Fig. 

17 is consistent with these earlier studies. Plant  LAI is closely related to ET (Sun et al. , 2011) and is also an 

important input in plant physiological and hydrologic/land surface models as well as crop models (Duchemin et 

al., 2006; Nemani et al. , 1993; Tague et al., 2012).  As shown in Fig. 16, we also find correlation between 

cumulative ET and season-average LAI over different land cover types, althoughbut LAI explained only 59% of 20 

the modeled variability in ET.  

 

6 Conclusions 

This study demonstrates the capability of thea multi-scale data fusion ET model to estimate daily field-scale ET 

over a forested landscape. Daily ET retrievals over the growing season of 2013, generated at 30-m spatial 25 

resolution, compared well with observed fluxes at AmeriFlux tower sites in a mature pine stand and a recent clear 

cut site, demonstrating capability to reasonably capture a range in land-surface conditions within a managed pine 

plantation. Errors were 29% at daily time step, 12% at monthly time step and 30.7% over the study period. 
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A new scene gap-filling method was described to maximize the number of Landsat images used for ET 

retrieval at Landsat scale, and will be of benefit in areas with persistent partial cloud cover and for recovering 

scenes from the Landsat 7 archive that are impacted by the SLC failure. The STARFM data fusion method can 

help to mitigate the dearth of high spatial-temporal resolution land surface temperature data from currently 

available satellite systems.  5 

This study suggests that satellite retrievals of ET at the Landsat scale can be used to analyze water use 

variability over a heterogeneous forested landscape in response to stand age and vegetation composition. The 

estimates of ET at a high resolution provide insight of seasonal water balances and thus offers useful information 

for local water resource management. Comparing with traditional forest ET estimation methods, this study 

describes an accurate, efficient and potentially real-time remote sensing method for estimating landscape-level 10 

ET, which is suitable for operational applications. 
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Table 1. Landsat overpass datesimagery used in the study. 

Sensor Landsat7 Landsat8 Landsat8 Landsat8 Landsat8 Landsat8 Landsat8 Landsat8 

DOY 96 104 136 152 200 248 312 328 

% Cloudiness 0.1 0 16.4 5.1 23.8 0.3 0.1 0.1 

%SLC Gap 37 NA NA NA NA NA NA NA 
 

 

Table 2. Summary of the statistical indices quantifying model performance for instantaneous and daytime 

integrated surface energy fluxes on Landsat overpass dates. 5 

 

Rsd, daytime integrated solar rad iation; Rnd, daytime integrated net radiation; Gd, daytime integrated soil flux; Hd, daytime 

integrated sensible heat; LEd, daytime integrated latent heat; Rs, Rn, G0, H and LE are instantaneous fluxes; Closed indicates 

energy balance closure by residual, while Unclosed indicates that energy balance closure not imposed on the EC 

measurements. In  addition: n, number of observations; Ō, mean measured flux; MAE, mean absolute error between the 10 

modeled and measured quantities; RMSE, root mean square error; MBE, mean bias error. 
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Table 3. Statistical metrics describing comparison of retrieved ET timeseries with tower observations at NC2 and 

NC3 at daily and monthly timesteps, as well as cumulative values over the study period (DOY 50-330).    

 
RE, relative error, which is calcu lated by dividing MAE by observed average ET. 
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Figure 1. Schematic diagram of the ALEXI and DisALEXI modeling schemes. The left panel shows TSEB is 

employed to partition the income radiometric temperature (TRAD(θ), θ is view angle) into canopyvegetation 5 

(subscript “c”) and soil (subscript “s”) components based on vegetation coverage (f(θ)). Sensible heat (H) is 

regulated by the aerodynamic resistance (Ra), bulk leaf boundary layer resistance (Rx), and soil surface boundary 

layer resistance (Rs). ALEXI combines the TSEB and ABL model to estimate air temperature (TA) at the blending 

height.  The right panel represents the disaggregation of ALEXI output to finer scales based on LST and f(θ) 

information from Landsat and MODIS.  10 
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Figure 2. Flowchart describing the Landsat gap-filling and data fusion method. The arrows represent the methods 

applied. The boxes represent the datasets with different spatial and temporal characteristics created during the 

process. The dashed boxes indicate ET products with partially filled scenes (due to clouds or SLC gaps), solid 5 

boxes identify gap-filled scenes, and the thick box highlights the final gap-filled, 30-m daily product. 
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Figure 3. A Landsat 8 true color image (September 5th, 2013) showing the North Caroline study area. The yellow 
crosses indicate the location of the NC2 and NC3 flux towers. 
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Figure 4. Example of gap-filling SLC-off stripes in a Landsat 7 ET image for DOY 96, 2013. The left image is 

Landsat retrieved ET with stripes, while and the right image is the filled EThas been gap-filled using with the 

Landsat gap-filling methodthe method described in Sec. 2.2.3. 
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Figure 5. Example of gap-filling cloudy regions in a Landsat 8 ET image for DOY 200. The left image is 

Landsat-retrieved ET with clouds masked using the Fmask data layer and the right image is the filled ET withhas 

been processed through the Landsat gap-filling method. 
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Figure 6. Comparison between the original Landsat ET retrieval for DOY 152 (left panel), an artificially gapped 

version, imposing SLC gaps from DOY 96 (middle panel), and the gap-filled map (right panel). 
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Figure 7. (left panel) Scatterplot of modeled and measured instantaneous (top row) and daily surface fluxes 

(bottom row) on Landsat overpass dates for NC2 (left column)flux tower sites. (right panel)and NC3 (right 

column) flux tower sites. Scatterplot of modeled and measured instantaneous and daily surface fluxes on Landsat 

overpass dates for NC3 flux tower sites.  5 
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Figure 8. Comparison of time series of ALEXI ET (4km), observed ET, Landsat ET retrieved on Landsat 

overpass dates, Landsat-only interpolated ET and Landsat-MODIS fused ET for the NC2 site (top panel) and 

NC3 site (bottom panel) sites in 2013.  
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Figure 9. Comparison between the modeled and observed seasonal cumulative ET at NC2 and NC3 during 2013. 
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Figure 10. Land cover types over the study area from NLCD 2006. Area in the black outline is the plantation 

area. 
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Figure 11. Spatial patterns of monthly cumulative ET (left column) from April to October and cumulative ET on 

the end day of each month over the study area.  
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Figure 12. Time series of modeled plot-scale ET (daily values smoothed with a seven-day moving average) 

associated with different land cover types.  
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Figure 13. Seasonal cumulative ET for different land cover types. 
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Figure 14. Average cumulative ET at DOY 330 in 2013 over different land cover types, and standard deviations 

within the sample populations (the black bar).  
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Figure 15. Average evaporation (E) and transpiration (T) components of ET for five land cover types on Landsat 

overpass days.  
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Figure 16. Modeled cumulative ET from DOY 50 to DOY 330 as a function of LAI. 
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Figure 17. Modeled cumulative ET at DOY 330 as a function of stand age. 
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