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Abstract. The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and

geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant

structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic

picture of the subsurface a large set of different laboratory, exploratory and experimental methods was used at the different

scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and satu-5

rated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation

experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3D

time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3D GPR survey.

A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a

cascade of 2D time-lapse GPR "trenches". We show that the shift between activated and non-activated state of the flow paths10

is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point scale samples are the basis for

sub-scale structure inference. At the plot and hillslope scale 3D and 2D time-lapse GPR applications are successfully employed

as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water

responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form

and function under active conditions provides the means to localize and characterize the structures (this study) and the hydro-15

logical processes (companion study Angermann et al., 2017, this issue).
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1 Introduction

1.1 Form-function relationship in hydrological sciences

From a general perspective the interplay of processes and spatial structures (Grayson and Blöschl, 2001) manifests itself as

patterns in dynamics (Sivapalan, 2005) and self-organization (Zehe et al., 2013). This interplay can be expressed as form-

function relationship, which is addressed in many disciplines. Especially in systems biology the form-function relations are5

deeply rooted (e.g. Aristotele in Blits, 1999; Thompson, 1917) and under debate until today (e.g. Mugler et al., 2011). In

abstract terms the relation of form and function is fundamental for the concept that we can predict a behavior of a system under

different forcing by knowing its constructive properties.In this respect we understand form as the shape and material property

of the soil domain, whereas function refers to the dynamic behavior of water within the same. Although it is generally agreed

on the existence and importance of form-function relationships, it is not clear to what extent form follows or reveals function10

and vice versa. In a soil-hydrological context of soil-water-interactions the retention curve relates the pores size distribution and

their covariance structure to storage of water against gravity and root water uptake. The hydraulic conductivity curve relates

the pore size distribution and the interconnectedness of the pores to the conductance/release function of water depending on

the wetting state. These are classic examples of form-function relations at the Darcy scale. However, the established relation

does not directly translate to water displacement and contact angles at the actual pore scale (Armstrong et al., 2016). At15

larger scales, accepted form-function relations turn out incomplete when preferential flow paths become important as observed

at plots of different soil types (Flury et al., 1994) and in most catchments (Uhlenbrook, 2006). Form-function relations for

plots and hillslopes should reflect how macropore density and connectivity in conjunction with the rainfall forcing and initial

state control initiation and interaction of macropore flow with the soil matrix and thus ultimately export and redistribution of

water from or within the control volume. In either case determining topology and connectivity (form) and understanding their20

implication on soil water transport (function) is seen as "forefront of multiphase flow research" (Armstrong et al., 2016).

It is a long-standing vision in eco-hydrology to observe and characterize form and function of all possible different flow

paths in the subsurface. However, this is hindered by a lack of observation techniques which are capable to measure and

visualize flow paths across the relevant range of scales in a continuous manner. In this study, we address the challenge of in

situ observation, identification and characterization of flow-relevant structures through a series of complementary methods at25

the point, plot and hillslope scale.

1.2 Identification and characterization of flow-relevant structures in the subsurface

While heterogeneity is seen as purely random variation of soil properties, organized heterogeneity implies a spatial covariance

of these properties and connected flow paths. As such we define structure based on their functional implication in line with

Gerke (2012) and others. While such structures can be classical macropores like earthworm burrows (Palm et al., 2012; Blouin30

et al., 2013; van Schaik et al., 2014), decayed root channels (Nadezhdina et al., 2010) or cracks and geogenic structures like

voids in periglacial cover beds (Heller, 2012), we also attribute connected inter-aggregate pores to structure. They have in

common that gravity induced preferential subsurface flow is facilitated through the directed drainage paths, partially bypassing
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large sections of the soil. Beven and Germann (1982) initiated a discussion about macropores and preferential flow and more

recently resumed that the topic is still not given the attention appropriate to its significance in all areas of soil and catchment

hydrology (Beven and Germann, 2013).

Despite observation of fast responses through such macroporous networks e.g. as tracer breakthrough (Schotanus et al.,

2012; Klaus et al., 2013) or in multi modal reactions (Martínez-Carreras et al., 2016), it was shown that quick responses of5

catchments are often fed by pre-event water (Neal and Rosier, 1990; Jones et al., 2006) which is known as "old water paradox"

(Kirchner, 2003).

Due to limited direct observability of subsurface flow, most evidence is either inferred from integral responses or derived

from model applications: In the field, a large spectrum of methods is applied to investigate subsurface connectivity (Bishop

et al., 2015; Blume and van Meerveld, 2015) and to quantify preferential flow (Allaire et al., 2009). Dye staining has evolved as10

common practice since its first applications (presumably Bouma and Dekker, 1978) for a retrospective imaging of preferential

flow paths. Even though Anderson et al. (2009) extended dye staining to the hillslope scale, the technique is usually limited

to plot scale applications. Another drawback is the requirement to excavate and thereby destroy the system, which prohibits

analyses of function under variable forcing. Application of salt tracers in the vadose zone adds a quantitative measure, but at

lower spatial resolution than dye staining. It also suffers from the a posteriori inference about the retention of the solutes.15

Furthermore, breakthrough curves of precipitation or irrigation events at trenches or springs are commonly used (e.g. Mc-

Donnell et al., 1996; Tromp-van Meerveld and McDonnell, 2006; Bachmair and Weiler, 2014). In combination with fluorescent,

salt and natural tracers they can provide quantitative information over the course of rapid flow events at this scale (e.g. Wien-

höfer et al., 2009). However, such measurements can only capture spatially integral signals and require to infer the form by the

observed function.20

So far, relatively few studies managed to actually in situ image spatially distributed subsurface flow paths at larger scales. On

the one hand, applicability is also often technically limited to very small scales: Schlüter et al. (2016) examined multiphase flow

with time-lapse X-ray microtomography in a sample of 4.2mL. Koestel and Larsbo (2014) presented an X-ray tomography

study with a sample of 258mL undisturbed soil. Gerke (2012) analyzed the pore fractions in two samples of 785mL undisturbed25

soil through a medical CT X-ray scanner. Wehrer and Slater (2015) report findings from tracer breakthrough experiments in

laboratory lysimeters accompanied by 3D time-lapse electrical resistivity tomography (ERT). Guo et al. (2014) conducted a

multi-2D time-lapse ground penetrating radar (GPR) survey to identify preferential flow structures in situ in a 2m2 section of

a hillslope. On the other hand, the lack of a unified theory of advective and diffusive soil water redistribution, mixing, storage

and release (Beven and Germann, 2013) adds to unclearness about appropriate observation strategies.30

Hydrological "standard approaches" attempt to explore parameters like soil layer depth, porosity and hydraulic conductivity

based on distributed point scale measurements. Also state and flux monitoring most often consists of a set of point observations

e.g. of hydro-meteorological conditions and soil moisture. An appropriate sampling design is substantial for the statistical

inference (e.g. de Gruijter et al., 2006). Thus there is also a conceptual issue arising from the fact that such samples necessarily

integrate over sub-scale structures, such as inter-aggregate pore networks. At the same time such an integral may not necessarily35
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allow inference about structures at the larger scale exceeding the support of the observation. When the respective sampled set

and the subsurface setting is basically unknown, spatial scaling of soil moisture (Western and Blöschl, 1999) and other observed

variables becomes problematic. In a "Special Section" on preferential flow Gerke et al. (2010) highlighted that further analyses

need to focus on the quantification of flow-relevant structures. They continue that experimentally non-invasive and imaging

techniques are needed for research and model testing. We will take up these issues in the discussion section.5

1.3 Hypotheses and overall aims of the study

The rationale of this study is to analyse insights on flow-relevant subsurface structures based on qualitative and quantitative

measurements at the point, plot and hillslope scale. Specifically, we hypothesize that a combination of quantitative field meth-

ods and in situ imaging of subsurface response patterns with dye staining and time-lapse GPR provide the missing link between

form of the flow-structures and how their interactions determine rapid subsurface flow and thus function.10

We test this hypothesis by addressing three main research questions:

Q1 What kind of information on sub-scale flow-relevant structures, their characteristics and their distribution can be inferred

from a large set of direct point scale measurements of soil hydraulic properties?

Q2 How do salt tracer data, dye tracer stains, soil moisture response patterns, and 3D time-lapse GPR compare with respect

to inference on vertical flow channels and apparent flow velocities at the plot scale?15

Q3 How do methods and identified structures convey to the hillslope scale?

The study is approaching the identification and characterization of flow-relevant subsurface structures as the aspect of form.

The alternative starting point towards hillslope process understanding is taken in the companion study by Angermann et al.

(2017, this issue) with the aspect of function.

2 Experimental approaches and study methods20

The study at hand approached the topic on three complementary scales with a range of different methods: As standard refer-

ence, results from auger exploration and in-situ measurements of hydraulic conductivity and infiltration capacity were collected.

They were extended with pedo-physical laboratory examination of 250mL undisturbed ring samples for bulk density, porosity,

texture, soil water retention characteristics, and saturated hydraulic conductivity. We then broadened the perspective to the plot

scale with irrigation experiments accompanied by TDR (time domain reflectometry) measurements of soil moisture dynamics25

in a 1D profile, 3D time-lapse GPR imaging, and tracer recovery of dye, salt and stable isotopes. At the hillslope scale, 3D GPR

was used to identify flow-relevant structures in a static survey. For dynamic investigation, an irrigation experiment specifically

designed to identify lateral flow structures was observed by a dense network of TDR soil moisture profiles and a series of

trench-like 2D time-lapse GPR transects.

30
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2.1 Study site description

The study is situated in the headwaters of the Colpach river, a tributary of the Attert which has been investigated by several

studies before (Pfister and Hoffmann, 2002; Hellebrand et al., 2011; Jackisch, 2015). Located at the southern edge of the

schistose Ardennes Massif the soils are characterised by eolian loess deposits and weathered schist debris. The hydrological

setting of quick catchment reaction to precipitation especially during the non-vegetated season has been subject to some process5

hypotheses related to the periglacial deposit layers and flow at the bedrock interface (van den Bos et al., 2006; Fenicia et al.,

2014; Wrede et al., 2015; Loritz et al., 2017). Our measurements and experiments focus on two forested hillslopes (mostly

managed stands of beech, Fagus sylvatica, with mixed shrubs; some measurements took place in stands of spruce, Picea

abies). The agriculturally used plateaus at the hilltops are not examined here. Figure 1 presents a map of the area and the

location of the respective measurements and experiments.10

Figure 1. Map of the study sites in the upper Attert basin, Luxembourg.
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2.2 Pedo-physical exploration

The soil physical exploration addressed our research question Q1 using an intentionally large set of hydrological and geo-

physical methods to survey the subsurface. The sampling is guided by a network of hydro-meteorological monitoring stations

measuring all relevant fluxes and states in the atmospheric boundary layer and the subsurface (research project "Catchments

As Organized Systems" (Zehe et al., 2014)).5

2.2.1 Sampling design

Aligned with the monitoring stations infiltration capacity and saturated hydraulic conductivity was measured. In order to

address plot scale (few meters) and hillslope scale (few 100 meters) heterogeneity, the design consisted of clustered sets of

point measurements along two catenas plus one set at the site of the hillslope irrigation experiment presented in section 2.4. A

detailed map is included in appendix figure 13.10

The distance between the clustered sets was 80m to 200m. In each, three nested sets with a lag distance of 10m to 20m

along and perpendicular to the contour line were defined. In such a nested set at least one measurement of infiltration capacity

and two profiles (laterally spaced 1m) of saturated hydraulic conductivity in different depth levels were conducted. To complete

the scale triplet (Bloschl and Sivapalan, 1995) the respective support is given in the description of each technique.

In addition to the point measurements a series of percussion drilled profiles (drill head diameter of 4cm) as 1D profiles were15

drawn and 250mL ring samples were taken within the top 0.6m for laboratory analyses.

2.2.2 Exploration techniques

Infiltration capacity was measured at 40 points with a Hood Tension-Infiltrometer (IL-2700, UGT GmbH). It employs a tension

chamber (12.4cm radius) as infiltration water supply. Inside the chamber, a defined low negative pressure head is established,

which allows a precise measurement of infiltration capacity at different tensions. 3 to 5 tension levels between 0 and 5.5cm20

water column were applied at each spot.

In addition to infiltration capacity at the surface we used a Compact Constant Head Permeameter (CHP, Ksat Inc.) for

determination of saturated hydraulic conductivity in 32 borehole profiles with 3 to 7 depth levels of about 20cm increments

with the lowest level at a depth where further hand-drilling was inhibited by stones. The permeameter establishes a constant

water level (10.5cm in our cases) above the bottom of a borehole (here 5cm diameter). The outflow is measured to calculate25

saturated hydraulic conductivity (Amoozegar, 1989).

The 63 undisturbed soil ring samples were analyzed for bulk density, porosity (assumed to be equal to saturated soil water

content), soil water retention properties (Hyprop, UMS GmbH and WP4C Decagon Devices Inc.), saturated hydraulic conduc-

tivity (Ksat, UMS GmbH), and soil texture (ISO 11277, wet sieving and pipette method sedimentation).
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2.3 Imaging and quantification of rapid flow in plot scale irrigation experiments

In order to explore the network of flow-relevant structures and patterns of rapid subsurface flow we conducted three plot scale

irrigation experiments. This relates to our second research question Q2. The general setup is very similar to the one described

by Allroggen et al. (2015b), van Schaik (2009), Öhrström et al. (2004) and Kasteel et al. (2002). Marked on the map in figure

1 the three plots are located on a forested mid slope near gauge Weierbach 2 (see also appendix figure 13).5

2.3.1 Experimental design and multi-method approach

Three plots of 1m2 size were irrigated each for 1h with an intensity of 50mmh−1, 30mmh−1 and 50mmh−1 on Oct. 30,

Nov. 1 and Nov. 2, 2013 respectively. The relatively high rates were chosen to activate the potential flow paths and thereby

establishing connectivity. A layout of the experiment is presented in figure 2.

4 m

TDR profile
3D GPR
irrigation

vertical faces
horizontal cuts

core samples

Bromide 
sample grid

Plot X
50 mm

Plot XI
30 mm

Plot XII
50 mm

downslope
direction

reference
core sample 
3 m upslope

downslope
direction

dye stain excavations:

Figure 2. Plan view layout of the plot scale irrigation experiments. Three irrigation plots (1m2, gray squares) are monitored by 3D time-lapse

GPR (blue rectangles) and TDR (soil moisture tube probe, red box). The plots are sampled for tracer recovery by percussion drilled core

samples (yellow dot) and in a grid on the last of three vertical faces (dashed blue line). Moreover, dye stains are excavated at horizontal cuts

in the center of the irrigation area (dashed blue square). A pre-irrigation reference for pore water stable isotope composition is sampled as

fourth core 3m upslope.

The irrigation was accomplished by spray irrigation (full-cone nozzle Spraying Systems Co.) using a wind-protection tent.10

Brilliant Blue dye tracer (4gL−1) and Bromide salt (5gL−1 Potassium bromide) were used for qualitative and quantitative

reference, respectively.

In addition, temporal dynamics of soil moisture along a selected profile was monitored throughout the experiments through

continuous TDR measurements in an access tube (Pico IPH, IMKO GmbH) down to 1.5m depth and with a diameter of 4.2cm.

This technique is chosen to minimize the impact of sensor installation (percussion drilling and installation of the tubes from the15
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surface) and to avoid interference with the GPR (sensor probe was removed during GPR measurements). The sensor measured

an integral of about 1L (depth increment of 18cm, mean signal penetration of 5.5cm). It was manually lowered in the tube

to the respective depth for each reading. Each measurement took about 10 seconds. Hence the whole procedure added up to

4min to 10min per profile record. The procedure was continuously repeated until 1.5h after irrigation onset in line with the

findings of Germann and al Hagrey (2008) and Germann and Karlen (2016). They propose that film flow in soil structures5

disperses into the matrix after 1.5 times the duration of a constant plot irrigation.

2h after the end of each irrigation, a percussion drilled soil core was taken (drill head diameter of 8cm) and sampled in 5cm

depth increments down to 1m. The plot was excavated 24h after irrigation for vertical and horizontal recovery of Brilliant Blue

stains. This was done by successive digging of 3 vertical faces into the plot (aligned with the slope line, 0.1m distance starting

from the lateral edge) and 5-7 horizontal cuts in different depth levels down to the first deposit layer (0.5× 0.5 m2 in the center10

of the plot). On the third vertical face in the center of the plot core samples of 66mL soil were taken in a 5cm grid with 5

columns and 14 to 21 rows. In order to minimize time lags in the 70 to 105 individual samples a quick-sampler (see Appendix

A) was developed allowing for precise and nearly undisturbed sampling.

2.3.2 Bromide recovery and stable isotope analysis

All samples were analyzed for Bromide (Br–). This was done by oven drying the samples and consecutively suspending15

them in 150mL de-ionised water (72h in overhead shaker at 9 rotations per minute). The samples were then left 4 days for

sedimentation to exfiltrate the excess through a) filtration paper (5µm to 13µm) and b) 0.45µm PP micro-filter. The extracts

were analyzed in an Ion Chromatograph (Metrohm 790 Personal IC) with an anion separation column (Metrosep A Supp 4 -

250/4.0) for Br– concentration.

A recovery coefficient (RC) is calculated as proportion of recovered mass of Br– in the soil samples scaled to the total20

irrigated area times the depth of the lowest sample. Through this we neglect lateral flow from the irrigation spot and further

percolation in the calculation. We also assume the samples to be representative for the whole affected soil volume.

Prior to the Bromide analysis, the percussion drilled soil core samples were also analyzed for their stable isotopic composi-

tion (δ18O and δ2H) of the pore water. See appendix D for details and results, which are given in comparison to the Bromide

recovery.25

2.3.3 Calculation of apparent vertical flow velocity

The quantitative measurements allow to infer apparent vertical flow velocity along the profiles. For Bromide we employ a cu-

mulative curve method (Leibundgut et al., 2011). The distribution of the advective velocity vadvect is set to the depth distribution

of the tracer concentration at the time of fixation tfix. For the profile we assume apparent velocities:

v = z/tfix, (1)30
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Relating to our third research question Q3, they are projected to the recovered distribution of tracer concentration:

Φ(vadvect,z) = ctracer,z/

zmax∑
z=0

ctracer, (2)

where z is depth and Φ is the cumulative distribution function. Obviously, the estimated travel velocity distribution depends

strongly on the selection of tfix somewhere between irrigation and excavation. This can scale v several orders of magnitude.

Again, the reference of 1.5 times the irrigation duration is chosen (Germann and Karlen, 2016). For Br– in the sampled grids5

each column was treated as individual 1D profile. The calculation further assumes full tracer recovery.

2.3.4 Analysis of soil moisture responses

The individual TDR soil moisture measurements (θ) were projected to a regular grid of 0.1m depth increments and 10min time

increments for visualization of changes compared to the initial records. As an alternative and independent estimate of vertical

response velocities (research question Q3), we calculated the distribution of first exceedance of soil moisture by ≥2vol% in10

each depth level z:

vresponse = z/t∆θ≥0.02 (3)

For this the un-interpolated measurements were used.

2.3.5 3D time-lapse GPR

GPR is known as geophysical imaging technique with high spatial resolution (Huisman et al., 2003; Binley et al., 2015).15

Applied at the shallow subsurface it has been proven as potential means to locate and characterize soil layers and subsurface

structures (Holden, 2004; Gormally et al., 2011; Steelman et al., 2012; Klenk et al., 2015). GPR is also capable to monitor

subsurface fluid migration in time-lapse approaches (Birken and Versteeg, 2000; Trinks et al., 2001). Our experiments were

monitored by 3D time-lapse GPR measurements as described by Allroggen et al. (2015b). We employed a PulseEKKO Pro

GPR system (Sensors and Software Inc.) equipped with 500MHz shielded antennas with constant offset of 0.18m. Sampling20

interval was set to 0.1ns, recording a total trace length of 100ns in 8 internal stacks. Since precise positioning and accurate

repeatability are key requirements, we used a kinematic survey approach relying on an automatic-tracking total station (Leica

Geosystems AG, providing sub-centimeter coordinates) in combination with a portable measuring platform (Allroggen et al.,

2015b).

Using this setup, we acquired one 3D GPR data cube before irrigation, one directly after the end of irrigation, and a last25

one about 20h after irrigation for each plot. One survey took about 45min. Allroggen and Tronicke (2016) have shown, that

a pixel-to-pixel comparison of the radar amplitudes (A) is not suitable for analyzing time-lapse GPR data in the presence of

limited repeatability and noisy data. They propose a structural similarity attribute inspired by (Wang et al., 2004) calculated in

a moving window. It normalizes the crosscorrelation cx,y of the residuals (A−µA) of two different acquisition times (x,y) by

the product of their standard deviations (σA). They further introduced a as 10% of the maximum amplitude to avoid numerical30
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instabilities with near-zero σ values:

Sstruct(x,y) =
cx,y + a

σAxσAy + a
(4)

In our study we calculate the structural similarity attribute Sstruct of the pre-irrigation reference and the two post-irrigation

records using a local Gaussian window of 2.5ns along the vertical axis and 0.1m along the horizontal axes. The attribute ranges

between 1 and −1 with 1 being highly similar and −1 referring to most dissimilar. Points of low similarity indicate deviations5

that arise from changes in dielectric permittivity which likely reflect changes in local soil water content.

As additional estimate of vertical response velocities the same approach as for the soil moisture responses (section 2.3.4)

was employed with a threshold of the similarity attribute of zero between pre- and post-irrigation records.

2.4 Lateral subsurface flow paths in the hillslope

In order to examine the characteristics of flow-relevant structures and the periglacial deposit layers at the hillslope scale we10

conducted an experiment on June 21, 2013 at a close-by hillslope. The experiment was specifically designed to explore the

response in lateral preferential flow paths and to replicate the plot scale experiments without tracer application. The site had to

be chosen for facilitation reasons (permissions, accessibility, collaboration within the CAOS research project). With reference

to its hydrological responses (companion paper Angermann et al., 2017, this issue), vegetation, slope, soils and hydraulic

properties we consider the hillslopes to be very similar.15

2.4.1 3D GPR survey of the hillslope

As additional reference to the soil core profiles a 3D GPR survey of the hillslope was conducted prior to the natural event and the

irrigation. The GPR data processing relies on a standard processing scheme including bandpass filtering, zero time correction,

envelope-based automatic scaling, gridding to a regular 0.03m by 0.1m grid, inline fk-filtering and a 3D topographic migration

approach as presented by Allroggen et al. (2015a), using an appropriate constant velocity of 0.07mns−1.20

For structural analysis, the processed data are imported into the OpenDtect software (dGB Earth Sciences). Under heteroge-

nous soil conditions the derived data cube is dominated by complex reflection patterns which prohibit a classical structural

analysis based on picking reflectors (as done in a study with a similar cope but different setting by Gormally et al., 2011).

Therefore, we support our interpretation of the 3D GPR data and picking of potential flow-relevant horizons by a dip-corrected

semblance attribute. The attribute calculates the spatial coherency and highlights areas of coherent reflections (Marfurt et al.,25

1998). Low semblance indicates more complex reflection patterns caused by high internal heterogeneity, possibly influencing

the subsurface flow regime.

2.4.2 Experimental design

The experimental site is located at the lower part of a north facing hillslope. Vegetation is dominated by mixed beech forest.

However, the experimental site is placed in an area with no major trees. Except for few young trees at the downhill monitoring30
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area, all shrubs were carefully removed from the experimental site to accomplish GPR measurements and allow for undisturbed

and homogeneous irrigation. The topographic gradient is about 14°.

irrigation area  |  downhill area 
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Figure 3. Layout of hillslope scale irrigation experiment as vertical view (A) and plan view (B). The hillslope is divided into an irrigation area

and a downhill area by a rain shield. 16 access tubes for TDR measurements of soil moisture profiles are arranged in 3 diverting transects.

Parallel to the contour lines 4 transects of 2D time-lapse GPR are recorded.

The experimental layout is given in figure 3. Irrigation intensity, the duration of the experiment and the spacing of the

observation profiles have been decided based on a priori modeling scenarios as described in Appendix C. The experiment was

preceded by two strong storm events of 43mm in total on June 20. The events ended 20h before irrigation onset. The irrigation5

of 141mm in 4.5h was fed from stream water and was realized by four circular sprinklers (Wobbler, Senninger Irrigation Inc.)

arranged to overlap at a 5m by 5m core area with relatively homogeneous intensity. While boundary effects were mitigated

by an irrigated buffer zone of about 4m at the uphill and lateral borders of the core area, the downhill boundary was defined

by a rain shield. This established a sharp transition to the non-irrigated area below. Water collected by the rain shield was

routed off the experimental site. Irrigation was monitored by a flow meter to measure the absolute water input, one tipping10
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bucket to monitor the temporal variability, and 42 mini rain collectors evenly distributed across the core area to check spatial

heterogeneity of the intensity.

Moreover, a surface runoff collector was installed across 2m of the lower boundary of the core area. It was built from a

plastic sheet installed approximately 1cm below the interface between litter layer and Ah horizon of the soil profile. At the

downhill end of the sheet, the water was captured by a buried and covered gutter. An in-ground tube was attached to the deepest5

point of the gutter to conduct the water to a tipping bucket downhill of the investigated area. The tube had been filled with

water prior to the experiment to ensure an immediate reaction to the occurrence of surface runoff.

We monitored soil moisture dynamics in a setup of 16 access tubes with 3 manual TDR probes like in the plot scale experi-

ments (Imko GmbH, two with 12cm integration depth and one with 18cm). Measurements required manual positioning of the10

sensor probes for each reading. We continuously recorded the states in all tubes in 10cm depth increments realizing revisiting

intervals of 5min to 20min. The tubes were installed to reach to a depth of about 1.7m. The layout consisted of three diverging

transects with four TDR profiles in the lower half of the core area, the highest density of profiles just downslope of the rain

shield, and the furthest profile about 9m downhill.

15

Four 2D time-lapse GPR transects were treated as GPR-inferred, non-invasive trenches parallel to the contour lines located

2m, 3m, 5m and 7m downslope of the rain shield. Here, the GPR acquisition unit was equipped with shielded 250MHz

antennas. The data were recorded using a constant offset of 0.38m, a sampling interval of 0.2ns and a time-window of 250ns.

Wooden guides and the automatic tracking total station guaranteed accurate and repeatable positioning.

2.4.3 Analysis of TDR data20

In order to synchronize the almost 5000 individual TDR soil moisture records to a regular grid in time and depth interpolation

and resampling was required. To do so, we generated an intermediate grid of high data density onto which linearly interpolated

versions of the time series of each profile were projected. We then resampled from this intermediate grid to derive a synchro-

nised version of the records in 0.1m depth and 15min time increments. With this the spatial aggregation remains below the

integration length of the TDR probes. The temporal resampling and the therefore necessary linear interpolation is close to the25

acquisition timing of one profile (4min to 10min each). Since the correlation length of distributed soil moisture observations

is rather short and because we explicitly aim to analyze the responses of preferential flow structures, the issue of interpolation

needs special attention and will be discussed in section 4.2.1.

All soil moisture measurements are converted to changes in soil moisture referenced to the state previous to irrigation onset

to identify activated flow paths. Lateral interpolation between different TDR profiles over distances of about 1m and above30

is unfeasible. Soil moisture as extensive state variable is discontinuous at interfaces. The found subsurface setting does not

exhibit any isotropic continuum required for such interpolations.

As in the plot irrigation experiments, vertical response velocities are calculated for the TDR profiles at the core area. The

calculation of lateral response velocities is given in the companion study (Angermann et al., 2017, this issue).
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2.4.4 GPR transects and structural similarity attribute interpretation

The 2D time-lapse GPR data is derived from 9 repeated recordings along the four vertical GPR transects. Each record is pro-

cessed after a standard processing scheme of bandpass filtering, zero time correction, exponential amplitude preserving scaling,

inline fk-filtering, topographic migration with constant velocity (0.07mns−1), and consecutive gridding to a 2D transect with

regular trace-spacing of 0.02m.5

Most time-lapse GPR data analyses are based on calculating trace-to-trace differences (Birken and Versteeg, 2000; Trinks

et al., 2001) or picking and comparison of selected reflection events in the individual time-lapse transects (Allroggen et al.,

2015b; Haarder et al., 2011; Truss et al., 2007). Like in the 3D time-lapse GPR applications, the radargrams in the young,

highly heterogeneous soils do not exhibit explicit reflectors as suitable references. In addition, the limited repeatability of the

measurements and the desired identification of lateral flow structures require an alternative approach.10

Like for the plot scale experiments, we use the time-lapse structural similarity attribute (Allroggen and Tronicke, 2016, and

section 2.3.5). It is calculated using a local Gaussian window of 2ns along the vertical axis and 0.06m along the horizontal

axis.

Due to the presence of remaining event water from the preceding storm event (Angermann et al., 2017, this issue), all

measurements are referenced to the last acquisition time approximately 23h after irrigation start and about 19h after irrigation.15

The resulting structural similarity attribute images are used as a qualitative indicator for relative deviations from the reference

state.

2.4.5 Discriminating the natural storm event and the irrigation experiment

The experiment was preceded by two strong storm events of 43mm in total on June 20, 2013. In reference to the gauge reaction

the experiment was conducted shortly before the second peak of the runoff reaction to the preceding storm events (see figure 520

in Angermann et al., 2017, for details). Accordingly, the structural similarity attributes, which compare the distributed states at

the respective acquisition time to the last record, identify responses to both drivers, the natural storm event and the irrigation

experiment. To discriminate the signals we analyze the dynamics of each pixel in the GPR transects over time. The first two

structural similarity attribute transects 7.5h before and directly at irrigation start are attributed to the natural event and show

an increasing structural similarity (towards accordance with the reference state). Once the attribute value of a pixel decreases25

again (increasing deviation from the reference state) it is attributed to the irrigation. For stability reasons, a threshold of 0.15

was introduced for the attribute to be exceeded to detect changes. This is discussed in appendix F.
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3 Results

3.1 Soil physical exploration

3.1.1 Point samples show high heterogeneity

The in situ point measurements of infiltration capacity and saturated hydraulic conductivity showed high variability without

clear relationships to simple morphological descriptors like depth, hillslope position or topographic flow gradient (details given5

in the appendix figure 13). Infiltration capacity ranged between 5× 10−5 ms−1 to 5× 10−3 ms−1. The values for saturated

hydraulic conductivity ranged from 1× 10−8 ms−1 to 1× 10−3 ms−1 and even exceeded the measuring range of the constant

head permeameter. Only at the site of the hillslope scale experiment a pattern of elevated conductivity in about 0.6m depth

was found. The strong heterogeneity and large spread of values was also depicted in the analyses of undisturbed soil samples

(figure 4).10

On average the area is dominated by silty soils (see also Juilleret et al., 2011). This was corroborated by texture analyses

and the mean retention characteristics. However, the measurements of saturated hydraulic conductivity are on average two

orders of magnitude larger than what might be expected for these soils given their texture (Schaap et al., 2001). Also porosity

exceeds clearly the expected values, while bulk density is smaller than expected (compare figure 4 middle row of panels). All

measurements exhibited a large spread of values which does not correlate well with simple morphological variables like depth15

or hillslope position (figure 4, bottom row). The high hydraulic conductivity and large porosity maybe explained by aggregation

of fine silty material in conjunction with a network of rapidly draining inter-aggregate pores.

3.1.2 Soil core profile snapshots

The soil core profiles (figure 5) generally confirmed the presence of the periglacial slope deposits by gravel bands but also

showed a high degree of heterogeneity. The thickness of the horizons was variable, with a humidified mineral A-horizon of20

up to 0.3m. The gravel content gradually increased over depth in the Bw-horizon and further increased in the C-horizon,

starting between 0.4m and 1.1m depth. Below the depth of 0.5m scattered layers of weathered rock with usually horizontal

orientation were found in some soil cores. Percussion drilling was often inhibited at a depth between 1.5m and 2.0m (lower

end of the bars in figure 5) due to even higher stone content with a more and more vertical orientation of the weathered rocks.

In core 7, concretions of iron and manganese oxides were found in the depth between 1.6m and 1.9m below ground, indicating25

hydromorphic conditions.

Based on these standard techniques the overall setting of a heterogeneous silty soil deviating from expected low hydraulic

conductivity was revealed. So far gained insight is limited to the general existence of periglacial deposit layers (high gravel

content in soil profiles), rapid flow paths (hydraulic conductivity several orders of magnitude above literature references), and

some integral retention properties. However, details about its spatial organization and the detection of specific and potentially30

continuous structures remained obscured by high heterogeneity.
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Figure 4. Results of laboratory analyses of 63 undisturbed 250mL ring samples. Top row: Soil texture analysed with wet sieving and

sedimentation (pipette method). Saturated hydraulic conductivity (Ksat) measured with the Ksat apparatus and plotted against sample depth

and gravel content. Black box plots of respective depth increment. Mid row: Histograms and kernel density estimate of measured bulk

density, porosity and Ksat. Reference as mean silty loam value from literature (Hillel, 1980; Rawls et al., 1982; Carsel and Parrish, 1988).

Rosetta (Schaap et al., 2001) reference based on mean values of samples (15.7, 47.9, 36.4 % sand, silt, clay and BD 1.1 gcm−3) Bottom

row: Soil water retention relation measured with the Hyprop and the WP4C apparatus with average retention estimate (respective mean of

each 0.05pF-bin and fitted van Genuchten model) and literature references (Carsel and Parrish, 1988) scaled to measured average θs and θr .
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3.2 Plot scale flow path activation and vertical velocities

3.2.1 Irregular patterns of dye stains

In the plot scale tracer experiments the Brilliant Blue dye stains identified patchy infiltration patterns partially bypassing large

sections of the soil without clear traces of the actual flow path (figure 6). For all experiments stained patches were found down to

the periglacial deposit layer in 0.6m to 0.8m depth. During the excavation apparently isolated dye traces were recovered even5

several meters downhill the irrigation spot (4m downslope, 1m deep). The stains did not reveal a network of large macropores

but an irregular mesh of connected inter-aggregate voids. This is in line with the observed hydraulic capacity (figure 4).

3.2.2 Bromide breakthrough to the periglacial deposit layer

The connectedness and large transport capacity of this network of inter-aggregate pores is corroborated by the distributions

of Bromide tracer recovery (figure 7, top row). All plots suggested a relatively strong response in the depth of approximately10

0.6m. This depth correlates with the upper boundary of the first layer of periglacial deposits found in core profile B3 (figure 5)

and in the excavated soil profiles. This response is contrasted by low Bromide concentration in shallower depth. Even plot XI,

where only 30mm were applied, showed the same pattern with a clear breakthrough to the periglacial deposit layer.

At plot XII we found a stronger interaction with the soil matrix, which led to more dye staining and a higher Bromide

recovery. Overall, tracer recovery was incomplete (0.45, 0.38, 0.83 for plot X to XII, respectively) and even declined when15

including the core samples (0.24, 0.3, 0.63) once more pointing to strongly irregular soil water redistribution.
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Figure 6. Recovered dye patterns in plot irrigation experiments. Top row excavated vertical faces, bottom row horizontal cuts in 0.5m depth.

Dashed lines indicate level of periglacial deposit layer.

3.2.3 Quick soil moisture response in greater depth

The observed soil moisture changes (figure 7, bottom row) corroborated the results from the tracer data. Especially at plot X and

XII we found a relatively quick and strong response in 0.7m and 0.5m depth, respectively. This even preceded soil moisture

changes in shallower layers in plot X. Hence the records highlighted an important characteristic of the identified flow-relevant

structures, although the signal had a much lower spatial resolution than the tracer results. In contrast to the recovered tracers,5

we did not observe significant changes in soil moisture in plot XI. This can be explained by its position off set from the main

flow field (figure 16 in appendix E).

3.2.4 3D view on soil water redistribution

The structural similarity attribute of the 3D time-lapse GPR measurements provided qualitative information of changes in soil

moisture in a spatial context. At all plots the response patterns of low structural similarity pointed out quick vertical flow to a10

depth of 80ns or about 1.4m within 1.5h after irrigation start (figure 8, and figure 16 and 17 in appendix E). Also here, strongest

deviations were recorded in the mid horizon between 40 and 60ns two way travel time (TWT) corresponding to approximately

0.7 to 1m depth. The top horizon between 20 and 40ns (0.35 to 0.7m) had comparably high similarity. Measurements above

that depth were technically not possible. Patches of low structural similarity until 20.5h after irrigation start suggested further

lateral redistribution in the later course of the experiment at plot X. At plot XI with 30mm irrigation further vertical transport15

with a slight lateral component was recorded. Plot XII had very high similarity between first and third acquisition. This is a

sign for stronger macropore-matrix interaction and dispersive redistribution.

The contrasting attribute distributions over time and comparing plots X and XII did not only reveal diverse patterns. It also

highlighted the qualitative nature of the analytical method of the GPR data. Although visual interpretation of the radargrams
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Figure 7. Results from plot scale irrigation experiments with 50mm, 30mm and 50mm spray irrigation for 1h. Top: Recovered Bromide

mass profiles and grids (5x5cm). Blue line as mean and shaded area between min/max for each depth of the sampling grid. Orange line is

mass recovered in drilled profile samples (scaled to same volume reference). Recovery coefficient (RC) calculated for the profile samples

(first value) and the profile and core samples (second value). Bottom: Observed soil moisture change referenced to the first measurement

shortly before onset of the irrigation. Individual measurement times marked with triangles.

(top row in figures 8, 16 and 17) is very difficult, they show how the structural similarity attribute highlighted areas where radar

patterns changed. Due to the complex reflection energy patterns it is not suitable to trace individual reflectors. This prevents a

quantitative interpretation as shown by Allroggen et al. (2015b).

For the identification of structures, the results did not exhibit specific macropores like the dye stains but areas of response to

the irrigation. Nevertheless, the patchy characteristic of the found response patterns was very similar to that of Brilliant Blue.5

3.2.5 Derivation of vertical flow velocities

Based on all applied techniques, hydraulic conductivity and apparent vertical flow velocities were calculated (kernel density

estimates plotted in figure 9). The many point scale measurements (left panel based on 63 ring samples, 40 infiltrometer points,

102 individual permeameter measurements) resulted in disagreeing distributions stretching across a large spectrum of flow

velocities. The reason for this spread stems from the fact that the measurements consist of matrix flow and flow in structures.10

The response-related methods of the irrigation experiments were in much better accordance because they all relate to the same

processes. They revealed an apparent vertical velocity of 1× 10−3.5 ms−1 (figure 9 right panel based on Bromide recovery
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Figure 8. Time-lapse 3D GPR of irrigation experiment at plot X. Center line radargrams at the marked transect (grey dashed line in lower

panels) for the three acquisition times (before 0:00 h, directly after irrigation 1:00h, 20:00 h after irrigation) are given in the top row. Two

way travel time (TWT) is given as original depth reference. The structural similarity attribute of the 3D data cube is given in three different

depth layers (top 20ns to 40ns, mid 40ns to 60ns, low 60ns to 80ns) in the lower panels. The irrigation plot is marked by a black dashed

box/line. Slope line distance is increasing downslope.

with an estimated time of fixation (tfix) after 1.5h, first excess of TDR recorded soil moisture ≥ 2vol%, and GPR structural

similarity attributes below zero between pre-irrigation and first post-irrigation records).

All results ranged several orders of magnitude above the literature reference of 2.5× 10−7 ms−1 (mean of reported values

for silt and silty loam Hillel, 1980; Rawls et al., 1982; Carsel and Parrish, 1988) and the Rosetta value of 6.2× 10−6 ms−1

(Schaap et al., 2001). The role of inter-aggregate pores facilitating this quick redistribution even through comparably small5

voids without noticeable dye staining was corroborated.
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Figure 9. Saturated hydraulic conductivity and apparent vertical flow velocity kernel density estimates. Left panel: Point scale measurement

results (Lab: Ksat apparatus, Hood: Hood Tension-Infiltrometer, CHP: Constant Head Permeameter in different depth levels); Right panel:

Results from plot scale irrigation experiments. Vertical gray lines are box plots of velocity distribution based on different tfix estimates for

Bromide. Rosetta (Schaap et al., 2001) reference based on mean values of ring samples (15.7, 47.9, 36.4 % sand, silt, clay and BD 1.1

gcm−3)

3.3 Hillslope scale detection of lateral flow paths

3.3.1 3D GPR survey suggests a fragmentary layer

The 3D GPR survey at the site of the hillslope experiment identified fragmented structures in about 1.5m depth (figure 10).

This is in accordance with the soil core profile depth (figure 5). Especially profile 7 suggested an impermeable layer just

below that depth. Although a potential structure can be identified it remains unclear to which degree this area of high spatial5

inhomogeneity in terms of radar reflection characteristics is flow-relevant, unless a reaction to an event is observed.

3.3.2 Hillslope responses

The results of the hillslope scale irrigation experiment can be distinguished into the core area observations with TDR profiles

only and observations at the downhill monitoring area, including TDR profiles as well as 2D GPR transects. The change of soil

moisture at the core area (TDR 2 and 8 in figure 11) was very much in line with the findings from the plot scale experiments.10

Given sufficient irrigation, both experiments showed a quick and clear response in greater depth, even before intermediate

layers responded. While the patterns were similar, the signal was much stronger during the hillslope scale experiment, which

is due to the higher irrigation amount and duration. The calculated apparent vertical response velocities (lower right panel in

figure 11) had a wider spread towards the faster end but ranged around the values identified in the plot irrigation experiments.

The downhill profiles (e.g. TDR 9 and 11 in figure 11) showed a more diverse response. With greater distance to the core area15

the reaction was more and more limited to single depth levels. But since the depth levels and responses were highly divers, it

remains rather ambiguous to determine their lateral connection. Overall changes in soil moisture as maximum at each TDR

profile did not corroborate the potential subsurface structures identified in the 3D GPR survey (compare identified potential
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Figure 10. Potential subsurface structures from 3D GPR survey and setup of hillslope experiment. Structure identification guided by the dip

corrected semblance attribute. Depth estimated based on mean measured effective radar velocity in soil of 0.07mns−1.

Summary of the hillslope experiment given by locations of TDR profile tubes (purple, also location of respective soil cores in figure 5) and

GPR transects (blue). Dot size of TDR scaled to maximum of observed change in soil moisture. Along GPR transects lateral marginals of

the structural similarity attribute as proxy for recorded advection. Note that the picked potential subsurface structures are located in different

depth (white to black) and that variations in spatial contrast can be seen in the semblance attribute (white to orange). Where more than one

horizon has been identified the top one is plotted.

structures with dot sizes in figure 10). The full set of profiles is reported in the companion study (Angermann et al., 2017, this

issue).

The four successive GPR transects across the downhill monitoring area provided spatially distributed images of hillslope

scale flow patterns and boundary fluxes. The structural similarity attribute of storm event water (green) and irrigation water

(blue) revealed distinct, heterogeneously distributed patters (figure 12) pointing to discrete connected flow paths instead of an5

irregular network of inter-aggregate pores. The measurements suggested that lateral flow takes place in a very diverse network

with very low similarity between the transects. Moreover, the responses to the irrigation decayed with distance to the core area.

The patches which reacted to the storm event are mostly different ones than the structures used to drain the irrigation water.

Apparently the irrigation experiment initiated flow in more shallow structures (compare transect 1 irrigation reaction with

transect 3 storm water in figure 12). Areas of high temporal dynamics of the similarity attribute were identified as regions of10

such flow-relevant structures (figure 12, bottom row). Note that the last recorded difference 18h to 23h after irrigation start (not

shown) exhibited high similarity in all profiles. The mean of the attribute was between 0.93 and 0.96 and standard deviation

between 0.076 and 0.048 for GPR transect 1 and 3 respectively. Apparently, the system had reached a steady state without

much further change in soil moisture (see Appendix F for more details).
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Figure 11. Development of soil moisture in TDR profiles during and after hillslope irrigation experiment. Exemplary transect with changes

referenced to pre-irrigation conditions and attributed to irrigation water. Time is given in [h] after irrigation start. Individual measurements

and probe reference marked with triangles. More data and explanation in Angermann et al. (2017), this issue. Right bottom: Apparent vertical

flow velocity as first excess of ∆θ ≥ 2vol% at core area profiles.

The patchy structures at the transects highlighted the irregularly distributed nature of lateral preferential flow paths which

was similarly observed in the plot experiments. Although some areas exert a higher density of reacting flow paths than others,

no continuous patterns could be specified throughout the hillslope. We also saw a decay of the signal strength and areal share

with distance from the core area. As the patterns from transect 1 did not simply propagate further downslope, the flow paths

must be tortuous and leaky. Hence inferring the configuration of the connection between the four transects in downhill direction5

is not feasible. A comparison of the suggested structures of the 3D GPR survey to the overall response to irrigation recorded

at the GPR transects did not correlate well (compare identified potential structures with reaction summary at GPR transects in

figure 10).

4 Discussion

4.1 Identification of flow-relevant structures across scales10

Our results have shown that the silty soils coincide with high porosities and high hydraulic conductivity at the point scale.

Such a coincidence is not what is expected for cohesive, fine textured soils and can be explained by a setting of aggregated fine

material in conjunction with a network of inter-aggregate pores. With respect to our research question Q1, the pedo-physical

analyses initiated the recognition of these sub-scale structures. However, neither their position nor their general setup can be
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Figure 12. Structural similarity attribute in time-lapse 2D GPR transects. Blue: irrigation event water, Green: Storm event water. Columns:

time series in one transect, Rows: different transects at the same time. Bottom row: Identified regions of rapid subsurface flow based on the

standard deviation of all structural similarity attributes at one transect over time.

Notice: The structural similarity attribute calculates similarity between the radargram at the respective time to the last record 23h past

irrigation. A threshold or 0.15 is applied to identify significant changes. It is a qualitative measure based on the assumption that the last

record is in steady state and that all differences are induced by soil water redistribution.
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identified based on point observations because of its scale below the support of the measurements. Vice versa, methods at the

next scale do not provide information about porosity and bulk density.

Irrigation experiments at the plot scale visualized that a network of these inter-aggregate voids connects the surface to the

periglacial deposit layer and is responsible for highly diverse soil water redistribution. These structures are different from what5

we usually expect (cracks, worm burrows, roots channels) at this scale. This could be depicted from dye tracer stains (figure

6), which still have the highest spatial resolution on the cost of a lack of temporal insight. It requires strong assumptions about

macropore-matrix interaction, time of fixation and dye supply, retention and recoverability. Despite all uncertainty about what

process caused staining, the technique allows to identify the structures activated by irrigation and to infer much about their

setting where dye has been retained. Although dye stains are closely related to actual flow and thus function, they only re-10

veal the potential pathways and thus form as the actual processes and timing remain unknown. When irrigation intensity and

irrigation amount ranges near the hydraulic capacity of the macropore network while still avoiding ponding or macropore clog-

ging, the entire network of flow-relevant structures is marked. 3D time-lapse GPR has proven to be capable to detect similar

response patterns. However, the spatial and temporal resolution of the method is still insufficient to detect the flow-relevant

inter-aggregate voids marked by dye stains. Some of the structures have not even been traced with dye, nor could GPR identify15

them. Notwithstanding, the overall characteristics of the structures as patchy responses is depicted well and in a non-invasive,

spatially continuous manner. Thus most of the point-sampling related issues (sections 3.1.1 and 4.4) are resolved. Regarding

research question Q2, the visualization of flow structures based on responses to irrigation succeeded at the plot scale. They are

in good coherence with the quantitative findings from salt tracers, stable isotopes and soil moisture dynamics. Interestingly,

the found vertical response velocity distributions correspond well to the saturated hydraulic conductivity measurements in soil20

samples, although their distribution is much more tight.

At the hillslope scale (Q3), applications of 3D time-lapse GPR are technically impossible due to the long acquisition times.

Consequently we altered the setup to four trench-like 2D time-lapse GPR profiles to facilitate the required high temporal

resolution. The responses suggest structures similar to but less diverse than the found inter-aggregate voids at the plot scale.25

They are spatially persistent and leaky and apparently feed from diverse sources. As such the irrigation experiment caused a

similar response in different structures than the previous storm event. Moreover, the relatively high input rates have proven

adequately chosen to identify lateral subsurface flow paths. At this scale the capability of point-based methods for structure

identification is even more limited as the dense network of soil moisture profile observations did not allow the derivation of a

conclusive picture.30

4.2 Event response patterns reveal flow-relevant structures

Interestingly, static methods failed to unravel structures from overall heterogeneity. This corroborates our idea that responses to

an event are required for the identification of flow-relevant structures. Furthermore, it confirms that a combined assessment of
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form and function is needed to mutually reduce ambiguity. This is also shown in the companion study with a focus on function

and processes at the hillslope scale (Angermann et al., 2017, this issue).

4.2.1 Soil moisture responses

In our case TDR measurements through access tubes were employed as low-impact means to monitor soil water dynamics

in order to detect areas of quick and strong response. Structures in general and the inter-aggregate voids in our case cover5

only a very small fraction of the measured volume. We may underestimate detected flow paths when they do not alter the

total volumetric soil water content much (bypassing). This can explain the observed patterns of low response in the topsoil

and changes in regions where the fast flow is decelerated at some kind of bottleneck. Referring to the theoretical integration

volume of 1L it would require a macropore of about 1cm diameter within the support of the sensor to be filled to just reach

a threshold of 2 vol%. Adding this 20mL of water diffusively would result in the same measurement. This shows that soil10

moisture measurements exhibit a conceptual bias towards the diffusive fraction of the soil water.

The quantification of advective water from the recorded changes in soil moisture has been proven as not feasible. Given

the insight of the discretely structured flow domain and the high lateral response velocities identified in the companion study

(Angermann et al., 2017, this issue), the soil moisture measurements leave us with many questions. Comparing the identified

regions of flow structures (figure 12) with the support of a TDR sensor quickly reveals that even a large number of point15

observations remains highly uncertain if the overall spatial context is unknown. This is especially the case at the hillslope

scale. At the plot scale, the issue is less pronounced as we have shown with the good correspondence between tracers, GPR

and soil moisture reaction at plot X (figure 7 and 8). However, at plot XI with less intense irrigation the soil moisture profile

did not react despite the evidence of quick vertical redistribution in all the other methods. Apparently, the TDR records were

simply not close enough to the comparably few activated flow paths (figure 16).20

4.2.2 Time-lapse GPR patterns

The potential horizons identified by the static 3D GPR survey do not coincide with the observed responses (figure 10). This

is another example for the requirement of a shift between active and non-active state to identify flow-relevant structures. The

structural similarity attributes derived from time-lapse GPR reveal the patterns of soil water redistribution. The continuous 2D

and 3D data allow to relate temporal changes in space as images of the subsurface as proposed by Gerke et al. (2010); Beven25

and Germann (2013) and others.

The comparison of radargrams in time needs further attention: In other time-lapse GPR applications for soil water dynamics

in structured domains (Truss et al., 2007; Haarder et al., 2011; Allroggen et al., 2015b; Klenk et al., 2015) analysis is guided by

reference to a reflector and its apparent displacement can be used to calculate changes in soil moisture. Alternatively, a wetting

front could generate a reflector (Léger et al., 2014). In our case none of these existed.30

On the one hand, we minimized methodological problems concerning the noise arising from the imperfect positioning of

repeated GPR measurements by using a measuring platform at the plot scale, transect guides at the hillslope scale, and an

automatic-tracking total station (Allroggen et al., 2015b). On the other hand we base our analysis on the structural similarity
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attribute instead of pixel to pixel comparison or picked reflectors. The disadvantage is that this allows only for a qualitative

measure. The advantage is that the spatial organization of areas with changing reflection and transmission properties (which

are attributed to changes in soil moisture) can be revealed even in heterogeneous soils. The 3D applications at the plot scale

avoid strong assumptions about the continuity of preferential flow paths when inferring 3D networks from 2D measurements

(Gormally et al., 2011; Guo et al., 2014). Especially in the soils under study, the found response patterns (figure 8) and the5

excavated stained soil profiles (figure 6) show highly tortuous flow paths. Thus we refrain from interpolations between the

multi-2D transects at the hillslope scale.

Although the 3D time-lapse attribute data of the plot irrigation experiments are of low spatial resolution (blur due to similarity

attribute method and long duration of one acquisition) and limited temporal resolution (few acquisition times), they are suitable

to identify regions of flow-relevant structures and their characteristics. In the multi-2D transects resolution was enhanced (short10

duration of one acquisition and many repeated measurements) which depicted the structures much better. Hence, time-lapse

GPR can especially be improved by enhancing the acquisition time and frequency.

The observation of changes during activation of flow-relevant structures generated the required contrast to overall hetero-

geneity. For large structures, this lead to precise identification and localization. Smaller flow paths cannot be fully resolved.

Nevertheless, the continuous 2D and 3D images of the subsurface response patterns provide means to non-invasively study15

the form-function relationship in situ and to overcome some of the restrictions of retrospective and destructive tracer methods.

However, quantitative interpretation of time-lapse GPR data remains challenging.

4.3 Methodological assessment

In contrary to our first expectation, the value of pedo-physical analyses of soil core samples has been relatively high even

for characteristics of flow facilitated by the revealed paths at larger scales. Structure identification is not only obscured in20

heterogeneity as one would expect, but properties deviating from the standard situation (fine texture, low bulk density and

high porosity) gave rise to the identification of the inter-aggregate flow paths. However, the spatial organization of structures

below and above the support of the samples cannot be revealed. This is also the reason for the relatively low information which

could be drawn from the in situ infiltration measurements: The observed flow rates are largely affected by the capacity of the

connected flow paths draining the measurement point. This adds to the critical assumption of homogeneity (Langhans et al.,25

2011).

Besides the high information gain through the state shift of flow-relevant structures in irrigation experiments, the employed

methods at the plot scale have very specific advantages and disadvantages: Especially the laborious and costly analysis of salt

tracers and stable isotopes is contrasted by relatively little additional information. Moreover, the lack of a temporal information

about when the solute or water molecule was retained in a certain depth is seen problematic. Soil moisture profile dynamics30

and time-lapse GPR do not suffer this drawback. Both can be employed with very low or even no impact on the subsurface

from the surface. While GPR requires to be operated in higher temporal resolution (see section 4.5), soil moisture profiles lack

the desired spatial discretization. Dye staining delivers the highest spatial resolution to reveal subsurface structures on the cost

of blindness about the temporal dynamics. Furthermore, a tomographic excavation of the stains has proven very difficult.
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Under strongly structured conditions as at the hillslope under study, point observations remain a needle in a haystack. Unlike

for vertical structures at the plot scale, the dense network of soil moisture profiles could not depict the lateral flow paths well.

Here, the GPR-inferred trenches have shown to be a valuable surrogate for massive staining like in the study by Anderson et al.

(2009). In addition, the temporal dynamics of the hillslope reaction could be observed.

With regard to our a priori model application, the combination of vertical and lateral flow paths (identified in the irrigation5

experiments) with layers of low permeability just below the structures (observed in the soil core profiles) could refine the

domain towards more lateral soil water transport. The mean retention properties (derived from pedo-physical analyses) are

adequate. Hence, the combination of data from all scales can contribute to a refinement of the model.

4.4 Heterogeneity versus structure

Based on numerous point scale measurements the overall layering and mean property of a heterogeneous soil with periglacial10

deposit layers was described in section 3.1. Given the large effort to conduct such exploration, this result appears rather

dissatisfactory and could have been achieved with much simpler means (e.g. compare Heller and Kleber, 2016, in a similar

setting). However, they have been key to the identification of the sub-scale inter-aggregate structures which convey to vertical

drainage paths and a lateral network in the subsurface. Without high supply rates from the point scale, subsurface storm flow

in the lateral structures could not be sustained.15

At the hillslope scale, the attribute supported picking of potential structures in the 3D GPR data cube also had high discrep-

ancies to the actual relevant structures (see differences between potential subsurface structures and recorded reaction in TDR

and GPR profiles in figure 10) which is in contrast to similar GPR applications by Gormally et al. (2011) and explains the large

spread in the results of the hydrological measurements.

It has proven particularly difficult to distinguish heterogeneity and structure. This has conceptual implications: As intro-20

duced, we regard statistical heterogeneity as random small scale changes in hydrological soil properties (de Marsily et al.,

2005) and structure as spatially organized flow paths (Gerke, 2012) and their connectedness (Tetzlaff et al., 2010) or persistent

spatial covariance of high conductivity values. Hence the structures require multivariate or topological characterization. To in-

fer on the directed flow in subsurface structures, a spatially continuous observation of the reaction to an event is required. This

has proven especially challenging as the spatial scale of flow-relevant structures (5× 10−3 m to 5× 10−2 m) is several orders25

of magnitude below the support of standard soil samples and hydrological measurements (1× 10−4 m3 to 1× 10−3 m3).

In more general terms, heterogeneity can be seen as deviation of the found reality from the concept of quasi-homogeneous

elementary volumes. If this deviation concerns only the apparent parameters of the same physical process, more samples are

adequate to determine their distribution. In cases (like here) where this deviation also means a shift in the physical processes,

heterogeneity may introduce bias as it becomes a scale-problem: Any measurement will consist of an unknown subset of30

connected or not connected flow paths. This makes it impossible to unravel the properties of the different flow domains without

knowing the composition of the explored ensemble of each measurement. Hence the point-based techniques cannot determine

the super-scale organization outside the support of the measurement. Without detection of organization and thus flow-relevant

structures they can only recover heterogeneity independent of the number of samples.
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4.5 Outlook on structure identification with time-lapse GPR

In the context of preferential flow studies in watersheds around the globe and in many different models, our results open new

ways to visualize subsurface flow and to facilitate more field studies to understand stormflow generation (as recently found in

a meta-analysis by Barthold and Woods, 2015). Although we cannot fully resolve macropores as needed in spatially explicit

representation of macropores as vertically and laterally connected flow paths (Vogel et al., 2006; Sander and Gerke, 2009;5

Klaus and Zehe, 2011), our findings provide experimental basis to further develop such models. More implicit approaches like

stochastic stream tubes (Jury and Roth, 1990), the scale way idea (Vogel and Roth, 2003), or dual porosity and permeability

approaches (Gerke, 2006) could be extended by providing spatial and temporal context which is one of their assumptions. Also

more integrating concepts like the representative watersheds (REW, Reggiani et al., 1998; Tian et al., 2006; Lee et al., 2007)

could define zones for quick drainage based on repeated response observations in vertical and lateral structures.10

In the form and function framework one implication of the study is that a disjunct analysis of the two is source of unnecessary

ambiguity and susceptibility to bias. Although the conjugated nature of form and function is very much in line with the

general findings and perception of early studies (Aristotele in Blits, 1999; Thompson, 1917; Wittgenstein, 1922, and others), it

contradicts a general notion in hydrological surveying and modeling to separate the two. In most models different flow paths

are defined in a lumped manner using effective parameters after all. These domains and their parameters could be determined15

based on irrigation experiments and time-lapse GPR measurements.

While models require specific parameters about the site under study which are coherent with their conceptual assumptions

or modeler’s perception (Holländer et al., 2014), also the experiments are strongly shaped by our perceptual model about the

processes. With this, the matter of model adequacy is not restricted to numerical aspects alone (Gupta et al., 2012). Methodolog-

ically, the in situ imaging of subsurface flow processes can be used to reduce ambiguity of measurements and to constrain the20

process conceptualization in heterogeneous and structured soils. In our case, the a priori model overestimated deep percolation

and underestimated the velocity of lateral soil water redistribution through subsurface flow paths. Based on field information

about the overall distribution of flow paths or quickly reacting areas sampling and monitoring could be guided. This would

reduce the limitations of point scale methods with relatively little effort.

5 Conclusions25

In the hillslopes under study silty, cohesive soils coincide with high porosity and high flow velocities at the Darcy scale. This

motivated in depth investigation of flow-relevant structures explaining this. We have shown that subsurface heterogeneity and

the mismatch of observation and process scales obscured the identification of flow-relevant structures under static conditions

without a shift between active and non-active state. The pedo-physical analyses initiated the recognition of these sub-scale

inter-aggregate structures. The point scale exploratory methods could quantify the general characteristics of the subsurface30

only within a wide spectrum of the respective target properties. However, they failed to identify flow-relevant structures in

terms of position, distribution and capacity at larger scales. Measurements of infiltration capacity and hydraulic conductivity

require special attention, because they integrate over an unknown set of advective and diffusive flow paths. The discrepancy
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between results from the soil core profiles and a 3D GPR survey on the one hand and the time-lapse approaches on the other

hand points out that structures identified from inhomogeneities are not necessarily flow-relevant pathways.

Joint application of tracers and time-lapse GPR during irrigation experiments revealed details about the structures and

their activation by flow. At the plot scale a network of inter-aggregate pores enables fast soil water redistribution in a less

directed manner and at much finer scales than usually expected in macropores like cracks, worm burrows or root channels.5

This facilitates high apparent vertical flow velocities ranging around 10−3.5 ms−1, while operating in fine pores at scales very

difficult to identify even with dye staining. The combination of tracer and time-lapse GPR methods enabled the more holistic

view into the subsurface which was further applied to the hillslope scale. There persistent lateral pathways connecting along

the hillslope have been identified through GPR-inferred trenches.

Our findings show that form and function in hydrological systems operate in conjugated pairs. This implies that it is very10

difficult to observe them separately and that their projections are inherently non-unique and scale dependent. Besides the fine

scale of the inter-aggregate voids, form requires to be addressed in its context to reveal information about structure and its

characteristics. But also addressing function needs details about the spatial circumstances to be conclusive. Overly strong

assumptions about structures or processes can be avoided by the presented non-invasive time-lapse GPR method, which can

visualize and localize response patterns at the plot and hillslope scale. They compare well with soil moisture dynamics and15

tracer recovery. As such the localization of responses provides the missing link to relate form with function (taken up in the

companion study by Angermann et al., 2017, this issue) and to guide more specific investigation, monitoring and modeling of

subsurface processes.
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Appendix A: Quick sampler for fast undisturbed core sampling on excavated profiles

In addition to the dye tracer stain records, quantitative analysis of salt tracer recovery distribution in the excavated profiles30

underneath the irrigation plots was done. One challenge to address was the required time to collect an adequate array of such

soil samples with known volumetric reference. We developed a re-loadable core sampler with a calibrated sample volume of

66mL.
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The sampler is applied like a ring sample with attached hammering adaptor. In order to minimize time and impact on the

profile we enabled a pull-withdrawal of the sample. For this, the sampler is about 15mm longer than the desired sample. The

irregular open edge is scraped off by a calibration twist drill. The prepared and accurate to volume sample is finally pushed out

by a piston from the sampler into a sealable brown glass bottle for further treatment in the laboratory.

tra
ns

ec
t p

ro
fil

e

Monitoring cluster

4.4e-6  –  1.8e-5
1.8e-6  –  3.4e-5
3.4e-5  –  6.3e-5
6.3e-5  –  7.1e-5
7.1e-5  –  8.3e-5
8.3e-5  –  1.0e-4
1.0e-4  –  2.6e-4

0.70
8.025
15.35
22.68
30.00

−7 −6 −5 −4 −3

-0.6

-0.4

-0.2

Set I

−7 −6 −5 −4 −3

Set D

−7 −6 −5 −4 −3

Set E

−7 −6 −5 −4 −3

Set G

−7 −6 −5 −4 −3

Set H

−7 −6 −5 −4 −3

Set Holtz

-1.0

-0.8

-0.6

-0.4

-0.2

0 100 200 300 400 position [m]

440

460

480

elevation 
[m]

ksat log10[m/s] ksat log10[m/s] ksat log10[m/s]

A
B
C
D

Sub-
set
pos.

ksat log10[m/s] ksat log10[m/s] ksat log10[m/s]

Infiltration Capacity
Hood Infiltrometer

Saturated Hydraulic Conductivity
Constant Head Permeameter

Transect Positions

depth
[m]

Plot experiments

Set
I

Set
D Set

E

Set
G

Set
H

depth
[m]

Topogr. flow gradient [-]

x B7

x B4

x B3
x B2

x  Soil core profiles

Weier-
bach 2

Figure 13. Hydrological exploration results. Left: Infiltration capacity (values color coded) measured with hood infiltrometer. Basemap with
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Right top: Saturated hydraulic conductivity measured with a constant head permeameter. Individual profile position in the respective nested

set color coded (2 measurement holes with dist=1m). Values exceeding the device capacity set to 10−3 ms−1. Right bottom: Elevation profile

of transect as characteristic landscape feature in the sub-basin.
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Appendix B: Detailed results of hydrological measurements

In situ measurements of infiltration capacity and saturated hydraulic conductivity had a highly heterogeneous distribution. To

detail on the respective records and found profiles figure 13 shows them in spatial context.

Appendix C: A priori model reference

Based on the findings of the pedo-physical exploration, we setup the 2D process model CATFLOW (Zehe et al., 2001) as5

representative hillslope for hypothetical a priori simulation of the experiment in order to determine the required irrigation

intensity, the spatial extent of the observation network, the temporal resolution, and the duration of the monitoring. The model

domain was set up based on the soil property estimates from the soil physical exploration assuming a fractured periglacial

deposit layer as conductive layer in the hillslope (fig. 14). In a series of scenarios, the one with 30mmh−1 irrigation for

4h turned out to be well balanced with respect to anticipated hillslope reaction given a limited source area. Fast soil water10

redistribution was modeled to last for 12h.
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Figure 14. CATFLOW model reference of hillslope experiment. Left panel: Table of used soil definitions and hypothetical hillslope setup.

Right panel: Simulated soil moisture with 30mmh−1 irrigation for 4h.

Comparing the results from the model with the experiment shows strong deviation in terms of the activation of a conductive

layer. However, this could be improved by adding a layer of low permeability below, since the modeled reaction on the bedrock

interface is quite similar but slower than the observed dynamics.
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Appendix D: Pore water stable isotope analysis in plot irrigation experiments

In addition to Bromide as conservative salt tracer the same percussion drilled core samples were analyzed for their stable

isotopic composition (δ18O and δ2H) of the pore water. This was done with the direct equilibration method as proposed

by Wassenaar et al. (2008) and described in detail by Sprenger et al. (2015) using a wavelength-scanned cavity ring-down

spectrometer (Picarro Inc.). The precision for the method is reported to be 0.31 ‰ for δ18O and 1.16 ‰ for δ2H (Sprenger5

et al., 2016). The measured isotopic signal is given relative to the Vienna Standard Mean Ocean Water. As pre-experiment

reference, a fourth reference core has been sampled prior to the experiments about 3m upslope.
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Figure 15. Plot scale irrigation experiments. Proportion of event water derived from deviations in concentration of Deuterium and Bromide in
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We calculate the volumetric event water portion [-] in the soil water as:

Θevent

Θ2h
=

Θ2h · δ2H2h −Θpre · δ2Hpre

Θ2h · δ2Hevent

(D1)

with δ2H as Deuterium composition [‰] in the pre-event reference sample (pre), in the core sample 2h after irrigation start10

(2h), and in the irrigation water (event). The amount of soil water is given as Θ [mm].

Figures 15A-C show the depth profile of irrigation water as portion of total water content, calculated from the deviation

in δ2H concentration between reference and 2h past irrigation core samples. The results are also compared to the Bromide

concentrations in the soil water phase of the same samples, showing slight correlation. However, the values are rather noisy due

to low difference of the isotopic composition of the soil water and the not-enriched irrigation water. Figure 15D-E highlights the15

very weak soil moisture signal and low deviation between the respective soil cores close to the method’s precision. Especially
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interpretation of the peak in about 0.5m depth and signals below may be erroneous, because the signature of the reference core

coincides with the irrigation water there.
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Figure 16. Time-lapse 3D GPR of irrigation experiment at plot XI. Center line radargrams at the marked transect (grey dashed line in

lower panels) for the three acquisition times (before 0:00 h, directly after irrigation 1:00h, 20:00 h after irrigation) are given in the top row.

The structural similarity attribute of the 3D data cube is given in three different depth layers (top 20ns to 40ns, mid 40ns to 60ns, low

60ns to 80ns) in the lower panels. The irrigation plot is marked by a black dashed box/line. Slope line distance is increasing downslope.

In line with the findings of Klaus et al. (2013) the isotopic signal of non-enriched water required strong assumptions for

its interpretation. In our case this specifically applies to the plot scale core samples where we calculated the difference to the

pre-experiment core regardless the fact, that soil water and irrigation water deviated only slightly (≥ 15 ‰) and even had the5

same values at 0.5m depth. Moreover, the reference core was required to be at a different location. Hence, flow paths and thus
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Figure 17. Time-lapse 3D GPR of irrigation experiment at plot XII. Center line radargrams at the marked transect (grey dashed line in

lower panels) for the three acquisition times (before 0:00 h, directly after irrigation 1:30h, 20:00 h after irrigation) are given in the top row.

The structural similarity attribute of the 3D data cube is given in three different depth layers (top 20ns to 40ns, mid 40ns to 60ns, low

60ns to 80ns) in the lower panels. The irrigation plot is marked by a black dashed box/line. Slope line distance is increasing downslope.

the initial isotope profile are not necessarily the same as at the respective plots. However, as assumably ideal tracer the stable

isotope data allowed for an additional and coherent measurement. With respect to the overall findings of rapid flow in discrete

structures the assumption is justified.

Appendix E: Results 3D time-lapse GPR at Plot XI and XII

In addition to the results in section 3.2 here the radargrams and structural similarity attributes for the other two plot scale5

experiments are given in figure 16 and 17. In plot XI with less intense irrigation the lateral spread of water is less pronounced.

As found by the tracer methods, interaction with the soil matrix was elevated in plot XII. Moreover, the acquisition of the GPR

data took longer at this plot.
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Figure 18. Standard deviation of structural similarity attribute at the different GPR transects in the hillslope experiment over time (solid

lines) and standard deviation of the differences of two successive attribute distributions (dotted lines). The used threshold for the detection

of flow-relevant structures is marked as dashed purple line.

Appendix F: Technical concerns of time-lapse GPR and the structural similarity attribute

The demand on the precision of the repeated acquisition with spatial determination and antenna contact to the ground are very

high and are assumed to be nearly perfect within our experiments. Under field conditions precision is limited due to numerous

effects like micro-topography, top-soil conditions, signal attenuation and even weather. The missing of distinguished reflectors

also inhibited any estimation of quantitative values. Further, the referenced depths in figure 12 are only estimates based on a5

constant mean GPR velocity which can also vary in time and space depending on the initial conditions.

The highlighted assumptions clearly frame the limits of the technique. The overall sensitivity of the approach can be judged

from the structural similarity attribute of the last pairs of records in the hillslope experiment when we assume the soil water to

be in equilibrium again. Figure 18 presents the development of the standard deviations of the structural similarity attribute of

the respective transects over time. In dotted lines we plotted the standard deviations of the stepwise attribute differences. The10

standard deviations of the attribute for the last pairs of records is 0.06. Using this value as methodological noise reference, it

implies that weak responses and local effects must not be over interpreted. Hence, the introduced threshold of 0.15 for irrigation

signal detection appears to be a reasonable choice for qualitative interpretation in our case.

Another limit is the interpretability of changes in the radargrams, as water can have different effects under different situations.

A wetted well-defined surface may quickly become a reflector which is easy to detect. However, tortuous flow paths may not be15

as ideal. Small structures might be well below the limits of detectability in the complex reflection pattern. As such the structural

similarity attribute can only detect zones of significant changes which can be induced by many lumped small structures, one

big flow path, or even a favorably oriented stone which gets wetted.
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