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Response to comments from Referee 1

July 26, 2016

Firstly, we would like to thank the reviewer for his/her constructive comments. A

point by point response is given below.

Response to specific comments:

1. P2 l34 “especially near soil moisture thresholds” do you mean wilting point and

saturation values? If so best to expand sentence.

Response: Yes. We will replace “especially near soil moisture thresholds” with

“especially near the wilting point and field capacity thresholds”.

2. P5 l17 “The original ASCAT values are converted into SSM values...” My un-

derstandiing is that this is not correct, the ascat backscatters are converted into

a soil wetness index. Is this what is assimilated in your experiments?

Response: In order to explain this more clearly, we will replace lines 17-12

(starting with “The original ASCAT values...”) with the following: “The original

ASCAT values are converted into the surface degree of saturation (SDS, with

values between 0 and 1) using a change detection technique, which was developed

at the Vienna University of Technology (Tu-Wien) and is detailed in Wagner

et al. (1999); Bartalis et al. (2007). The historically lowest and highest backscat-

ter coefficients are assigned values for dry and saturated soils respectively. The

Copernicus Global Land Service then calculates the surface water index (SWI) by

applying a recursive exponential filter to these SDS values (Albergel et al., 2008)

using a time-scale that may vary between 1 and 100 days. The SWI represents

the soil wetness over the soil profile and also has values between 0 (dry) and 1

(saturated). The longer the time-scale of the exponential filter, the deeper the
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representative soil profile. In this study we use a time-scale of one day (SWI-001

product), which represents the SWI for <5 cm of soil. We then interpolate the

SWI-001 data to the 8 km resolution model grid. As in Draper et al. (2011) an

additional screening step is performed to remove observations with an altitude

greater than 1500m, frozen regions and areas with an urban fraction greater than

15%.”

As mentioned in lines 24-31, we apply a linear rescaling to the SWI-001 data,

which scales them such that the mean and standard deviations match the WG1

layer climatology (Calvet and Noilhan, 2000; Scipal et al., 2008). The rescaling

is designed to remove biases between the model and the observations and in the

process the SWI-001 data are converted into the same units as the model, ex-

pressed in volumetric soil moisture (m3/m3). These rescaled SSM observations

are assimilated into the WG1 model layer.

3. Section 2.3 Data Assimilation. Good explanation of background and observation

errors for LAI, but no mention of the errors assigned to the ASCAT data. In

particular, I would be interested to know if you inflate the errors to account for

the oversampling issue, i.e. the same ASCAT obs covers several gridpoints.

Response: On page 7, line 14 we mentioned that the SSM observation error

is prescribed a value of 0.4(wfc-wwilt), where wfc is the field capacity and wwilt

is the wilting point (note there is a typo, we will replace “WG1” with “SSM”).

The scaling by (wfc-wwilt) assumes that there is linear relationship between the

soil moisture errors and the dynamic range (Mahfouf et al., 2009). Averaged over

France, this observation error is equal to 0.034 m3/m3. This underestimates the

median SDS estimated error of 0.05 m3/m3 by Draper et al. (2011). We have

therefore rerun the LDAS2 experiments, but with a larger SSM observation error

standard deviation of 0.65(wfc-wwilt). This averages to 0.055 m3/m3 over France.

We used a slightly larger value than Draper et al. (2011) in order to account for

the oversampling issue. This is comparable with observation errors expected for

remotely sensed SSM observations (de Jeu et al., 2008; Draper et al., 2013). The

LDAS2 results for this larger observation error will be included in the revised ver-

sion of the paper. We will use the following description of the SSM observation

error: “The SSM observation error standard deviation was set to 0.65(wfc-wwilt),

which is about 0.055 m3/m3 averaged over France. This value is slightly larger

than the median ASCAT-derived SDS error of 0.05 m3/m3 estimated by Draper

et al. (2011) because it also approximates the oversampling issue i.e. the same

ASCAT observation covers several gridpoints.”

2



Increasing the observation error standard deviation reduces the impact of the

SSM assimilation for the LDAS2 experiments. Table R1.1 (at the end of the

document) shows the new WG1 scores (prognosic variable compared with SSM

observations) averaged over 2007-2014. The fit of LDAS2 to the observations is

slightly reduced relative to the original results (Table 3 in the paper). However,

as mentioned by the reviewer, the poor performance of the soil moisture fluxes

for the SEKF was explained by the observation operator Jacobians. Therefore

changing the SSM observation error does not change the conclusions of the study.

Table R1.2 (at the end of this document) will replace Table 4 in the paper and

shows the median Nash efficiency scores for the all the experiments. Following a

comment from reviewer 2, the median Nash efficiency scores are calculated for all

the stations instead of the mean. The median is a more appropriate metric for

our experiments as it is less sensitive to extreme outliers and is a better indicator

for highly skewed distributions (Moriasi et al., 2007). Following a comment from

Dr Jean-Philippe Vidal, the scores are also shown for the 67 stations with low

anthropogenic influence (also see response to Dr J.-P. Vidal for details). The

relative performances of the experiments in Table R1.2 are very similar to Table

4 in the paper and therefore the conclusions of the experiments remain unchanged.

4. P10 l2 Typo on Figure number should be Fig7?

Response: Yes, we have changed this.

5. Section 4 Discussion. It seems that the principle problem with the assimilation

in the SEKF for this situation is that the LAI assim has little or no sensitiv-

ity during winter and the SM jacobians are unrealistically too small. One short

term improvement might be to simply increase the variances in the size of the

background error covariance matrix in winter which is a realistic response to the

known issue of enhanced model and forcing errors. Any thoughts on this?

Response: These are interesting suggestions. However, we have tried increasing

the LAI variances in winter but this does not help. Part of the problem if that

the LAI observations are infrequent (every 10 days). We found that the model

quickly returns to its underestimated minimum value between cycles, regardless

of the size of the analysis increments. Perhaps one way to tackle this problem

would be to implement a Kalman smoother with a long assimilation window of 10

days, but this is beyond the scope of this study. The problem with the SSM Ja-
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cobians cannot be resolved by simply increasing the estimated background errors

in winter. The problem occurs because the SSM Jacobian value is negatively cor-

related with WG1 itself. This results in large analysis increments when rainfall is

detected in the surface soil moisture observations but is missed by the model, and

small increments when rainfall is detected by the model but is missed by the soil

moisture observations. This problem would still occur with larger background-

error variances. A potential solution to this problem is to assimilate the SWI

product into a deeper soil moisture layer, which is less sensitive to the model

and atmospheric forcing over the 24 hour assimilation window. We are currently

testing this idea with the new multi-layer diffusion based model (ISBA-DIF).
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Table R1.1: Scores for WG1 (prognosic variable compared with observations) averaged
over 2007-2014. The closest fit to the observations are shown in bold font.

Experiment RMSD
(m3/m3)

CC Bias
(m3/m3)

NIT 0.051 0.77 0.00
NITm 0.049 0.77 0.00
NITbc 0.051 0.77 0.00
LDAS1 0.049 0.77 0.00
LDAS2 0.048 0.78 0.00
LDAS1bc 0.049 0.77 0.00
LDAS2bc 0.049 0.78 0.00
LDAS2QC 0.048 0.78 0.00
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Table R1.2: Median Nash efficiency (NE) and discharge ratio (Qs/Qo) scores over the
546 river gauges over France and for the subset of 67 gauges with low anthropogenic
influence, calculated over 2007-2014. Also shown are the % of stations with a Nash
score above 0.6. The best scores are shown in bold font.

Experiment NE for 546/67
stations

Discharge ratio
for 546/67 sta-
tions

% stations
with NE > 0.6
for 546/67
stations

NIT 0.44/0.48 1.19/1.16 26%/44%
NITm 0.48/0.54 1.15/1.12 30%/48%
NITbc 0.56/0.60 1.02/0.99 42%/59%
LDAS1 0.44/0.48 1.18/1.15 27%/44%
LDAS2 0.41/0.45 1.21/1.18 23%/40%
LDAS1bc 0.56/0.60 1.02/1.00 42%/57%
LDAS2bc 0.53/0.54 1.08/1.06 38%/53%
LDAS2QC 0.40/0.45 1.21/1.18 21%/39%
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