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Response to comments from Referee 2

July 26, 2016

Firstly, we would like to thank the reviewer for his/her constructive comments. A

point by point response is given below.

Response to major comments:

1

1.1

Referee comment This study describes the implementation of a simple Extended

Kalman Filter (SEKF) to assimilate LAI and SSM observations into a hydrological

model over France, and its validation against streamflow measurements.

Response:

This is not exactly the objective of this study. It is important to mention that the as-

similation is into a land surface model and not into a hydrological model. We will add

this sentence to the introduction (Section 1): “In this study, the Simplified Extended

Kalman Filter (SEKF) is used to assimilate LAI and SSM observations to update LAI

and root-zone soil moisture (WG2) in the ISBA-A-gs land surface model. The drainage

and runoff outputs from the land surface model are then used to force the MODCOU

hydrogeological model and are validated by comparing the simulated streamflow with

observations.” It is important to clarify that the land surface model and the assimi-

lated land surface observations are independent of the hydrogeological validation. This

is different to other studies such as Thirel et al. (2010), where streamflow observations

were assimilated and used to update the soil moisture in the ISBA land surface model.

We will try to make this more clear throughout the paper, including the abstract, in-

troduction and conclusions.
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1.2

The topic is appropriate for the HESS journal, but the paper is not very well written.

The technical approach appears sound at places and has some interesting aspects but

there are many issues with the results, or at least their explanation which is not clear

at all.

Response:

We agree with the reviewer that the experimental setup was not well explained and

there were some mistakes in the way we presented the results. We hope that by offering

clearer explanations we can resolve these problems.

1.3

The NITm and NITbc simulations use a different minimum LAI (1.2 m2/m2) and a

bias-corrected radiative forcing (+5%) respectively, but nothing is said about how these

numbers were chosen.

Response:

We admit this was not well explained and we will clarify this in the experimental setup

(Section 2.4 of the paper). Fig. R2.1 (at the end of the document) shows a histogram

of the observed average annual LAI minimum (GEOV1 satellite-derived observations)

for the 133 grid-points over France with predominantly grasslands (the grassland patch

fraction exceeding 70%). We chose an augmented grassland LAI minimum value of 1.2

m2/m2 for NITm because over 99% of the predominantly grassland points in Fig. R2.1

have an observed average annual LAI minimum above this value. The average an-

nual LAI minimum over France for the original simulation (NIT), the new simulation

(NITm) and the GEOV1 data are shown in Fig. R2.2 (note that the original Fig. 4 in

the paper did not have the correct scale). Fig. R2.2 emphasizes that the LAI mini-

mum was underestimated (compared to the GEOV1 data) over much of France for the

original model simulation. By increasing the grassland LAI minimum to 1.2 m2/m2,

the model agrees much better with the data over most regions. Szczypta et al. (2011)

and Le Moigne (2002) demonstrated that the direct short-wave and long-wave radiative

forcing respectively are underestimated by approximately 5% averaged over France. We

followed Decharme et al. (2013) in bias-correcting the direct radiative forcing by +5%.
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1.4

Was the new minimum LAI chosen based on the observations? If so, there really is no

point in comparing the LAI from the new simulations with the same data.

Response:

The aim of this study was not to carry out an independent validation of LAI for each

experiment, for which we would need independent observations. We will add the fol-

lowing in the experimental setup (Section 2): “A system validation was performed by

comparing the LAI and WG1 states with the LAI and SSM observations respectively

for all the simulations and data assimilation experiments. Note that this is not an

independent validation of the performance of the system, for which we would need in-

dependent observations. The rationale was to check the effectiveness of the SEKF i.e.

to see if it improved the fit between the model simulations and the observations. The

fit to the observations was determined by the root mean square difference (RMSD),

the correlation coefficient (CC) and the bias. These checks were important because the

performance of the SEKF had an important impact on the drainage and runoff fluxes.”

1.5

Additionally, the Nash scores of the NITm and NITbc simulations are shown only for

the stations where at least one of the simulations had a positive score (p. 9, l. 21-

22). Essentially, the average NSEs reported in Table 4 and Fig. 6 are artificially better

than what they ought to be since most of the stations in northern and southeast France

are excluded from this calculation. No explanation is given at to why this was done,

making the discussion of the results rather dubious.

Response:

We agree with the reviewer that we did not present these results correctly and have

therefore shown the results with all the stations (including the negative scores) included

in the calculations. Fig. R2.3(a) shows a scatter plot of the Nash efficiency for the NIT

simulation against the NITbc simulation. The density of the points is derived from the

kernel density estimation of Scott (1992). The NIT simulation is the original simula-

tion. The NITbc simulation is the new simulation with the augmented LAI minimum

and radiative forcing. The results are improved for about 80% of the stations, including

most of the stations with negative Nash scores. Fig. R2.3(b) shows a scatter plot of

the NIT against LDAS2 (NIT with the assimilation of SSM and LAI). The assimilation

degrades the SIM discharge scores for about 70% of the stations. These results are

consistent with the original conclusions of the study. Note that the LDAS2 experiment
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was performed with a more appropriate estimate of the observation error standard de-

viation than the original experiment. We used a value of 0.65(wfc-wwilt) instead of the

original value of 0.4(wfc-wwilt), where wfc is the field capacity and wwilt is the wilting

point. This averages to 0.055 m3/m3 over France. We used a slightly larger error than

the estimated error of 0.05 m3/m3 by Draper et al. (2011) in order to approximate the

oversampling issue i.e. the same ASCAT observation covers several gridpoints. This is

comparable with observation errors expected for remotely sensed SSM observations (de

Jeu et al., 2008; Draper et al., 2013). Note that this larger observation error slightly

reduces the impact of the assimilation of SSM relative to the original experiment, but

the conclusions of the study remain unchanged. Table R2.1 (at the end of the docu-

ment) shows the new WG1 scores (model state compared with SSM observations) and

will replace Table 3 in the paper.

Table R2.2 will replace Table 4 in the paper and shows the median Nash efficiency

scores for the all the experiments. Following a comment from Jean-Philippe Vidal

(see 1.6 below), the scores are also shown for the 67 stations with low anthropogenic

influence. Note that the median is calculated rather than the mean because the majority

of stations (> 80%) have positive Nash efficiency scores, but a few outliers have scores

near to -100. The median is a more appropriate metric as it is less sensitive to extreme

outliers and is a better indicator for highly skewed distributions (Moriasi et al., 2007).

The results in Table R2.2 are very similar to Table 4 in the paper except that the LDAS2

experiment has less impact (due to the larger observation error). Therefore, including

the stations with negative scores does not change the conclusions of this study.

In the revised version of the paper, we will replace Figure 6 with the Median Nash

efficiency scores for all the stations. Note that Figure 5 in the paper was actually

correctly presented and there was a mistake in the caption - all the stations were

considered in the calculations, not just the stations with positive scores. Fig. R2.3 will

be included in a supplement.

1.6

Dr Jean-Phillipe Vidal from IRSTEA posted a short comment, which is related to

comment 1.5. He was right to point out that many of the stations included in the

calculations are influenced by anthropogenic water management, which is not simulated

by the MODCOU hydrogeological model. He was concerned that the results might be

interpreted as being closer to anthropogenically influenced streamflow. He suggested

the following:

1. To consider only catchments with low anthropogenic influence in order not to

compare apples and oranges and avoid drawing conclusions on the ability of
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SIM (with or without data assimilation) to simulate anthropogenically influenced

streamflow,

2. To show scatter plots of NSEs instead of distributions (possibly with marginal

distributions) to reduce the potential spatial bias effect mentioned above.

Response:

We have decided to follow Dr Jean-Phillipe Vidal’s suggestions by showing the results

for the stations with low-anthropogenic influence. We have used the suggested reference

networks of Giuntoli et al. (2012, 2013) to extract a subset of 67 river gauges with low-

anthropogenic influence from the original 546 stations, valid for both low and high

flows. A map of these stations is shown in Fig. R2.4. A scatter plot is shown of the

Nash efficiency of these stations (labeled as “Low anth. influence”) and all the other

stations (labeled as “High anth. influence”) in Fig. R2.5. The same results are shown

as in Fig. R2.3, but for the sake of clarity, in Fig. R2.5 only the stations are shown in

the range of Nash scores -1.0 to 1.0. The ‘low anth. influence’ stations follow a similar

pattern to the ‘high anth. influence’ stations. Furthermore, we calculated the Median

Nash efficiency scores for the 67 stations in Table R2.2. The scores for this subset

are improved relative to the 546 stations in Table R2.2, as expected. In particular, the

percentage of stations with good scores (Nash efficiency > 0.6) is increased significantly.

The discharge bias is also slightly less for the stations with low anthropogenic influence

relative to the 546 stations. This supports Jean-Phillipe Vidal’s suggestion that part

of the positive bias in the discharge ratio of the NIT simulation for the 546 stations

could be attributed to abstractions not being accounted for. However, the majority

of the discharge bias in the NIT simulation is still present with the 67 stations with

low anthropogenic influence. Moreover, the relative performance of the experiments is

very similar to the original 546 stations. Therefore, the conclusions of the experiments

are not affected by the ability of SIM (with or without data assimilation) to simulate

anthropogenically influenced streamflow.

We will explain these results in Section 3.4 of the paper. Figures R2.4 and R2.5

will be included in a supplement.

1.7

Furthermore, the assimilation doesnt appear to have much of an impact on the stream-

flow simulations and actually decreases the skill (even when excluding the stations that

had the negative NSE). I wonder what the rationale was of not using a more sophis-

ticated data assimilation algorithm that could overcome some of the limitations in the

SEKF. There are many limitations with this approach that I dont see any worthwhile

scientific contribution added by this study, although there are some interesting aspects
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in this work.

Response:

The reviewer is right that in many data assimilation applications with hydrological

models, more sophisticated algorithms are commonly used that take into account the

“errors of the day”. We will clarify in the introduction the differences between hy-

drological and land surface data assimilation, and why we chose the SEKF for our

experiments.

Many studies have investigated the assimilation of SSM and streamflow observations

into hydrological models in order to improve streamflow predictions and hydrological

parameters (Thirel et al., 2010; Aubert et al., 2003; Clark et al., 2008; Moradkhani et al.,

2005, 2012). In large-scale streamflow assimilation, a DA method is typically chosen

that can take into account lateral background-error covariances and flow-dependence.

These features are important because streamflow has important horizontal interactions.

For example, Thirel et al. (2010) used the Best Linear Unbiased Estimate (BLUE)

method to assimilate steamflow observations into the MODCOU hydrogeological model,

which they used to update soil moisture in the ISBA land surface model (LSM). Al-

though they used a fixed diagonal background-error covariance at the start of each

window, they generated implicit background-error covariances between the river sub-

basins using finite differences in the observation operator Jacobian calculation. This

led to improved streamflow predictions.

LSMs concern water and energy fluxes between the soil and atmosphere. Unlike

hydrological models, layer-based LSMs such as the ISBA model are typically pointwise

(there is no horizontal interaction between the gridpoints), since this greatly reduces

the computational expense. It is also common to use a DA method with 1D Kalman

filtering (where observations are used to update colocated gridpoints) as opposed to

2D Kalman filtering (where observations are used to update colocated gridpoints and

neighbouring gridpoints). Moreover, a study by Gruber et al. (2015) over the contiguous

US found that there was no advantage of 2D Kalman filtering over 1D Kalman filtering

when assimilating ASCAT SSM data into a soil moisture model. They explained these

results using an analytical evaluation of the impact of spatial-error autocorrelations on

the steady-state Kalman gain.

In large-scale land surface DA, it is common to assimilate satellite-derived surface

soil moisture (SSM) observations and screen-level temperature and humidity observa-

tions into a LSM, in order to improve soil moisture and screen-level variables. Typically

WG2 is of more interest than SSM as it has a much larger water capacity and therefore

has a greater influence on vegetation and water fluxes. Land surface DA is commonly

performed using a 1D ensemble Kalman filter (EnKF) or a simplified extended Kalman
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filter (SEKF). The SEKF simplifies the EKF by assuming that the errors in the back-

ground state are fixed and uncorrelated between gridpoints. It uses finite differences

for computing Jacobians necessary to extract information from the observations to the

prognostic variables.

There has been increasing interest in ensemble DA for LSMs over the last two

decades (Reichle et al., 2002, 2008; Zhou et al., 2006; Muñoz Sabater et al., 2007;

Draper et al., 2012; Carrera et al., 2015), partly because these methods can estimate the

“errors of the day” in the background-error covariance. At Environment Canada, the

development of an operational EnKF using the same ISBA 3-layer model we employed

is also motivated by the requirements of coupling land surface DA with NWP ensemble

prediction (Carrera et al., 2015). However, the correct representation of the “errors of

the day” is challenging in land surface DA. A large proportion of the errors in LSMs

come from the model and the atmospheric forcing, rather than the initial conditions.

The integrating nature and the nonlinear interactions in LSMs mean that short-term

errors dissipate over time, including random errors in the precipitation. For example,

a study by Maggioni et al. (2011) found that errors in WG2 are not very sensitive to

the rainfall error modelling approach. Indeed, experiments assimilating in situ SSM

observations with the ISBA-A-gs model have demonstrated that the EnKF and the

SEKF produce a WG2 analysis with comparable accuracy and both methods improve

on the model simulation (Muñoz Sabater et al., 2007; Fairbairn et al., 2015).

Due to its efficacity, simplicity and low computational cost, the SEKF is the pre-

ferred method at several meteorological operational centres for analyzing soil moisture

and screen level variables. Hess (2001) developed a simplified 2D-Var (theoretically

equivalent to an SEKF) scheme for the assimilation of screen-level temperature and

humidity at the German Weather service (DWD). The European Centre for Medium

Range Weather Forecasts (ECMWF) assimilate screen-level temperature and humidity

operationally with an SEKF (de Rosnay et al., 2013). An SEKF was developed for

research purposes to assimilate ASCAT satellite derived soil moisture at Meteo-France

(Draper et al., 2009; Mahfouf, 2010). Recently, ECMWF have also modified their

SEKF to assimilate ASCAT derived SSM observations (ECMWF, 2016). At the UK

Met Office, an SEKF has been developed for research purposes for the assimilation of a

wide variety of observation types, including screen-level variables and satellite derived

SSM observations (Candy et al., 2012).

In our study, we use an SEKF to assimilate LAI and SSM observations to update

LAI and WG2 in the ISBA-A-gs LSM in the SAFRAN-ISBA-MODCOU (SIM) hydro-

logical suite. SIM consists of three stages: (1) An atmospheric reanalysis (SAFRAN)

over France, which forces (2) the ISBA-A-gs land surface model, which then provides

drainage and runoff inputs to (3) the MODCOU hydrogeological model. The drainage
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and runoff outputs from ISBA-A-gs are validated by comparing the simulated stream-

flow from MODCOU with observations. Our study is different to the hydrological

studies mentioned earlier because the LSM and the DA are independent of the hydro-

geological model. This study is relevant to the land surface DA community because

several operational centres assimilate SSM observations using an SEKF to update WG2.

Many studies have demonstrated that the force-restore dynamics of the ISBA 3-layer

model can skillfully simulate soil moisture and propagate the increments downwards

from the surface to the root-zone (Muñoz Sabater et al., 2007; Draper et al., 2009;

Mahfouf et al., 2009; Barbu et al., 2011, 2014). An integrated validation using SIM has

also demonstrated that the ISBA 3-layer model can skillfully simulate drainage and

runoff fluxes over France (Habets et al., 2008). But relatively few studies have assessed

the SEKF performance using an integrated validation of the soil moisture fluxes. To

our knowledge, this is the first article to perform this type of validatation for LAI as-

similation. Moreover, the validation is robust because it is performed using more than

500 river gauges over France and the length of the analysis period spans several years.

In the discussion section we mentioned that in future studies we would like to test

the EnKF over France with a stochastic representation of precipitation and model

errors using a similar hydrogeological evaluation to this study. The EnKF would not

be affected by some of the issues we encountered with the SEKF, including the collapse

of the observation operator Jacobians during wet conditions. However, the choice

of DA method is not the only problem. In the discussion section we also mentioned

important deficiencies in the 3-layer ISBA-A-gs land surface model, including no vertical

variability in WG2. These deficiencies inhibit the SEKF performance. We expect the

SEKF to perform significantly better with a new multi-layer diffusion based model

(ISBA-DIF). For example, with the 3-layer model we assimilate SSM observations into

a very shallow layer (0-1 cm), which is very sensitive to the atmospheric forcing over

the 24 hour assimilation window. It is possible with ISBA-DIF to assimilate them into

a slightly deeper layer (1-5 cm), which is less sensitive to the atmospheric forcing.

1.8 Minor comments

1. p. 2, l. 10: I would replace the term network, which usually refers to in-situ

measure- ments.

Response: Agreed, we will replace “network” by “coverage”.

2. p. 2, l. 10 “a short forecast from the past”: it doesnt have to be from the past,

it can be a prediction of the current time (i.e. observation time).
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Response: Agreed, we will replace “a short forecast from the past” with “a

short forecast from the previous analysis”.

3. p. 4, l. 22: can the authors add a sentence on what the delayed cut-off version

of SAFRAN is?

Response: We will add: “The delayed cut-off version of SAFRAN includes

additional observations obtained after the real-time cut-off, which makes it more

accurate. The delayed cut-off version of SAFRAN uses additional observations

from over 3000 climatological observing stations, which report once monthly”.

4. p. 5, l. 15: why were only ASCAT observations used and not SMOS for example?

Is it because of the study period?

Response: Yes, ASCAT has the advantage of being available over the study

period and ASCAT-like data will be available for decades to come. Also, the

SEKF at Meteo-France is calibrated to assimilate ASCAT observations and the

assimilation has already been performed in a number of studies (Draper et al.,

2009; Barbu et al., 2014). The aim of the study was not to test new soil moisture

data sources, but to validate the soil water fluxes of the existing system using a

hydrogeological model. The assimilation of multiple satellite products is being

explored in a different study.

5. p. 5, l. 21: why do the soil water index data need to be interpolated to the model

resolution? Can the SEKF not handle different spatial resolutions between the

model and the observations?

Response: The SEKF assimilates observations in model space (i.e. the same

grid as the model), so it is necessary to perform this interpolation.

6. p. 5, l. 21: p. 5, l. 25: has the WG1 soil moisture climatology been validated?

Response: The ISBA model soil moisture states have been compared with satel-

lite or in situ observations in several studies and generally show a good level

of skill (e.g. Draper et al. (2009); Muñoz Sabater et al. (2007); Albergel et al.
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(2008, 2010b); Barbu et al. (2014); Fairbairn et al. (2015)). Most of these studies

have also demonstrated that the SEKF can significantly improve the soil moisture

scores.

7. p. 5, l. 32: were additional LAI products considered (e.g. MODIS)?

Response: Extensive comparisons of GEOV1 and MODIS are available from the

Copernicus GLS website (http://land.copernicus.eu/global/sites/default/files

/products/GIOGL1 VR LAIV1 I1.10.pdf and

http://land.copernicus.eu/global/sites/default/files/products/GIOGL1

QAR PROBAV-GEOV1 I3.10.pdf). The direct validation based on in situ LAI

observations shows that the GEOV1 products present slightly better scores than

MODIS.

In any case, the aim of this study was not to test new observation datasets but to

work with the existing system. The SEKF is already set up to assimilate GEOV1

observations (Barbu et al., 2014).

8. p. 7, l. 25-27: this is confusing, how are the 1.2 m2/m2 and +5% values obtained?

Response: Please see 1.3 above.

9. 8, l. 5: how are the LAI and WG1 estimates validated against satellite observa-

tions? Werent these satellite observations assimilated into the model?

Response: We agree with the reviewer that this sentence is misleading: “The

LAI and WG1 state estimates for the experiments are validated using the satellite

observations”. We will remove this sentence and replace it with the following: “A

system validation was performed by comparing the LAI and WG1 states with

the LAI and SSM observations respectively for all the simulations and data as-

similation experiments. Note that this is not an independent validation of the

performance of the system, for which we would need independent observations.

The rationale was to check the effectiveness of the SEKF i.e. to see if it im-

proved the fit between the model simulations and the observations. The fit to

the observations was determined by the root mean square difference (RMSD),

the correlation coefficient (CC) and the bias. These checks were important be-

cause the performance of the SEKF had an important impact on the drainage
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and runoff fluxes.”

10. p. 9, l. 28-29: I don’t understand how the good performance of the NITbc is ex-

plained by the relationship between the bias in the discharge ratio and the NSE.

Doesnt the NITbc just have a bias-corrected radiative forcing? Where is the

causality between the simulation configuration and the performance? Wouldn’t

it make sense that the model with the smaller bias would have better performance

in terms of NSE?

Response: We agree this could be clearer. We explained the causality in the

original paper in the following paragraph (starting line 32, page 9) by examining

the impact of the different simulations on the soil water fluxes. On line 3 of page

10 we mention that: “The NITbc simulation increases the direct radiative forcing

by 5%, which results in increased evapotranspiration and lower WG2 during the

year. This significantly reduces the drainage and runoff from October to June.”

We suggest adding another sentence: “The reduced drainage and runoff feeding

into the MODCOU hydrogeological model results in less river discharge, which

reduces the positive discharge bias. This in turn improves the Nash efficiency

scores.”

11. p. 12, l. 14-15: but nothing is said on how the higher LAI parameter was chosen.

Response: Please see 1.3 above.
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Table R2.1: Scores for WG1 (model state compared with observations) averaged over
2007-2014. The closest fit to the observations are shown in bold font.

Experiment RMSD
(m3/m3)

CC Bias
(m3/m3)

NIT 0.051 0.77 0.00
NITm 0.049 0.77 0.00
NITbc 0.051 0.77 0.00
LDAS1 0.049 0.77 0.00
LDAS2 0.048 0.78 0.00
LDAS1bc 0.049 0.77 0.00
LDAS2bc 0.049 0.78 0.00
LDAS2QC 0.048 0.78 0.00
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Table R2.2: Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the
546 river gauges over France and for the subset of 67 gauges with low anthropogenic
influence, calculated over 2007-2014. Also shown are the % of stations with a Nash
score above 0.6. The best scores are shown in bold font.

Experiment NE for 546/67
stations

Discharge ratio
for 546/67 sta-
tions

% stations
with NE > 0.6
for 546/67
stations

NIT 0.44/0.48 1.19/1.16 26%/44%
NITm 0.48/0.54 1.15/1.12 30%/48%
NITbc 0.56/0.60 1.02/0.99 42%/59%
LDAS1 0.44/0.48 1.18/1.15 27%/44%
LDAS2 0.41/0.45 1.21/1.18 23%/40%
LDAS1bc 0.56/0.60 1.02/1.00 42%/57%
LDAS2bc 0.53/0.54 1.08/1.06 38%/53%
LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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Figure R2.1: Histogram of the average annual LAI minimum (2007-2014) values for
the observations over predominantly grassland points (> 70% grasslands) (m2/m2)
over France. Also shown is the NITm LAI minimum parameter for grasslands.
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Figure R2.2: Map showing the average annual LAI minimum (2007-2014) for NIT,
NITm and the observations (m2/m2) over France.
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Figure R2.3: Scatter plots of the SIM discharge Nash efficiency scores for all 546
stations for (a) NIT vs NITbc and (b) for NIT vs LDAS2. The scores are calculated
over 2007-2014.
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Figure R2.4: Map of the SIM discharge Nash efficiency scores for the 67 stations with
low-anthropogenic influence over France for the NIT simulation, calculated over the
period 2007-2014. The river network is also shown.
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Figure R2.5: Same as Fig. R2.3, but the stations are classified with either low (67
stations) or high anthropogenic influence (479 stations). For the sake of clarity, the
Nash scores are shown between -1.0 and 1.0.
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