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04 August 2016. 
 
Dear Professor Wolfgang Wagner, 
 
The authors’ response to the comments of the two anonymous referees and Jean-Philippe 
Vidal have been accounted for in the revised version of the paper. These points should lead to 
a significant improvement of the manuscript. All changes relative to the published HESS 
paper are detailed in the pdf of the new manuscript. They include all the response elements 
given by the authors in response to the reviewers’ comments (blue, red and magenta for 
Reviewers 1  and 2 and Jean-Philippe Vidal, respectively). 
 
Additionally, on line 26 of page 6 the perturbations for the Jacobians were incorrectly 
specified in the original manuscript. These should be multiplied by the variables themselves 
(WG2 and LAI) and this is included on lines 11-12 of page 7 in the new manuscript.  
 
Some parts of the paper were re-structured in order to make the paper clearer. In Section 2, 
the land surface model is introduced in Section 2.1 (instead of the SIM hydrological model) 
and Section 2.2 now only includes the assimilated observations. A new section 2.5 now 
introduces the performance diagnostics, including the system validation and the SIM 
hydrological model validation. 
 
Figures 
 
Figures 4 has been modified to include the correct scale. Figure 6 has been modified to 
include the median Nash efficiency scores for all the stations (instead of the mean). Figures 7 
and 8 have been re-structured such that the model and data assimilation results are compared 
in the same Figures. Figure 7 plots the state variables and fluxes and Figure 8 plots the flux 
differences. All the original Figures showing the scores for LDAS2 (Figures 5,6,7,8 and 11) 
have been corrected using the new LDAS2 results with the correct observation error 
specification (please see response to comment 3 from Reviewer 1 for details).   
 
Tables 
 
Tables 2, 3 and 4 have been modified to include the new results from LDAS2. Table 4 now 
includes the median Nash efficiency scores, the scores for the low-anthropogenic influence 
stations and % of stations with a score above 0.6.  
 
Supplement 
 
A supplement has been added to include a map of the stations with low-anthropogenic 
influence (Figure S1.1) and scatter plots of the Nash scores for the experiments (Figure S1.2 
and Figure S1.3) as mentioned in the response to Reviewer 2.  
 
 



References 
 
Fourteen additional references were added (Aubert et al., (2003), Candy et al. (2012), Clark et 
al. (2008), de Jeu et al. (2008), Draper et al. (2013), ECMWF (2016), Giuntoli et al. 
(2012,2013), Gruber et al. (2015), Hess (2001), Le Moigne (2002), Moriasi et al. (2007), 
Thirel et al. (2010), Walker and Houser (2005). 
 
Yours sincerely, 
 
JC Calvet, D. Fairbairn. 
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Response to comments from Referee 1

July 26, 2016

Firstly, we would like to thank the reviewer for his/her constructive comments. A

point by point response is given below.

Response to specific comments:

1. P2 l34 “especially near soil moisture thresholds” do you mean wilting point and

saturation values? If so best to expand sentence.

Response: Yes. We will replace “especially near soil moisture thresholds” with

“especially near the wilting point and field capacity thresholds”.

2. P5 l17 “The original ASCAT values are converted into SSM values...” My un-

derstandiing is that this is not correct, the ascat backscatters are converted into

a soil wetness index. Is this what is assimilated in your experiments?

Response: In order to explain this more clearly, we will replace lines 17-12

(starting with “The original ASCAT values...”) with the following: “The original

ASCAT values are converted into the surface degree of saturation (SDS, with

values between 0 and 1) using a change detection technique, which was developed

at the Vienna University of Technology (Tu-Wien) and is detailed in Wagner

et al. (1999); Bartalis et al. (2007). The historically lowest and highest backscat-

ter coefficients are assigned values for dry and saturated soils respectively. The

Copernicus Global Land Service then calculates the surface water index (SWI) by

applying a recursive exponential filter to these SDS values (Albergel et al., 2008)

using a time-scale that may vary between 1 and 100 days. The SWI represents

the soil wetness over the soil profile and also has values between 0 (dry) and 1

(saturated). The longer the time-scale of the exponential filter, the deeper the
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representative soil profile. In this study we use a time-scale of one day (SWI-001

product), which represents the SWI for <5 cm of soil. We then interpolate the

SWI-001 data to the 8 km resolution model grid. As in Draper et al. (2011) an

additional screening step is performed to remove observations with an altitude

greater than 1500m, frozen regions and areas with an urban fraction greater than

15%.”

As mentioned in lines 24-31, we apply a linear rescaling to the SWI-001 data,

which scales them such that the mean and standard deviations match the WG1

layer climatology (Calvet and Noilhan, 2000; Scipal et al., 2008). The rescaling

is designed to remove biases between the model and the observations and in the

process the SWI-001 data are converted into the same units as the model, ex-

pressed in volumetric soil moisture (m3/m3). These rescaled SSM observations

are assimilated into the WG1 model layer.

3. Section 2.3 Data Assimilation. Good explanation of background and observation

errors for LAI, but no mention of the errors assigned to the ASCAT data. In

particular, I would be interested to know if you inflate the errors to account for

the oversampling issue, i.e. the same ASCAT obs covers several gridpoints.

Response: On page 7, line 14 we mentioned that the SSM observation error

is prescribed a value of 0.4(wfc-wwilt), where wfc is the field capacity and wwilt

is the wilting point (note there is a typo, we will replace “WG1” with “SSM”).

The scaling by (wfc-wwilt) assumes that there is linear relationship between the

soil moisture errors and the dynamic range (Mahfouf et al., 2009). Averaged over

France, this observation error is equal to 0.034 m3/m3. This underestimates the

median SDS estimated error of 0.05 m3/m3 by Draper et al. (2011). We have

therefore rerun the LDAS2 experiments, but with a larger SSM observation error

standard deviation of 0.65(wfc-wwilt). This averages to 0.055 m3/m3 over France.

We used a slightly larger value than Draper et al. (2011) in order to account for

the oversampling issue. This is comparable with observation errors expected for

remotely sensed SSM observations (de Jeu et al., 2008; Draper et al., 2013). The

LDAS2 results for this larger observation error will be included in the revised ver-

sion of the paper. We will use the following description of the SSM observation

error: “The SSM observation error standard deviation was set to 0.65(wfc-wwilt),

which is about 0.055 m3/m3 averaged over France. This value is slightly larger

than the median ASCAT-derived SDS error of 0.05 m3/m3 estimated by Draper

et al. (2011) because it also approximates the oversampling issue i.e. the same

ASCAT observation covers several gridpoints.”
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Increasing the observation error standard deviation reduces the impact of the

SSM assimilation for the LDAS2 experiments. Table R1.1 (at the end of the

document) shows the new WG1 scores (prognosic variable compared with SSM

observations) averaged over 2007-2014. The fit of LDAS2 to the observations is

slightly reduced relative to the original results (Table 3 in the paper). However,

as mentioned by the reviewer, the poor performance of the soil moisture fluxes

for the SEKF was explained by the observation operator Jacobians. Therefore

changing the SSM observation error does not change the conclusions of the study.

Table R1.2 (at the end of this document) will replace Table 4 in the paper and

shows the median Nash efficiency scores for the all the experiments. Following a

comment from reviewer 2, the median Nash efficiency scores are calculated for all

the stations instead of the mean. The median is a more appropriate metric for

our experiments as it is less sensitive to extreme outliers and is a better indicator

for highly skewed distributions (Moriasi et al., 2007). Following a comment from

Dr Jean-Philippe Vidal, the scores are also shown for the 67 stations with low

anthropogenic influence (also see response to Dr J.-P. Vidal for details). The

relative performances of the experiments in Table R1.2 are very similar to Table

4 in the paper and therefore the conclusions of the experiments remain unchanged.

4. P10 l2 Typo on Figure number should be Fig7?

Response: Yes, we have changed this.

5. Section 4 Discussion. It seems that the principle problem with the assimilation

in the SEKF for this situation is that the LAI assim has little or no sensitiv-

ity during winter and the SM jacobians are unrealistically too small. One short

term improvement might be to simply increase the variances in the size of the

background error covariance matrix in winter which is a realistic response to the

known issue of enhanced model and forcing errors. Any thoughts on this?

Response: These are interesting suggestions. However, we have tried increasing

the LAI variances in winter but this does not help. Part of the problem if that

the LAI observations are infrequent (every 10 days). We found that the model

quickly returns to its underestimated minimum value between cycles, regardless

of the size of the analysis increments. Perhaps one way to tackle this problem

would be to implement a Kalman smoother with a long assimilation window of 10

days, but this is beyond the scope of this study. The problem with the SSM Ja-
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cobians cannot be resolved by simply increasing the estimated background errors

in winter. The problem occurs because the SSM Jacobian value is negatively cor-

related with WG1 itself. This results in large analysis increments when rainfall is

detected in the surface soil moisture observations but is missed by the model, and

small increments when rainfall is detected by the model but is missed by the soil

moisture observations. This problem would still occur with larger background-

error variances. A potential solution to this problem is to assimilate the SWI

product into a deeper soil moisture layer, which is less sensitive to the model

and atmospheric forcing over the 24 hour assimilation window. We are currently

testing this idea with the new multi-layer diffusion based model (ISBA-DIF).

4



Table R1.1: Scores for WG1 (prognosic variable compared with observations) averaged
over 2007-2014. The closest fit to the observations are shown in bold font.

Experiment RMSD
(m3/m3)

CC Bias
(m3/m3)

NIT 0.051 0.77 0.00
NITm 0.049 0.77 0.00
NITbc 0.051 0.77 0.00
LDAS1 0.049 0.77 0.00
LDAS2 0.048 0.78 0.00
LDAS1bc 0.049 0.77 0.00
LDAS2bc 0.049 0.78 0.00
LDAS2QC 0.048 0.78 0.00
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Table R1.2: Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the
546 river gauges over France and for the subset of 67 gauges with low anthropogenic
influence, calculated over 2007-2014. Also shown are the % of stations with a Nash
score above 0.6. The best scores are shown in bold font.

Experiment NE for 546/67
stations

Discharge ratio
for 546/67 sta-
tions

% stations
with NE > 0.6
for 546/67
stations

NIT 0.44/0.48 1.19/1.16 26%/44%
NITm 0.48/0.54 1.15/1.12 30%/48%
NITbc 0.56/0.60 1.02/0.99 42%/59%
LDAS1 0.44/0.48 1.18/1.15 27%/44%
LDAS2 0.41/0.45 1.21/1.18 23%/40%
LDAS1bc 0.56/0.60 1.02/1.00 42%/57%
LDAS2bc 0.53/0.54 1.08/1.06 38%/53%
LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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C. Albergel, C. Rüdiger, T. Pellarin, J.-C. Calvet, N. Fritz, F. Froissard, D. Suquia,

A. Petitpa, and B. Piguet. From near-surface to root-zone soil moisture using an

exponential filter: an assessment of the method based on in-situ observations and

model simulations. Hydrol. Earth Syst. Sci, 12:1323–1337, 2008.

Z. Bartalis, W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, and

C. Anderson. Initial soil moisture retrievals from the metop-a advanced scatterometer

(ascat). Geophys. Res. Lett., 34:10.1029/2007GL031088, 2007.

J.-C. Calvet and J. Noilhan. From Near-Surface to Root-Zone Soil Moisture Using

Year-Round Data. J. Hydrometeor, 1:393–411, 2000.

R. A. M. de Jeu, W. Wagner, T. R. H. Holmes, A.J. Dolman, N. C. de Giesen, and

J. Friesen. Global soil moisture patterns observed by space borne microwave ra-

diometers and scatterometers. Surv. Geophys., 29:399420, 2008.

C.S. Draper, J.-F. Mahfouf, J.-C. Calvet, E. Martin, and W. Wagner. Assimilation

of ASCAT near-surface soil moisture into the SIM hydrological model over France.

Hydrol. Earth Syst. Sci, 15:3829 – 3841, 2011.

C.S. Draper, R.H. Reichle, R. de Jeu, V. Naeimi, R. Parinussa, and W. Wagner. Es-

timating root mean square errors in remotely sensed soil moisture over continental

scale domains. Remote Sensing of Environment, 137:288–298, 2013.

J.-F. Mahfouf, K. Bergaoui, C. Draper, C. Bouyssel, F. Taillefer, and L. Taseva. A

comparison of two off-line soil analysis schemes for assimilation of screen-level obser-

vations. J. Geophys. Res, 114:D08105, 2009.

D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, and T.L. Veith.

Model evaluation guidelines for systematic quantification of accuracy in watershed

simulations. American Society of Agricultural and Biological Engineers, 50:885–900,

2007.

K. Scipal, M. Drusch, and W. Wagner. Assimilation of a ERS scatterometer derived soil

moisture index in the ECMWF numerical weather prediction system. Adv. Water.

Resour, 31:11011112, 2008.

W. Wagner, G. Lemoine, and H. Rott. A method for estimating soil moisture from

ERS scatterometer and soil data. Remote Sens. Environ., 70:191–207, 1999.

7



Fairbairn et. al., (2016):
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Response to comments from Referee 2

July 26, 2016

Firstly, we would like to thank the reviewer for his/her constructive comments. A

point by point response is given below.

Response to major comments:

1

1.1

Referee comment This study describes the implementation of a simple Extended

Kalman Filter (SEKF) to assimilate LAI and SSM observations into a hydrological

model over France, and its validation against streamflow measurements.

Response:

This is not exactly the objective of this study. It is important to mention that the as-

similation is into a land surface model and not into a hydrological model. We will add

this sentence to the introduction (Section 1): “In this study, the Simplified Extended

Kalman Filter (SEKF) is used to assimilate LAI and SSM observations to update LAI

and root-zone soil moisture (WG2) in the ISBA-A-gs land surface model. The drainage

and runoff outputs from the land surface model are then used to force the MODCOU

hydrogeological model and are validated by comparing the simulated streamflow with

observations.” It is important to clarify that the land surface model and the assimi-

lated land surface observations are independent of the hydrogeological validation. This

is different to other studies such as Thirel et al. (2010), where streamflow observations

were assimilated and used to update the soil moisture in the ISBA land surface model.

We will try to make this more clear throughout the paper, including the abstract, in-

troduction and conclusions.
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1.2 1

1.2

The topic is appropriate for the HESS journal, but the paper is not very well written.

The technical approach appears sound at places and has some interesting aspects but

there are many issues with the results, or at least their explanation which is not clear

at all.

Response:

We agree with the reviewer that the experimental setup was not well explained and

there were some mistakes in the way we presented the results. We hope that by offering

clearer explanations we can resolve these problems.

1.3

The NITm and NITbc simulations use a different minimum LAI (1.2 m2/m2) and a

bias-corrected radiative forcing (+5%) respectively, but nothing is said about how these

numbers were chosen.

Response:

We admit this was not well explained and we will clarify this in the experimental setup

(Section 2.4 of the paper). Fig. R2.1 (at the end of the document) shows a histogram

of the observed average annual LAI minimum (GEOV1 satellite-derived observations)

for the 133 grid-points over France with predominantly grasslands (the grassland patch

fraction exceeding 70%). We chose an augmented grassland LAI minimum value of 1.2

m2/m2 for NITm because over 99% of the predominantly grassland points in Fig. R2.1

have an observed average annual LAI minimum above this value. The average an-

nual LAI minimum over France for the original simulation (NIT), the new simulation

(NITm) and the GEOV1 data are shown in Fig. R2.2 (note that the original Fig. 4 in

the paper did not have the correct scale). Fig. R2.2 emphasizes that the LAI mini-

mum was underestimated (compared to the GEOV1 data) over much of France for the

original model simulation. By increasing the grassland LAI minimum to 1.2 m2/m2,

the model agrees much better with the data over most regions. Szczypta et al. (2011)

and Le Moigne (2002) demonstrated that the direct short-wave and long-wave radiative

forcing respectively are underestimated by approximately 5% averaged over France. We

followed Decharme et al. (2013) in bias-correcting the direct radiative forcing by +5%.
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1.4 1

1.4

Was the new minimum LAI chosen based on the observations? If so, there really is no

point in comparing the LAI from the new simulations with the same data.

Response:

The aim of this study was not to carry out an independent validation of LAI for each

experiment, for which we would need independent observations. We will add the fol-

lowing in the experimental setup (Section 2): “A system validation was performed by

comparing the LAI and WG1 states with the LAI and SSM observations respectively

for all the simulations and data assimilation experiments. Note that this is not an

independent validation of the performance of the system, for which we would need in-

dependent observations. The rationale was to check the effectiveness of the SEKF i.e.

to see if it improved the fit between the model simulations and the observations. The

fit to the observations was determined by the root mean square difference (RMSD),

the correlation coefficient (CC) and the bias. These checks were important because the

performance of the SEKF had an important impact on the drainage and runoff fluxes.”

1.5

Additionally, the Nash scores of the NITm and NITbc simulations are shown only for

the stations where at least one of the simulations had a positive score (p. 9, l. 21-

22). Essentially, the average NSEs reported in Table 4 and Fig. 6 are artificially better

than what they ought to be since most of the stations in northern and southeast France

are excluded from this calculation. No explanation is given at to why this was done,

making the discussion of the results rather dubious.

Response:

We agree with the reviewer that we did not present these results correctly and have

therefore shown the results with all the stations (including the negative scores) included

in the calculations. Fig. R2.3(a) shows a scatter plot of the Nash efficiency for the NIT

simulation against the NITbc simulation. The density of the points is derived from the

kernel density estimation of Scott (1992). The NIT simulation is the original simula-

tion. The NITbc simulation is the new simulation with the augmented LAI minimum

and radiative forcing. The results are improved for about 80% of the stations, including

most of the stations with negative Nash scores. Fig. R2.3(b) shows a scatter plot of

the NIT against LDAS2 (NIT with the assimilation of SSM and LAI). The assimilation

degrades the SIM discharge scores for about 70% of the stations. These results are

consistent with the original conclusions of the study. Note that the LDAS2 experiment
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1.6 1

was performed with a more appropriate estimate of the observation error standard de-

viation than the original experiment. We used a value of 0.65(wfc-wwilt) instead of the

original value of 0.4(wfc-wwilt), where wfc is the field capacity and wwilt is the wilting

point. This averages to 0.055 m3/m3 over France. We used a slightly larger error than

the estimated error of 0.05 m3/m3 by Draper et al. (2011) in order to approximate the

oversampling issue i.e. the same ASCAT observation covers several gridpoints. This is

comparable with observation errors expected for remotely sensed SSM observations (de

Jeu et al., 2008; Draper et al., 2013). Note that this larger observation error slightly

reduces the impact of the assimilation of SSM relative to the original experiment, but

the conclusions of the study remain unchanged. Table R2.1 (at the end of the docu-

ment) shows the new WG1 scores (model state compared with SSM observations) and

will replace Table 3 in the paper.

Table R2.2 will replace Table 4 in the paper and shows the median Nash efficiency

scores for the all the experiments. Following a comment from Jean-Philippe Vidal

(see 1.6 below), the scores are also shown for the 67 stations with low anthropogenic

influence. Note that the median is calculated rather than the mean because the majority

of stations (> 80%) have positive Nash efficiency scores, but a few outliers have scores

near to -100. The median is a more appropriate metric as it is less sensitive to extreme

outliers and is a better indicator for highly skewed distributions (Moriasi et al., 2007).

The results in Table R2.2 are very similar to Table 4 in the paper except that the LDAS2

experiment has less impact (due to the larger observation error). Therefore, including

the stations with negative scores does not change the conclusions of this study.

In the revised version of the paper, we will replace Figure 6 with the Median Nash

efficiency scores for all the stations. Note that Figure 5 in the paper was actually

correctly presented and there was a mistake in the caption - all the stations were

considered in the calculations, not just the stations with positive scores. Fig. R2.3 will

be included in a supplement.

1.6

Dr Jean-Phillipe Vidal from IRSTEA posted a short comment, which is related to

comment 1.5. He was right to point out that many of the stations included in the

calculations are influenced by anthropogenic water management, which is not simulated

by the MODCOU hydrogeological model. He was concerned that the results might be

interpreted as being closer to anthropogenically influenced streamflow. He suggested

the following:

1. To consider only catchments with low anthropogenic influence in order not to

compare apples and oranges and avoid drawing conclusions on the ability of
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1.7 1

SIM (with or without data assimilation) to simulate anthropogenically influenced

streamflow,

2. To show scatter plots of NSEs instead of distributions (possibly with marginal

distributions) to reduce the potential spatial bias effect mentioned above.

Response:

We have decided to follow Dr Jean-Phillipe Vidal’s suggestions by showing the results

for the stations with low-anthropogenic influence. We have used the suggested reference

networks of Giuntoli et al. (2012, 2013) to extract a subset of 67 river gauges with low-

anthropogenic influence from the original 546 stations, valid for both low and high

flows. A map of these stations is shown in Fig. R2.4. A scatter plot is shown of the

Nash efficiency of these stations (labeled as “Low anth. influence”) and all the other

stations (labeled as “High anth. influence”) in Fig. R2.5. The same results are shown

as in Fig. R2.3, but for the sake of clarity, in Fig. R2.5 only the stations are shown in

the range of Nash scores -1.0 to 1.0. The ‘low anth. influence’ stations follow a similar

pattern to the ‘high anth. influence’ stations. Furthermore, we calculated the Median

Nash efficiency scores for the 67 stations in Table R2.2. The scores for this subset

are improved relative to the 546 stations in Table R2.2, as expected. In particular, the

percentage of stations with good scores (Nash efficiency > 0.6) is increased significantly.

The discharge bias is also slightly less for the stations with low anthropogenic influence

relative to the 546 stations. This supports Jean-Phillipe Vidal’s suggestion that part

of the positive bias in the discharge ratio of the NIT simulation for the 546 stations

could be attributed to abstractions not being accounted for. However, the majority

of the discharge bias in the NIT simulation is still present with the 67 stations with

low anthropogenic influence. Moreover, the relative performance of the experiments is

very similar to the original 546 stations. Therefore, the conclusions of the experiments

are not affected by the ability of SIM (with or without data assimilation) to simulate

anthropogenically influenced streamflow.

We will explain these results in Section 3.4 of the paper. Figures R2.4 and R2.5

will be included in a supplement.

1.7

Furthermore, the assimilation doesnt appear to have much of an impact on the stream-

flow simulations and actually decreases the skill (even when excluding the stations that

had the negative NSE). I wonder what the rationale was of not using a more sophis-

ticated data assimilation algorithm that could overcome some of the limitations in the

SEKF. There are many limitations with this approach that I dont see any worthwhile

scientific contribution added by this study, although there are some interesting aspects
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1.7 1

in this work.

Response:

The reviewer is right that in many data assimilation applications with hydrological

models, more sophisticated algorithms are commonly used that take into account the

“errors of the day”. We will clarify in the introduction the differences between hy-

drological and land surface data assimilation, and why we chose the SEKF for our

experiments.

Many studies have investigated the assimilation of SSM and streamflow observations

into hydrological models in order to improve streamflow predictions and hydrological

parameters (Thirel et al., 2010; Aubert et al., 2003; Clark et al., 2008; Moradkhani et al.,

2005, 2012). In large-scale streamflow assimilation, a DA method is typically chosen

that can take into account lateral background-error covariances and flow-dependence.

These features are important because streamflow has important horizontal interactions.

For example, Thirel et al. (2010) used the Best Linear Unbiased Estimate (BLUE)

method to assimilate steamflow observations into the MODCOU hydrogeological model,

which they used to update soil moisture in the ISBA land surface model (LSM). Al-

though they used a fixed diagonal background-error covariance at the start of each

window, they generated implicit background-error covariances between the river sub-

basins using finite differences in the observation operator Jacobian calculation. This

led to improved streamflow predictions.

LSMs concern water and energy fluxes between the soil and atmosphere. Unlike

hydrological models, layer-based LSMs such as the ISBA model are typically pointwise

(there is no horizontal interaction between the gridpoints), since this greatly reduces

the computational expense. It is also common to use a DA method with 1D Kalman

filtering (where observations are used to update colocated gridpoints) as opposed to

2D Kalman filtering (where observations are used to update colocated gridpoints and

neighbouring gridpoints). Moreover, a study by Gruber et al. (2015) over the contiguous

US found that there was no advantage of 2D Kalman filtering over 1D Kalman filtering

when assimilating ASCAT SSM data into a soil moisture model. They explained these

results using an analytical evaluation of the impact of spatial-error autocorrelations on

the steady-state Kalman gain.

In large-scale land surface DA, it is common to assimilate satellite-derived surface

soil moisture (SSM) observations and screen-level temperature and humidity observa-

tions into a LSM, in order to improve soil moisture and screen-level variables. Typically

WG2 is of more interest than SSM as it has a much larger water capacity and therefore

has a greater influence on vegetation and water fluxes. Land surface DA is commonly

performed using a 1D ensemble Kalman filter (EnKF) or a simplified extended Kalman
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1.7 1

filter (SEKF). The SEKF simplifies the EKF by assuming that the errors in the back-

ground state are fixed and uncorrelated between gridpoints. It uses finite differences

for computing Jacobians necessary to extract information from the observations to the

prognostic variables.

There has been increasing interest in ensemble DA for LSMs over the last two

decades (Reichle et al., 2002, 2008; Zhou et al., 2006; Muñoz Sabater et al., 2007;

Draper et al., 2012; Carrera et al., 2015), partly because these methods can estimate the

“errors of the day” in the background-error covariance. At Environment Canada, the

development of an operational EnKF using the same ISBA 3-layer model we employed

is also motivated by the requirements of coupling land surface DA with NWP ensemble

prediction (Carrera et al., 2015). However, the correct representation of the “errors of

the day” is challenging in land surface DA. A large proportion of the errors in LSMs

come from the model and the atmospheric forcing, rather than the initial conditions.

The integrating nature and the nonlinear interactions in LSMs mean that short-term

errors dissipate over time, including random errors in the precipitation. For example,

a study by Maggioni et al. (2011) found that errors in WG2 are not very sensitive to

the rainfall error modelling approach. Indeed, experiments assimilating in situ SSM

observations with the ISBA-A-gs model have demonstrated that the EnKF and the

SEKF produce a WG2 analysis with comparable accuracy and both methods improve

on the model simulation (Muñoz Sabater et al., 2007; Fairbairn et al., 2015).

Due to its efficacity, simplicity and low computational cost, the SEKF is the pre-

ferred method at several meteorological operational centres for analyzing soil moisture

and screen level variables. Hess (2001) developed a simplified 2D-Var (theoretically

equivalent to an SEKF) scheme for the assimilation of screen-level temperature and

humidity at the German Weather service (DWD). The European Centre for Medium

Range Weather Forecasts (ECMWF) assimilate screen-level temperature and humidity

operationally with an SEKF (de Rosnay et al., 2013). An SEKF was developed for

research purposes to assimilate ASCAT satellite derived soil moisture at Meteo-France

(Draper et al., 2009; Mahfouf, 2010). Recently, ECMWF have also modified their

SEKF to assimilate ASCAT derived SSM observations (ECMWF, 2016). At the UK

Met Office, an SEKF has been developed for research purposes for the assimilation of a

wide variety of observation types, including screen-level variables and satellite derived

SSM observations (Candy et al., 2012).

In our study, we use an SEKF to assimilate LAI and SSM observations to update

LAI and WG2 in the ISBA-A-gs LSM in the SAFRAN-ISBA-MODCOU (SIM) hydro-

logical suite. SIM consists of three stages: (1) An atmospheric reanalysis (SAFRAN)

over France, which forces (2) the ISBA-A-gs land surface model, which then provides

drainage and runoff inputs to (3) the MODCOU hydrogeological model. The drainage

7
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and runoff outputs from ISBA-A-gs are validated by comparing the simulated stream-

flow from MODCOU with observations. Our study is different to the hydrological

studies mentioned earlier because the LSM and the DA are independent of the hydro-

geological model. This study is relevant to the land surface DA community because

several operational centres assimilate SSM observations using an SEKF to update WG2.

Many studies have demonstrated that the force-restore dynamics of the ISBA 3-layer

model can skillfully simulate soil moisture and propagate the increments downwards

from the surface to the root-zone (Muñoz Sabater et al., 2007; Draper et al., 2009;

Mahfouf et al., 2009; Barbu et al., 2011, 2014). An integrated validation using SIM has

also demonstrated that the ISBA 3-layer model can skillfully simulate drainage and

runoff fluxes over France (Habets et al., 2008). But relatively few studies have assessed

the SEKF performance using an integrated validation of the soil moisture fluxes. To

our knowledge, this is the first article to perform this type of validatation for LAI as-

similation. Moreover, the validation is robust because it is performed using more than

500 river gauges over France and the length of the analysis period spans several years.

In the discussion section we mentioned that in future studies we would like to test

the EnKF over France with a stochastic representation of precipitation and model

errors using a similar hydrogeological evaluation to this study. The EnKF would not

be affected by some of the issues we encountered with the SEKF, including the collapse

of the observation operator Jacobians during wet conditions. However, the choice

of DA method is not the only problem. In the discussion section we also mentioned

important deficiencies in the 3-layer ISBA-A-gs land surface model, including no vertical

variability in WG2. These deficiencies inhibit the SEKF performance. We expect the

SEKF to perform significantly better with a new multi-layer diffusion based model

(ISBA-DIF). For example, with the 3-layer model we assimilate SSM observations into

a very shallow layer (0-1 cm), which is very sensitive to the atmospheric forcing over

the 24 hour assimilation window. It is possible with ISBA-DIF to assimilate them into

a slightly deeper layer (1-5 cm), which is less sensitive to the atmospheric forcing.

1.8 Minor comments

1. p. 2, l. 10: I would replace the term network, which usually refers to in-situ

measure- ments.

Response: Agreed, we will replace “network” by “coverage”.

2. p. 2, l. 10 “a short forecast from the past”: it doesnt have to be from the past,

it can be a prediction of the current time (i.e. observation time).

8
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Response: Agreed, we will replace “a short forecast from the past” with “a

short forecast from the previous analysis”.

3. p. 4, l. 22: can the authors add a sentence on what the delayed cut-off version

of SAFRAN is?

Response: We will add: “The delayed cut-off version of SAFRAN includes

additional observations obtained after the real-time cut-off, which makes it more

accurate. The delayed cut-off version of SAFRAN uses additional observations

from over 3000 climatological observing stations, which report once monthly”.

4. p. 5, l. 15: why were only ASCAT observations used and not SMOS for example?

Is it because of the study period?

Response: Yes, ASCAT has the advantage of being available over the study

period and ASCAT-like data will be available for decades to come. Also, the

SEKF at Meteo-France is calibrated to assimilate ASCAT observations and the

assimilation has already been performed in a number of studies (Draper et al.,

2009; Barbu et al., 2014). The aim of the study was not to test new soil moisture

data sources, but to validate the soil water fluxes of the existing system using a

hydrogeological model. The assimilation of multiple satellite products is being

explored in a different study.

5. p. 5, l. 21: why do the soil water index data need to be interpolated to the model

resolution? Can the SEKF not handle different spatial resolutions between the

model and the observations?

Response: The SEKF assimilates observations in model space (i.e. the same

grid as the model), so it is necessary to perform this interpolation.

6. p. 5, l. 21: p. 5, l. 25: has the WG1 soil moisture climatology been validated?

Response: The ISBA model soil moisture states have been compared with satel-

lite or in situ observations in several studies and generally show a good level

of skill (e.g. Draper et al. (2009); Muñoz Sabater et al. (2007); Albergel et al.
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(2008, 2010b); Barbu et al. (2014); Fairbairn et al. (2015)). Most of these studies

have also demonstrated that the SEKF can significantly improve the soil moisture

scores.

7. p. 5, l. 32: were additional LAI products considered (e.g. MODIS)?

Response: Extensive comparisons of GEOV1 and MODIS are available from the

Copernicus GLS website (http://land.copernicus.eu/global/sites/default/files

/products/GIOGL1 VR LAIV1 I1.10.pdf and

http://land.copernicus.eu/global/sites/default/files/products/GIOGL1

QAR PROBAV-GEOV1 I3.10.pdf). The direct validation based on in situ LAI

observations shows that the GEOV1 products present slightly better scores than

MODIS.

In any case, the aim of this study was not to test new observation datasets but to

work with the existing system. The SEKF is already set up to assimilate GEOV1

observations (Barbu et al., 2014).

8. p. 7, l. 25-27: this is confusing, how are the 1.2 m2/m2 and +5% values obtained?

Response: Please see 1.3 above.

9. 8, l. 5: how are the LAI and WG1 estimates validated against satellite observa-

tions? Werent these satellite observations assimilated into the model?

Response: We agree with the reviewer that this sentence is misleading: “The

LAI and WG1 state estimates for the experiments are validated using the satellite

observations”. We will remove this sentence and replace it with the following: “A

system validation was performed by comparing the LAI and WG1 states with

the LAI and SSM observations respectively for all the simulations and data as-

similation experiments. Note that this is not an independent validation of the

performance of the system, for which we would need independent observations.

The rationale was to check the effectiveness of the SEKF i.e. to see if it im-

proved the fit between the model simulations and the observations. The fit to

the observations was determined by the root mean square difference (RMSD),

the correlation coefficient (CC) and the bias. These checks were important be-

cause the performance of the SEKF had an important impact on the drainage
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and runoff fluxes.”

10. p. 9, l. 28-29: I don’t understand how the good performance of the NITbc is ex-

plained by the relationship between the bias in the discharge ratio and the NSE.

Doesnt the NITbc just have a bias-corrected radiative forcing? Where is the

causality between the simulation configuration and the performance? Wouldn’t

it make sense that the model with the smaller bias would have better performance

in terms of NSE?

Response: We agree this could be clearer. We explained the causality in the

original paper in the following paragraph (starting line 32, page 9) by examining

the impact of the different simulations on the soil water fluxes. On line 3 of page

10 we mention that: “The NITbc simulation increases the direct radiative forcing

by 5%, which results in increased evapotranspiration and lower WG2 during the

year. This significantly reduces the drainage and runoff from October to June.”

We suggest adding another sentence: “The reduced drainage and runoff feeding

into the MODCOU hydrogeological model results in less river discharge, which

reduces the positive discharge bias. This in turn improves the Nash efficiency

scores.”

11. p. 12, l. 14-15: but nothing is said on how the higher LAI parameter was chosen.

Response: Please see 1.3 above.

11
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Table R2.1: Scores for WG1 (model state compared with observations) averaged over
2007-2014. The closest fit to the observations are shown in bold font.

Experiment RMSD
(m3/m3)

CC Bias
(m3/m3)

NIT 0.051 0.77 0.00
NITm 0.049 0.77 0.00
NITbc 0.051 0.77 0.00
LDAS1 0.049 0.77 0.00
LDAS2 0.048 0.78 0.00
LDAS1bc 0.049 0.77 0.00
LDAS2bc 0.049 0.78 0.00
LDAS2QC 0.048 0.78 0.00
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Table R2.2: Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the
546 river gauges over France and for the subset of 67 gauges with low anthropogenic
influence, calculated over 2007-2014. Also shown are the % of stations with a Nash
score above 0.6. The best scores are shown in bold font.

Experiment NE for 546/67
stations

Discharge ratio
for 546/67 sta-
tions

% stations
with NE > 0.6
for 546/67
stations

NIT 0.44/0.48 1.19/1.16 26%/44%
NITm 0.48/0.54 1.15/1.12 30%/48%
NITbc 0.56/0.60 1.02/0.99 42%/59%
LDAS1 0.44/0.48 1.18/1.15 27%/44%
LDAS2 0.41/0.45 1.21/1.18 23%/40%
LDAS1bc 0.56/0.60 1.02/1.00 42%/57%
LDAS2bc 0.53/0.54 1.08/1.06 38%/53%
LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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Figure R2.1: Histogram of the average annual LAI minimum (2007-2014) values for
the observations over predominantly grassland points (> 70% grasslands) (m2/m2)
over France. Also shown is the NITm LAI minimum parameter for grasslands.
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Figure R2.2: Map showing the average annual LAI minimum (2007-2014) for NIT,
NITm and the observations (m2/m2) over France.
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Figure R2.3: Scatter plots of the SIM discharge Nash efficiency scores for all 546
stations for (a) NIT vs NITbc and (b) for NIT vs LDAS2. The scores are calculated
over 2007-2014.
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Figure R2.4: Map of the SIM discharge Nash efficiency scores for the 67 stations with
low-anthropogenic influence over France for the NIT simulation, calculated over the
period 2007-2014. The river network is also shown.
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Figure R2.5: Same as Fig. R2.3, but the stations are classified with either low (67
stations) or high anthropogenic influence (479 stations). For the sake of clarity, the
Nash scores are shown between -1.0 and 1.0.
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Response to comments from Dr Jean-Philippe Vidal

July 26, 2016

Firstly, we would like to thank Dr Jean-Philippe Vidal for his comments and useful

suggestions.

1 Major comment

Dr Jean-Philippe Vidal was right to point out that many of the stations included in the

calculations are influenced by anthropogenic water management, which is not simulated

by the MODCOU hydrogeological model. He was concerned that the results might be

interpreted as being closer to anthropogenically influenced streamflow. He suggested

the following:

1. To consider only catchments with low anthropogenic influence in order not to

compare apples and oranges and avoid drawing conclusions on the ability of

SIM (with or without data assimilation) to simulate anthropogenically influenced

streamflow,

2. To show scatter plots of NSEs instead of distributions (possibly with marginal

distributions) to reduce the potential spatial bias effect mentioned above.

Response:

We have decided to follow Dr Jean-Phillipe Vidal’s suggestions by showing the re-

sults for the stations with low-anthropogenic influence. We have used the suggested

reference networks of Giuntoli et al. (2012, 2013) to extract a subset of 67 river gauges

with low-anthropogenic influence from the original 546 stations, valid for both low and

high flows. A map of these stations is shown in Fig. R3.1 (at the end of the document).

A scatter plot is shown of the Nash efficiency of these stations (labeled as “Low anth.

influence”) and all the other stations (labeled as “High anth. influence”) in Fig. R3.2.
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2 MINOR COMMENT

For the sake of clarity, in Fig. R3.2 only the stations are shown in the range of Nash

scores -1.0 to 1.0. The ‘low anth. influence’ stations follow a similar pattern to the ‘high

anth. influence’ stations. Furthermore, we calculated the Median Nash efficiency scores

for the 67 stations in Table R3.1 (at the end of the document). Note that the median is

calculated rather than the mean because the majority of stations (> 80%) have positive

Nash efficiency scores, but a few outliers have scores near to -100. The median is a

more appropriate metric as it is less sensitive to extreme outliers and is a better indi-

cator for highly skewed distributions (Moriasi et al., 2007). The scores for this subset

are improved relative to the 546 stations in Table R3.1, as expected. In particular, the

percentage of stations with good scores (Nash efficiency > 0.6) is increased significantly.

The discharge bias is also slightly less for the stations with low anthropogenic influence

relative to the 546 stations. This supports Jean-Phillipe Vidal’s suggestion that part

of the positive bias in the discharge ratio of the NIT simulation for the 546 stations

could be attributed to abstractions not being accounted for. However, the majority of

the discharge bias in the NIT simulation is still present with the 67 stations with low

anthropogenic influence. Moreover, the relative performance of the experiments is very

similar. Therefore, the conclusions of the experiments are not affected by the ability

of SIM (with or without data assimilation) to simulate anthropogenically influenced

streamflow.

We will explain these results in Section 3.4 of the paper. Figures R3.1 and R3.2

will be included in a supplement.

2 Minor comment

Their interpretation of the NSE detailed P8L8-9 is incorrect:a negative NSE value

means that the model performs worse than a constant model with a value equal to the

average of all observations.

Response: We agree. We will replace “The Nash efficiency can range from −∞
to 1, with 1 corresponding to a perfect match of the model to the observed data and

scores less than zero implying that the model mean is a worse predictor than the obser-

vations.” with “The Nash efficiency can range from −∞ to 1, with 1 corresponding to

a perfect match of the model to the observed data and a negative value implying that

the model performs worse than a constant model with a value equal to the average of

all the observations.”
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2 MINOR COMMENT

Figure R3.1: Map of the SIM discharge Nash efficiency scores for the 67 stations with
low-anthropogenic influence over France for the NIT simulation, calculated over the
period 2007-2014. The river network is also shown.
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Figure R3.2: Scatter plots of the SIM discharge Nash efficiency scores for the 546
stations over France for (a) NIT vs NITbc and (b) for NIT vs LDAS2. The stations are
classified with either low (67 stations) or high anthropogenic influence (479 stations).
For the sake of clarity, the Nash scores are shown between -1.0 and 1.0. The scores are
calculated over 2007-2014.
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Table R3.1: Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the
546 river gauges over France and for the subset of 67 gauges with low anthropogenic
influence, calculated over 2007-2014. Also shown are the % of stations with a Nash
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Abstract. This study validates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations

into a land surface model using the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) An

atmospheric reanalysis (SAFRAN) over France, which forces (2) the 3-layer ISBA land surface model, which then provides

drainage and runoff inputs to (3) the MODCOU hydrogeological model. The drainage and runoff outputs from ISBA are

validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and5

with a subset of stations with low-anthropogenic influence, during several years. This study makes use of the A-gs version

of ISBA that allows for leaf-scale physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates

direct short-wave and long-wave radiation by approximately 5% averaged over France. The ISBA-A-gs model also significantly

underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an

underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and10

aquifers contributes to an overestimation of the SIM river discharge. We attempted to resolve these problems by performing

the following experiments: (i) a correction of the minimum LAI model parameter for grasslands, (ii) a bias-correction of the

model radiative forcing, (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The

data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences

in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the15

median SIM Nash scores by about 9% and 18% respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but

had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage

and runoff, which degraded the median discharge Nash efficiency by about 7%. The poor performance of the SEKF is an artifact

of the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is

dormant, which leads to positive biases in drainage/runoff and insufficient corrections to the LAI minimum, respectively. The20

SSM observations are assimilated into a shallow surface layer (0-1 cm depth) that is highly sensitive to rainfall events. The

planned assimilation of SSM into a slightly deeper layer (1-5 cm depth) with a multiple-layer diffusion model and the use of

an ensemble Kalman filter algorithm that accounts for rainfall uncertainty should alleviate these problems. The results also

highlight the important role that vegetation plays on the soil moisture fluxes. It is recommended that a spatially variable LAI

minimum parameter be introduced into ISBA-A-gs based on the lowest LAI values derived from satellite observations.25
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1 Introduction

Soil moisture influences the flow of water to rivers and aquifers on weekly to monthly timescales, which makes it an important

factor in hydrological models. In the last two decades there have been considerable advances in soil moisture data assimilation

(DA) using remotely sensed near-surface soil moisture (Houser et al., 1998; Crow and Wood, 2003; Reichle and Koster, 2005;

Drusch and Viterbo, 2007; Draper et al., 2012; de Rosnay et al., 2013). The estimation of global-scale soil moisture states5

has benefitted considerably from a huge expansion of the satellite coverage, namely the Advanced Scatterometer (ASCAT)

instrument on board the METOP satellites (Wagner et al., 2007), the Soil Moisture and Ocean Salinity (SMOS) Mission (Kerr

et al., 2001) and the Soil Moisture Active Passive (SMAP) Mission (Entekhabi et al., 2010), amongst others. However, these

instruments can only indirectly observe the top 1-3 cm of soil moisture and are subject to retrieval errors. There are also spatial

and temporal gaps in the observation network. The vegetation influences the soil moisture state through evapotranspiration and10

the vegetation coverage can be estimated by the leaf area index (LAI). This is a dimensionless quantity that represents the one-

sided green leaf area per unit ground surface area (Gibelin et al., 2006). The LAI can be derived from satellite measurements in

the visible range. However, over France it is available from polar-orbiting satellites at a relatively low temporal frequency (on

average every 10 days) compared with soil moisture satellite observations (about every 3 days) due to cloud cover. The aim of

DA methods is to combine these observations with a short model forecast from the previous analysis (the background state) to15

provide an improved estimate of the state of the system (the analysis). DA methods are necessary to account for the errors in

the observations and the model, and to spread the information through space and time.

Many studies have investigated the assimilation of surface soil moisture (SSM) and streamflow observations into hydrolog-

ical models in order to improve streamflow predictions and hydrological parameters (Aubert et al., 2003; Moradkhani et al.,

2005; Clark et al., 2008; Thirel et al., 2010; Moradkhani et al., 2012). In large-scale streamflow assimilation, a DA method20

is typically chosen that can take into account lateral background-error covariances and flow-dependence. These features are

beneficial because streamflow has important horizontal interactions. For example, Thirel et al. (2010) used the Best Linear

Unbiased Estimate (BLUE) method to assimilate streamflow observations into the MODCOU hydrogeological model over

France, which they used to update soil moisture in the ISBA land surface model (LSM).

LSMs concern water and energy fluxes between the soil and atmosphere. Unlike hydrological models, layer-based LSMs25

such as the ISBA model are typically pointwise (there is no horizontal interaction between the gridpoints), since this greatly

reduces the computational expense. It is also common to use a DA method with 1D Kalman filtering (where observations

are used to update colocated gridpoints) as opposed to 2D Kalman filtering (where observations are used to update colocated

gridpoints and neighbouring gridpoints). Moreover, a study by Gruber et al. (2015) over the contiguous US found that there

was no advantage of 2D Kalman filtering over 1D Kalman filtering when assimilating ASCAT SSM data into a soil moisture30

model.

In large-scale land surface DA, it is common to assimilate satellite derived SSM observations and screen-level temperature

and humidity observations into a LSM, in order to improve soil moisture and screen-level variables. Typically the root-zone

soil moisture (WG2) (1-3 m deep) is of more interest than SSM as it has a much larger water capacity and a long memory
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(from weeks to months). Land surface DA is often performed using a 1D ensemble Kalman filter (EnKF) or a simplified

extended Kalman filter (SEKF). The SEKF simplifies the EKF by assuming that the errors in the background state are fixed

and uncorrelated between gridpoints. It uses finite differences for computing Jacobians necessary to extract information from

the observations to the prognostic variables.

There has been increasing interest in ensemble DA for LSMs over the last two decades (Reichle et al., 2002, 2008; Zhou5

et al., 2006; Muñoz Sabater et al., 2007; Draper et al., 2012; Carrera et al., 2015), partly because these methods can estimate

the “errors of the day” in the background-error covariance. The operational EnKF at Environment Canada is also motivated

by coupling land surface DA with ensemble weather forecasting (Carrera et al., 2015). However, the correct representation of

the “errors of the day” is challenging in land surface DA. A large proportion of the errors in LSMs come from the model and

the atmospheric forcing, rather than the initial conditions. Furthermore, the integrating nature and the nonlinear interactions in10

LSMs cause the short-term errors to dissipate over time, including random errors in the precipitation (Maggioni et al., 2011).

Indeed, experiments assimilating in situ SSM observations with the ISBA 3-layer model have demonstrated that the EnKF and

the SEKF produce a WG2 analysis with comparable accuracy and both methods improve on the model simulation (Muñoz

Sabater et al., 2007; Fairbairn et al., 2015).

Due to its efficacity, simplicity and low computational cost, the SEKF is the preferred method at several meteorological15

operational centres for analyzing soil moisture and screen level variables. Hess (2001) developed a simplified 2D-Var (theo-

retically equivalent to an SEKF) scheme for the assimilation of screen-level temperature and humidity at the German Weather

service (DWD). An SEKF has been developed for research purposes to assimilate ASCAT satellite derived soil moisture at

Météo-France (Draper et al., 2009; Mahfouf, 2010) and the UK Met Office (Candy et al., 2012), amongst other variables. The

European Centre for Medium Range Weather Forecasts (ECMWF) assimilate screen-level temperature and humidity opera-20

tionally with an SEKF (de Rosnay et al., 2013) and more recently assimilate ASCAT derived SSM observations (ECMWF,

2016).

In our study, we use an SEKF to assimilate LAI and SSM observations to update LAI and WG2 in the ISBA LSM within

the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. This study makes use of the A-gs version of ISBA that allows for

leaf-scale physiological processes. SIM is operational at Météo-France and its streamflow and soil moisture outputs are used25

as a tool by the French National flood alert services (Thirel et al., 2010). SIM consists of three stages: (1) An atmospheric

reanalysis (SAFRAN) over France, which forces (2) the ISBA-A-gs land surface model, which then provides drainage and

runoff inputs to (3) the MODCOU distributed hydrogeological model. The drainage and runoff outputs from ISBA-A-gs are

validated by comparing the simulated streamflow from MODCOU with observations. Our study is different to the hydrological

studies mentioned earlier because the LSM and the DA are independent of the hydrogeological model. This study is relevant30

to the land surface DA community because several operational centres assimilate SSM observations using an SEKF to update

WG2. Many studies have demonstrated that the force-restore dynamics of the ISBA 3-layer model can effectively simulate soil

moisture and propagate the increments downwards from the surface to the root-zone (Muñoz Sabater et al., 2007; Draper et al.,

2009; Mahfouf et al., 2009). An integrated validation using SIM has demonstrated that the ISBA 3-layer model can skillfully

simulate drainage and runoff fluxes over France (Habets et al., 2008). The dynamic vegetation model in ISBA-A-gs is also35
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capable of modelling seasonal changes in LAI (Jarlan et al., 2008; Brut et al., 2009; Barbu et al., 2011, 2014). But relatively

few studies have assessed the SEKF performance using an integrated validation of the soil moisture fluxes. To our knowledge,

this is the first article to demonstrate this type of validatation for LAI assimilation. Furthermore, the validation is robust because

it is performed using more than 500 river gauges over France during several years.

This work is partly motivated by the study of Draper et al. (2011), which validated the assimilation of SSM into ISBA-A-gs5

using an identical twin experiment with SIM. Although the SEKF corrected a dry bias in WG2 that resulted from the precipi-

tation forcing, they acknowledged that this may have been related to a bias in the SEKF rather than the assimilation accurately

responding to the precipitation errors. Studies by Szczypta et al. (2011) and Le Moigne (2002) have found underestimations of

about 5% by SAFRAN in the direct short-wave and long-wave radiative fluxes respectively, averaged over France. In addition

to these problems with radiative forcing, we demonstrate in this study that the LSM significantly underestimates LAI for grass-10

lands in winter (compared with satellite retrievals). The specification of the LAI minimum in the model is important because it

prevents vegetation mortality and allows the regrowth of vegetation in the spring period (Gibelin et al., 2006). We use SIM as

a tool to validate potential solutions to these deficiencies, based on four experiments:

i. Correcting the model under-estimated LAI minimum parameter;

ii. Bias-correcting the SAFRAN radiative forcing;15

iii. Assimilating only LAI observations with an SEKF;

iv. Assimilating SSM and LAI observations with an SEKF.

Since Draper et al. (2011) already investigated the impact of assimilating SSM on SIM, it was not necessary to perform

an experiment with the assimilation of SSM only. We validate the performance of these experiments using observations from

more than 500 river gauges over France during the period July 2007 to August 2014. We include an additional validation using20

a subset of 67 stations with low-anthropogenic influence because the MODCOU hydrogeological model only accounts for

natural features.

It should be kept in mind that LSMs are not chaotic but accumulations of errors from the model and the atmospheric forcing

are significant. Studies have shown that DA can effectively reduce errors in the LSM state variables that are caused by these

deficiencies, such as precipitation errors (Albergel et al., 2010a) and phase errors in the LAI evolution (Barbu et al., 2014).25

In this study the SSM observations are rescaled such that the mean and standard deviation match the model climatology.

Therefore, the assimilation of the SSM observations is designed to correct short term errors in the model state rather than

systematic errors. The LAI observations are not rescaled, so the assimilation of LAI can impact the systematic model and

forcing deficiencies, as well as the short term errors. We repeat experiments (iii) and (iv) after correcting the LAI minimum

and the radiative forcing in order to explore other potential impacts of the DA on SIM.30

The paper is structured as follows. The methods and materials are given in Sect. 2, which includes a description of the

LSM, the assimilated observations, the DA methods, the experimental setup and the SIM validation. The results are presented

in Sect. 3, including the impact of the model simulations and DA on the model state variables and the river discharge. A
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discussion in Sect. 4 considers potential solutions to the problems encountered in this study. Finally, the conclusion is given in

Sect. 5.

2 Methods and materials

2.1 ISBA-A-gs land surface model

In our study, the ISBA-A-gs LSM was forced by the atmospheric variables provided by the “Système d’Analyse Fournissant des5

Renseignements à la Neige” (SAFRAN). The SAFRAN forcing is derived from a meso-scale analysis system and is assumed

to be homogeneous over 615 specified climate zones. The forcing is interpolated from these zones to the Lambert projected

grid with a horizontal resolution of 8 km (Durand et al., 1993). The delayed cut-off version of SAFRAN was employed,

which uses information from an additional 3000 climatological observing stations (which report one-monthly) over France

(Quitana-Ségui et al., 2008; Vidal et al., 2010) after the real-time cut-off, which makes it more accurate. The atmospheric10

variables include precipitation, wind, incoming short-wave and long-wave radiation, relative humidity and air temperature

with an hourly temporal sampling.

Version 8.0 of SURFEX was used in the experiments, which contains the “Interactions between Soil, Biosphere and At-

mosphere” (ISBA) LSM (Noilhan and Mahfouf, 1996). The model uses the same horizontal grid resolution as SAFRAN of 8

km. The ISBA-A-gs version was used, which allows for the influence of leaf-scale physiological proceseses, including pho-15

tosynthesis (Calvet et al., 1998). Each grid cell is split into twelve land cover types (so called “patches”). Soil and vegetation

paramaters are derived from the ECOCLIMAP database (Faroux et al., 2013). The nitrogen dilution version (referred to as

“NIT” hereafter) of ISBA-A-gs was applied, which dynamically simulates the LAI evolution (Gibelin et al., 2006). The NIT

version allows for the effects of atmospheric conditions on the LAI, including the carbon dioxide concentrations.

The three-layer version of ISBA was adopted for this study (Boone et al., 1999). This includes the WG1 layer with depth20

0-1cm. The WG2 layer includes WG1 and is 1-3 m deep, with the depth depending on the patch type. A recharge zone exists

below WG2. The model water transfers are governed by the force-restore method of Deardorff (1977). The surface and root-

zone layers are forced by the atmospheric variables and restored towards an equilibrium value. The drainage and runoff outputs

from ISBA-A-gs drive the MODCOU hydrogeological model. The gravitational drainage is proportional to the water amount

exceeding the field capacity (the effective limit where gravitational drainage ceases) (Mahfouf and Noilhan, 1996). It is driven25

by the hydraulic conductivity of the soil, which depends on the clay content. A small residual drainage below the field capacity

was introduced by Habets et al. (2008) to account for unresolved aquifers. Runoff occurs when the soil moisture exceeds the

saturation value.

2.2 Assimilated observations

The SSM observations were retrieved from ASCAT radar observations, which observe at 5.255 GHz (C-band) and a resolution30

of approximately 25 km. The radar is on board EUMETSAT’s Meteorological Operational (MetOP) satellite. The assimilation

5



of ASCAT data was chosen because it was available throughout the analysis period. The original ASCAT values were converted

into the surface degree of saturation (SDS, with values between 0 and 1) using a change detection technique, which was

developed at the Vienna University of Technology (Tu-Wien) and is detailed in Wagner et al. (1999); Bartalis et al. (2007).

The historically lowest and highest backscatter coefficients are assigned values for dry and saturated soils respectively. The

Copernicus Global Land Service then calculates the surface water index (SWI) by applying a recursive exponential filter to5

these SDS values (Albergel et al., 2008) using a time-scale that may vary between 1 and 100 days. The SWI represents the soil

wetness over the soil profile and also has values between 0 (dry) and 1 (saturated). The longer the time-scale of the exponential

filter, the deeper the representative soil profile. The SWI-001 version 2.0 product was used in this study, which has a one day

timescale and represents the SWI for a depth up to 5 cm. We then interpolated the SWI-001 data to the 8 km resolution model

grid. As in Draper et al. (2011) an additional screening step was performed to remove observations with an altitude greater10

than 1500m, frozen regions and areas with an urban fraction greater than 15%.

We applied a linear rescaling to the SWI-001 data, which scales them such that the mean and standard deviations match

the WG1 layer climatology (Calvet and Noilhan, 2000; Scipal et al., 2008). This is a linear approximation of the cumulative

distribution matching technique, which uses higher order moments (Reichle et al., 2004; Drusch et al., 2005). As in Barbu et al.

(2014), we applied a seasonal rescaling using a 3-month moving average over the experiment period (2007-2014). The rescaling15

is designed to remove biases between the model and the observations and in the process the SWI-001 data are converted into

the same units as the model, expressed in volumetric soil moisture (m3/m3). The rescaled SSM observations were assimilated

into the WG1 model layer. The observations were assumed to occur at the same time as the analysis at 09UTC and had a

temporal frequency of about 3 days. This was a reasonable assumption since the satellite overpass is at 09:30 UTC.

The GEOV1 LAI product is part of the European Copernicus GEOLAND 2 project. The LAI observations were retrieved20

from the SPOT-VGT (August 2007 to June 2014) and PROBA-V (June 2014-July 2014) satellite data. The retrieval methodol-

ogy is discussed by Baret et al. (2013). Following Barbu et al. (2014), the 1 km resolution observations were interpolated to the

8 km model gridpoints, provided that observations are present for at least 32 of the observation gridpoints (just over half the

maximum amount). The observations were assumed to occur at 09UTC with a temporal frequency of 10 days. This assumption

was reasonable given that LAI evolves slowly.25

2.3 Data assimilation

The SEKF simplifies the extended Kalman filter (EKF, (Jazwinski, 1970)) by using a fixed estimate of the background-error

variances at the start of the window and by assuming the covariances are equal to zero (Mahfouf et al., 2009). We used the

same SEKF formulation as Barbu et al. (2014) for the assimilation of SSM and LAI observations over France. The prognostic

variables are LAI and WG2. The background state (xb) at time ti is a model propagation of the previous analysis (xa(ti−1))30

to the end of the 24 hour assimilation window:

xb(ti) = Mi−1(xa(ti−1)), (1)
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where M is the (nonlinear) ISBA-A-gs model. The observation was assimilated at the analysis time, at 09UTC, at the end of

the 24-hour assimilation window. The analysis was calculated from the generic Kalman filter equation:

xa(ti) = xb(ti) + Ki(y
o
i −yi), (2)

where yo is the assimilated observation and yi = H(xb(ti)) is the model predicted value of the observation at the analysis

time. The Kalman gain is defined as:5

Ki = BiHT
i (HiBiHT

i + Ri)
−1, (3)

where H is the Jacobian matrix of the linearized observation operator, B is the background-error covariance matrix and R

is the observation-error covariance matrix. The observation operator Jacobians were calculated using finite differences for

observation k and model variable l:

Hkl
i =

Hk
i (Mi−1(x(ti−1) + ∆xl

i−1))−Hk
i (Mi−1(x(ti−1)))

∆xl
i−1

, (4)10

where ∆xl is a model perturbation applied to model variable l. The WG2 and LAI perturbations were set to 1.0×10−4×WG2

and 1.0× 10−3×LAI respectively. These were within the range of acceptable perturbation sizes based on the experiments

of Draper et al. (2009) and Rüdiger et al. (2010). Equation (4) requires an additional model simulation for each prognostic

variable. The linear assumptions in deriving the Jacobians are generally acceptable for these perturbation sizes. However,

occasionally the linear assumptions can break down, especially during dry periods in summer (Draper et al., 2009; Fairbairn15

et al., 2015). For this reason we set an upper bound on the Jacobians of 1.0. It is worth mentioning that in situations where

the model and atmospheric forcing errors are not properly taken into account the SEKF analysis will be suboptimal even if the

Jacobian calculation is accurate enough. The Jacobian matrix derived from Eq. (4) is defined as follows:

H =

 ∂WG1
∂WG2

∂WG1
∂LAI

∂LAI
∂WG2

∂LAI
∂LAI

 . (5)

When assimilating just LAI, only the ∂LAI
∂WG2 and ∂LAI

∂LAI terms are included. The ∂WG1
∂LAI is generally small, since the LAI does20

not substantially influence the surface layer (Barbu et al., 2014). The ∂WG1
∂WG2 Jacobian couples WG1 with WG2 (Draper et al.,

2009). The ∂LAI
∂WG2 couples LAI with WG2 (Barbu et al., 2014). The ∂LAI

∂LAI Jacobian was studied by Rüdiger et al. (2010) and

has a strong seasonal dependence. As we will demonstrate in Sect. 3.3, the examination of these Jacobians is essential in order

to understand the performance of the SEKF.

SURFEX is implemented using the mosaic approach of Koster and Suarez (1992), where each model grid-box is split into25

12 vegetation patches. The SEKF analysis is calculated independently for each patch, with the same observation used for all

the patches in the grid-box. The analysis for the gridpoint is simply a linear aggregation of the analyses over the 12 patches,

which are weighted according to their patch fractions (see Barbu et al. (2014) for further details).

Following Draper et al. (2011), the WG2 background-error standard deviation was set to 0.2(wfc-wwilt), where wfc is the

field capacity and wwilt is the wilting point. The scaling by (wfc-wwilt) assumes that there is linear relationship between the30
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soil moisture errors and the dynamic range, which depends on the clay content of the soil (Mahfouf et al., 2009). The SSM

observation error standard deviation was set to 0.65(wfc-wwilt), which is about 0.055 m3/m3 averaged over France. This value

is slightly larger than the median ASCAT-derived SDS error of 0.05 m3/m3 estimated by Draper et al. (2011) because it also

approximates the oversampling issue i.e. the same ASCAT observation covers several gridpoints. This value is comparable

with observation errors expected for remotely sensed SSM observations (de Jeu et al., 2008; Draper et al., 2013). As in Barbu5

et al. (2011) the LAI background and observation error standard deviations were proportional to the LAI values themselves and

a value of 0.2×LAI was used for LAI values greater than 2 m2/m2. For LAI values below 2 m2/m2 the LAI errors were fixed at

0.4 m2/m2. Both the background-error and observation-error covariance matrices of the SEKF are diagonal (zero covariances

between layers), but implicit background-error covariances are derived from the H matrix at the analysis time. The SEKF is a

pointwise method i.e. it cannot take into account horizontal covariances between gridpoints.10

2.4 Experimental setup

The main experiments in this study are summarised in Table 1. The SIM river discharge was compared with the observations

from 546 stations over France. Firstly the baseline experiment (NIT) was performed, which shows the impact of the biased

radiative forcing and the under-estimated LAI minimum on the SIM river discharge. Thereafter, various potential solutions to

these deficiencies were investigated, as set out in the introduction: (i) NITm, which was equivalent to NIT but with an elevated15

LAI minimum of 1.2 m2/m2 for grasslands (as opposed to 0.3 m2/m2 with NIT), (ii) NITbc, which used both the elevated

LAI minimum of 1.2 m2/m2 and the bias-corrected radiative forcing (+5% for direct long-wave and short-wave over France),

(iii) LDAS1, which used the SEKF to assimilate LAI only with the NIT model and (iv) LDAS2, which assimilated both LAI

and SSM observations with the NIT model. We chose an augmented grassland LAI minimum value of 1.2 m2/m2 for NITm

because over 99% of points with a high percentage of grassland (the grassland patch fraction exceeding 70%) had an observed20

average annual LAI minimum above this value. Szczypta et al. (2011) and Le Moigne (2002) demonstrated that the direct

short-wave and long-wave radiative forcing respectively are underestimated by approximately 5% averaged over France. We

followed Decharme et al. (2013) in bias-correcting the direct radiative forcing by +5% for NITbc.

Three additional experiments in Table 1 explored whether SSM observation outliers, the under-estimated LAI minimum or

the radiative forcing bias might impact the performance of the DA. The LDAS2QC was equivalent to LDAS2 but with a strict25

quality control of the SSM observations to remove any abnormal outliers due to instrument noise. The outliers were removed

by rejecting observations outside the 90% confidence interval of the model (as in Eq. (1) and (2) of Albergel et al. (2010b))

after the observations had been rescaled. The LDAS1bc and LDAS2bc experiments were equivalent to LDAS1 and LDAS2

respectively, except they used the NITbc model. The SSM observations for LDAS2bc were rescaled such that the standard

deviation and mean matched those of NITbc.30

The MODCOU hydrogeological model does not account for anthropogenic water management. However, there are many

parts of France where anthropogenic water management stongly influences streamflow observations, including the reservoir

operations, for hydropower, irrigation, drinking water, flood and low-flow alleviation and recreation purposes. We used the

reference networks of Giuntoli et al. (2012, 2013) to extract a subset of 67 river gauges with low-anthropogenic influence from
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the original 546 stations, valid for both low and high flows. We compared the results for these 67 stations with the 546 stations

in order to determine if the results were affected by the ability of SIM (with or without DA) to simulate anthropogenically

influenced streamflow.

2.5 Performance diagnostics

2.5.1 System validation5

A system validation was performed by comparing the LAI and WG1 states with the LAI and SSM observations respectively

for all the simulations and data assimilation experiments. Note that this was not an independent validation of the performance

of the system, for which we would have needed independent observations. The rationale was to check the effectiveness of

the SEKF i.e. to see if it improved the fit between the model simulations and the observations. The fit to the observations

was determined by the root mean square difference (RMSD), the correlation coefficient (CC) and the bias. These checks were10

important because the effectiveness of the SEKF had an important impact on the drainage and runoff fluxes.

2.5.2 Validation using SIM

The SIM hydrological model was used as a tool to validate the drainage and runoff from ISBA-A-gs. A complete description

and validation of SIM can be found in Habets et al. (2008). The first two stages of SIM are the SAFRAN atmospheric forcing

and the ISBA-A-gs LSM, which were introduced in Section 2.1. The runoff and drainage from ISBA-A-gs are fed into the15

MODCOU hydrogeological model (Ledoux et al., 1989), which computes the daily evolution of aquifer storages and three-

hour river flow forecasts. More than 900 river gauges are simulated with areas ranging from 240 km2 to 112,000 km2. The

temporal and spatial evolution of two aquifers in the Rhone and Seine Basins are simulated using a diffusivity equation.

The interaction between the rivers and aquifers is modelled and the soil water is routed to the rivers using an isochronism

algorithm. The influence of human activity, such as dams and irrigation, is not accounted for by MODCOU. The simulated river20

discharge from SIM was compared with the observations from 546 river gauges that had data during the period of evaluation

(2007-2014). These observations are available from the French hydrographical database (http://www.hydro.eaufrance.fr/, last

accessed March 2016). We also analyzed the results for the subset of 67 stations with low anthropogenic influence from the

original 546 stations. The fit of the average daily river discharge from MODCOU (measured in m3/m3s−1) to the observations

was measured using the Nash efficiency score (Nash and Sutcliffe, 1970). The Nash efficiency can range from −∞ to 1, with25

1 corresponding to a perfect match of the model to the observed data and a negative value implying that the model performs

worse than a constant model with a value equal to the average of all the observations. Following Habets et al. (2008) we

considered an efficiency of 0.6 to be a good score and 0.5 to be a reasonable score. The median Nash scores were calculated for

all the stations. The median is a more appropriate metric than the mean as it is less sensitive to extreme outliers and is a better

indicator for highly skewed distributions (Moriasi et al., 2007). These issues were present in this study due to some stations30

being heavily affected by anthropogenic water management or unresolved aquifers, despite most stations being well simulated.

The validation period extended from August 2007 to July 2014, with the hydrological year running from August to July.

9



The SIM domain consists of 9892 gridpoints, of which 8602 are based in France. The remaining 1290 points are based in

mountainous regions bordering the French mainland, including most of Switzerland (see Habets et al. (2008) for details). The

LSM does not model horizontal exchanges, but MODCOU takes into account horizontal streamflow. Therefore it is important

to include these external points in SIM because they impact the streamflow over France, particularly in the Rhone basin in the

southeast. However, we only applied the SEKF over the 8602 points in the LDAS France domain. Fig. 1 shows a flowchart of5

SIM and how LDAS France was connected with ISBA-A-gs in SIM. Fig. 2 shows the river network used by MODCOU and

the 546 stations used to validate the discharge. A map of the subset of 67 stations with low anthropogenic influence can be

found in Figure S1.1 of the supplement.

3 Results

3.1 Impact of model and forcing bias-corrections on SIM10

To begin with we examine the influence of the different model simulations (NIT, NITm and NITbc) on the LAI evolution for

the four dominant vegetation patches. We can then link the hydrological performance to each simulation. Over France, the four

dominant vegetation patches are grasslands (32%), C3 croplands (24%), deciduous forests (20%) and coniferous forests (12%).

Fig. 3 shows the monthly averaged LAI model simulations and observations for the gridpoints that contain at least 50% of the

dominant vegetation types. The 50% threshold was used because no points contain more than 70% of deciduous forests, while15

over 1000 gridpoints contain at least 50% of any vegetation type. Table 2 shows the average LAI scores over France (RMSD,

CC and bias) for each of the model simulations.

Firstly we examine the LAI performance for the NIT simulation, which dynamically estimates the LAI evolution. Fig. 3

shows that the NIT simulation is close to the observations for the deciduous forests (Fig. 3(a)). However, the growth and

senescence phases are delayed for the simulated C3 crops and grasslands (Fig. 3(c) and (d)) compared with the observations.20

Furthermore, the grassland LAI is significantly understimated by NIT in winter. It is clear in Fig. 3 that imposing this higher

minimum LAI value (NITm) significantly increases the LAI for grasslands in winter and improves the fit to observations. This

is reflected by better scores for NITm, reducing (increasing) the RMSD (CC) by about 4% compared with NIT. Fig. 4 shows

the average annual LAI minimum over France for the original simulation (NIT), the new simulation (NITm) and the GEOV1

data. Fig. 4 emphasizes that the LAI minimum is underestimated (compared to the GEOV1 data) over much of France for NIT.25

By increasing the grassland LAI minimum from 0.3 m2/m2 to 1.2 m2/m2 the model agrees much better with the data over most

regions. Finally, the benefit of the bias-correction (NITbc) on LAI is also demonstrated in Fig. 3. The bias-correction has little

impact on the LAI of the deciduous and coniferous forest patch types. However, it does reduce the phase errors for both the

C3 crops and grassland patches. This results in significantly better LAI scores, reducing (increasing) the RMSD (CC) by about

10% compared with NITm.30

The WG1 scores for the various simulations are given in Table 3. Recall that the SSM observations are linearly rescaled

such that their mean and standard deviation match the NIT model simulation of WG1, which removes any bias already present.
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Changing the model simulation has little impact on the scores, which suggests that the LAI evolution and the radiative forcing

have a relatively small influence on the moisture content of the surface layer.

Next, the Nash efficiency scores for the different model simulations are displayed in Fig. 5 (a), showing the percentage of

gauging stations at efficiency scores between 0 and 1.0. For the NIT simulation, about 26% of the stations have a score above

0.6 (a good score), 42% of the stations have a score above 0.5 (a reasonable score) and 79% of the stations have a positive Nash5

score. These scores are significantly improved by increasing the LAI minimum and by bias-correcting the radiative forcing.

For the NITm (NITbc) simulation about 31% (42%) of stations reach a score of at least 0.6, 48% (58%) of stations reach a

score of 0.5 or higher and 80% (83%) of the stations have a positive score. Table 4 shows the median Nash scores for each

simulation. The median Nash scores for NIT are increased by about 9% for NITm and further increased by 18% for NITbc.

The median discharge ratio between the modelled (Qs) and observed (Qo) discharge is also shown for each simulation. A value10

that is greater (smaller) than 1.0 indicates a positive (negative) bias in the model. NIT has a median discharge ratio of 1.19,

which indicates that the simulated streamflow is over-estimated by about 20%. This is reduced to 1.15 by applying the LAI

minimum and further reduced to 1.02 by applying the bias-correction. Therefore it appears that the bias in the discharge ratio

has an important impact on the Nash score, with larger biases corresponding to smaller Nash scores. This is clarified when

comparing the annual median Nash scores (Fig. 6(a)) with the annual median discharge ratios in (Fig. 6(b)). It seems that the15

size of the bias in the discharge ratio is negatively correlated with the Nash score, which would explain why NITbc performs

so well. Fig. 6(c) and (d) show the average annual temperature and rainfall respectively. There does not appear to be a strong

correlation between either the temperature or rainfall and the Nash score.

The Nash efficiency for NIT for each station over France is shown in Fig. 2. The river discharge is well simulated over

most areas, but the southeast and northern regions have generally negative scores (shown in black). In southeast France this is20

related to a large number of dams in the alps, which are not simulated by MODCOU. In northern France, this is linked to a

large aquifer that is also not taken into account by MODCOU (see Habets et al. (2008) for details). There are a small number

of stations with negative scores elsewhere, which could also be related to anthropogenic water management. The maps show

similar patterns for the other simulations (not shown). The vast majority of stations (> 80%) for NITbc are improved relative

to NIT, including most of the stations with negative scores. A scatter plot of the Nash efficiency scores of NIT and NITbc for25

all the stations can be found in Figure S1.2(a) of the supplement.

Finally, we investigate the influence of the model simulations on the evapotranspiration, drainage and runoff fluxes in order to

explain the differences in the SIM discharge. Figures 7(a-e) show the average monthly LAI, WG2, evapotranspiration, drainage

and runoff respectively, averaged over France. The NITm simulation has a greater average LAI in winter than NIT because

the NIT LAI minimum is under-estimated. The effect of a higher LAI minimum is to enhance evapotranspiration in winter30

and spring, which reduces the soil moisture and therefore diminishes the drainage and runoff. The consequence of increased

radiative forcing in NITbc is to further increase evapotranspiration and lower WG2 during much of the year. This substantially

reduces drainage and runoff, especially from October to June. These effects are emphasized in Fig. 8(a), which shows the

difference between the sum of drainage and runoff for the different simulations compared with NIT. The reduced drainage
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and runoff feeding into the MODCOU hydrogeological model results in less river discharge, which explains the reduced river

discharge bias and superior Nash scores for NITm and NITbc relative to NIT in Table 4.

3.2 Impact of DA on SIM

The performance of the DA runs on the LAI and WG1 scores are shown in Tables 2 and 3 respectively. LDAS1 significantly

improves the fit of the simulated LAI to the LAI observations compared to NIT. We investigate the influence of DA on the5

drainage and runoff fluxes in Fig. 7(f-j), which is equivalent to Fig. 7(a-e) except that LDAS1 and LDAS2 are compared with

NIT. Fig. 7(g) demonstrates that the assimilation of LAI reduces the LAI phase errors in NIT, indicating that the SEKF is

working effectively during much of the year. However, the LAI assimilation with the SEKF does not address the problem of

the underestimated LAI in winter, unlike NITm in Fig. 7(b). Fig. 8(b) shows the differences between the combined drainage

and runoff fluxes between NIT and the DA methods. The LAI assimilation has a relatively small influence on the drainage10

and runoff fluxes in Fig. 8(b) compared to NITm in Fig. 8(a). The small positive correction of LAI in spring slightly increases

(reduces) evapotranspiration (drainage and runoff) which is cancelled out by the opposite effect in autumn. Overall, LDAS1

does not significantly modify the discharge ratio or the Nash scores.

The LDAS2 experiment slightly improves the WG1 scores relative to NIT (Table 3). The median Nash discharge scores

are degraded by about 7% for LDAS2 compared to NIT (Fig. 5(b) and Table 4) and the positive bias in the discharge ratio15

is increased by about 2% (Table 4). The reason for this is that LDAS2 has a higher average WG2 relative to NIT (Fig. 7(f)),

which translates to augmented drainage and runoff for LDAS2. This is emphasized by comparing the combined drainage and

runoff for LDAS2 relative to NIT in Fig. 8(b). The extra water in the rivers exacerbates the Nash discharge bias already present

in NIT, resulting in degraded Nash efficiency scores. The LDAS2 scores are degraded for about 70% of the stations relative to

the NIT simulation and a scatter plot of the scores for all the stations can be found in Figure S1.2(b) of the supplement.20

The indifferent impact of LDAS1 and the destabilizing influence of LDAS2 on the soil moisture fluxes is explained in the

following section by examining the observation operator Jacobians.

3.3 Examining the SEKF Jacobians

The SEKF observation operator Jacobians are governed by the physics of the model. Their examination is important in order

to understand the SEKF performance. The LAI increments for LDAS1 are mainly driven by the ∂LAI
∂LAI Jacobian. The behaviour25

of the ∂LAI
∂LAI Jacobian values for ISBA-A-gs was investigated by Rüdiger et al. (2010). Their behaviour can be split into three

distinct types, which depend on the atmospheric conditions. The type “O” Jacobian is strictly equal to zero and occurs mainly

in the winter when the vegetation is dormant. In this case the LAI will instantaneously return to its default model minimum.

The type “A” Jacobian represents a fraction between zero and one and is correlated with the LAI value itself. It occurs during

periods of vegetation growth i.e. predominantly in spring. The type “B” Jacobian is equal to 1.0 and takes place during periods30

of low vegetation growth or high mortality, which occurs mainly in autumn. The grassland Jacobians are plotted for LDAS1

in Fig. 9 for a particular point in southwest France (43.35◦ N, 1.30◦ E). Also plotted in the same graph are the LAI values

themselves, with the minimum indicated by the red line. Indeed, the type O Jacobians tend to occur in winter, during which time
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the LAI instantaneously returns to its minimum value of 0.3 m2/m2. The type A and B Jacobians tend to occur in spring and

autumn respectively. These findings are in agreement with Fig. 4 of Rüdiger et al. (2010). The LAI performance for LDAS1

can now be explained by these Jacobian values. Figure 7(g) shows that during the winter the lowest LAI values are barely

corrected by LDAS1 because, as shown in Fig. 9, the LAI is frequently forced back to its minimum value (type O Jacobians).

During the spring there is a small correction (type A Jacobians) and during the autumn there is a much larger correction (type5

B Jacobians). Hence the LDAS1 is able to correct the LAI phase errors to some extent, but LDAS1 is unable to correct the LAI

minimum in winter. Since most of the drainage and runoff is present in winter and spring, the assimilation of LAI has little

influence on SIM. Therefore it is much more effective to correct the LAI minimum parameter for grasslands directly than to

correct the minimum using DA.

The ∂LAI
∂WG2 Jacobian has generally positive values, since an increase in water content in the soil generally enhances photosyn-10

thesis and plant growth (not shown). However, this term is close to zero from about November to March while the vegetation

is dormant. Therefore it does not significantly influence the LAI minimum in winter.

The WG2 analysis increments for LDAS2 are largely driven by the ∂WG1
∂WG2 Jacobian. A scatter plot of these Jacobian values

against the WG1 variable is shown in Fig. 10 for the same point as Fig. 9 in Southwest France. The density of the points is

derived from the kernel density estimation of Scott (1992). There are two dense regions when WG1 is equal to 0.15 and 0.3015

m3/m3, which occur because WG1 is a thin layer, and therefore most of the time it is either dry or close to saturation. The WG1

and ∂WG1
∂WG2 values are negatively correlated, with larger values of WG1 corresponding to smaller values of ∂WG1

∂WG2 . This implies

that when rain is detected in the model but not in the SSM observations, the analysis increment will be smaller than when

the rain is missed by the model but detected by the observations. Indeed, the average WG2 analysis increment for a positive

innovation is 0.7×10−3 m3/m3, while the average increment for a negative innovation is −0.5×10−3 m3/m3. This imbalance20

in the analysis increments leads to a net uptake of water in WG2, which induces the positive bias in the SIM river discharge.

This problem was already highlighted by Draper et al. (2011). The Jacobians exhibited similar patterns of behaviour for other

vegetation types than grasslands and across other points in France, albeit with different magnitudes (not shown).

3.4 Additional experiments

Additional experiments were performed to examine whether the poor performance of the SEKF was related to other factors than25

the Jacobians, namely the quality control of the observations, the underestimated LAI minimum or the bias in the atmospheric

forcing. It is evident in Tables 2 to 4 that applying the additional quality control of the SSM observations (LDAS2QC) does not

significantly modify the LAI, WG1 or Nash discharge scores compared to LDAS2, despite removing about 10% of the SSM

observations. Figure 11(a) shows only small differences in the Nash efficiency percentages between LDAS2 and LDAS2QC .

As expected, the LDAS1bc and LDAS2bc experiments improved on the LAI scores of LDAS1 and LDAS2 (Tables 2), but did30

not improve on the WG1 scores in Table 3. These changes are a similar order of magnitude to the improvement of NITbc over

NIT. In terms of discharge Nash efficiency scores, LDAS1bc performed similarly to NITbc and LDAS2 performed significantly

worse than NITbc (Table 4). The Nash efficiency percentages are shown in Fig. 11(b). The comparison between LDAS1bc and

LDAS2bc with NITbc in Fig. 11(b) is analogous to the comparison between LDAS1 and LDAS2 with NIT in Fig. 5(b).
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The scores for the subset of 67 stations with low anthropogenic influence are also shown in Table 4. The scores for this

subset are improved relative to the 546 stations in Table 4, as expected. In particular, the percentage of stations with good scores

(Nash efficiency > 0.6) is increased significantly. For the interested reader, scatter plots of the Nash scores for the 67 stations

are shown in Figure S1.3 in the supplement. The discharge bias is also slightly smaller for the stations with low anthropogenic

influence relative to the 546 stations. This suggests that a small part of the positive bias in the discharge ratio of the NIT5

simulation for the 546 stations could be attributed to abstractions not being accounted for, such as drinking water or irrigation.

However, most of the discharge bias in the NIT simulation is still present with the 67 stations with low anthropogenic influence.

Moreover, the relative performances of the experiments are very similar. Therefore, the conclusions of the experiments are not

affected by the ability of SIM (with or without DA) to simulate anthropogenically influenced streamflow. These results confirm

that the inability of the SEKF to improve the soil moisture fluxes is an artifact of the SEKF Jacobians.10

4 Discussion

Previous work by Muñoz Sabater et al. (2007) and Fairbairn et al. (2015) clearly demonstrated that the assimilation of SSM

observations with an SEKF can improve WG2 with the 3-layer ISBA-A-gs model. Barbu et al. (2014) also demonstrated that

the assimilation of LAI reduces phase errors in the modelled LAI evolution. However, in this work we showed that the SEKF

has little influence on the drainage and runoff fluxes when assimilating LAI observations (LDAS1 experiment). Furthermore,15

the SEKF actually degrades the fluxes when assimilating SSM and LAI observations (LDAS2 experiment). The differences in

these findings are not suprising because the nonlinear interactions in LSMs can cause the assimilation of one state variable to

destabilize other soil moisture processes (Walker and Houser, 2005). The poor results for LDAS1 and LDAS2 can be explained

by model errors, atmospheric forcing errors and model nonlinearities near the soil moisture wilting point and field capacity

thresholds, none of which are captured by the SEKF observation operator Jacobians.20

Firstly, we examine the poor performance of LDAS1, which is linked to the the inability of LDAS1 to correct the lowest

LAI values during winter dormancy. The LAI Jacobian (∂LAI
∂LAI ) was frequently equal to zero during winter and therefore the

LAI returned instantaneously to its incorrect minimum value after the analysis update. These Jacobian values are physically

sensible, since the vegetation is dependent on the atmospheric conditions and is often dormant during the winter period. The

problem is related to the lack of a model error term in the SEKF. The lowest LAI values could be corrected further with a25

full EKF and a model error term, but it would be complicated to parameterize the model-error covariance matrix because

the LAI minimum is linked to several factors concerning the atmospheric conditions and the vegetation type. Moreover, LAI

is only assimilated every 10 days so the model LAI would drift back to its underestimated minimum value between cycles.

An effective and far simpler alternative was demonstrated in the experiments, which is to impose a higher LAI minimum

parameter in the model. It should also be recognised that spatial variability in the LAI minimum is not currently taken into30

account. Figure 4 demonstrates that there is significant heterogeneity in the LAI minimum over France. Therefore work is

underway to incorporate a spatially variable LAI minimum parameter into the model, based on satellite observations.
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Next we examine the poor performance of LDAS2. It is important to point out that it is physically sensible for WG1

to decouple from WG2 during precipitation events. The precipitation forcing leads to a saturation of the surface layer and

subsequently WG1 becomes less dependent on WG2. The degradation of drainage and runoff is caused by limitations in the

SEKF and the land surface model. Firstly, as recognised by Draper et al. (2011), a significant problem is that the SEKF is

not designed to capture the uncertainty in the model and the precipitation forcing, which should increase during precipitation5

events and therefore compensate for the smaller Jacobians. The SAFRAN precipitation forcing performs well for a mesoscale

analysis and has a higher spatial resolution than global satellite products such as ERA-interim (Quitana-Ségui et al., 2008; Vidal

et al., 2010). However, by design the precipitation is assumed to be homogeneous over 615 specified climate zones. Errors are

therefore introduced from the spatial heterogeneity of the precipitation, particularly in mountainous regions (Quitana-Ségui

et al., 2008). This problem could more easily be addressed with an EnKF than an SEKF because an EnKF can stochastically10

represent model and precipitation errors (Maggioni et al., 2012; Carrera et al., 2015). Secondly, the assimilation is performed

in a very shallow surface layer (0-1 cm depth). This is not sensible because WG1 is highly sensitive to the atmospheric

forcing during the 24 hour assimilation window and the influence from WG2 (from capillarity rises) is drowned out during a

rainfall event. This problem could be alleviated by using a multi-layer diffusion model (ISBA-DIF, (Decharme et al., 2011)),

which would allow the assimilation of SSM observations into a slightly deeper layer (1-5 cm depth). This is possible because15

the SWI-001 data used in this study represent a layer up to 5 cm depth. This deeper layer would be less sensitive to the

precipitation forcing during a 24 hour assimilation window than the 1 cm deep surface layer. Parrens et al. (2014) evaluated the

assimilation of SSM with an SEKF for the 11-layer version of ISBA-DIF for a single grassland site in southwest France. The

WG2 performance was enhanced by assimilating soil moisture observations into a slightly deeper layer. Thirdly, the 3-layer

ISBA model has strong nonlinearities near the soil moisture thresholds, some of which are unrealistic features of the model.20

During dry conditions in summer the SEKF ∂WG1
∂WG2 Jacobian can be excessive. This is linked to a rapid increase in transpiration

when water is added to WG2 following dry conditions (Draper et al., 2009; Fairbairn et al., 2015). This in turn increases WG2,

leading to greater drainage/runoff, which would have exacerbated the drainage and runoff bias in our study. The origin of this

nonlinearity is partly related to an unrealistic feature of the surface energy balance. One single surface temperature is used to

represent the vegetation and the surface layer, which causes the transpiration to increase too quickly after water is added to25

WG2 (Draper et al., 2009; Mahfouf, 2014). This problem could be relieved to some extent by introducing the new version of

ISBA with a multiple energy balance. Additionally, Decharme et al. (2011) found that the drainage and runoff of the 3-layer

ISBA model is much more abrupt than with the ISBA-DIF multi-layer model because water transfers in the root-zone are more

gradual with multiple layers. Therefore, we expect the problems with the SEKF Jacobians to be less severe with ISBA-DIF

and the multiple energy balance version.30

There are DA methods such as particle filters that are designed to handle model nonlinearities directly. Moradkhani et al.

(2012) demonstrated that good results on a hydrological model could be achieved with a particle filter with about 200 members.

However, this it is substantially more computationally expensive than an EnKF, which typically requires about 20 members to

overcome sampling error problems for LSMs (Maggioni et al., 2012; Carrera et al., 2015; Fairbairn et al., 2015). Moreover,
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particle filters are much less effective when there are significant model and forcing errors because the non-Gaussian pdf they

generate is no longer accurate.

Finally, in order to be consistent with Draper et al. (2011) and to demonstrate known deficiencies in the radiative forcing, we

used the original version of SIM in our study. The original version of SIM has recently been upgraded to incorporate a direct

bias-correction of the underestimated radiative forcing, the multi-layer ISBA-DIF land surface model and the introduction of a5

sub-grid scale hydrogeological model specifically for mountainous regions. The bias-correction of the radiative forcing is not

homogeneous as in our experiments, but varies depending on the altitude and the cloud cover. A comparison of the original and

new versions of SIM is expected to be published shortly (Patrick Le Moigne, personal communication). Furthermore, in our

experiments we did not perform the DA for the regions in the SIM domain outside of France (shown in Fig. 2). Instead these

regions used the model drainage and runoff. This would not have influenced the WG1 and LAI scores over France because10

SURFEX does not model horizontal exchanges. However, the MODCOU river discharge in the Rhone basin in southeast

France is partly influenced by mountain rivers in Switzerland (Habets et al., 2008). Given that the modelled discharge in this

region is generally unreliable because of the numerous dams, we would not expect the assimilation of data over Switzerland to

substantially change the results in this study. In future applications we intend to use the new version of SIM with an extension

of LDAS to the full SIM domain.15

5 Conclusions

This study assessed the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into the

ISBA-A-gs land surface model (LSM) within the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. The drainage and

runoff outputs from the LSM were used to force the MODCOU hydrogeological model and were validated by comparing

the simulated streamflow with over 500 river-gauge observations over France during several years. To our knowledge, this20

is the first article to perform an integrated validatation of LAI assimilation using a distributed hydrological model. Previous

work already demonstrated that the SAFRAN atmospheric forcing underestimates short-wave and long-wave radiation by

approximately 5% averaged over France. We found in this study that the ISBA-A-gs model significantly underestimates the

LAI for grasslands in winter compared with the observations. These issues resulted in an underestimation (overestimation) of

evapotranspiration (drainage and runoff). The excess water flowing into the rivers and aquifers caused an overestimation of the25

SIM river discharge.

We tried to overcome these problems with four different experiments: (i) a correction of the grassland minimum value from

0.3 m2/m2 to 1.2 m2/m2 over France, (ii) a homogeneous bias-correction of the direct radiative forcing (+5%) over France,

(iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The DA for (iii) and (iv) was

performed with the SEKF, which uses finite differences in the Jacobian calculations in order to extract information from the30

observations to the prognostic variables (LAI and WG2). The assimilation of SSM observations in experiment (iv) was not

expected to significantly reduce the errors caused by the systematic model and forcing deficiencies because the observations
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were scaled such that the mean and standard deviation matched the model climatology. Nevertheless, it was designed to correct

short term errors in SSM and was therefore expected to influence short-term changes in drainage and runoff.

Experiment (i) improved the median SIM Nash scores by 9% because increasing the LAI minimum resulted in greater

evapotranspiration in winter/spring, which subsequently reduced the drainage and runoff fluxes. Furthermore, experiment (ii)

enhanced the median Nash scores by 18% because increasing the radiative forcing significantly increased evapotranspiration5

during much of the year, which also reduced the drainage and runoff fluxes. Despite considerably reducing the LAI phase er-

rors, experiment (iii) had no significant impact on the discharge Nash efficiency of SIM. This was explained by the SEKF LAI

Jacobian, which spreads information from the LAI observations to the LAI prognostic variable. In accordance with Rüdiger

et al. (2010), the LAI Jacobian values vary seasonally and are generally small in winter and spring. The LAI minimum was

significantly underestimated in winter, but the small Jacobians dampened the analysis increment during this period and there-10

fore prevented any significant correction. These Jacobians were physically reasonable because the vegetation was dormant in

winter. The main problem was the underlying assumption made by the SEKF that the model is perfect.

Experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the SIM discharge Nash efficiency

by about 7%. In accordance with Draper et al. (2011), this problem could be traced back to the SEKF Jacobian linking WG1

with WG2. This Jacobian value was negatively correlated with WG1 itself. This resulted in large analysis increments when15

rainfall was detected in the surface soil moisture observations but was missed by the model, and small increments when rainfall

was detected by the model but was missed by the soil moisture observations. This imbalance led to a build up of water in the

WG2 analysis that was then lost through drainage and runoff, inducing a positive bias in the SIM discharge. There are three

main limitations related to the SEKF and the LSM, which could explain these results. Firstly, the SEKF cannot account for

model and precipitation errors. This problem could more easily be addressed with an ensemble Kalman filter (EnKF) because20

it can stochastically capture these errors in the ensemble spread. An EnKF with this capability is currently being developed

at Météo-France. Secondly, the assimilation of SSM is performed in a very shallow surface layer (0-1 cm depth). This layer

is highly sensitive to the atmospheric forcing during a 24-hour assimilation window. It is recommended that the assimilation

be performed in a slightly thicker layer (1-5 cm depth), which would be less sensitive to the atmospheric forcing. Thirdly, the

3-layer ISBA model has strong nonlinearities near the soil moisture thresholds, some of which are unrealistic features of the25

model. These nonlinearity problems could be alleviated by improving the coupling between the surface and root-zone model

layers with a new multi-layer diffusion model and the multi-energy balance version.

A seperate validation using a subset of 67 stations with low-anthropogenic influence confirmed the findings above and

also demonstrated that MODCOU slightly over-estimates the streamflow over much of France. This over-estimation could be

attributed to abstractions (such as drinking water and irrigation) not being accounted for in the MODCOU simulation.30

Finally, the results highlight the important role that vegetation plays on the hydrological cycle. The correction of the LAI

minimum in this study was based on a homogeneous value of 1.2 m2/m2. Work is already underway to provide a more realistic

and spatially variable LAI minimum for grasslands based on observations.
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Table 1. List of experiments. The bias-correct forcing option implies an increase of the direct short-wave and long-wave radiation by 5%.

The SSM outliers removal applies to SSM observations outside the 90% confidence interval of the model.

Experiment LAI grassland min

(m2/m2)

Bias-correct

forcing

DA SSM outliers

removal

NIT 0.3 No No –

NITm 1.2 No No –

NITbc 1.2 Yes No –

LDAS1 0.3 No LAI –

LDAS2 0.3 No LAI+SSM No

LDAS1bc 1.2 Yes LAI –

LDAS2bc 1.2 Yes LAI+SSM No

LDAS2QC 0.3 No LAI+SSM Yes
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Table 2. Scores for LAI (prognosic variable compared with observations) averaged over 2007-2014. The closest fit to the observations is

shown in bold font.

Experiment RMSD (m2/m2) CC Bias (m2/m2)

NIT 1.18 0.56 0.11

NITm 1.14 0.58 0.25

NITbc 1.02 0.63 0.17

LDAS1 0.69 0.82 -0.08

LDAS2 0.71 0.81 -0.04

LDAS1bc 0.63 0.84 -0.04

LDAS2bc 0.66 0.83 -0.02

LDAS2QC 0.72 0.81 0.02
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Table 3. Scores for WG1 (prognosic variable compared with observations) averaged over 2007-2014. The closest fit to the observations are

shown in bold font.

Experiment RMSD (m3/m3) CC Bias (m3/m3)

NIT 0.051 0.77 0.00

NITm 0.049 0.77 0.00

NITbc 0.051 0.77 0.00

LDAS1 0.049 0.77 0.00

LDAS2 0.048 0.78 0.00

LDAS1bc 0.049 0.77 0.00

LDAS2bc 0.049 0.78 0.00

LDAS2QC 0.048 0.78 0.00
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Table 4. Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the 546 river gauges over France and for the subset of 67

gauges with low anthropogenic influence, calculated over 2007-2014. Also shown are the percentage of stations with a Nash score above 0.6.

The best scores are shown in bold font.

Experiment NE for 546/67 sta-

tions

Discharge ratio for

546/67 stations

% stations with NE

> 0.6 for 546/67

stations

NIT 0.44/0.48 1.19/1.16 26%/44%

NITm 0.48/0.54 1.15/1.12 30%/48%

NITbc 0.56/0.60 1.02/0.99 42%/59%

LDAS1 0.44/0.48 1.18/1.15 27%/44%

LDAS2 0.41/0.45 1.21/1.18 23%/40%

LDAS1bc 0.56/0.60 1.02/1.00 42%/57%

LDAS2bc 0.53/0.54 1.08/1.06 38%/53%

LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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Figure 1. Flowchart of the SIM hydrological model and how LDAS France is connected with SIM.
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Figure 2. Nash efficiency scores for each station over France for the NIT simulation, calculated over the period 2007-2014. The river network

is also shown.
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Figure 3. Monthly averaged LAI for the model simulations and for the gridpoints with at least 50% of the four dominant vegetation types,

averaged over 2007-2014 and averaged over France.
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Figure 4. Map showing the average annual LAI minimum (2007-2014) for NIT, NITm and the GEOV1 observations (m2/m2) over France.
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Figure 5. Nash efficiency scores over France for (a) the model simulations and (b) the DA methods, calculated over the period 2007-2014.
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Figure 6. Median annual (a) Nash efficiency scores and (b) discharge ratio for each experiment. Average annual (c) temperature and (d)

cumulated precipitation.
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Figure 7. Average monthly (a) WG2 and (b) LAI; and monthly cumulative (c) evapotranspiration, (d) drainage and (e) runoff for NIT and

the other model simulations. Plots (f-j) show NIT and the DA analyses for the equivalent variables as (a-e). Results are all averaged over the

period 2007-2014 and averaged over France.
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Figure 8. Monthly combined drainage+runoff flux differences between (a) NIT and the other model simulations and (b) NIT and the DA

analyses averaged over the period 2007-2014 and over France.
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Figure 9. Time evolution of the LDAS1 ∂LAI
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Jacobian, together with the LAI analysis and the minimum LAI model parameter for the

grassland patch at a point in southwest france (43.35◦ N, 1.30◦ E).
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Figure 10. Scatter plot of WG1 against the LDAS2 ∂WG1
∂WG2

Jacobian for the grassland patch at the same point as Figure 9.
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Figure 11. Average Nash efficiency scores over France for (a) the NIT, LDAS2 and LDAS2QC experiments and (b) the NITbc, LDAS1bc

and LDAS2bc experiments.
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Supplement 1

Figure S1.1: Map of the SIM discharge Nash efficiency scores for the 67 stations
with low-anthropogenic influence over France for the NIT simulation, calculated
over the period 2007-2014. The river network is also shown.
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Figure S1.2: Scatter plots of the SIM discharge Nash efficiency scores for all
546 stations for (a) NIT vs NITbc and (b) for NIT vs LDAS2. The scores are
calculated over 2007-2014.

2



-1 0 1

NIT Nash efficiency (-)

-1

0

1

N
IT

b
c 

N
a
sh

 e
ff

ic
ie

n
cy

 (
-)

(a) NIT vs NITbc
High anth. influence

Low anth. influence

-1 0 1

NIT Nash efficiency (-)

-1

0

1

LD
A

S
2

 N
a
sh

 e
ff

ic
ie

n
cy

 (
-)

(a) NIT vs LDAS2
High anth. influence

Low anth. influence

Figure S1.3: Same as Fig. S1.2, but the stations are classified with either low
(67 stations) or high anthropogenic influence (479 stations). For the sake of
clarity, the Nash scores are shown between -1.0 and 1.0.

3


