
Response to Editor

March 20, 2017

Response to minor comments:

1

I do not entirely agree with the statement of the authors in the reply to comment 3

from referee 1 and comment 1 from referee 2: a. Biases in SSM can show (systematic)

variability over time. For instance, saturating and particularly drying rates are often

different between models and observations, which could be due to deficiencies in the

model, rather than in the parameters (wilting point and porosity). Applying seasonal

CDF-matching could therefore eliminate part of the soil moisture information contained

in the observations, potentially reducing the impact and benefits of the assimilation. b.

Regarding LAI, a linear rescaling (as referred to in the reply to the comments) would not

impact the timing of the seasonal cycle, unless it is applied separately over each season

(as for the SSM bias-correction). Therefore, even with bias-correction (but depending

on the method applied), it should still be possible to correct for the model phase error

by the assimilation. But at least, such bias-correction would converge the magnitude

(and variability) of the LAI observations and simulations. If the authors do not want

to eliminate the climatological information (seasonal cycle) from the LAI observations,

this is achievable by not performing bias-correction over each season separately. If the

idea is to be consistent with SSM bias-correction, then the latter should probably also

conserve the seasonal dynamics (which is not the case with seasonal CDF-matching).

Response:

We agree that biases in soil moisture may be due to errors in the model. In addition,

model SSM can only be as good as the precipitation forcing.

The importance of accounting for seasonal corrections in the SSM CDF matching was

discussed by several authors (Draper et al. 2009, De Rosnay et al, 2013, Barbu et al,

2014). As mentioned in the manuscript, due to the close relationship between the bias

in soil moisture and vegetation, our approach was motivated by the fact that at least
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3

a part of this bias can be attributed to the vegetation seasonality.

Regarding LAI, we agree with the reviewer’s suggestions. We will take them into

account in the future.

The following sentences are added in the revised manuscript (page 6, lines 26-27).

We should be aware that biases in soil moisture can show systematic variability which

may be due to model deficiencies rather that to the misspecification of certain param-

eters. It is not always possible to clearly determine which of the model features is to

blame for the bias.

2

I suggest the authors add at least a caveat that the LAI innovations (Fig. S1.8) are

quite strongly correlated over time, which is not optimal.

Response:

We agree with this. The following sentence is added at page 10, lines 17-18 of the

revised manuscript.

The SSM temporal sequences of innovations are close to a white noise time series (Fig.

S1.7), while the LAI innovations (Fig. S1.8) are quite strongly correlated over time,

which is not optimal.

3

In general, I think it is important to clearly stress that the reasons for not obtaining

improvements in discharge simulations may be due to model deficiencies and the par-

ticular setup of the assimilation system, for not to discourage future research efforts on

the joint assimilation of SSM and LAI, which I believe is a promising way forward.

Response:

We agree with this. The following sentences is added in Conclusions (page 17, lines

19-20) of the revised manuscript.

Reasons for not obtaining improvements in discharge simulations are related to model

deficiencies, model nonlinearities and the set-up of the assimilation system.

2



The effect of satellite-derived surface soil moisture and leaf area
index land data assimilation on streamflow simulations over France
D. Fairbairn1, A. L. Barbu1, A. Napoly1, C. Albergel1, J.-F. Mahfouf1, and J.-C. Calvet1

1CNRM, UMR 3589 (Météo-France, CNRS), Toulouse, France

Correspondence to: J.-C. Calvet (jean-christophe.calvet@meteo.fr)

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations

into a land surface model using the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) An

atmospheric reanalysis (SAFRAN) over France, which forces (2) the 3-layer ISBA land surface model, which then provides

drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are

validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and5

with a subset of stations with low-anthropogenic influence, during several years. This study makes use of the A-gs version

of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct

short-wave and long-wave radiation by approximately 5% averaged over France. The ISBA-A-gs model also substantially

underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an

underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and10

aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i)

a correction of the minimum LAI model parameter for grasslands, (ii) a bias-correction of the model radiative forcing. Two data

assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the

assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv)

was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians15

to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9%

and 18% respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash

efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median

discharge Nash efficiency by about 7%. The poor performance of the SEKF originates from the observation operator Jacobians.

These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases20

in drainage/runoff and insufficient corrections during winter, respectively. Possible ways to improve the model are discussed,

including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous

regions. The data assimilation should be advanced by accounting for model/forcing uncertainties.
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1 Introduction

Soil moisture influences the flow of water to rivers and aquifers on weekly to monthly timescales, which makes it an important

factor in hydrological models. In the last two decades there have been considerable advances in soil moisture data assimilation

(DA) using remotely sensed near-surface soil moisture (Houser et al., 1998; Crow and Wood, 2003; Reichle and Koster, 2005;

Draper et al., 2012; de Rosnay et al., 2013). The estimation of global-scale soil moisture states has benefited considerably from5

a huge expansion of the satellite coverage, namely the Advanced Scatterometer (ASCAT) instrument on board the METOP

satellites (Wagner et al., 2007), the Soil Moisture and Ocean Salinity (SMOS) Mission (Kerr et al., 2001) and the Soil Moisture

Active Passive (SMAP) Mission (Entekhabi et al., 2010), amongst others. However, these instruments can only indirectly

observe the top 1-3 cm of soil moisture and the data are subject to retrieval errors. There are also spatial and temporal gaps

in the observation coverage. The vegetation influences the soil moisture state through evapotranspiration and the vegetation10

coverage can be estimated by the leaf area index (LAI). This is a dimensionless quantity that represents the one-sided green

leaf area per unit ground surface area (Gibelin et al., 2006). The LAI can be derived from satellite measurements in the visible

range. However, over France it is available from polar-orbiting satellites at a relatively low temporal frequency (on average

every 10 days) compared with soil moisture satellite observations (about every 3 days) due to cloud cover. The aim of DA

methods is to combine these observations with a model forecast from the previous analysis (the background state) to provide15

an improved estimate of the state of the system (the analysis). DA methods are necessary to account for the errors in the

observations and the model, and to spread the information through space and time.

Many studies have investigated the assimilation of surface soil moisture (SSM) and streamflow observations into hydrolog-

ical models in order to improve streamflow predictions and hydrological parameters (Aubert et al., 2003; Moradkhani et al.,

2005; Clark et al., 2008; Thirel et al., 2010; Moradkhani et al., 2012). For example, Thirel et al. (2010) used the Best Linear20

Unbiased Estimate (BLUE) method to assimilate streamflow observations into the MODCOU hydrogeological model over

France, which they used to update soil moisture in the ISBA land surface model (LSM).

LSMs concern water and energy fluxes between the soil and atmosphere. Unlike hydrological models, layer-based LSMs

such as the ISBA model are typically point-wise (there is no horizontal interaction between the gridpoints), which greatly

reduces the computational expense. A 1D Kalman filtering approach (where observations are used to update collocated grid-25

points only) is also implemented in this study, which is commonly applied to 1D LSMs (Reichle et al., 2002; Draper et al.,

2009; de Rosnay et al., 2013; Barbu et al., 2014).

In large-scale land surface DA, it is common to assimilate satellite derived SSM observations and screen-level temperature

and humidity observations into a LSM, in order to improve soil moisture and screen-level variables. Typically the root-zone

soil moisture (WG2) (1-3 m deep) is of more interest than SSM as it has a much larger water capacity and a long memory30

(from weeks to months). Land surface DA is often performed using an ensemble Kalman filter (EnKF) or a simplified extended

Kalman filter (SEKF).

There has been increasing interest in ensemble DA for LSMs over the last two decades (Reichle et al., 2002, 2008; Zhou

et al., 2006; Muñoz Sabater et al., 2007; Draper et al., 2012; Carrera et al., 2015), partly because these methods can estimate
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the “errors of the day” in the background-error covariance. The operational EnKF at Environment Canada is also motivated by

coupling land surface DA with ensemble weather forecasting (Carrera et al., 2015). On the other hand, the SEKF simplifies

the EKF by using fixed and uncorrelated background errors at the start of each cycle. Importantly, the SEKF generates flow-

dependence and implicit background-error covariances from additional model integrations in the observation operator Jacobian

calculations. Draper et al. (2009) found the flow-dependence from a 24-hour assimilation window was sufficient to enable the5

SEKF to perform similarly to an EKF (which cycles the background-error covariance). Likewise, Muñoz Sabater et al. (2007);

Fairbairn et al. (2015) found that the SEKF and EnKF performed similarly, in spite of different linear assumptions.

Historically, the SEKF originated from a simplified 2D-Var (theoretically equivalent to an SEKF) scheme for the assimilation

of screen-level temperature and humidity at the German Weather service (DWD) (Hess, 2001). An SEKF has been developed

for research purposes to assimilate satellite derived soil moisture at Météo-France (Mahfouf, 2010) and the UK Met Office10

(Candy et al., 2012), amongst other variables. The European Centre for Medium Range Weather Forecast (ECMWF) model

assimilates screen-level temperature and humidity operationally with an SEKF (de Rosnay et al., 2013) and more recently

assimilates ASCAT derived SSM observations (ECMWF, 2016).

In our study, we use an SEKF to assimilate LAI and SSM observations to update LAI and WG2 in the ISBA LSM within

the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. This study makes use of the A-gs version of ISBA that allows15

for physiological processes. SIM is operational at Météo-France and its streamflow and soil moisture outputs are used as

a tool by the French National flood alert services (Thirel et al., 2010). SIM consists of three stages: (1) An atmospheric

reanalysis (SAFRAN) over France, which forces (2) the ISBA-A-gs land surface model, which then provides drainage and

runoff inputs to (3) the MODCOU distributed hydrogeological model. The drainage and runoff outputs from ISBA-A-gs

are validated by comparing the simulated streamflow from MODCOU with observations. This study is relevant to the land20

surface DA community because several operational centres assimilate SSM observations using an SEKF to update WG2. Many

studies have demonstrated that the force-restore dynamics of the ISBA 3-layer model can effectively simulate soil moisture

and propagate the increments downwards from the surface to the root-zone (Muñoz Sabater et al., 2007; Draper et al., 2009;

Mahfouf et al., 2009). An integrated validation using SIM has demonstrated that the ISBA 3-layer model can skilfully simulate

drainage and runoff fluxes over France (Habets et al., 2008). The dynamic vegetation model in ISBA-A-gs is also capable of25

modelling seasonal changes in LAI (Jarlan et al., 2008; Brut et al., 2009; Barbu et al., 2011, 2014). But relatively few studies

have assessed the SEKF performance using an integrated validation of the drainage and runoff fluxes. To our knowledge, this

is the first article to consider this type of validation for LAI assimilation. Furthermore, the validation is robust because it is

performed using more than 500 river gauges over France during several years.

This work is partly motivated by the study of Draper et al. (2011), who investigated the influence of assimilating ASCAT30

derived SSM with an SEKF on SIM over France. They used a version of SIM with high quality atmospheric forcing to

represent the “truth” and lower quality atmospheric forcing for the model. Although the SEKF seemed to improve the results

in their study, they acknowledged that this may have been related to a bias in the SEKF rather than the assimilation accurately

responding to the precipitation errors. Despite the fact that SAFRAN can be considered as a high quality atmospheric forcing,

studies by Szczypta et al. (2011) and Le Moigne (2002) have found underestimations of about 5% in the direct short-wave35
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and long-wave radiative fluxes respectively, averaged over France. In addition to these problems with radiative forcing, we

demonstrate in this study that the LSM substantially underestimates LAI for grasslands in winter (compared with satellite

retrievals). The specification of the LAI minimum in the model is important because it prevents vegetation mortality and allows

the regrowth of vegetation in the spring period (Gibelin et al., 2006). We use SIM to validate the impact of four experiments

on the drainage and runoff fluxes:5

i. Correcting the model under-estimated LAI minimum parameter;

ii. Bias-correcting the SAFRAN radiative forcing;

iii. Assimilating only LAI observations with an SEKF;

iv. Assimilating SSM and LAI observations with an SEKF.

The first two experiments attempt to resolve systematic model issues, while experiments (iii) and (iv) assimilate data in order10

to correct random errors in the initial conditions.

Since Draper et al. (2011) already investigated the impact of assimilating SSM in ISBA on river discharges with MODCOU,

it was not necessary to perform an experiment with the assimilation of SSM only. We validate the performance of these

experiments using observations from more than 500 river gauges over France during the period July 2007 to August 2014.

We include an additional validation using a subset of 67 stations with low-anthropogenic influence because the MODCOU15

hydrogeological model only accounts for natural features. It should be noted that a bias in the forecast model invalidates the

assumption of bias-blind data assimilation (Dee, 2005). We therefore repeat experiments (iii) and (iv) after applying (i) and (ii)

in to explore whether the systematic model errors impact the SEKF performance.

The paper is structured as follows. The methods and materials are given in Sect. 2, which includes a description of the

LSM, the assimilated observations, the DA methods, the experimental setup and the SIM validation. The results are presented20

in Sect. 3, including the impact of the model simulations and DA on the model state variables and the river discharge. A

discussion in Sect. 4 considers potential solutions to the problems encountered in this study. Finally, the conclusions are given

in Sect. 5.

2 Methods and materials

2.1 ISBA-A-gs land surface model25

In our study, the ISBA-A-gs LSM was forced by the atmospheric variables provided by the “Système d’Analyse Fournissant

des Renseignements à la Neige” (SAFRAN). The analyses of temperature, humidity, wind speed, and cloudiness are originally

performed every 6 h using the ARPEGE (Action de Recherche Petite Echelle Grande Echelle) NWP (Numerical Weather

Prediction) model (Courtier et al., 2001). The original precipitation analysis is performed daily at 0600 UTC, to include in

the analysis the numerous rain gauges that measure precipitation on a daily basis. A linear interpolation converts these values30
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to the hourly SAFRAN forcing values (Quitana-Ségui et al., 2008). Instantaneous variables such as precipitation are assumed

constant for each 15 minute model time-step during these hourly intervals, while other variables are linearly interpolated. The

SAFRAN forcing is assumed to be homogeneous over 615 specified climate zones. The forcing is interpolated from these zones

to a Lambert projected grid with a horizontal resolution of 8 km (Durand et al., 1993). The delayed cut-off version of SAFRAN

was employed, which uses information from an additional 3000 climatological observing stations (which report one-monthly)5

over France (Quitana-Ségui et al., 2008; Vidal et al., 2010) after the real-time cut-off, which makes the resulting analyses more

accurate.

Version 8.0 of SURFEX was used in the experiments, which contains the “Interactions between Soil, Biosphere and Atmo-

sphere” (ISBA) LSM (Noilhan and Mahfouf, 1996). The model uses the same horizontal grid resolution as SAFRAN of 8 km.

The ISBA-A-gs version was used, which allows for the influence of physiological processes, including photosynthesis (Calvet10

et al., 1998). Each grid cell is split into twelve vegetation types (so called “patches”). Soil and vegetation parameters are de-

rived from the ECOCLIMAP database (Faroux et al., 2013). The nitrogen dilution version (referred to as “NIT” hereafter) of

ISBA-A-gs was applied, which dynamically simulates the LAI evolution (Gibelin et al., 2006). The NIT version allows for the

effects of atmospheric conditions on the LAI, including the carbon dioxide concentrations.

The three-layer version of ISBA was adopted for this study (Boone et al., 1999). This includes the WG1 layer with depth15

0-1 cm. The WG2 layer includes WG1 and is 1-3 m deep, with the depth depending on the patch type. A recharge zone exists

below the WG2 layer. The model water transfers are governed by the force-restore method of Deardorff (1977). The surface and

root-zone layers are forced by the atmospheric variables and restored towards an equilibrium value. The drainage and runoff

outputs from ISBA-A-gs drive the MODCOU hydrogeological model. The gravitational drainage is proportional to the water

amount exceeding the field capacity (the effective limit where gravitational drainage ceases) (Mahfouf and Noilhan, 1996). It20

is driven by the hydraulic conductivity of the soil, which depends on its texture. A small residual drainage below field capacity

was introduced by Habets et al. (2008) to account for unresolved aquifers. Runoff occurs when the soil moisture exceeds the

saturation value.

2.2 Assimilated observations

The SSM observations were retrieved from ASCAT C-band spaceborne radar observations, which observe at 5.255 GHz and a25

resolution of approximately 25 km. The radar is on board EUMETSAT’s Meteorological Operational (MetOP) satellites. The

assimilation of ASCAT data was chosen because it was available throughout the analysis period. The original backscatter values

were converted into a surface degree of saturation (SDS, with values between 0 and 1) using a change detection technique,

which was developed at the Vienna University of Technology (Tu-Wien) and is detailed in Wagner et al. (1999); Bartalis et al.

(2007). The historically lowest and highest backscatter coefficient values are assigned to dry and saturated soils respectively.30

The Copernicus Global Land Service then calculates a soil wetness index (SWI) by applying a recursive exponential filter to

these SDS values (Albergel et al., 2008) using a time-scale that may vary between 1 and 100 days. The SWI represents the soil

wetness over the soil profile and also has values between 0 (dry) and 1 (saturated). The longer the time-scale of the exponential
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filter, the deeper the representative soil profile. The SWI-001 version 2.0 product was used in this study, which has a one day

timescale and represents the SWI for a depth up to 5 cm.

A surface-state flag is provided with the ASCAT product, which identifies frozen conditions, the presence of snow cover

or temporary melting/water on the surface. Observations are screened during frozen surface conditions or when snow-cover

is present if the ASCAT flag is set to frozen. Additionally, observations with a topographic complexity flag greater than 15%5

and/or a wetland fraction greater than 5% (both provided with the ASCAT data) are removed. More information about ASCAT

quality flags can be found in (Scipal et al., 2005). After screening, the data were projected onto the 8 km resolution model grid

by averaging all the data within 0.15 degrees of each gridpoint (Barbu et al., 2014). As in Draper et al. (2011) an additional

screening step was performed to remove observations whenever frozen conditions were detected in the model using a threshold

temperature of zero Celsius. In addition, observations with an altitude greater than 1500 m and with an urban fraction greater10

than 15% in the ECOCLIMAP database were removed.

In order to remove biases between model and observations, a linear rescaling to the SWI-001 data, which scales them such

that the mean and standard deviations match the WG1 layer climatology (Calvet and Noilhan, 2000; Scipal et al., 2008). We

found that it was necessary to rescale the SSM observations to match the SSM model climatology, partly because differences

in the representation of the soil texture can cause very large systematic differences between the observations and the model.15

These differences are illustrated in terms of probability distribution in Figure S1.4 of the Supplement. It shows the innovation

histogram and the Gaussian fitting curve of the SSM product before rescaling.

This rescaling is a linear approximation of the cumulative distribution matching technique, which uses higher order mo-

ments (Reichle et al., 2004; Drusch et al., 2005). As in Barbu et al. (2014), we applied a seasonal rescaling using a 3-month

moving average over the experiment period (2007-2014). In the rescaling process the SWI-001 data are converted into the20

same units as the model, expressed in volumetric soil moisture (m3/m3). The rescaled SSM observations were assimilated

into the WG1 model layer. The observations were assumed to occur at the same time as the analysis at 09:00 UTC and had

a temporal frequency of about 3 days. This was a reasonable assumption since the satellite overpass is at 09:30 UTC and the

atmospheric forcing is assumed constant over hourly intervals for instantaneous measurements such as precipitation. Therefore

any discrepancies in SSM due to this 30 minute time difference are small.25

The GEOV1 LAI product is part of the European Copernicus Global Land service. The LAI observations were retrieved

from the SPOT-VGT (August 2007 to June 2014) and PROBA-V (June 2014-July 2014) satellite data. The retrieval method-

ology is discussed by Baret et al. (2013). Following Barbu et al. (2014), the 1 km resolution observations were interpolated to

the 8 km model gridpoints, provided that observations were present for at least 32 of the observation gridpoints (just over half

the maximum amount). The observations were averaged over a 10-day period and assimilated at 09:00 UTC. This assump-30

tion was reasonable given that LAI evolves slowly. When considering removing systematic differences between the model

and the observations, a linear rescaling of the LAI observations to the model climatology would be problematic because the

model-observation bias is linked to model deficiencies. On the other hand, for SSM, systematic errors are related to the mis-

specification of physiographic parameters, such as the wilting point and the field capacity. As mentioned by several authors

(e.g. Koster et al. (2009); Albergel et al. (2012)), the information content of soil moisture does not necessarily rely on its abso-35
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lute magnitude but instead on its time variations. For SSM, the systematic bias between the model and the data consists mainly

in their magnitude rather than their seasonal variability. Therefore this justifies the common approach used in land surface data

assimilation studies for the SSM variable. We should be aware that biases in soil moisture can show systematic variability

which may be due to model deficiencies rather that to the misspecification of certain parameters. It is not always possible to

clearly determine which of the model features is to blame for the bias.5

Contrary to SSM, the LAI bias between the model and the data has two components: one in magnitude and the other one in

timing (see e.g. Figure 6 in Barbu et al. (2014)). When compared with the satellite data, the LAI model dynamics clearly shows

a shift in the seasonal cycle, mainly caused by model errors. The remote sensing LAI measurements potentially encapsulate

realistic environmental features that are not or incorrectly represented by the model. Forcing the data to conform to the model

climatology would result in a loss of relevant information. Therefore, in this context, a rescaling of the LAI data to the model10

climatology was not considered. Furthermore, Barbu et al. (2014) found that the assimilation without rescaling can cope with

these model errors.

2.3 Data assimilation

The SEKF simplifies the extended Kalman filter (EKF, (Jazwinski, 1970)) by using a fixed estimate of the background-error

variances and zero covariances at the start of each cycle (Mahfouf et al., 2009). Implicit background-error covariances between15

the layers and the prognostic variables are generated at the analysis time by the model integration in the observation operator

Jacobians. We used the same SEKF formulation as Barbu et al. (2014) for the assimilation of SSM and LAI observations over

France. The prognostic variables are LAI and WG2. The WG1 layer is not included in the analysis update because it is shallow

layer (1 cm depth) that is driven by the atmospheric forcing rather than the initial conditions (Draper et al., 2009; Barbu et al.,

2014). The background state (xb) at time ti is a model propagation of the previous analysis (xa(ti−1)) to the end of the 2420

hour assimilation window:

xb(ti) = Mi−1(xa(ti−1)), (1)

where M is the (nonlinear) ISBA-A-gs model. The observation was assimilated at the analysis time, at 09 UTC, at the end of

the 24-hour assimilation window. The analysis was calculated from the generic Kalman filter equation:

xa(ti) = xb(ti) + Ki(y
o
i −yi), (2)25

where yo is the assimilated observation and yi = H(xb(ti)) is the model predicted value of the observation at the analysis

time. The Kalman gain is defined as:

Ki = BiHT
i (HiBiHT

i + Ri)
−1, (3)

where H is the Jacobian matrix of the linearized observation operator, B is the background-error covariance matrix and R

is the observation-error covariance matrix. The observation operator Jacobians were calculated using finite differences for30
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observation k and model variable l:

Hkl
i =

Hk
i (Mi−1(x(ti−1) + ∆xl

i−1))−Hk
i (Mi−1(x(ti−1)))

∆xl
i−1

, (4)

where ∆xl is a model perturbation applied to model variable l. The WG2 and LAI perturbations were set to 1.0×10−4×(wfc-

wwilt) and 1.0×10−3×LAI respectively. These were within the range of acceptable perturbation sizes based on the experiments

of Draper et al. (2009) and Rüdiger et al. (2010). Equation (4) requires a 24-hour model simulation for each prognostic variable,5

which implicitly propagates the background-error covariance from the start of the window to the time of the observations at

the end of the window. The linear assumptions in deriving the Jacobians are generally acceptable for these perturbation sizes.

However, occasionally the linear assumptions can break down, especially during dry periods in summer (Draper et al., 2009;

Fairbairn et al., 2015). For this reason we set an upper bound on the soil moisture Jacobians of 1.0. It is worth mentioning that

in situations where the model and atmospheric forcing errors are not properly taken into account the SEKF analysis will be10

suboptimal even if the Jacobians are accurately computed. The Jacobian matrix derived from Eq. (4) is defined as follows:

H =

 ∂WG1
∂WG2

∂WG1
∂LAI

∂LAI
∂WG2

∂LAI
∂LAI

 . (5)

When assimilating just LAI, only the ∂LAI
∂WG2 and ∂LAI

∂LAI terms are included. The ∂WG1
∂LAI is generally small, since the LAI does

not substantially influence the surface layer (Barbu et al., 2014). The ∂WG1
∂WG2 Jacobian couples WG1 with WG2 (Draper et al.,

2009). The ∂LAI
∂WG2 couples LAI with WG2 (Barbu et al., 2014). The ∂LAI

∂LAI Jacobian was studied by Rüdiger et al. (2010) and15

has a strong seasonal dependence. As we will demonstrate in Sect. 3.3, the examination of these Jacobians is essential in order

to understand the performance of the SEKF.

SURFEX is implemented using the mosaic approach of Koster and Suarez (1992), where each model grid-box is split into

12 vegetation patches. The SEKF analysis is calculated independently for each patch using the Jacobians for each individual

patch but with one mean observation per grid box. The analysis for the gridpoint is calculated by aggregating the analyses over20

the 12 patches, which are weighted according to their patch fractions (see Barbu et al. (2014) for further details). Taking into

account the grid heterogeneity has been the justification for including vegetation patches in the model and in the assimilation

scheme. The assimilation scheme uses the hypothesis that the distribution of innovations is proportional to the cover area. The

analysis is adapted to plant functional types via the patch fractions and via the Jacobians.

Following Draper et al. (2011), the WG2 background-error standard deviation was set to 0.2(wfc-wwilt), where wfc is the25

field capacity and wwilt is the wilting point. The scaling by (wfc-wwilt) assumes that there is linear relationship between the

soil moisture errors and the dynamic range, which depends on soil texture (Mahfouf et al., 2009). The SSM observation error

standard deviation was set to 0.65(wfc-wwilt), which is about 0.055 m3/m3 averaged over France. This value is slightly larger

than the median ASCAT-derived SDS error of 0.05 m3/m3 estimated by Draper et al. (2011) because it also approximates the

oversampling issue i.e. the same ASCAT observation covers several gridpoints. This reduces the size of the analysis increments30

by approximately 10%. This value is comparable with observation errors expected for remotely sensed SSM observations (de

Jeu et al., 2008; Draper et al., 2013). As in Barbu et al. (2011) the LAI background and observation error standard deviations
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were proportional to the LAI values themselves and a value of 0.2×LAI was used for LAI values greater than 2 m2/m2. For LAI

values below 2 m2/m2 the LAI errors were fixed at 0.4 m2/m2. Both the background-error and observation-error covariance

matrices of the SEKF are diagonal (zero covariances between layers), but implicit background-error covariances are derived

from the H matrix at the analysis time. The SEKF is a point-wise method i.e. it cannot take into account horizontal covariances

between gridpoints.5

2.4 Experimental setup

The main experiments in this study are summarised in Table 1. The SIM river discharge was compared with the observations

from 546 stations over France. Firstly the baseline experiment (NIT) was performed, which shows the impact of the biased

radiative forcing and the under-estimated LAI minimum on the SIM river discharge. Thereafter, two potential solutions to

these deficiencies were investigated, as set out in the introduction: (i) NITm, which was equivalent to NIT but with an elevated10

LAI minimum of 1.2 m2/m2 for grasslands (as opposed to 0.3 m2/m2 with NIT), (ii) NITbc, which used both the elevated LAI

minimum of 1.2 m2/m2 and the bias-corrected radiative forcing (+5% for direct long-wave and short-wave over France). Two

data assimilation experiments were undertaken to correct random errors in the initial conditions: (iii) LDAS1, which used the

SEKF to assimilate LAI only with the NIT model and (iv) LDAS2, which assimilated both LAI and SSM observations with the

NIT model. The LAI minimum parameter is required to calculate a minimum level of photosynthesis at the start of the growing15

season. The default model value is arbitrarily fixed at 0.3 m2/m2 for grasslands, which is low enough to account for possible

fluctuations in the LAI minimum due to climatic and interannual variability over France (Gibelin et al., 2006). However, we

found that over 99% of points with a high percentage of grassland (the grassland patch fraction exceeding 70%) had an observed

average annual LAI minimum above 1.2 m2/m2 during the experiment period (2007-2014). But the modelled LAI is frequently

kept at the prescribed LAI minimum parameter during winter dormancy and is therefore systematically underestimated over20

most grassland regions in winter when compared to the satellite derived observations. Similar issues were found by Brut et al.

(2009); Lafont et al. (2012); Barbu et al. (2014) when comparing the model with both MODIS and SPOT-VGT satellite derived

observations. Systematic differences between the model and the observations can be removed by calibrating model parameters

(Kumar et al., 2012), which was the motivation for increasing the grassland LAI minimum parameter from 0.3 m2/m2 to 1.2

m2/m2 in our study. Szczypta et al. (2011) and Le Moigne (2002) demonstrated that the direct short-wave and long-wave25

radiative forcing respectively are underestimated by approximately 5% averaged over France. We followed Decharme et al.

(2013) in bias-correcting the direct radiative forcing by +5% for NITbc.

Three additional experiments in Table 1 explored whether SSM observation outliers, the under-estimated LAI minimum or

the radiative forcing bias might impact the performance of the DA. The LDAS2QC was equivalent to LDAS2 but with a strict

quality control of the SSM observations. The outliers were removed by rejecting observations outside the 90% confidence30

interval of the model (as in Eq. (1) and (2) of Albergel et al. (2010b)) after the observations had been rescaled. The LDAS1bc

and LDAS2bc experiments were equivalent to LDAS1 and LDAS2 respectively, except they used the NITbc model. The SSM

observations for LDAS2bc were rescaled such that the standard deviation and mean matched those of NITbc.
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The MODCOU hydrogeological model does not account for anthropogenic water management. However, there are many

parts of France where anthropogenic water management strongly influences streamflow observations, including the reservoir

operations, for hydropower, irrigation, drinking water, flood and low-flow alleviation and recreation purposes. We used the

reference networks of Giuntoli et al. (2012, 2013) to extract a subset of 67 river gauges with low-anthropogenic influence from

the original 546 stations, valid for both low and high flows. We compared the results for these 67 stations with the 546 stations5

in order to determine if the results were affected by the ability of SIM (with or without DA) to simulate anthropogenically

influenced streamflow.

2.5 Performance diagnostics

2.5.1 System validation

A system validation was performed by comparing the LAI and WG1 states with the LAI and SSM observations respectively10

for all the simulations and data assimilation experiments. Note that this was not an independent validation of the performance

of the system, for which we would have needed independent observations. The rationale was to check the effectiveness of the

SEKF i.e. to examine if it improved the fit between the model simulations and the observations. The fit to the observations was

determined by the root mean square difference (RMSD), the correlation coefficient (CC) and the bias.

In addition, Figure S1.5 and Figure S1.6 of the Supplement show the histograms of the innovations (difference between the15

model-predicted observations and the data) and residuals (difference between the analysis and the data). The SSM innovation

pdf agrees very well with Kalman theory, since it closely fits the Gaussian distribution. The LAI innovation pdf is also close

to its normal fit, but presents a left tailed distribution. As expected, the standard deviation of residuals is reduced compared to

those of innovations. For an optimal filter the innovation time series should be uncorrelated in time. For both SSM and LAI the

temporal evolutions of innovations are illustrated in Figures S1.7 and S1.8 of the Supplement, respectively. The SSM temporal20

sequences of innovations are close to a white noise time series (Figure S1.7), while the LAI innovations (Fig. S1.8) are quite

strongly correlated over time, which is not optimal.

2.5.2 Validation using SIM

The SIM hydrological model was used to validate the drainage and runoff from ISBA-A-gs by comparing the simulated

streamflow from MODCOU with observations. A complete description and validation of SIM can be found in Habets et al.25

(2008). The first two stages of SIM are the SAFRAN atmospheric forcing and the ISBA-A-gs LSM, which were introduced

in Section 2.1. The runoff and drainage from ISBA-A-gs are fed into the MODCOU hydrogeological model (Ledoux et al.,

1989), which computes the daily evolution of aquifer storages and three-hour river flow forecasts. More than 900 river gauges

are simulated with areas ranging from 240 km2 to 112,000 km2. The temporal and spatial evolution of two aquifers in the

Rhone and Seine Basins are simulated using a diffusivity equation. The interaction between the rivers and aquifers is modelled30

and the soil water is routed to the rivers using an isochronism algorithm. The influence of human activity, such as dams and

irrigation, is not accounted for by MODCOU. The simulated river discharge from SIM was compared with the observations
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from 546 river gauges that had data during the period of evaluation (2007-2014). These observations are available from the

French hydrographical database (http://www.hydro.eaufrance.fr/, last accessed March 2016). We also analyzed the results for

the subset of 67 stations with low anthropogenic influence from the original 546 stations. The fit of the average daily river

discharge from MODCOU (measured in m3/m3s−1) to the observations was measured using the Nash efficiency score (Nash

and Sutcliffe, 1970). The Nash efficiency can range from −∞ to 1, with 1 corresponding to a perfect match of the model to5

the observed data and a negative value implying that the model performs worse than a constant model with a value equal to the

average of all the observations. Following Habets et al. (2008) we considered an efficiency of 0.6 to be a good score and 0.5 to

be a reasonable score. The median Nash scores were calculated for all the stations. The median is a more appropriate metric

than the mean as it is less sensitive to extreme outliers and is a better indicator for highly skewed distributions (Moriasi et al.,

2007). These issues were present in this study due to some stations being heavily affected by anthropogenic water management10

or unresolved aquifers, despite most stations being well simulated. The validation period extended from August 2007 to July

2014, with the hydrological year running from August to July.

The SIM domain consists of 9892 gridpoints, of which 8602 are based in France. The remaining 1290 points are based in

mountainous regions bordering the French mainland, including most of Switzerland (see Figure 2 in Habets et al. (2008) for

the full domain). The LSM does not model horizontal exchanges, but MODCOU takes into account horizontal streamflow.15

Therefore it is important to include these external points in SIM because they impact the streamflow over France, particularly

in the Rhone basin in the southeast. However, we only applied the SEKF over the 8602 points in the LDAS France domain.

Figure 1 shows a flowchart of SIM and how LDAS France was connected with ISBA-A-gs in SIM. Figure 2 shows the river

network used by MODCOU and the 546 stations used to validate the discharge. A map of the subset of 67 stations with low

anthropogenic influence can be found in Figure S1.1 of the Supplement.20

3 Results

3.1 Impact of model and forcing bias-corrections on SIM

To begin with we examine the influence of the different model simulations (NIT, NITm and NITbc) on the LAI evolution for

the four dominant vegetation patches. We can then link the hydrological performance to each simulation. Over France, the

four dominant vegetation patches are grasslands (32%), C3 croplands (24%), deciduous forests (20%) and coniferous forests25

(12%). Figure 3 shows the monthly averaged LAI model simulations and observations for the gridpoints that contain at least

50% of the dominant vegetation types. The 50% threshold was used because no points contain more than 70% of deciduous

forests, while over 1000 gridpoints contain at least 50% of any vegetation type. Table 2 shows the average LAI scores over

France (RMSD, CC and bias) for each of the model simulations.

Firstly we examine the LAI performance for the NIT simulation, which dynamically estimates the LAI evolution. Figure 330

shows that the NIT simulation is close to the observations for the deciduous forests (Figure 3(a)). However, the growth and

senescence phases are delayed for the simulated C3 crops and grasslands (Figure 3(c) and (d)) compared with the observations.

Furthermore, the grassland LAI is substantially underestimated by NIT in winter. It is clear in Figure 3 that imposing this
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higher minimum LAI value (NITm) increases the LAI for grasslands in winter and improves the fit to observations. This is

reflected by better scores for NITm, reducing (increasing) the RMSD (CC) by about 4% compared with NIT. Figure 4 shows

the average annual LAI minimum over France for the original simulation (NIT), the new simulation (NITm) and the GEOV1

data. Figure 4 emphasizes that the LAI minimum is underestimated (compared to the GEOV1 data) over much of France for

NIT. By increasing the grassland LAI minimum from 0.3 m2/m2 to 1.2 m2/m2 the model agrees much better with the data over5

most regions. Finally, the benefit of the bias-correction (NITbc) on LAI is also demonstrated in Figure 3. The bias-correction

has little impact on the LAI of the deciduous and coniferous forest patch types. However, it does reduce the phase errors for

both the C3 crops and grassland patches. This results in much better LAI scores, reducing (increasing) the RMSD (CC) by

about 10% compared with NITm.

The WG1 scores for the various simulations are given in Table 3. Recall that the SSM observations are linearly rescaled10

such that their mean and standard deviation match the NIT model simulation of WG1, which removes any bias already present.

Changing the model simulation has little impact on the scores, which suggests that the LAI evolution and the radiative forcing

have a relatively small influence on the moisture content of the surface layer.

Next, the Nash efficiency scores for the different model simulations are displayed in Fig. 5 (a), showing the percentage of

gauging stations at efficiency scores between 0 and 1.0. For the NIT simulation, about 26% of the stations have a score above15

0.6 (a good score), 42% of the stations have a score above 0.5 (a reasonable score) and 79% of the stations have a positive Nash

score. These scores are substantially improved by increasing the LAI minimum and by bias-correcting the radiative forcing.

For the NITm (NITbc) simulation about 31% (42%) of stations reach a score of at least 0.6, 48% (58%) of stations reach a

score of 0.5 or higher and 80% (83%) of the stations have a positive score. Table 4 shows the median Nash scores for each

simulation. The median Nash scores for NIT are increased by about 9% for NITm and further increased by 18% for NITbc. The20

median discharge ratio between the modelled (Qs) and observed (Qo) discharge is also shown for each simulation. A value that

is greater (smaller) than 1.0 indicates a positive (negative) bias in the model. NIT has a median discharge ratio of 1.19, which

indicates that the simulated streamflow is over-estimated by about 20%. This is reduced to 1.15 by applying the LAI minimum

and further reduced to 1.02 by applying the bias-correction. Therefore it appears that the bias in the discharge ratio has an

important impact on the Nash score, with larger biases corresponding to smaller Nash scores. This is clarified when comparing25

the annual median Nash scores (Figure 6(a)) with the annual median discharge ratios in (Figure 6(b)). It seems that the size

of the bias in the discharge ratio is negatively correlated with the Nash score, which would explain why NITbc performs so

well. Figure 6(c) and (d) show the average annual temperature and rainfall respectively. There does not appear to be a strong

correlation between either the temperature or rainfall and the Nash score.

The Nash efficiency for NIT for each station over France is shown in Figure 2. The river discharge is well simulated over30

most areas, but the southeast and northern regions have generally negative scores (shown in black). In southeast France this is

related to a large number of dams in the Alps, which are not simulated by MODCOU. In northern France, this is linked to a

large aquifer that is also not taken into account by MODCOU (see Habets et al. (2008) for details). There are a small number

of stations with negative scores elsewhere, which could also be related to anthropogenic water management. The maps show

similar patterns for the other simulations (not shown). The vast majority of stations (> 80%) for NITbc are improved relative35
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to NIT, including most of the stations with negative scores. A scatter plot of the Nash efficiency scores of NIT and NITbc for

all the stations can be found in Figure S1.2(a) of the Supplement.

Finally, we investigate the influence of the model simulations on the evapotranspiration, drainage and runoff fluxes in order

to explain the differences in SIM discharges. Figures 7(a-e) show the average monthly LAI, WG2, evapotranspiration, drainage

and runoff respectively, averaged over France. The NITm simulation has a greater average LAI in winter than NIT because5

the NIT LAI minimum is under-estimated. The effect of a higher LAI minimum is to enhance evapotranspiration in winter

and spring, which reduces the soil moisture and therefore diminishes the drainage and runoff. The consequence of increased

radiative forcing in NITbc is to further increase evapotranspiration and lower WG2 during much of the year. This substantially

reduces drainage and runoff, especially from October to June. These effects are emphasized in Figure 8(a), which shows the

difference between the sum of drainage and runoff for the different simulations compared with NIT. The reduced drainage10

and runoff feeding into the MODCOU hydrogeological model results in less river discharge, which explains the reduced river

discharge bias and superior Nash scores for NITm and NITbc relative to NIT in Table 4.

3.2 Impact of DA on SIM

The performance of the DA runs on the LAI and WG1 scores are shown in Tables 2 and 3 respectively. LDAS1 substantially

improves the fit of the simulated LAI to the LAI observations compared to NIT. We investigate the influence of DA on the15

drainage and runoff fluxes in Figure 7(f-j), which is equivalent to Figure 7(a-e) except that LDAS1 and LDAS2 are compared

with NIT. Figure 7(g) demonstrates that the assimilation of LAI reduces the LAI phase errors in NIT, indicating that the SEKF

is working effectively during much of the year. However, the LAI assimilation with the SEKF does not address the problem of

the underestimated LAI in winter, unlike NITm in Fig. 7(b). Figure 8(b) shows the differences between the combined drainage

and runoff fluxes between NIT and the DA methods. The LAI assimilation has a relatively small influence on the drainage and20

runoff fluxes in Figure 8(b) compared to NITm in Figure 8(a). The small positive correction of LAI in spring slightly increases

(reduces) evapotranspiration (drainage and runoff) which is cancelled out by the opposite effect in autumn. Overall, LDAS1

does not greatly modify the discharge ratio or the Nash scores.

The LDAS2 experiment slightly improves the WG1 scores relative to NIT (Table 3). The median Nash discharge scores are

degraded by about 7% for LDAS2 compared to NIT (Fig. 5(b) and Table 4) and the positive bias in the discharge ratio is in-25

creased by about 2% (Table 4). The reason for this is that LDAS2 has a higher average WG2 relative to NIT (Figure 7(f)), which

translates to increased drainage and runoff for LDAS2. This is emphasized by comparing the combined drainage and runoff

for LDAS2 relative to NIT in Figure 8(b). The extra water in the rivers exacerbates the Nash discharge bias already present in

NIT, resulting in degraded Nash efficiency scores. The LDAS2 scores are degraded for about 70% of the stations relative to the

NIT simulation and a scatter plot of the scores for all the stations can be found in Figure S1.2(b) of the Supplement.30

The neutral impact of LDAS1 and the detrimental influence of LDAS2 on the soil moisture fluxes is explained in the

following section by examining the observation operator Jacobians.
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3.3 Examining the SEKF Jacobians

The SEKF observation operator Jacobians are governed by the physics of the model. Their examination is important in order

to understand the SEKF performance. The LAI increments for LDAS1 are mainly driven by the ∂LAI
∂LAI Jacobian. The behaviour

of the ∂LAI
∂LAI Jacobian values for ISBA-A-gs was investigated by Rüdiger et al. (2010). Their behaviour can be split into three

distinct types, which depend on atmospheric conditions. The type “O” Jacobian is strictly equal to zero and occurs mainly in5

winter when the vegetation is dormant. In this case the LAI will be kept at its default model minimum. The type “A” Jacobian

represents a fraction between zero and one and is correlated with the LAI value itself. It occurs during periods of vegetation

growth i.e. predominantly in spring. The type “B” Jacobian is equal to 1.0 and takes place during periods of low vegetation

growth or high mortality, which occurs mainly in autumn. The grassland Jacobians are plotted for LDAS1 in Figure 9 for

a particular point in southwest France (43.35◦ N, 1.30◦ E). Also plotted in the same graph are the LAI values themselves,10

with the minimum indicated by the red line. Indeed, the type O Jacobians tend to occur in winter, during which time the LAI

returns to its minimum value of 0.3 m2/m2. The type A and B Jacobians tend to occur in spring and autumn respectively. These

findings are in agreement with Figure 4 of Rüdiger et al. (2010). The LAI performance for LDAS1 can now be explained by

these Jacobian values. Figure 7(g) shows that during the winter the lowest LAI values are barely corrected by LDAS1 because,

as shown in Figure 9, the LAI is frequently forced back to its minimum value (type O Jacobians). During the spring there is15

a small correction (type A Jacobians) and during the autumn there is a much larger correction (type B Jacobians). Hence the

LDAS1 is able to correct the LAI phase errors to some extent, but LDAS1 is unable to correct the LAI minimum in winter. The

seasonal imbalances in the LAI Jacobian can also explain the negative bias in Table 2. Since most of the drainage and runoff is

present in winter and spring, the assimilation of LAI has little influence on SIM.

The ∂LAI
∂WG2 Jacobian has generally positive values, since an increase in water content in the soil generally enhances photosyn-20

thesis and plant growth (not shown). However, this term is close to zero from about November to March while the vegetation

is dormant. Therefore it does not substantially influence the LAI minimum in winter. There is no evidence that it leads to long

term increases in WG2 or results in increased drainage/runoff for LDAS2.

The WG2 analysis increments for LDAS2 are largely driven by the ∂WG1
∂WG2 Jacobian. A scatter plot of these Jacobian values

against the WG1 variable is shown in Figure 10 for the same point as Figure 9 in southwest France. The density of the points25

is derived from the kernel density estimation of Scott (1992). There are two dense regions when WG1 is equal to 0.15 and

0.30 m3/m3, which occur because WG1 is a thin layer, and therefore most of the time it is either dry or close to saturation.

The WG1 and ∂WG1
∂WG2 values are negatively correlated, with larger values of WG1 corresponding to smaller values of ∂WG1

∂WG2 .

This implies that when rain is detected in the model but not in the SSM observations, the analysis increment will be smaller

than when the rain is missed by the model but detected by the observations. Indeed, the average WG2 analysis increment for a30

positive innovation is 0.7× 10−3 m3/m3, while the average increment for a negative innovation is −0.5× 10−3 m3/m3. This

imbalance in the analysis increments leads to a net uptake of water in WG2, which induces the positive bias in the SIM river

discharge. This problem was already highlighted by Draper et al. (2011). The Jacobians exhibited similar patterns of behaviour

for other vegetation types than grasslands and across other points in France, albeit with different magnitudes (not shown).
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3.4 Additional experiments

Additional experiments were performed to examine whether the poor performance of the SEKF was related to other factors than

the Jacobians, namely the quality control of the observations, the underestimated LAI minimum or the bias in the atmospheric

forcing. It is evident in Tables 2 to 4 that applying the additional quality control of the SSM observations (LDAS2QC) does

not substantially modify the LAI, WG1 or Nash discharge scorPROVA-Bes compared to LDAS2, despite removing about 10%5

of the SSM observations. Figure 11(a) shows only small differences in the Nash efficiency percentages between LDAS2 and

LDAS2QC . As expected, the LDAS1bc and LDAS2bc experiments improved on the LAI scores of LDAS1 and LDAS2 (Tables

2), but did not improve on the WG1 scores in Table 3. These changes are a similar order of magnitude to the improvement of

NITbc over NIT. In terms of discharge Nash efficiency scores, LDAS1bc performed similarly to NITbc and LDAS2 performed

substantially worse than NITbc (Table 4). The Nash efficiency percentages are shown in Figure 11(b). The comparison between10

LDAS1bc and LDAS2bc with NITbc in Figure 11(b) is analogous to the comparison between LDAS1 and LDAS2 with NIT in

Figure 5(b).

The scores for the subset of 67 stations with low anthropogenic influence are also shown in Table 4. The scores for this subset

are improved relative to the 546 stations in Table 4, as expected. In particular, the percentage of stations with good scores (Nash

efficiency > 0.6) is greatly increased. For the interested reader, scatter plots of the Nash scores for the 67 stations are shown15

in Figure S1.3 in the Supplement. The discharge bias is also slightly smaller for the stations with low anthropogenic influence

relative to the 546 stations. This suggests that a small part of the positive bias in the discharge ratio of the NIT simulation for

the 546 stations could be attributed to abstractions not being accounted for, such as drinking water or irrigation. However, most

of the discharge bias in the NIT simulation is still present with the 67 stations with low anthropogenic influence. Moreover,

the relative performances of the experiments are very similar. Therefore, the conclusions of the experiments are not affected20

by the ability of SIM (with or without DA) to simulate anthropogenically influenced streamflow. These results confirm that the

inability of the SEKF to improve the soil moisture fluxes comes mostly from the SEKF Jacobians.

4 Discussion

Previous work by Muñoz Sabater et al. (2007) and Fairbairn et al. (2015) clearly demonstrated that the assimilation of SSM

observations with an SEKF can improve WG2 with the 3-layer ISBA-A-gs model. Barbu et al. (2014) also demonstrated that25

the assimilation of LAI reduces phase errors in the modelled LAI evolution. However, in this work we showed that the SEKF

has little influence on the drainage and runoff fluxes when assimilating LAI observations (LDAS1 experiment). Furthermore,

the SEKF actually degrades these fluxes when assimilating SSM and LAI observations (LDAS2 experiment). The differences

in these findings are due to the nonlinear interactions in LSMs which can cause the assimilation of one state variable to be

detrimental to other soil moisture processes (Walker and Houser, 2005). The poor results for LDAS1 and LDAS2 can be30

explained by model errors, atmospheric forcing errors and model nonlinearities near the soil moisture wilting point and field

capacity thresholds, none of which are captured by the SEKF observation operator Jacobians.
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4.1 Could LAI assimilation be improved?

In LDAS1, the seasonal variability in the analysis LAI increments was uneven, with large negative increments in late sum-

mer/autumn and small positive increments in winter/spring. This occurred because the LAI Jacobian (∂LAI
∂LAI ) was frequently

equal to zero during winter and therefore the LAI remained at its incorrect minimum value after the analysis update. More-

over, LAI is only assimilated every 10 days so the model LAI would drift back to its underestimated minimum value between5

cycles. Consequently, the average LAI analysis was negatively biased. These Jacobian values are physically sensible, since the

vegetation is dependent on the atmospheric conditions and is often dormant during the winter period. The problem is related to

the lack of a model error term in the SEKF.

The lowest LAI values could be corrected with a full EKF and a model error term, but it would be complicated to parametrize

the model-error covariance matrix because the LAI minimum is linked to several factors concerning the atmospheric conditions10

and the vegetation type. A short-term solution to the underestimated LAI minimum was demonstrated in the experiments, which

was to set a higher LAI minimum parameter in the model based on observations. However, it would be more sensible in the

long-term to resolve the underlying issues with the model physics. A thorough comparison of the ISBA-A-gs simulated LAI

with both SPOT-VGT (used in our experiments) and MODIS data over south-west France was performed by Brut et al. (2009).

They did notice significant discrepancies between all three data sets, suggesting that there is significant uncertainty in both the15

model and the observations. However, they also noticed that the modelled LAI of the C3 natural herbaceous (grasslands)/C3

crops had a delayed onset relative to both satellite products (see Figure 4 in Brut et al. (2009)). They found that this was

particularly problematic for grasslands in mountainous regions. By comparing the data with in situ measurements, they found

that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold

climatic conditions of the mountainous areas. This problem was also linked to a prolonged LAI minimum in the model relative20

to the observations. Lafont et al. (2012) found similar issues when comparing the same products over France. Indeed, Figure

4 in our study shows that the NIT LAI minimum was particularly underestimated in the grassland areas of the Massif Central

mountains in central France, but not so much in lower regions further north. Finally, these problems could explain the delayed

onset and underestimated LAI minimum for both grasslands and C3 crops in Figure 3 in our study.

It should be recognized that errors in the modelled LAI are not just present over grasslands, but also over other vegetation25

types. Figure 3 shows there are significant discrepancies between the model and the observations for C3 crops and deciduous

forests as well. Given that these discrepancies vary substantially between different vegetation types, it is not optimal to assim-

ilate a gridpoint averaged observation. This issue is currently addressed by disaggregating the LAI for each patch individually.

Finally, as already mentioned, LAI is assimilated every 10-days. LAI data availability could be improved using higher spatial

and temporal resolution products in order to limit the impact of clouds.30
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4.2 Why does SSM assimilation degrade river discharges?

It is important to point out that it is physically sensible for WG1 to decouple from WG2 during precipitation events. The

precipitation forcing leads to a saturation of the surface layer and subsequently WG1 becomes less dependent on WG2. The

degradation of drainage and runoff can be caused by limitations in the SEKF, in the land surface model and in the data.

Firstly, as recognized by Draper et al. (2011), an important problem is that the SEKF is not designed to capture the uncertainty5

in the model and the precipitation forcing, which should increase during precipitation events and therefore compensates for

the smaller Jacobians. The SAFRAN precipitation forcing performs well for a mesoscale analysis and has a higher spatial

resolution than global satellite products such as ERA-interim (Quitana-Ségui et al., 2008; Vidal et al., 2010). However, by

design the precipitation is assumed to be homogeneous over 615 specified climate zones. Errors are therefore introduced from

the spatial heterogeneity of the precipitation, particularly in mountainous regions (Quitana-Ségui et al., 2008).10

Secondly, the 3-layer ISBA model has strong nonlinearities near the soil moisture thresholds, some of which lead to unreal-

istic behaviours of the model Jacobians. During dry conditions in summer the SEKF ∂WG1
∂WG2 Jacobian can be excessive. This is

linked to a rapid increase in transpiration when water is added to WG2 following dry conditions (Draper et al., 2009; Fairbairn

et al., 2015). The origin of this nonlinearity is partly related to an unrealistic feature of the surface energy balance. One single

surface temperature is used to represent the vegetation and the surface layer, which causes the transpiration to increase too15

quickly after water is added to WG2 (Draper et al., 2009; Mahfouf, 2014). This problem could be relieved to some extent by

introducing the new version of ISBA with a multiple energy balance (MEB, (Boone et al., 2017)) and by using a multi-layer

diffusion model (ISBA-DIF, (Decharme et al., 2011)).

Lastly, regarding observations, the current ASCAT product is affected by vegetation (Vreugdenhill et al., 2016) and a sea-

sonal CDF matching is needed in DA systems assimilating ASCAT SSM. This procedure is however sub-optimal. A solution20

to this problem is to go towards the implementation of an observation operator in order to assimilate the backscattering co-

efficients directly. In this way, the vegetation information content in the ASCAT signal could be used to analyse vegetation

biomass and would also provide information for the analysis of root-zone soil moisture, in addition to the microwave soil

moisture signal.

4.3 Could more sophisticated DA methods improve SSM assimilation?25

The presence of the uncertainties in the model and in the forcing could more easily be addressed with an EnKF than an

SEKF because an EnKF can stochastically represent model and precipitation errors (Maggioni et al., 2012; Carrera et al.,

2015). Fairbairn et al. (2015) found that an EnKF with a simple stochastic rainfall error estimation demonstrated similar WG2

scores to the SEKF over 12 sites in southwest France (validated using in situ observations). Both methods were affected by

nonlinearity problems.30

There are DA methods, such as particle filters, designed to handle model nonlinearities. Moradkhani et al. (2012) demon-

strated that good results on a hydrological model could be achieved with a particle filter with about 200 members. However,

it is substantially more computationally expensive than an EnKF, which typically requires about 20 members to overcome
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sampling error problems for LSMs (Maggioni et al., 2012; Carrera et al., 2015; Fairbairn et al., 2015). Therefore we intend to

test an EnKF over France using the same validation framework used in this study.

5 Conclusions

This study assessed the impact on streamflow simulations of assimilating surface soil moisture (SSM) and leaf area index (LAI)

observations into the ISBA-A-gs land surface model (LSM). The drainage and runoff outputs were used to force the MODCOU5

hydrogeological model and were validated by comparing the simulated streamflow with over 500 river-gauge observations

over France during several years. To our knowledge, this is the first article to examine the impact of LAI assimilation on

streamflow simulations using a distributed hydrological model. The validation is robust due to to the large number of river gauge

observations employed and the long evaluation period (2007-2014). The results from this study could also have ramifications

for flood warning accuracy since SIM is used operationally by Meteo-France as a tool for flood forecasting. Furthermore,10

this study highlights the importance of systematic model/forcing deficiencies on the streamflow simulations. Reasons for not

obtaining improvements in discharge simulations are related to model deficiencies, model nonlinearities and the set-up of the

assimilation system.

Increasing the LAI minimum parameter resulted in greater evapotranspiration in winter/spring and bias-correcting the ra-

diative forcing increased evapotranspiration during much of the year. Both corrections effectively reduced the positive bias in15

the drainage/runoff fluxes and substantially improved the Nash efficiency scores. Although DA is not theoretically designed

to correct systematic model deficiencies, it was found that assimilating only LAI observations substantially reduced the LAI

phase errors in the model. However, this induced a net negative bias in the LAI analysis relative to the observations. Given that

drainage and runoff occurs predominantly in late winter and spring, the LAI assimilation had negligible impact on these fluxes.

Assimilating SSM resulted in spurious increases in drainage and runoff, which degraded the SIM discharge Nash efficiency.20

An issue in DA experiments was the underlying assumption made by the SEKF that the model is perfect. Allowing for

model and atmospheric forcing errors could more easily be addressed with an ensemble Kalman filter (EnKF) method than

the SEKF, although both methods are affected by nonlinearity issues. In the future we will test the EnKF using a similar

validation employed in this study. Regarding LAI assimilation, the SEKF assimilates the LAI observations by aggregating

the different vegetation patches in each gridbox. This approach is not optimal because each vegetation type exhibits unique25

seasonal variability. Given the high resolution of LAI observations (1 km), work is underway to disaggregate the observations.

While the ISBA LSM is well established and is used operationally at Meteo-France, this study has helped us to identify

some limitations that need to be addressed. A new multi-layer diffusion model should improve representation of the coupling

between the surface and root-zone soil moisture. Furthermore, a new multiple energy balance version should decouple the

bare soil evaporation and the transpiration processes that lead to an unphysical link in ISBA between surface and deep soil30

moisture. Previous research has demonstrated that the generic temperature response of photosynthesis used in the model is

not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This is consistent with the phase

errors and the underestimated grassland LAI minimum in our study. Solving this problem would presumably increase the LAI
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minimum in winter, which would be more sensible than simply fitting the LAI minimum to observations. Finally, the LDAS

should benefit from further improvement of the satellite-derived LAI and SSM. Using an observation operator for the ASCAT

backscattering coefficients would permit accounting for the vegetation information content in the ASCAT signal.
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Table 1. List of experiments. The bias-correct forcing option implies an increase of the direct short-wave and long-wave radiation by 5%.

The SSM outliers removal applies to SSM observations outside the 90% confidence interval of the model.

Experiment LAI grassland min

(m2/m2)

Bias-correct

forcing

DA SSM outliers

removal

NIT 0.3 No No –

NITm 1.2 No No –

NITbc 1.2 Yes No –

LDAS1 0.3 No LAI –

LDAS2 0.3 No LAI+SSM No

LDAS1bc 1.2 Yes LAI –

LDAS2bc 1.2 Yes LAI+SSM No

LDAS2QC 0.3 No LAI+SSM Yes
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Table 2. Scores for LAI (prognostic variable compared with observations) averaged over 2007-2014. The RMSD and CC stand for root mean

square difference and correlation coefficient respectively. The closest fit to the observations is shown in bold font.

Experiment RMSD (m2/m2) CC Bias (m2/m2)

NIT 1.18 0.56 0.11

NITm 1.14 0.58 0.25

NITbc 1.02 0.63 0.17

LDAS1 0.69 0.82 -0.08

LDAS2 0.71 0.81 -0.04

LDAS1bc 0.63 0.84 -0.04

LDAS2bc 0.66 0.83 -0.02

LDAS2QC 0.72 0.81 0.02
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Table 3. Scores for WG1 (prognostic variable compared with observations) averaged over 2007-2014. The RMSD and CC stand for root

mean square difference and correlation coefficient respectively. The closest fit to the observations are shown in bold font.

Experiment RMSD (m3/m3) CC Bias (m3/m3)

NIT 0.051 0.77 0.00

NITm 0.049 0.77 0.00

NITbc 0.051 0.77 0.00

LDAS1 0.049 0.77 0.00

LDAS2 0.048 0.78 0.00

LDAS1bc 0.049 0.77 0.00

LDAS2bc 0.049 0.78 0.00

LDAS2QC 0.048 0.78 0.00
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Table 4. Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the 546 river gauges over France and for the subset of 67

gauges with low anthropogenic influence, calculated over 2007-2014. Also shown are the percentage of stations with a Nash score above 0.6.

The best scores are shown in bold font.

Experiment NE for 546/67 sta-

tions

Discharge ratio for

546/67 stations

% stations with NE

> 0.6 for 546/67

stations

NIT 0.44/0.48 1.19/1.16 26%/44%

NITm 0.48/0.54 1.15/1.12 30%/48%

NITbc 0.56/0.60 1.02/0.99 42%/59%

LDAS1 0.44/0.48 1.18/1.15 27%/44%

LDAS2 0.41/0.45 1.21/1.18 23%/40%

LDAS1bc 0.56/0.60 1.02/1.00 42%/57%

LDAS2bc 0.53/0.54 1.08/1.06 38%/53%

LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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Figure 1. Flowchart of the SIM hydrological model and how LDAS France is connected with SIM.

29



Figure 2. Nash efficiency scores for each station over France for the NIT simulation, calculated over the period 2007-2014. The river network

is also shown.
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Figure 3. Monthly averaged LAI for the model simulations and for the gridpoints with at least 50% of the four dominant vegetation types,

averaged over 2007-2014 and averaged over France.
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Figure 4. Map showing the average annual LAI minimum (2007-2014) for NIT, NITm and the GEOV1 observations (m2/m2) over France.
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Figure 5. Nash efficiency scores over France for (a) the model simulations and (b) the DA methods, calculated over the period 2007-2014.
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Figure 6. Median annual (a) Nash efficiency scores and (b) discharge ratio for each experiment. Average annual (c) temperature and (d)

cumulated precipitation.
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Figure 7. Average monthly (a) WG2 and (b) LAI; and monthly cumulative (c) evapotranspiration, (d) drainage and (e) runoff for NIT and

the other model simulations. Plots (f-j) show NIT and the DA analyses for the equivalent variables as (a-e). Results are all averaged over the

period 2007-2014 and averaged over France.
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grassland patch at a point in southwest France (43.35◦ N, 1.30◦ E).
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Figure 10. Scatter plot of WG1 against the LDAS2 ∂WG1
∂WG2

Jacobian for the grassland patch at the same point as Figure 9.
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Figure 11. Average Nash efficiency scores over France for (a) the NIT, LDAS2 and LDAS2QC experiments and (b) the NITbc, LDAS1bc

and LDAS2bc experiments.
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