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Response to review comments 

We greatly appreciate the review comments and thank the reviewers for their effort. We have 

addressed all of the comments and present our responses below. 

 

Referee #1 (H. Bogena) 

 

This MS compares measured and modelled actual evapotranspiration (ETa) fluxes with soil moisture 

dynamics determined by a cosmic-ray probe for the same site located in Australia to analyse the coupling 

of these processes. 

 

The MS presents an interesting application of Q–Q plots for comparing the shapes of distributions of soil 

moisture data and modelled fluxes of actual ET in order to evaluate coupling of land surface processes. The 

MS is well written and the topic fits well to the scope of this journal. 

 

However, there are several issues regarding the methods and the interpretations of the results (see specific 

comments). At this stage the results are not sufficient enough to support the interpretations and conclusions. 

The authors seem to have limited knowledge concerning soil hydrological processes and the CRP method 

and it would be advisable to add an expert of these topics to the authorship. Additional analysis of the data 

is needed to support the conclusions. 

 

We thank the reviewer for their supportive comments regarding the manuscript. However, we 

disagree with the reviewer’s thoughts on apparent issues related to the methods and interpretation 

of our results. We consider the results as sound and suspect there has been some misunderstanding 

of the approach and the analysis undertaken. We have endeavored to make this much clearer in 

the revised manuscript and in the responses to the specific comments below.  

 

Chapter specific comments 

 

1) Introduction 

The introduction chapter is somewhat confused and includes several repetitions. It needs to be rewritten in 

a more concise and better structured way. In addition, more appropriate research questions or hypotheses 

need to be formulated and the structure of the paper should be presented. 

 

mailto:Raghavendra.Jana@kaust.edu.sa


We have gone through this section with an eye towards readability and comprehension and have 

rearranged sections as well as more clearly articulating the rationale and motivation behind this 

work. We have stated the motivation (P3, L6-9, “… identifying complimentary observation sources 

that can be used to improve upon the evaluation of a variety of hydrological processes is a much 

needed objective (McCabe et al. 2008). This critical need forms a key motivation of this work where 

we look for an answer to the question: are independent hydrological data-sets available that can 

be used to inform upon linked elements of the hydrological cycle?”), the rationale (P4, L6-10, 

“With improved sensing of the root-zone soil moisture, it is expected that any modelled relationship 

between evaporation and soil moisture will be more robust. From an observational standpoint, 

however, it has been challenging to explore these links directly due to the mismatch in data scales. 

Using CRNP soil moisture data collocated with gridded model estimates of evaporation may 

provide some insight into these processes and relationships.”) and the objective (P4, L12-13, “… 

the objective of this study is to investigate the potential of using CRNP soil moisture retrievals to 

evaluate modelled evaporation estimates derived from a combination of tower based and remote 

sensing inputs.”).  

 

There are many different terms related to processes of evaporation are used in the MS with different 

meanings, which is confusing for the reader. For instance, it should be stated clearly when the process of 

“total actual evapotranspiration” is meant, e.g. indicated with the acronym “ETa”. 

 

We have updated the manuscript and only use the term “evaporation” to represent land surface 

evaporation, which comprises of evaporation from soil and canopy, as well as transpiration from 

vegetation. This is standard and accepted terminology.  

 

Instead of using the acronym “COSMOS”, which is basically the US network of cosmicray neutron probes, 

the term “cosmic-ray neutron probe” or CRNP is more appropriate (see e.g. Bogena et al., 2015). 

 

We have replaced “COSMOS” with “CRNP” in all cases. 

 

It is wrongly stated that the CRNP have footprint of 300-400 m radius and that the footprint of flux 

measurements by an EC-tower would be much smaller. In fact the footprint size of a CRNP typically smaller 

than 300 m radius (see Köhli et al., 2015) and the average footprint of an EC-tower is typically larger, 

integrating areas larger than 50 ha (e.g. Graf et al., 2014). 

 

We have revised the text to reflect the updated footprint radius of the CRNP sensor, as given by 

Kohli et al, 2015.  

 

The dynamic footprint of an EC tower depends on the height of the tower and roughness of the 

surface, as well as wind-speed influences. For a 2 m tower height and pasture, the footprint remains 

within the range of a few hundred meters, with the standard rule of 1:100 for fetch distance as 

validated by Leclerc and Thurtell (1990). We have updated the text (P5, L31) to specify the height 

of the EC tower. In our particular case (and a large number of Fluxnet installations), the fetch of 

the EC tower is comparable to the scale of the CRNP footprint.  

 

The footprint area cited by the reviewer from the article by Graf et al. (2014) is based on a tower 

height of 38m, which is much higher than the tower at this study location. 

  

 
Leclerc, M.Y., & Thurtell, G.W. (1990). Footprint prediction of scalar fluxes using a Markovian 

analysis. Boundary-Layer Meteorology, 52, 247-258 

 



 

It is wrongly stated that a large number of point measurements are not feasible. However, recently 

established critical zone and terrestrial observatories provide exactly this kind of data (see e.g. Bogena et 

al., 2015; Qu et al., 2015) 

 

While a limited number of observatories are providing fine resolution soil moisture data, they 

involve significant outlay of finance, physical effort and time, as compared to, for example, utilizing 

scaling schemes, or installation of intermediate scale sensors. Although such observatories are 

invaluable in providing data to understand the underlying processes, it remains impractical to 

implement a large number of sensors across any and every field of interest. The statement remains 

very much correct in this context, but we have adjusted the text to include the observatory concept. 

 

2) Data and Methodology 

The three models are only described very rudimentary. The basic equations and flowcharts of the algorithms 

should be presented to better demonstrate the differences in the methods. This information could be added 

as a chapter “supplementary materials”. 

 

The three models used in this study are well-established and commonly used models, with extensive 

coverage in the recent literature. We have provided a number of key references to articles in which 

they are described in more detail. We also provide references to articles where the three methods 

are compared to each other. Given their extensive appearance in the literature, we feel that it is 

not necessary to repeat the description of these models in intricate detail in this paper. 

 

In addition, the input data used for each method should be presented separately. For instance it would be 

very important to know which soil moisture data was used for the modelling. It is unclear for which reasons 

the TDR measurements are used in this study. 

 

There seems to be some misunderstanding in relation to the evaporation models used here. No soil 

moisture observations were used in any of the three models mentioned in this study, as it is not a 

requirement. To make this clearer to the reader, we have mentioned the inputs required for each 

in the model descriptions. 

 

The ancillary TDR measurements were used to confirm the validity of the CRNP soil moisture time 

series. 

 

3) Analysis and Discussion 

Comparing the change in root zone soil moisture with changes in ETa on a daily time scale is not 

appropriate, given the large differences in temporal dynamics, i.e. soil moisture changes much slower and 

with time lags compared to ETa, which responses to short-term changes of the meteorological forces. 

 

Fundamentally, changes in soil moisture will ultimately be reflected in changes in the evaporation 

response: the issue of time scale is of course critical in this mass balance approach. For this setting, 

examining changes at the daily scale seems to be an appropriate resolution, as borne out by the 

results. It is precisely because of this temporal mismatch that the quantities are compared at the 

distribution level, rather than point to point. As expressed in Figure 2, the day to day changes in 

the soil moisture and ET follow very similar distributions. 

 

Arguing that CRP and EC measurements are “rather inferred than measured” is not appropriate. To argue 

that these measurements a less accurate than model results is a strong statement and needs quantitative 

proof. Please provide measures for the accuracy of both measurements as well as for the model results. 

 



The reviewer appears to have misunderstood the statement in P7, L20. We mention that the 

observations of soil moisture and evaporation are “inferred” as in they are indirectly measured. 

For example, field sensors do not directly measure the soil moisture, but other quantities such as 

the dielectric constant or the neutron counts. These are then converted to the quantity of interest, 

i.e., the soil moisture, using a conversion algorithm. Uncertainties and errors are bound to be 

introduced at each step, thus reducing accuracy. This is an entirely appropriate (and well accepted) 

rationale.  

 

That being said, nowhere in the manuscript do we imply or insinuate that the observations are less 

accurate than model results. Without particular reference, we are not sure where the reviewer gets 

this impression in the text. 

 

It is argued that the CRP shows higher variability compared to TDR because it integrates over greater 

penetration depth. This is wrong for several reasons. First, the integral measurement of soil moisture over 

a profile should be less dynamic than a point measurement near the surface (e.g. 10 cm). Second, the CRP 

shows more dynamics, because the measurement sensitivity decreases exponentially with depth. That 

means the variations of the first cm below the surface are most important. In addition, the CRP is also 

sensitive to water stored above the surface, e.g. intercepted by leaves and litter layer (see e.g. Bogena et al., 

2013). 

 

This is certainly valid reasoning and we have adjusted the text to better reflect our meaning. It 

should be noted that the CS616 TDR used at the site also provides a (vertically) depth integrated 

measurement (0-30 cm), not a truly point scale estimate. The text now reads as: 

 

“While it might be expected that the TDR data should display greater variability in response, the 

CRNP measurements have higher variability in soil moisture values. This could be due to factors 

such as the variability in the measurement depth of the CRNP with change in the saturation, and 

higher sensitivity of the CRNP to near-surface moisture as compared to deeper layers (Bogena et 

al. 2013). High frequency variations at the soil surface may also be attenuated in the TDR signal 

since it is integrated over the 30 cm probe depth.” 

 

Regarding the sensitivity of the measurement, the soil moisture data has been corrected for other 

sources as explained by Hawdon et al., 2014. At this semi-arid rangeland site, interception and 

litter are not factors of great influence.  

 

It needs to be checked if the data standardisation has an effect on the Q–Q plots. I might be possible that 

the agreement is partially due to this procedure. I suggest to add an ANOVA test using the non-standardized 

data including the p-value. 

 

Standardizing the data has no effect on the shape of the Q-Q plots, since the plots depend on the 

residuals. The only difference is in the numerical value of the axes. An example is shown below 

with CRNP soil moisture and PT-JPL evaporation data from the entire period of record. The first 

panel is the Q-Q plot for the raw data, while the lower panel is for standardized data. As can be 

seen, there is no difference in the shape of the plot. Standardizing the data has just scaled the values 

differently. 

 



 
 

As mentioned in the text (P8, L16-17), the p-value is an indicator of the similarity of the mean 

values of the two quantities being compared. In our case, the two quantities, soil moisture and 

evaporation, have vastly different ranges and units, and thus, mean values. Performing an ANOVA 

test between two such datasets can only provide a p-value of 0, as shown in the example below. 

The ANOVA is performed on the raw dataset for the entire period of record used in the study. As 

can be seen, the boxplot for the soil moisture is crushed due to the range of the evaporation data, 

and the p-value is essentially 0. 

 

 
 

 

Why does the SEBS model produce more outliers? 

 

The SEBS model is more sensitive to uncertainties in land surface temperature as compared to the 

other two models. This could make the model outputs behave in a different manner, especially at 

the extremes. (P11, L19-21) 

 

p-value 



The reasoning behind the selection of the subperiods is not well visible in the data presented in Figure 3. 

Why is the highly dynamic and thus interesting period between subperiods 1 and 2 not included? 

 

The period between sub-periods 1 and 2, while highly dynamic, was close to being simply a scaled 

version of the total period of record. This is borne out in the Q-Q plots below for that period (DoR 

230-320). 

 

 
Hence, it was felt that analyzing periods of distinctly different behaviors, as described in the text 

for the four chosen sub-periods, would provide a better understanding of the correspondence 

between the soil moisture and evaporation signals under different situations. 

 

I have difficulties with the statement the similar distribution as shown by the Q-Q-plots alone demonstrate 

that ETa is driven by rot zone soil moisture. The low correlation of the raw data is telling us a different 

story. Therefore, this statement needs to be substantiated with further analysis. 

 

Q-Q plots are a commonly used tool to assess similarity of distributions. Correlation is a point-to-

point statistic. We have shown in the manuscript (and referred to other studies with similar 

deductions) that such point-to-point statistics are not necessarily the best way to evaluate 

correspondence between two stochastic variables, especially those whose process time scales are 

different. In such a scenario, distribution matching is a better option. Since the line plots of the soil 

moisture and evaporation do not match, but the distributions do, it is a logical inference that the 

two quantities are behaving similarly at the distribution level. Hence, the deduction that the soil 

moisture (root zone since the CRNP is measuring over depth) is still driving the evaporation 

process. 

 

The statement that low temperatures have decoupled soil moisture and air humidity duing period during 

period 4 needs to be better explained. 

  

We have updated the text with additional explanation. The section now reads as: 

 



“It is also likely that low temperatures and additional hydro-meteorological factors could have 

caused a de-coupling of the soil moisture from the air humidity. Due to the low temperatures, the 

air humidity would be lower, while the frequent precipitation ensures high soil moisture content. 

This creates a steep gradient for the moisture at the soil-air interface. In such a scenario, 

regardless of the presence of abundant soil moisture for evaporation, the models which use air 

humidity as a surrogate for soil moisture may report lower estimates compared to those observed 

from the eddy-covariance tower.” 

 

It is argued that long periods with no rainfall lead to a disconnection of soil moisture and ETa due to non-

monotonic variations in soil moisture. I cannot follow this reasoning. Please explain in greater detail. 

A soil moisture profile does not become heterogeneous. Do you mean that soil moisture gradients increase? 

  

The soil moisture profile is said to become heterogeneous since the surface and deeper layer 

moistures are driven by different processes, and are not linked to each other. We have updated the 

text with some additional explanation for the terminology. The section now reads as: 

 

“However, there were also long periods with no rainfall events. Combined with the higher 

temperatures of summer, this leads to greater non-monotonic variations in the soil moisture 

signature, thus creating a disconnect with the evaporation patterns. There are more switches 

between moisture-constrained and energy-constrained conditions during this season. It has been 

demonstrated previously that the occurrence of hot and dry periods leads to de-coupling of soil 

moisture and evaporation (Pollacco and Mohanty 2012). The soil moisture profile in such 

situations becomes heterogeneous in that the process driving the surface soil moisture variability 

(mainly soil evaporation) no longer influences the deeper layer soil moisture variability (mainly 

due to transpiration). Further explanation of this de-coupling process can be found in the article 

by Pollacco and Mohanty (2012).” 

 

The statement that ETa models should be validated using soil moisture data is absurd since soil moisture is 

an important variable of ETa models. 

 

This seems a case of a misunderstanding by the reviewer regarding the evaporation models, rather 

than an absurdity on the part of the authors. In the range of models examined, and in the vast 

majority of satellite based evaporation models, soil moisture does not feature as an input variable. 

Here we exploit the physical mechanism that makes soil moisture a key driver of the evaporation 

process. As such, it makes perfect sense to validate models using observations that govern or 

influence that process to a significant extent. It is the same rationale that one might use to evaluate 

spatially distributed soil moisture maps by using rainfall fields. Indeed, it is this reasoning that is 

at the heart of the approach explored here. Given the general lack of observation data concerning 

any specific process, it is important that independently observed, yet physically linked variables, 

be used to aid in the evaluation process. 
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Referee #2 (Anonymous) 

 

The authors present an interesting case study comparing three different commonly used evaporation 

schemes versus a COSMOS soil moisture probe. The results illustrate reasonable statistical comparisons 

between the methods between the 25th and 75th quantile, but breakdown outside these ranges. I agree with 

the authors assessment of the challenges comparing the state variable of soil moisture with evaporation 

flux, particularly given the spatial scale differences of the observations. The work here is a valuable 

contribution to continue advancing the utility of the COSMOS soil moisture probes with applications in 

surface energy balance or land atmospheric coupling. 

 

The paper is well written and suitable for HESS. Below are some recommendations to improve the 

manuscript. 

 

We thank the anonymous reviewer for their positive comments on the manuscript.  

 

Comments: 

Pg 2. L2. Is it land surface evaporation or evapotranspiration? The symbol ET is a bit confusing if it only 

refers to evaporation only. 

 

We have removed all instances of the term “ET” in the manuscript. Following the convention of 

(Kalma et al. 2008) the term “evaporation” is used to represent land surface evaporation, which 

comprises evaporation from soil and canopy, as well as transpiration from vegetation. 

 

Kalma, J.D., McVicar, T.R., & McCabe, M.F. (2008). Estimating land surface evaporation: A review of 
methods using remotely sensed surface temperture data. Surveys in Geophysics, 29, 421-469 
 

Pp 6. L11-19. Is the COSMOS data the same as presented by Hawdon 2014? That is, it is corrected for 

water vapor, geomagnetic latitude, pressure in the same way? Please specify. 

 

Yes, the data is the same as presented by Hawdon et al., 2014. We have updated the text to clarify 

this point. 

 

P 8 L24. The selection of sampling periods seems a bit arbitrary. Why not use seasons or PET to separate 

periods? 



 

We agree that the sampling periods are somewhat arbitrary. However, we felt that analyzing 

periods of distinctly different hydrological behavior, as described in the text for the four chosen 

sub-periods, would provide a better understanding of the correspondence between the soil moisture 

and evaporation signals under different situations. In regards to the reviewer’s suggestion on a 

more formal allocation of analysis periods, we analyzed the relationship based on partitioning the 

time series according to seasons. As stated in the text, the results were similar to those obtained by 

partitioning by behavior in that while the SEBS model performed better than the others, no single 

model output corresponded well with the soil moisture across all seasons.  

 

The PET for the site (computed using meteorological tower data) follows a distinctly seasonal trend 

(see figure below). As such, partitioning based on seasons can be deemed analogous to using PET. 

 

 
  

L 10 L31. I am not what is might by this sentence, the soil moisture profile becomes heterogeneous during 

periods when it is disconnected to the atmosphere? Can you please explain more or show an example? 

  

The soil moisture profile is said to become heterogeneous since the surface and deeper layer 

moistures are driven by different processes, and are not linked to each other. We have updated the 

text with some more explanation for the term. The section now reads thus: 

 

“However, there were also long periods with no rainfall events. Combined with the higher 

temperatures of summer, this leads to greater non-monotonic variations in the soil moisture 

signature, thus creating a disconnect with the evaporation patterns. There are more switches 

between moisture-constrained and energy-constrained conditions during this season. It has been 

demonstrated previously that the occurrence of hot and dry periods leads to de-coupling of soil 

moisture and evaporation (Pollacco and Mohanty 2012). The soil moisture profile in such 

situations becomes heterogeneous in that the process driving the surface soil moisture variability 

(mainly soil evaporation) no longer influences the deeper layer soil moisture variability (mainly 

due to transpiration). Further explanation of this de-coupling process can be found in Pollacco 

and Mohanty (2012).” 

 



Pg 11 L13 and Figure 2a. The comparison between soil moisture and ET should be further partitioned by 

PET amount or season.  

 

We did plot the scatter of soil moisture v. evaporation after partitioning by seasons (please see 

figure below). However, it was felt that such a comparison did not add much new information apart 

from showing that the relationships between the two quantities were different in different seasons. 

Since we already present this difference in the other plots where we analyze the relationship based 

on seasons, we decided not to include this figure and comparison in the manuscript. 

 

 
 

 

 

 

Following the simple broken stick type model in Rodriguez-Iturbe 2001 and Laio 2001, I would expect 

there to be a family of curves with the plateau being near ETmax for each set of curves. I suggest the authors 

organize the data by season or PET groups and replot (with either colors or different symbols). For such a 

simple dryland grassland site I would expect the broken stick kind of model to represent this data well. The 

direct correspondence between soil moisture and ET may become more clear instead of just the 

distributions. If so things like the soil moisture threshold at which ET is reduced may become clear from 

the datasets. 

 

This is an excellent suggestion, and we thank the reviewer for it. Based on this suggestion, we 

performed piece-wise linear regression analyses on the seasonally-partitioned data. The plots are 

given below: 

 



 
 

Each row in the figure corresponds to a model (PT-JPL, PM-Mu, and SEBS), while each column 

corresponds to a season (autumn, winter, spring, summer). Unfortunately, in this particular case 

there was not much useful information that could be gleaned from the plots. Some information 

regarding the soil moisture threshold where the evaporation rate starts decreasing can be 

discerned for all three models only in the summer. The plots for the other seasons are largely non-

informative. However, it should be borne in mind that this data spans a relatively short period 

(under 2 years). It is possible that a longer data record over many more years could result in a 

more distinct behavior as expected by the reviewer. For the present study, we decided against 

including this analysis in the manuscript. 

 

 

Rodriguez-Iturbe, I., A. Porporato, F. Laio, and L. Ridolfi (2001), Plants in watercontrolled ecosystems: 

active role in hydrologic processes and response to water stress - I. Scope and general outline, Adv. Water 

Resour., 24(7), 695-705. 

Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Plants in watercontrolled ecosystems: 

active role in hydrologic processes and response to water stress - II. Probabilistic soil moisture dynamics, 

Adv. Water Resour., 24(7), 707-723. 

 

Comments on conclusions: The challenge of relating energy balance models like SEBS to soil moisture has 

some interesting applications. For example, in agriculture many research and private industry groups are 

using such routines from satellites and drones to schedule irrigation. However, the soil moisture may be 

more unconstrained in this case than can be suitable for reasonable management of irrigation amounts and 

timing. The authors could potentially comment on this application given the findings of the paper. 

 

This is certainly an interesting line of inquiry and one that our group is actively exploring via the 

use of UAVs in agricultural systems. However, as you suggest, we suspect that such approaches 

may not be particularly useful for irrigation scheduling. Rather, the techniques we are investigating 

look to explore the spatial variability in crop systems, relating this back to spatially distributed 



areas of moisture stress or even over-application. While we anticipate that there should still be 

signs of coupling in these environments, the managed nature of the problem may make these links 

harder to disentangle. Given that we are dealing with quite a different problem in this particular 

semi-arid landscape example, we have not explored these interesting ideas in the present 

manuscript, but it is certainly an aspect worth future investigation.  

 

 

Response to review comments (Round 2) 

We very much appreciate the review comments from Dr. Bogena and thank him for the effort and 

attention to our manuscript. It has certainly been improved as a result. We have addressed all of 

the comments and present our responses below. 

 

Our responses to the comments are indented and in italics. 

 

Referee #1 (H. Bogena) 

 

What is important is the height of the EC sensors above canopy, which is only about 12 m in the case of 

Graf et al. (2014).  

We agree, but in this and our particular case, the argument still stands that the footprint of an EC 

sensor depends on the height of the tower as well as certain prevailing meteorological 

considerations. For a 2 m tower height in a pasture (with low vegetation height), a fetch of around 

200 m is a very reasonable estimate. 

 

An increasing number of existing large scale sensor networks make their data freely available to the science 

community (e.g. SCAN, ICOS). In addition, a number a measurement techniques are emerging that make 

use of existing networks that formally were installed for other reasons (e.g. Bogena et al., 2015) and thus 

will provide a much better coverage of soil moisture observation in the near future beyond the observatories.  

We absolutely agree that CZO’s and sensor networks are invaluable in providing data to 

understand the underlying processes behind hydrologic (and other related) variables and states – 

which we had stated in the text. However, while the number and coverage of such networks is 

increasing, it still remains impractical to have in-situ sensors at fine intervals of a few meters (or 

even hundred meters) to cover every area of interest. For example, intensively instrumenting an 

agricultural field would either create a hindrance to the farmer in his operations, or, on the other 

hand, result in the sensors being damaged or uprooted during tilling and other farming practices. 

We believe we have covered both aspects of this important area in our manuscript.  

 

I am still very much more in favor for adding this information. Why should the reader gather all this papers 

himself to get a basic overview of the models and their differences? Presenting this information makes the 

paper much more comprehensible and also better explains why the three models were used instead of only 

one.  



As noted, we provided a basic overview of the models in the original manuscript. The premise (and 

common practice) of referencing to previously published technical articles is to avoid 1) inflating 

the length of the manuscript; 2) unnecessary duplication and 3) burdening the reader with material 

that can easily be obtained elsewhere (given the wide application of the chosen models).    

However, we respect the reviewer’s opinion and provide additional details regarding the models 

in a revised manuscript, while still maintaining references where the reader can obtain the more 

detailed model information. Summarized descriptions of all three evaporation models used in this 

study are provided as appendices at the end of the manuscript. 

 

Actually, the CRNP validity was not tested in this paper in a strict sense. This could not be done with a 

single TDR profile anyway, since a network of point measurements within the CRNP footprint would be 

needed to do this (see e.g. Bogena et al., 2013).  

Our intention was only to use the TDR measurements to assess the CRNP retrievals i.e. they were 

not compared at a point-to-point level, but more from a general behavioral perspective, to ensure 

that there were no unreasonable patterns in the time series.  

 

It is true that it was not implied that the observations were less accurate than the model results. The 

impression arises, because the focus was led on the comparison of soil moisture with model results.  

The objective of the study was to query the relationship between the CRNP-measured soil moisture 

and the modeled evaporation estimates. We will review the paper once again to ensure that any 

implication of relative accuracy is removed from the revised manuscript.  

 

First, I have to repeat again that the term “evaporation” is confusing. I guess you are referring to 

evapotranspiration because it is related to root zone (i.e. evaporation from bare soil and intercepted water 

is not related to root water uptake in the root zone). So again, please improve the terminology in the paper. 

What I was trying to point out is that the existence of similar distributions alone is not adequate for this 

deduction, because processes at the soil-vegetation-atmosphere interface tend to be very complex. For 

instance, the process of evaporation from canopy is completely independent from soil moisture, but it might 

be an important part of total evapotranspiration at this location. Therefore, the distributions of both 

quantities might be similar because the CRNP measurements are also influenced by water intercepted on 

the canopy (see e.g. Bogena et al., 2013). In addition, the CRNP typically does not cover the whole root 

zone, because for intermediate soil moisture ranges the penetration depth is restricted to 20-30 cm. In 

addition, the CNRS is much more sensible to soil moisture of the first centimeters. In this sense the TDR 

measurements might even better represent root zone soil moisture at this site. Thus, the Q-Q analysis should 

also be done with the TDR data to test the assumption soil moisture is driven by the evapotranspiration 

process.  

We are following the terminology established by Kalma et al., (2008), and employed widely 

elsewhere, wherein the term “evaporation” encompasses all processes resulting in transfer of 

water from the soil or vegetation to the atmosphere. As such, land surface evaporation consists of 

evaporation from the soil and canopy, and transpiration from the plant.   



With regard to the Q-Q analysis, we agree that in some locations the CRNP can measure 

intercepted water, which could be a significant portion of the composite evaporation. It is worth 

noting that canopy interception is likely to represent an insignificant component of total 

evaporation in this semi-arid grassland environment.  

However, as suggested, we performed a Q-Q analysis with the TDR measurements (see the plot 

below for the results). The blue + markers represent the analysis with the CRNP measurements, 

while the black dots represent the average of the three TDR probes. As can be seen, there is very 

little difference between the two plots for any of the model evaporation estimates.  

We hope that this result satisfies the reviewer that our argument that the root zone soil moisture 

(RZSM) is still driving the evaporation process is valid. We have included text in the manuscript to 

reflect the logic put forth by the reviewer regarding TDR measurements perhaps being more 

representative of the RZSM, and that there was no significant difference in the Q-Q analyses with 

either CRNP or TDR measurements. 

 

 

I am sorry for my ignorance concerning the models used in this study. Clearly, a better description of the 

models will help the readers to be better following the reasoning presented in the paper. If soil moisture is 

not a model variable this should be explicitly mentioned in the paper. Otherwise the modelled soil moisture 

should be compared with the measured soil moisture to demonstrate the validity of the model. 

As mentioned in our earlier response, we provide additional details about the models as appendices 

and have also revised the text to emphasize that soil moisture is not an input to any of the models 

evaluated in this study.  
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Abstract. Interactions between soil moisture and terrestrial evaporation affect water cycle behaviour and responses between 

the land surface and the atmosphere across scales. With strong heterogeneities at the land surface, the inherent spatial 

variability in soil moisture makes its representation via point-scale measurements challenging, resulting in scale-mismatch 

when compared to coarser-resolution satellite-based soil moisture or evaporation estimates. The Cosmic Ray Soil Moisture 10 

Observing System (COSMOSNeutron Probe (CRNP) was developed to address such issues in the measurement and 

representation of soil moisture at intermediate scales. Here we present an examinationa study to assess the utility of the links 

observed between COSMOSCRNP soil moisture retrievals andobservations in validating model evaporation estimates over. 

The CRNP soil moisture product from a pasture in the semi-arid central-west region of New South Wales, Australia. The 

COSMOS soil moisture product was compared to evaporation derived from three distinct approaches, including the Priestley-15 

Taylor (PT-JPL), Penman-Monteith (PM-Mu) and Surface Energy Balance System (SEBS) models, driven by forcing data 

from local meteorological station data and remote sensing retrievals from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensor. Pearson’s Correlations, Quantile-Quantile (Q-Q) plots, and Analysis of Variance (ANOVA) were used to 

qualitatively and quantitatively evaluate the temporal distributions of soil moisture and evaporation over the study site. The 

relationships were examined against nearly two years of observation data, as well as for different seasons and for defined 20 

periods of analysis. Results highlight that while direct correlations of raw data were not particularly instructive, the Q-Q plots 

and ANOVA illustrate that the root-zone soil moisture represented by the COSMOSCRNP measurements and the modelled 

evaporation estimates reflect similar distributions under most meteorological conditions. The PT-JPL and PM-Mu model 

estimates performed contrary to expectation when high soil moisture and cold temperatures were present, while SEBS model 

estimates displayed a disconnect from the soil moisture distribution in summers with long dry spells. Importantly, no single 25 

evaporation model matched the statistical distribution of the measured soil moisture for the entire period, highlighting the 

challenges in effectively capturing evaporative flux response within changing landscapes. One of the outcomes of this work is 

that the analysis points to the feasibility of using intermediate scale soil moisture measurements to evaluate gridded estimates 

of evaporation, exploiting the independent, yet physically linked nature of these hydrological variables.  

 30 

Keywords: COSMOSCRNP; soil moisture; land surface evaporation; SEBS; PM-Mu; PT-JPL 
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1. Introduction 

Land surface evaporation (referred to commonly as ET) and soil moisture play major roles in defining the water cycle 

behaviour of landscapes as well as controlling the feedback from the land surface to the atmosphere at variousa range of spatial 

and temporal scales (Manfreda et al. 2007; Seneviratne et al. 2010). Land surface evaporation, comprising the processes of 

plant transpiration, evaporation from the soil and evaporation from canopy intercepted rainfall, has been estimated to return 5 

almost 70% of precipitated water back to the atmosphere (Hanson 1991; Trenberth et al. 2011). In arid and semi-arid regions, 

this value can be much larger. Although coupling is expected to be high in such environments, surface-atmosphere feedback 

dynamics are  commonly less understood in arid/semi-arid regions (Wang et al. 2012). Several studies have attempted to 

describe these links, with the aim of predicting one variable through knowledge of the other (Mintz and Walker 1993; Wetzel 

and Chang 1987) or to use developed relationships to inform upon linked hydrological responses such as evaporation (McCabe 10 

et al. 2005; Stisen et al. 2011), soil moisture (Liu et al. 2012), drought (Entekhabi et al. 1992; Fischer et al. 2007; Oglesby and 

Erickson 1989), precipitation (Findell et al. 2011; Held et al. 2005), and even vegetation response to soil moisture stress (Liu 

et al. 2011).  

The coupling between soil moisture and the overlaying atmosphere has been a topic of intense investigation in recent years. 

Koster et al. (2006) compared multiple atmospheric general circulation models with regard to the strength of land-atmosphere 15 

couplings and reported that while the coupling strengths varied widely for the models, most models agreed upon certain 

locations of high land-atmosphere coupling. Dirmeyer (1994) used a simple biosphere model to evaluate the effect of soil 

moisture and vegetation stress on the climatology of drought, while Martens et al. (2016) presented that assimilating SMOS 

derived soil moisture improved model estimates of terrestrial evaporation at the continental scale. Land-atmosphere coupling 

studies have also investigated, among others aspects, the impact of soil moisture on precipitation . The coupling between soil 20 

moisture and the overlaying atmosphere has been a topic of intense investigation in recent years. Koster et al. (2006) compared 

multiple atmospheric general circulation models with regard to the strength of land-atmosphere couplings and reported that 

while the coupling strengths varied widely for the models, most models agreed upon certain locations of high land-atmosphere 

coupling. Dirmeyer (1994) used a simple biosphere model to evaluate the effect of soil moisture and vegetation stress on the 

climatology of drought, while Martens et al. (2016) showed that assimilating satellite- derived soil moisture improved model 25 

estimates of terrestrial evaporation at the continental scale. Land-atmosphere coupling studies have also investigated, among 

others aspects, the impact of soil moisture on precipitation (Eltahir 1998; Koster et al. 2004; Schär et al. 1999) and how this 

knowledge can be an indicator of climate change (Seneviratne et al. 2006); the links between soil moisture and cloud cover 

(Betts 2004); and also how the ENSO cycle influences the coupling and the surface-atmosphere feedbacks (Miralles et al. 

2014).  30 

 

Land surface evaporation (sometimes also referred to as ET) comprises the processes of plant transpiration, evaporation from 

the soil and evaporation from canopy intercepted rainfall (Kalma et al. 2008), and has been estimated to return up to 70% of 
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precipitated water back to the atmosphere (Hanson 1991; Trenberth et al. 2011). In arid and semi-arid regions, this value can 

be much larger. Although coupling between evaporation and soil moisture is expected to be high in arid and semi-arid regions, 

the dynamics of surface-atmosphere feedbacks are not well understood in such environments (Wang et al. 2012). Several 

studies have attempted to describe these links, with the aim of predicting one variable through knowledge of the other (Mintz 

and Walker 1993; Wetzel and Chang 1987) or to use developed relationships to inform upon linked hydrological responses 5 

such as evaporation (Eltahir 1998; Koster et al. 2004; Schär et al. 1999)(McCabe et al. 2005; Stisen et al. 2011) and how this 

knowledge can be an indicator of climate change (Seneviratne et al. 2006); the links between soil moisture and cloud cover 

(Betts 2004); and also how the ENSO cycle influences the coupling and the surface-atmosphere feedbacks (Miralles et al. 

2014). A common feature of such studies is the use of model estimates of terrestrial evaporation across a wide range of study 

areas and land cover and biome types. The reliance on these model estimates necessitates a more critical examination of both 10 

the models used and an evaluation of their performance. 

The, soil moisture (Liu et al. 2012), drought (Entekhabi et al. 1992; Fischer et al. 2007; Oglesby and Erickson 1989), 

precipitation (Findell et al. 2011; Held et al. 2005), and even vegetation response to soil moisture stress (Liu et al. 2011). A 

common feature of such studies is the use of model estimates of terrestrial evaporation across a wide range of study areas and 

land cover and biome types. The reliance on these model estimates necessitates a more critical examination of both the models 15 

used and an evaluation of their performance. 

  

With this in mind, the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project (McCabe et al. 2016)(McCabe 

et al. 2016) and the related Water Cycle Multi-mission Observation Strategy – Evapotranspiration (WACMOS-ET) project 

(Michel et al. 2016; Miralles et al. 2016)(Michel et al. 2016; Miralles et al. 2016) reflect ongoing efforts to develop strategies 20 

for the prediction of land surface fluxes at regional and global scales. As part of these effortsactivities, studies were undertaken 

to compare the remote sensing derived evaporation products with tower-based measurements: a standard approach to flux 

evaluation (Ershadi et al. 2014)(Ershadi et al. 2014). However, such comparisons can suffer from both spatial and temporal 

scale mismatches, making robust evaluations inherently challenging. Generally, the spatial footprint of satellite-based sensors 

is much larger than the fetch of an eddy covariance tower. WhileFurthermore, while tower-based sensors routinely record 25 

information at intervals of between 15-30 minutes throughout the diurnal cycle, many satellite observations used in 

hydrological studies are oftengenerally instantaneous retrievals that may only be available at a daily time scales. 

Questionsinterval. While questions on the suitability of comparing large scale gridded evaporation estimates to fine scale tower 

observations have been raised previously (McCabe et al. 2016)(McCabe et al. 2016) and, they remain largely unresolved. As 

such, identifying complimentary observation sources that can be used to improve upon the evaluation of a variety of 30 

hydrological processes is a much needed objective (McCabe et al. 2008). This critical need forms a key motivation of this 

work where we look for an answer to the question: are independent hydrological data-sets available that can be used to inform 

upon linked elements of the hydrological cycle? 
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From an observational perspective, a range of approaches have been employed to obtain soil moisture values at multiple 

resolutions (Jana and Mohanty 2012; Jana et al. 2008; Vereecken et al. 2007). Generally, soil moisture measurements are made 

using either in-situ devices that are ground-based or via air- and satellite-borne sensors. While in-situ measurements tend to 

represent a spatial scale ofon the order of centimetres, remotely sensed soil moisture products have resolutions on the order of 

several hundred meters (air borneairborne) to tens of kilometres (satellite bornebased) (Vereecken et al. 2007)(Vereecken et 5 

al. 2007). Unfortunately, field scale spatial variability of soil moisture is generally smoothed out in the large scale soil moisture 

estimates (Manfreda et al. 2007)(Manfreda et al. 2007). Technically,While technically a number of point-scale measurements 

can be collected and then spatially averaged over a domain. However, such an approach is infeasible for continuous monitoring 

over multiple fields. Establishment of critical zone observatories in recent years has provided valuable insight into hydrological 

process due to their intensive instrumentation (Lin et al. 2011). However, they involve significant outlays involved with regards 10 

to finance, physical effort, and time. Although such observatories are invaluable in providing data to understand the underlying 

processes, it remains impractical to implement a large number of sensors across any and every field of interest. As such, there 

is a clear need for resolving field scale heterogeneity at scales that can be monitored from remotely observing platforms: or 

conversely, providing ground based observations that better reflect the scale of satellite systems.  

Different spatial scaling approaches have been employed to obtain soil moisture values at multiple resolutions (Jana and 15 

Mohanty 2012; Jana et al. 2008; Vereecken et al. 2007).  

In recent years, the challenge of obtaining intermediate resolution (between point scale and satellite resolution) soil moisture 

has been addressed by the Cosmic Ray Soil Moisture Observing System (COSMOS) developed by Zreda et al. (2012).use of 

Cosmic Ray Neutron Probes (CRNP) (Zreda et al. (2012). Based on determining the neutron density of cosmic rays, COSMOS 

is able to make measurements of soil moisture at spatial resolutions of a few hundred meters. The COSMOS footprint, with a 20 

radius of 300-400 m,CRNP are able to make measurements of soil moisture at spatial resolutions of a few hundred meters. 

The CRNP footprint, with a radius of approximately 130 m (tropical climate) to 240 m (arid/semi-arid climates) (Kohli et al. 

2015), is comparable to that of airborne remote sensors, while being ground-based and capable of continuously recording soil 

moisture over long periods of time. Moreover, the effective measurement depth of the COSMOSCRNP sensor ranges from 12 

to 76 cm, depending on the degree of saturation. This depth allows the sensor to capture the root zone soil moisture dynamics 25 

to a great extent (Desilets et al. 2010)(Desilets et al. 2010). Evaporation and 

 

Development of such approaches to capture the field scale dynamics of soil moisture brings with it the ability to more closely 

explore the interactions between the surface and atmosphere, and their linking mechanisms. Soil surface evaporation and plant 

transpiration processes are influenced significantly by the root zone soil moisture. Transpiration: transpiration rates depend 30 

upon the amount of plant-available water in the root zone, while evaporation plays a regulatory role in governing the dynamics 

of the surface soil moisture. It is well recognized that soil moisture is a limiting factor in the evaporative process (Seneviratne 

et al. 2010)(Seneviratne et al. 2010), playing an important role in modulating plant stress and vegetation response. With 

improved sensing of the root-zone soil moisture, it is expected that any modelled relationship between evaporation and soil 
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moisture will be more robust. From an observational standpoint, however, it has been challenging to explore these links directly 

due to the mismatch in data scales. Using CRNP soil moisture data collocated with gridded model estimates of evaporation 

may provide some insight into these processes and relationships.  

 

Given these developments and outstanding challengesthis, the objective of this study is to investigate the potential of using 5 

COSMOSCRNP soil moisture retrievals to evaluate modelled evaporation estimates derived from a combination of tower 

based and remote sensing inputs. The capacity to indirectly monitor surface flux responses using such data offers a mechanism 

through which land-atmosphere couplings can be explored and provides an additional constraint on coupled water and energy 

cycle modelling at the land surface. In order to achieve this objective, we conducted an exploratory study that examined the 

link between the soil moisture retrievals from COSMOSCRNP and evaporation estimates collected over a semi-arid grassland. 10 

The underlying hypothesis to be tested here is that rainfall input in such landscapes will be well reflected by the soil moisture 

values, which in turn should be strongly coupled to evaporation.  

2. Data and Methodology 

2.1. Study area 

The study was conducted atover a pasture site near Baldry, a rural township in the central-west of New South Wales, Australia. 15 

The site is classified as a semi-arid region with latitude -32.87 degrees, longitude 148.52 degrees, and an elevation of 438 m 

above mean sea level. The Baldry experimental catchment formed part of the Australian National Cosmic Ray Soil Moisture 

Monitoring Facility (CosmOz) network, established by the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) (Hawdon et al. 2014)(Hawdon et al. 2014). A COSMOS probeCNRP was put in place at the site in March 2011, 

complimenting existing meteorological and soil moisture sensors, as well as an eddy-covariance flux tower. Figure 1 details 20 

the location of the Baldry test site. Further details regarding the instrumentation at the Baldry test site and the CosmOz network 

in general are provided by Hawdon et al. (2014)Hawdon et al. (2014) (see also http://cosmoz.csiro.au/sensor-

information/?SiteNo=1). 

2.2. Description of evaporation models 

2.2.1 PT-JPL 25 

Of the three evaporation models evaluated in this study, the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model uses 

the least number of meteorological and remote sensing input data, including air temperature, humidity, net radiation and a 

vegetation index (Fisher et al. 2008)(Fisher et al. 2008). ThisThe model has been used to estimate actual evapotranspiration at 

local (Ershadi et al. 2014) and global scales in various studies (e.g., Badgley et al. 2015; Ershadi et al. 2014; Vinukollu et al. 

2011) as well as(e.g., Badgley et al. 2015; Ershadi et al. 2014; Vinukollu et al. 2011), including  the recent LandFlux (McCabe 30 
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et al. 2016)(McCabe et al. 2016) and WACMOS-ET (Miralles et al. 2016)(Miralles et al. 2016) efforts. Detailed descriptions 

of the model are provided in those references. The PT-JPL is a three -source model. The total that uses net radiation (Rn), 

normalized difference vegetation index (NDVI), air temperature and humidity as inputs. Total evaporation is partitioned into 

soil evaporation (𝜆𝐸𝑠), canopy transpiration (𝜆𝐸𝑡), and wet canopy evaporation (𝜆𝐸𝑖), i.e. 𝜆𝐸 = 𝜆𝐸𝑠 + 𝜆𝐸𝑡 + 𝜆𝐸𝑖. The model 

initially partitions the net radiation into soil and vegetation components and then estimates the potential evaporation from the 5 

three sources - (soil, canopy and wet canopy) sources. The effects of green cover fraction, relative wetness of the canopy, air 

temperature, plant water stress and soil water stress on the evaporative process are represented by corresponding multipliers 

which are subsequently determined. The actual. Actual evaporation values for each component of the system are then computed 

by reducing the potential evaporation based on these constraint multipliers. Further details of the PT-JPL model can be 

foundare given in Appendix A at the end of this article byand also in the work of Fisher et al. (2008)Fisher et al. (2008). 10 

2.2.2 PM-Mu 

The Penman-Monteith based model developed by Mu et al. (2011) (PM-Mu) is another three-source scheme that has been used 

in a range of applications for estimating terrestrial fluxes The Penman-Monteith based model developed by Mu et al. (2011) 

(PM-Mu) is another three-source scheme that has been used in a range of applications for estimating terrestrial fluxes (Mu et 

al. 2013)(Mu et al. 2013), including forming the basis behind the global evaporation product (MOD16) (Mu et al. 2013)(Mu 15 

et al. 2013). The PM-Mu model computes total evaporation as the sum of the three components: soil evaporation, canopy 

transpiration and evaporation of the intercepted water in the canopy, i.e. (𝜆𝐸 = 𝜆𝐸𝑠 + 𝜆𝐸𝑡 + 𝜆𝐸𝑖). Inputs to the model include 

net radiation (Rn), normalized difference vegetation index (NDVI), air temperature and humidity, and vegetation phenology. 

While based on the Penman-Monteith equation (Monteith 1965)(Monteith 1965), the evaporation from each component is 

estimated by assigning weights to the fractional vegetation cover, relative surface wetness and available energy. Plant 20 

phenology and climatological data are used to extend biome-specific conductance parameters from the stomata to the canopy 

scale. The extended conductance parameters are then used to parameterize aerodynamic and surface resistances for each 

component source. Further details regarding the PM-Mu model can be found in Appendix B below, and also in the publications 

by Mu et al. (2011)Mu et al. (2011) and Mu et al. (2013)Mu et al. (2013), along with recent evaluations studiedevaluation 

studies from the local (Ershadi et al. 2014; Michel et al. 2016)(Ershadi et al. 2014; Michel et al. 2016) to the global scales 25 

(McCabe et al. 2016; Miralles et al. 2016)(McCabe et al. 2016; Miralles et al. 2016). 

2.2.3 SEBS 

The Surface Energy Balance System (SEBS) model (Su 2002)(Su 2002a) is a physically-based scheme that has been widely 

used in estimating evaporation across a range of scales (Elhag et al. 2011; McCabe and Wood 2006; Su et al. 2005)(Elhag et 

al. 2011; McCabe and Wood 2006; Su et al. 2005a). The model utilizes commonly available hydrometeorological variables, 30 

including net radiation, land surface temperature, air temperature, humidity, wind speed and vegetation phenology and height 

to calculate both latent and sensible heat surface fluxes. The model first calculates land surface roughness parameters, including 
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roughness lengths for momentum and heat transfer using a method developed by Su et al. (2001)Su et al. (2001). These 

roughness parameters are then applied to a set of flux-gradient equations along with temperature gradient and wind speed data 

to compute the sensible heat flux. The flux-gradient equations quantify the heat transfer between the land surface and the 

atmosphere. SEBS uses either the Monin-Obukhov Similarity Theory (MOST) or the Bulk Atmospheric Similarity Theory 

(BAST) equations (Brutsaert 2005)(Brutsaert 2005), based on the height of the atmospheric boundary layer. SEBS then 5 

determines the sensible heat flux under hypothetical extreme wet and dry conditions to calculate the evaporative fraction. 

Latent heat flux is estimated as a component of the available energy based on the calculated evaporative fraction. Further 

details regarding the SEBS model and its formulation can be found in the work of Su (2002).works of Su (2002a) and Ershadi 

et al. (2013b). A summarized version is presented in Appendix C at the end of this article. 

2.3. Datasets 10 

Following is a brief review of the data that has been used in the analysis, as well as a description of the standardization process 

employed to allow comparison of these distinct datasets. 

2.3.1 Eddy-covariance surface fluxes  

An eddy covariance system provided measurement of heat fluxes and radiation components for periods throughout the duration 

of the COSMOSCRNP installation. The system comprised of a Campbell Scientific 3D sonic anemometer (CSAT-3, Campbell 15 

Scientific, Logan, UT, USA) along with a LiCOR 7500 (Li-7500, LiCor Biosciences, Lincoln, NB, USA) for high-frequency 

water vapour and CO2 concentrations. Turbulent flux data was sampled at 10 Hz, with flux values averaged to 30 minute 

intervals. The height of the eddy covariance tower was fixed at approximately 2 m, providing an estimated fetch of 

approximately 200 m (Leclerc and Thurtell (1990). A meteorological tower was co-located alongside the eddy covariance 

system, with a Kipp and Zonen CNR4 radiometer, Apogee infrared surface temperature, RIMCO rain gauge, Vaisala HMP75C 20 

temperature and humidity probe, RM Young wind sentry (wind speed and direction), Huskeflux ground heat flux plate and 

Vaisala BaroCap barometric pressure sensor. Both tower meteorological and eddy-covariance data were quality controlled to 

detect and remove errors. The low-frequency 30 minute resolution data were corrected for coordinate rotation (Finnigan et al. 

2003)(Finnigan et al. 2003) and WPL effects (Leuning 2007)(Leuning 2007) using the PyQC software tool (available from 

code.google.com/p/eddy).  These data were then accumulated to form 24-hourly totals for each day of the available observation 25 

period.  

2.3.2 Satellite-based observations 

Information required for the different evaporation models (see Section 2.2) were obtained using both the tower-based 

observations as well as the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA’s Terra and 

Aqua satellites. Land surface temperature data required for the SEBS model were derived from the daily MOD11A1 and 30 
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MYD11A1 products of the Terra and Aqua satellites (Wan 2009)(Wan 2009). Normalized Difference Vegetation Index 

(NDVI) data (used by all models) were obtained from the MOD13Q1 product (Solano et al. 2010)(Solano et al. 2010).  

2.3.3 Soil Moisture 

The intermediate scale soil moisture data used in this study was obtained from the COSMOS repository 

(http://cosmos.hwr.arizona.edu/Probes/StationDat/078/). The COSMOSThe level 4 dataset for the soil moisture was chosen 5 

from the repository, since corrections for atmospheric pressure and water vapour variation as well as for incoming flux neutron 

density due to location and the presence of other hydrogen sources were already incorporated in the data as per the methods 

presented by Hawdon et al. (2014). The CRNP device was active at the Baldry site for the period March 30, 2011 to March 

13, 2014. Accounting for gaps in the dataset due to instrument outage as well as the availability of concurrent ancillary data 

such as the remote sensing inputs required for the evaporation models, provided a total of 684 days of data from 2011-2013 10 

that were selectedused for the study. The 15-minute temporal frequency of COSMOSCRNP soil moisture estimates were 

averaged to the daily time scale. In addition to the COSMOSCRNP data, soil moisture observations from three water content 

reflectometers (CS616, Campbell Scientific, Logan, UT, USA) installed at the site were also used. The TDR sensors had probe 

lengths of 30 cm length that were inserted vertically from the surface at three locations around the COSMOSCRNP instrument. 

An average of the three TDR measurements was computed at each time step for comparison with the COSMOSCRNP soil 15 

moisture estimates.  

2.4. Data Standardization 

 Volumetric soil moisture obtained via the COSMOS probeCRNP is reported in units of cm3cmcm3.cm-3 and represents a 

fraction that is always less than a theoretical maximum of 1. Evaporation estimates are represented in units of mm and have a 

less defined theoretical upper bound. In order to compare these quantities across different units and ranges, evaporation and 20 

soil moisture data were standardized by computing the standard score, i.e.,  

𝑋𝑠𝑡 =
𝑋 − �̅�

𝜎
                                                      (1) 

where 𝑋𝑠𝑡 is the standardized data point, 𝑋 is the raw data, �̅� is the mean of the raw dataset, and 𝜎 is the standard deviation of 

the raw dataset. Reducing data with different units to units of standard deviation helps to compare the distributions of dissimilar 

quantities. Standardizing raw data before comparison of distributions with different means and scales of variation is a common 25 

practice (Koster et al. 2011; Zhang et al. 2008)(Koster et al. 2011; Zhang et al. 2008). Importantly, doing so does not change 

the statistical analyses, as the data are simply scaled to be comparable to each other.  

http://cosmos.hwr.arizona.edu/Probes/StationDat/078/
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3. Analyses and Discussion 

3.1. Correlation of COSMOSCRNP soil moisture and evaporation at the EC tower 

Given that modelled evaporation estimates are generally validated against observations from eddy covariance towers (Ershadi 

et al. 2014)(Ershadi et al. 2014), an initial step in our study was to query the relationship between the COSMOSCRNP soil 

moisture retrieval and the tower-based evaporation observations. Soil moisture and land surface evaporation are both processes 5 

with inherent stochasticity in their determination, due in part to the imprecise nature of physical measurement i.e. field-based 

observations of these processes are inferred rather than measured in an absolute sense. In such situations, it is often more 

appropriate to analyse the quantities for their similarity of statistical distributions rather than deducing a lack (or presence) of 

a relationship based on point-to-point statistics such as correlation. Figure 2a shows a scatter of the raw (non-standardized) 

COSMOSCRNP soil moisture daily averages plotted against the corresponding 24-hour daily evaporation values observed at 10 

the eddy covariance tower on site. The two quantities have a Pearson’s correlation coefficient close to 0.40. Figure 2b shows 

the scatter of change in soil moisture on a daily scale versus the corresponding change in observed evaporation across a daily 

interval for the entire period of record at the Baldry site. The plot is clustered around the zero change values, with a correlation 

coefficient of  

-0.26. These low correlations suggest that the COSMOSCRNP soil moisture and the observed evaporation are statistically not 15 

well correlated with each other. However, comparing the cumulative distribution (CDF) of the change in soil moisture state at 

each daily time step to the CDF of the corresponding change in observed evaporation (Figure 2d) demonstrates a visible 

similarity between the two quantities. Physically, it makes sense that the change in evaporation should be correlated to change 

in soil moisture, even if the raw data aredoes not. This show that response clearly. The strength of the relationship is brought 

out at the distribution level, whilewhereas the point-to-point comparison fails to do so. The CDF’s of the raw data (Figure 2c) 20 

also show that the quantities behave similar to each other, albeit with a shift in scale.  

Soil moisture and land surface evaporation are both processes with inherent stochasticity in their determination, due in part to 

the imprecise nature of physical measurement i.e. field-based observations of these processes are inferred rather than measured 

in an absolute sense. In such situations, it is often more appropriate to analyse the quantities for their similarity of statistical 

distributions rather than deducing a lack (or presence) of a relationship based on point-to-point statistics such as correlation.  25 

3.3.3.2. Analyses of standardized data distributions  

Figure 3 shows the precipitation data at the study site, together with the standardized COSMOSCRNP soil moisture and 

evaporation estimates from the PT-JPL, PM-Mu and SEBS models. The average of the three TDR soil moisture measurements, 

and the evaporation observed from the in-situ eddy covariance tower, are also shown. As can be seen, the COSMOSCRNP 

and TDR soil moisture series reflect similar responses in their variability and seasonality, with the COSMOSCRNP data 30 

indicating greater fine-scale variability. While it might be expected that the TDR data should display greater variability in 
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response, the COSMOS measurements have higher variability in soil moisture values, perhaps due to its greater penetration 

depth into the soil profile and larger spatial extentCRNP measurements have higher variability in soil moisture values. This 

could be due to factors such as the variability in the measurement depth of the CRNP with change in the saturation, and higher 

sensitivity of the CRNP to near-surface moisture as compared to deeper layers (Bogena et al. 2013). High frequency variations 

at the soil surface may also be attenuated in the TDR signal since it is integrated over the 30 cm probe depth. 5 

 

With the aim of investigating the link between the COSMOSCRNP soil moisture and the modeled evaporative response, non-

parametric quantile-quantile (Q-Q) plots and box plots were used. Figure 4 shows the Q-Q plots for the standardized soil 

moisture data versus the standardized model derived evaporation estimates. The inter-quartile range is highlighted in grey and 

the red line denotes the extrapolation of the slope of the inter-quartile range. Good agreement between the Q-Q plot and the 10 

red expectation line indicates that the two quantities have been sampled from the same distribution. It can be seen that for all 

three models, the evaporation and soil moisture relationships follow the expectation (red line) closely, particularly in the inter-

quartile range. This indicates that the two independent datasets (modelled evaporation and COSMOSCRNP soil moisture) are 

sampled from distributions that are very similar to each other. However, beyond the inter-quartile range, a deviation of the plot 

away from the expectation line is seen in all cases. This is more apparent at the extremes. The SEBS estimates deviate more 15 

from the expectation on the higher side of the inter-quartile range, as compared to the other two models. However, this 

behaviour is similar to that of the measured evaporation from the eddy covariance tower, as can be seen from the last plot in 

Figure 4. Towards the higher end of the data range, the PT-JPL and PM-Mu values, while close to the expectation, are 

underestimated when compared to the tower measurements.  

 20 

The above observation is additionally supported by the boxplots resulting from the one-way Analysis of Variance (ANOVA) 

test, which are shown in Figure 5. In general, an ANOVA test generates a box plot along with a table of statistics, the most 

important of which is typically the p-value. The p-value, ranging between 0 and 1, signifies how dissimilar the average values 

of two datasets are from each other. A high p-value signifies that the two averages are statistically similar to each other, and 

vice versa. However, for this study, the datasets were standardized to have zero-mean distributions in order to enable 25 

comparison between quantities having different units and ranges. Hence, in this case, the ANOVA test would always return a 

p-value of 1, indicating that the two means are statistically identical. The p-value is, therefore, not suitable to understand the 

behaviour of the two datasets. Hence, the ANOVA boxplots are preferred in this case as they provide insight into the 

distribution-level behaviour of the datasets.  

 30 

From Figure 5 it can be seen that the COSMOSCRNP soil moisture distribution is slightly skewed to the left (shorter tail below 

the first quartile), while the evaporation model estimates are more symmetrically distributed. Again, as in the Q-Q plots, the 

inter-quartile ranges are very similar for both hydrological variables. In this case, the SEBS evaporation estimates have more 

outliers on the higher side, as compared to the other two model estimates. 
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3.4.3.3. Analysis of relationship based on defined periods 

In order to get a better understanding of the observed dynamics between the soil moisture and evaporation signatures, we 

divided the data time series into four distinct sub-periods based on short-term trends and the level of correspondence between 

the soil moisture and evaporation records. Period 1 ran from day of record (DoR) 55 to 144. In the course of this period both 

the soil moisture and the modelled evaporation had a steady descending tendency (see Figure 3). The soil moisture and 5 

evaporation signatures behaved consistent with each other in both increasing and decreasing tendencies during Period 2, 

running from DoR 321 to 410. Period 3, between DoR 410 and DoR 500, covers a series of wetting and drying cycles of soil 

moisture, while no such corresponding changes were observed in the evaporation signatures. Period 4, covering the period 

between DoR 501 and DoR 590, exhibits signatures that oppose each other in behaviour such that an increase in soil moisture 

corresponds to a decrease in the estimated evaporation. The four sub-periods were selected to examine the relationship between 10 

the COSMOSCRNP soil moisture and the model derived evaporation estimates under diverse hydrological conditions. Data 

from these sub- periods were individually standardized using the mean and standard deviation for each particular period. 

 

Q-Q plots of COSMOSCRNP soil moisture against the model-derived evaporation estimates for each of the four sub-periods 

are shown in Figure 6. The corresponding Pearson’s correlation value (R) for each of the modelled evaporation estimates with 15 

regard to the COSMOSCRNP soil moisture is also included. In these analyses, the R-value is used to assess the relative 

performance of the models during each specific period, and not as an absolute indicator. During sub-periods 1 and 2, the Q-Q 

plots indicate that the soil moisture and evaporation model-estimates were both sampled from similar distributions, particularly 

in the inter-quartile range (IQR). Quantile values of the standardized PT-JPL model estimates have the closest match with the 

soil moisture values during Period 1, both within and outside the IQR. This observation is supported by the PT-JPL estimate 20 

having a higher correlation (0.108) with the soil moisture among the three model estimates. During Period 2, the PM-Mu 

model estimates display a higher correlation (0.764) with the soil moisture than any of the other two models. However, if we 

limit the analysis to the IQR data, where the bulk of the data resides, the SEBS model (R=0.714) has a closer match to the 

expectation line. For Period 3, a simple visual analysis of the standardized time series of soil moisture and evaporation would 

indicate that the two quantities were probably de-coupled. However, the Q-Q plots for this period display that there is 25 

substantial correspondence between the two datasets. This demonstrates that although the changes in the evaporation were 

small when compared with the soil moisture variability for this period, evaporation was still likely being driven by the root 

zone soil moisture. Also, while the scales are shifted, the Q-Q plots suggest that the evaporation values are still being sampled 

from a distribution similar to that of the soil moisture. The PT-JPL model estimates track the expectation line closely within 

the IQR, and on the higher extremes beyond the IQR. Below the IQR, all three models behave consistently with each other, 30 

suggesting that as the soil gets drier, the three models studied here all converge towards similar estimates of evaporation. 

During this period, negative correlations with the soil moisture are observed for all three model ETevaporation estimates.  
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It is possible that under certain conditions of vegetation type and density, the CRNP measurement might include canopy 

intercepted water along with the soil moisture. Canopy interception in densely vegetated surfaces could also be a significant 

contributor to the total evaporative flux. In such cases, the TDR measurements of soil moisture may better represent the root 

zone wetness conditions. However, in the semi-arid grassland environment of the current study, canopy interception is unlikely 

to comprise a significant component of the terrestrial evaporation. In order to test if the TDR measurements were more 5 

representative of the root zone soil moisture, we performed a Q-Q analysis using the average of the three TDR measurements 

at the study site instead of the CRNP measurements. We found that there was no significant difference in the plots, and thus 

these results are not reported here. 

 

The Q-Q plots for sub-period 4 show that there is a marked incongruity between the distributions of soil moisture and the PT-10 

JPL evaporation estimates. The plot deviates from the line representing the slope of the IQR, particularly within IQR where 

the bulk of the data would be expected to lie. This behaviour indicates that during this sub-period, the modelled evaporation 

was de-coupled from the soil moisture signature. The other three-source model (PM-Mu), also exhibits this de-coupling, 

although to a lesser extent. However, the de-coupling is not seen in the flux estimates of the SEBS model. The PT-JPL and 

PM-Mu estimates also show negative correlation with the soil moisture during this period, while the SEBS estimate is 15 

positively correlated. Period 4, corresponding with the Australian winter (May-July 2012), received frequent rainfall events 

(Figure 3) that resulted in elevated soil moisture levels while the cloud cover probably limited the energy available for the 

evaporation process.  

 

Comparisons between the ANOVA boxplots of the model-derived evaporation to the COSMOSCRNP soil moisture and the 20 

observed flux from the eddy covariance tower, for each period of the trends-based analysis, are shown in Figure 7. During 

Period 4, the modelled evaporation distributions are significantly different from the eddy-covariance measured at the tower, 

especially for the PT-JPL and PM-Mu models. The observed evaporation has a distribution that is closer to that of the 

COSMOSCRNP soil moisture, while the distributions of the PT-JPL and PM-Mu estimates are skewed to the left. The PT-

JPL and PM-Mu methods are based primarily on the available energy (Rn-G) of the system, with soil moisture being implicitly 25 

accounted for by adjusting the air humidity. The Penman (1948)The Penman (1948) and Penman-Monteith (Monteith 

1965)(Monteith 1965) combination equations that form the theoretical basis for the PT-JPL and PM-Mu models, were 

developed for and tested (Rana and Katerji 1998; Shahrokhnia and Sepaskhah 2011; Sumner and Jacobs 2005)(Rana and 

Katerji 1998; Shahrokhnia and Sepaskhah 2011; Sumner and Jacobs 2005) in situations where energy limitations were not 

present. In contrast, the SEBS model follows a more physically-based approach dependent on the turbulent mixing theory 30 

(Brutsaert 2013)(Brutsaert 2013), which is valid in energy-limited situations similar to those observed during Period 4. It is 

also likely that low temperatures and additional hydro-meteorological factors could have caused a de-coupling of the soil 

moisture from the air humidity. Due to the low temperatures, the air humidity would be lower, while the frequent precipitation 

ensures high soil moisture content. This creates a steep gradient for the moisture at the soil-air interface. In such a scenario, 
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regardless of the presence of abundant soil moisture for evaporation, the models which use air humidity (or vapour pressure) 

as a surrogate for soil moisture may report lower estimates compared to those observed from the eddy-covariance tower. These 

factors may represent physical constraints on the application of the PT-JPL and PM-Mu methods and require further 

investigation.  

3.5.3.4. Analysis of the relationship based on seasonal behaviour  5 

To understand the seasonal patterns in the relationship between the COSMOSCRNP soil moisture and the evaporation data, 

the two-year record of data was partitioned according to seasons. The period between December and February corresponds to 

the Austral summer, while autumn is from March to May, winter from June to August, and spring from September to 

November. The summer and spring seasons experienced the greatest number of precipitation events (defined here as rainfall 

greater than 1 mm/day) with 34 and 33 rainy days out of a total of 164 and 181 days of records respectively, followed by winter 10 

(26 events in 184 days) and autumn (17 events in 155 days).  

 

Corresponding Q-Q plots for the four seasons are shown in Figure 8. In the autumn, the PM-Mu evaporation estimates 

correspond most closely with the COSMOSCRNP soil moisture retrievals in the inter-quartile range (IQR), followed by the 

SEBS estimates. PT-JPL performed the poorest. Beyond the IQR, and overall, the SEBS estimates were the closest match to 15 

the soil moisture distribution in this season. In winter, the PT-JPL estimates were the closest to the soil moisture distribution 

within the IQR, while overall the SEBS model again performed best, relative to these specific metrics. In the spring, the SEBS 

model estimates were distributed most similar to the soil moisture, both within the IQR and overall. PM-Mu estimates were 

the least similarly distributed. 

 20 

The summer season shows that all three evaporation estimates depart from the expectation within the IQR, with the SEBS 

estimates being least similar and the PT-JPL estimates most similar to the soil moisture distribution. As mentioned above, the 

site experienced 34 rainfall events out of a total of 164 days of record. However, there were also long periods with no rainfall 

events. Combined with the higher temperatures of summer, this leads to greater non-monotonic variations in the soil moisture 

signature, thus creating a disconnect with the evaporation patterns. There are more switches between moisture-constrained and 25 

energy-constrained conditions during this season. It has been demonstrated previously that the occurrence of hot and dry 

periods leads to decouplingde-coupling of soil moisture and evaporation (Pollacco and Mohanty 2012)(Pollacco and Mohanty 

2012). The soil moisture profile in such situations becomes heterogeneous.. The soil moisture profile in such situations 

becomes heterogeneous in that the process driving the surface soil moisture variability (mainly soil evaporation) no longer 

influences the deeper layer soil moisture variability (mainly due to transpiration). Further explanation of this de-coupling 30 

process can be found in Pollacco and Mohanty (2012). Evaporation variability in summer is driven more by the precipitation 

patterns than the soil moisture. With an abundance of energy, and severe limitation of soil moisture, any influx of moisture 

due to precipitation is quickly evaporated back to the atmosphere. Despite this, in an example of the “correlation does not 
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imply causation” maxim, it is observed that the evaporation estimates for this season exhibit the highest correlation (R-value) 

with the COSMOSCRNP soil moisture. High soil moisture and temperature conditions in summer could also increase 

uncertainty in the surface-to-air temperature gradient: a key element of the SEBS approach. The SEBS model has been shown 

to be highly sensitive to the land surface temperature gradient parameterization (Ershadi et al. 2013), and this might be a reason 

for its poor performance in the summer period. (Ershadi et al. 2013a), and this might be a reason for its poor performance in 5 

the summer period.  

 

From Figure 8, it is also seen that in most cases, the PT-JPL and PM-Mu models underestimate the evaporation at the higher 

end of the scale, at least when compared with the eddy-covariance tower measurements. The SEBS model generally performs 

better in this regard, as also seen in the previous analysis of the shorter time series (Figure 5). Previous studies have shown 10 

that SEBS based evaporation estimates were found to correspond well with tower-based measurements when there is a short, 

homogeneous canopy (McCabe et al. 2016)(McCabe et al. 2016) and the Baldry grassland site meets this criterion.  

 

In this study we exploit the physical mechanism that makes soil moisture a key driver of the evaporation process. As such, it 

makes perfect sense to evaluate models using observations that govern or influence that process to a significant extent. The 15 

evaporation models examined here do not make use of soil moisture as an input, and neither do the majority of the satellite 

based evaporation models, in general. Hence, the evaporation and soil moisture datasets are statistically independent, although 

physically linked. Given the general lack of observation data concerning any specific process, it is important that independently 

observed, yet physically linked variables, be used to aid in the evaluation process, as demonstrated by the results of this study.  

 20 

3.6.3.5. Caveats, limitations and suggestions for future direction 

Correlation analyses are based on one-to-one comparison between datasets. Q-Q plots, on the other hand are a measure of the 

similarity of distribution. While there may be low point-to-point correlation between two datasets, it is very much possible that 

the two quantities are sampled from the same (or similar) distributions (Jana et al. 2008)(Jana et al. 2008). Such correspondence 

at the distribution level, rather than at the point level, is much more meaningful for stochastic variables such as soil moisture 25 

and ETevaporation. Hence, we emphasize the agreement in the Q-Q plots rather than the R value in our study. This behaviour 

also emphasizes the need to develop suitable statistical metrics which do not rely upon the traditionally used point to point 

matches to examine and quantify relationships between stochastic datasets.  

 

Other potential causes of errors could be uncertainties in the observed data from the COSMOSCRNP instrument and the eddy-30 

covariance, cloud cover resulting in inaccurate MODIS observations which could further lead to inconsistencies in the model 

outputs. Additionally, uncertainties in the meteorological forcings and other model inputs have not been explored in this study. 

The model structure and variations in model parameterization could also affect the analyses. We have used the structure and 
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parameterization described by Ershadi et al. (2014)Ershadi et al. (2014) as they have been shown to correspond well with the 

tower observations. Other model parameterizations may improve (or degrade) the correspondence with the soil moisture, but 

that investigation is beyond the scope of this preliminary study. 

 

This study shows that intermediate resolution soil moisture can be used to validate and constrain models for land surface 5 

evaporation. Importantly, the soil moisture distribution can act as a guide for validating the model evaporation estimates in 

cases where eddy covariance data is either unavailable or of poor quality. Further, considering that the footprint of the tower 

observations is at a much finer scale in comparison with the gridded model estimates of evaporation, it may be more prudent 

to evaluate evaporation models using the COSMOSCRNP soil moisture, which is at a comparable resolution. Obviously, 

further analyses across different biomes and hydroclimatic regimes is necessary before a robust relationship between the model 10 

evaporation estimates and the COSMOSCRNP soil moisture can be established. However, the outcome of this study 

encourages such an effort to be made. As shown in earlier studies to validate gridded evaporation products (Ershadi et al. 2014; 

McCabe et al. 2016)(Ershadi et al. 2014; McCabe et al. 2016) no single evaporation model consistently performed better than 

others across all conditions, whether that was seasonal or based upon climate or biome-type. This suggests that an ensemble 

modelling approach with model weights assigned according to, among other factors, their established relationship with soil 15 

moisture may be more suitable.  

4. Conclusions 

Relationships between soil moisture observations from a COSMOS probeCRNP sensor and evaporation estimates derived 

from three distinct model structures using a combination of tower and satellite-based data were examined across a semi-arid 

grassland site. Standardized daily evaporation and COSMOSCRNP soil moisture data were compared, with an analysis 20 

performed over different hydrological regimes, as well as an examination of seasonal scale variations. As theorised, the two 

hydrological variables displayed significant correspondence with each other over the entire time series, indicating that there is 

a solidstrong and hydrological consistent connection relating them. It was also established that a relationship exists between 

the intermediate scale soil moisture measurements and the modelled evaporation estimates across most of the defined analysis 

periods. It was observed that the PT-JPL and PM-Mu model estimates behaved contrary to expectation in conditions where 25 

high soil moisture existed with colder temperatures. SEBS model estimates presented a similar disconnect from the soil 

moisture distribution, but in the summer season during long dry spells. These deviations are attributed to the model structures 

and reflect previous works identifying the geographic and temporal variability of model performance. Overall, no single model 

estimate of evaporation fully reproduced the COSMOSCRNP soil moisture across all conditions. However, the outcome of 

this study indicates that the intermediate scale soil moisture could be employed as a useful constraint to validate gridded 30 

evaporation estimates derived from models.  
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Appendix A: Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model description 

In the PT-JPL model (Fisher et al. 2008), total evapotranspiration is partitioned into canopy transpiration (𝜆𝐸𝑐), soil 

evaporation (𝜆𝐸𝑠) and wet canopy evaporation (𝜆𝐸𝑤𝑐) defined as follows: 10 

 

𝜆𝐸𝑐 = 𝑘𝑐 × 𝛼𝑃𝑇
𝛥

𝛥 +  𝛾
𝑅𝑛
𝑐  

𝜆𝐸𝑠 = 𝑘𝑠 × 𝛼𝑃𝑇
𝛥

𝛥 +  𝛾
(𝑅𝑛

𝑠 − 𝐺0) 

𝜆𝐸𝑤𝑐 = 𝑘𝑤𝑐 × 𝛼𝑃𝑇
𝛥

𝛥 +  𝛾
𝑅𝑛
𝑐  

A1 

where 𝛼𝑃𝑇 is the Priestley-Taylor coefficient (=1.26), 𝑅𝑛
𝑐  is the net radiation for canopy, 𝑅𝑛

𝑐 = 𝑅𝑛 − 𝑅𝑛
𝑠  and 𝑅𝑛

𝑠  is the net 

radiation for soil given by 𝑅𝑛
𝑠 = 𝑅𝑛exp (−0.6𝐿𝐴𝐼). Total evapotranspiration is then 𝜆𝐸 = 𝜆𝐸𝑐 + 𝜆𝐸𝑠 + 𝜆𝐸𝑤𝑐. 

𝑘𝑐, 𝑘𝑠 and 𝑘𝑤𝑐 are reduction functions for scaling of potential evapotranspiration in each of canopy, soil and wet canopy 

components to their actual values and are defined as: 

 

𝑘𝑐 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑔𝑓𝑇𝑓𝑀 

𝑘𝑠 = 𝑓𝑤𝑒𝑡 + 𝑓𝑆𝑀(1 − 𝑓𝑤𝑒𝑡) 

𝑘𝑤𝑐 = 𝑓𝑤𝑒𝑡 

A2 

where 𝑓𝑔 is green canopy fraction, 𝑓𝑤𝑒𝑡  is relative surface wetness and 𝑓𝑇 is air temperature constraint. 𝑓𝑀 and 𝑓𝑆𝑀 are empirical 15 

factors used as a proxy for plant and soil water stress, respectively. The functions are defined as: 

 

 

𝑓𝑤𝑒𝑡 = 𝑅𝐻
4 

A3 
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𝑓𝑔 =
𝑓𝐴𝑃𝐴𝑅
𝑓𝐼𝑃𝐴𝑅

 

𝑓𝑇 = exp [− (
𝑇𝑎 − 𝑇𝑜𝑝𝑡

𝑇𝑜𝑝𝑡
)

2

] 

𝑓𝑀 =
𝑓𝐴𝑃𝐴𝑅
𝑓𝐴𝑃𝐴𝑅max

 

𝑓𝑆𝑀 = 𝑅𝐻
𝑉𝑃𝐷   

Where 𝑓𝐴𝑃𝐴𝑅 and 𝑓𝐼𝑃𝐴𝑅 are fractions of the photosynthesis active radiation (𝑃𝐴𝑅) that is absorbed (𝐴𝑃𝐴𝑅) and intercepted 

(𝐼𝑃𝐴𝑅) by green vegetation cover, defined as 𝑓𝐴𝑃𝐴𝑅 = 1.3632 × 𝑆𝐴𝑉𝐼 − 0.048 and 𝑓𝐼𝑃𝐴𝑅 = 𝑁𝐷𝑉𝐼 − 0.05. 𝑅𝐻 represents the 

relative humidity (fraction), 𝑉𝑃𝐷 is vapour pressure deficit in kPa. The optimum plant growth temperature (𝑇𝑜𝑝𝑡) is the air 

temperature occurred when the canopy activity is the highest, i.e. when the 𝑓𝐴𝑃𝐴𝑅, radiation and minimum 𝑉𝑃𝐷 are at their 

peak values. 𝑆𝐴𝑉𝐼 is the soil adjusted vegetation index, calculated as 𝑆𝐴𝑉𝐼 = 0.45 × 𝑁𝐷𝑉𝐼 + 0.132. The leaf area index, 5 

𝐿𝐴𝐼, used in computation of 𝑅𝑛
𝑠  is calculated as 𝐿𝐴𝐼 = −ln (1 − 𝑓𝑐)/𝑘𝑃𝐴𝑅 with 𝑘𝑃𝐴𝑅 = 0.5 and 𝑓𝑐 = 𝑓𝐼𝑃𝐴𝑅. 

Appendix B: PM-Mu Model description 

In the PM-Mu model, total evaporation can be accounted as the sum of the evaporation from the intercepted water in the wet 

canopy (𝜆𝐸𝑤𝑐), from water transpired from the leaves (𝜆𝐸𝑡), and from soil evaporation (𝜆𝐸𝑠). Detailed formulation and 

parameterization of each of the components as presented by Mu et al. (2011) and Ershadi et al. (2015) are summarized as 10 

follows: 

Evaporation of intercepted water from a wet canopy (𝜆𝐸𝑤𝑐) is calculated using the following equation: 

 𝜆𝐸𝑤𝑐 = 𝑓𝑤
Δ𝐴𝑐 + 𝑓𝑐𝜌𝑐𝑝(𝑒

∗ − 𝑒)/𝑟𝑎
𝑤𝑐

Δ + 𝛾
𝑟𝑠
𝑤𝑐

𝑟𝑎
𝑤𝑐

 B1 

where 𝐴𝑐 is the available energy for the canopy transpiration defined as 𝐴𝑐 = 𝑓𝑐𝑅𝑛 and 𝑓𝑐 is fractional vegetation cover. 𝑓𝑤 is 

the relative surface wetness, calculated as 𝑓𝑤 = 𝑅𝐻4, with the formulation developed by Fisher et al. (2008). The aerodynamic 

resistance 𝑟𝑎
𝑤𝑐 and surface resistance 𝑟𝑠

𝑤𝑐 for wet canopy are defined as: 15 

 
𝑟𝑎
𝑤𝑐 =

𝑟ℎ
𝑤𝑐𝑟𝑟

𝑤𝑐

𝑟ℎ
𝑤𝑐 + 𝑟𝑟

𝑤𝑐
 

B2 
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𝑟𝑠
𝑤𝑐 =

1

𝑓𝑤𝑔𝑒𝐿𝐴𝐼
 

B3 

where 𝑟ℎ
𝑤𝑐 is wet canopy resistance to sensible heat transfer and 𝑟𝑟

𝑤𝑐  is the wet canopy resistance to radiative heat transfer, 

defined as following: 

 

𝑟ℎ
𝑤𝑐 =

1

𝑓𝑤𝑔ℎ𝐿𝐴𝐼
 

𝑟𝑟
𝑤𝑐 =

𝜌𝑐𝑝

4𝜎𝑇𝑎
3
 

B4 

𝑔𝑒 and 𝑔ℎ are leaf conductance to evaporated water vapor and sensible heat (respectively) per unit 𝐿𝐴𝐼, with biome specific 

values presented in Table B1. 𝑇𝑎 is air temperature (°C) and 𝜎 is the Stefan-Boltzmann constant. 

Transpiration from the canopy (𝜆𝐸𝑡) in the PM-Mu model is calculated as: 5 

 
𝜆𝐸𝑡 = (1 − 𝑓𝑤)

Δ𝐴𝑐 + 𝑓𝑐𝜌𝑐𝑝(𝑒
∗ − 𝑒)/𝑟𝑎

𝑡

Δ + 𝛾 (1 +
𝑟𝑠
𝑡

𝑟𝑎
𝑡)

 B5 

where 𝑟𝑎
𝑡 is the aerodynamic resistance and 𝑟𝑠

𝑡 is the surface resistance for transpiration. The bulk canopy resistance (𝑟𝑠
𝑡) in the 

model is formulated as the inverse of the bulk canopy conductance (𝐶𝑐) and calculated as 𝑟𝑠
𝑡 =

1

𝐶𝑐
. The model assumes that the 

stomatal conductance (𝐺𝑠
𝑠𝑡) and cuticular conductance (𝐺𝑠

𝑐𝑢) are in parallel, but both are in series with the canopy boundary-

layer conductance 𝐺𝑠
𝑏 . As such, the canopy conductance to transpiration is calculated as: 

 𝐶𝑐 = {
(1 − 𝑓𝑤)

(𝐺𝑠
𝑠𝑡 + 𝐺𝑠

𝑐𝑢)𝐺𝑠
𝑏

𝐺𝑠
𝑠𝑡 + 𝐺𝑠

𝑐𝑢 + 𝐺𝑠
𝑏
𝐿𝐴𝐼 , 𝐿𝐴𝐼 > 0, (1 − 𝑓𝑤) > 0

0 , 𝐿𝐴𝐼 = 0, (1 − 𝑓𝑤) = 0

 B6 

where 𝐺𝑠
𝑏 = 𝑔ℎ, 𝐺𝑠

𝑐𝑢 = 𝑟𝑐𝑜𝑟𝑟𝑔𝑐𝑢 and 𝐺𝑠
𝑠𝑡 = 𝑐𝐿𝑚(𝑇𝑚𝑖𝑛)𝑚(𝑉𝑃𝐷)𝑟𝑐𝑜𝑟𝑟  with 𝑉𝑃𝐷 being the vapor pressure deficit (Pa).  10 

𝑔𝑐𝑢 is the leaf cuticular conductance per unit LAI (assumed equal to 0.00001 m.s-1 for all biomes). Also, 𝑐𝐿 is the mean potential 

stomatal conductance per unit leaf area, and is assumed constant for each biome . The 𝑟𝑐𝑜𝑟𝑟  is the correction factor for 𝐺𝑠
𝑠𝑡 to 

adjust it based on the standard air temperature and pressure (20 °C and 101,300 Pa) using the following equation: 

 
𝑟𝑐𝑜𝑟𝑟 =

1

101300
𝑃𝑎

(
𝑇𝑎 + 273.15
293.15

)
1.75 

B7 



 

19 

 

𝑚(𝑇𝑚𝑖𝑛) is a multiplier that limits potential stomatal conductance by minimum air temperature (𝑇𝑚𝑖𝑛), and 𝑚(𝑉𝑃𝐷) is a 

multiplier used to reduce the potential stomatal conductance when 𝑉𝑃𝐷 = 𝑒∗ − 𝑒 is high enough to reduce canopy 

conductance. Following Mu et al. (2007), 𝑚(𝑇𝑚𝑖𝑛) and 𝑚(𝑉𝑃𝐷) are calculated as following: 

 
𝑚(𝑇𝑚𝑖𝑛) =

{
 
 

 
 

1 𝑇𝑚𝑖𝑛 ≥ 𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛

𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒

𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛

− 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒 𝑇𝑚𝑖𝑛

𝑐𝑙𝑜𝑠𝑒 < 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛

0 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒
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 𝑚(𝑉𝑃𝐷) =

{
 

 
1 𝑉𝑃𝐷 ≤ 𝑉𝑃𝐷𝑜𝑝𝑒𝑛

𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷

𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷𝑜𝑝𝑒𝑛
𝑉𝑃𝐷𝑜𝑝𝑒𝑛 < 𝑉𝑃𝐷 < 𝑉𝑃𝐷𝑜𝑝𝑒𝑛

0 𝑉𝑃𝐷 ≥ 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

 B9 

Values of 𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛

, 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒 , 𝑉𝑃𝐷𝑜𝑝𝑒𝑛 and 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒  are listed in the works of Mu et al. (2011) and Ershadi et al. (2015) for each 

biome type. The aerodynamic resistance to canopy transpiration, 𝑟𝑎
𝑡, is calculated using two parameters: the convective heat 5 

transfer resistance 𝑟ℎ and radiative heat transfer resistance 𝑟𝑟 , by assuming they are in parallel (Thornton 1998). The model 

uses the following equation to calculate 𝑟𝑎
𝑡: 

 𝑟𝑎
𝑡 =

𝑟ℎ
𝑡𝑟𝑟
𝑡

𝑟ℎ
𝑡 + 𝑟𝑟

𝑡
 B10 

In this formula, 𝑟ℎ
𝑡 = 1/𝑔𝑏𝑙 and 𝑟𝑟

𝑡 = 𝑟𝑟
𝑤𝑐  and 𝑔𝑏𝑙 is the leaf-scale boundary layer conductance per unit LAI. Here, the 𝑔𝑏𝑙 is 

assumed to be equal to that of the sensible heat (i.e. 𝑔𝑏𝑙 = 𝑔ℎ). 

Evaporation from the soil (𝜆𝐸𝑠) in the PM-Mu model is based on the sum of evaporation from wet soil (𝜆𝐸𝑤𝑠) and 10 

evaporation from saturated soil (𝜆𝐸𝑠𝑠), calculated using the following equation: 

 𝜆𝐸𝑠 = 𝜆𝐸𝑤𝑠 + 𝜆𝐸𝑠𝑠. B11 

To determine the fractions of wet and saturated soil components, the PM-Mu model uses the relative surface wetness parameter 

𝑓𝑤. As such, the evaporation from the wet soil is: 

 𝜆𝐸𝑤𝑠 = 𝑓𝑤
Δ𝐴𝑠 + (1 − 𝑓𝑐)𝜌𝑐𝑝(𝑒

∗ − 𝑒)/𝑟𝑎
𝑠

Δ + 𝛾
𝑟𝑠
𝑠

𝑟𝑎
𝑠

. 
B12 

where 𝐴𝑠 is the available energy for soil evaporation calculated as 𝐴𝑠 = (1 − 𝑓𝑐)𝑅𝑛 − 𝐺0. Evaporation from the saturated soil 

is calculated as: 15 



 

20 

 

 𝜆𝐸𝑠𝑠 = 𝑅𝐻
𝑉𝑃𝐷 𝛽⁄ (1 − 𝑓𝑤)

Δ𝐴𝑠 + (1 − 𝑓𝑐)𝜌𝑐𝑝(𝑒
∗ − 𝑒)/𝑟𝑎

𝑠

Δ + 𝛾
𝑟𝑠
𝑠

𝑟𝑎
𝑠
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where 𝑟𝑎
𝑠 and 𝑟𝑠

𝑠 are resistance parameters for aerodynamic transfer of evaporation from the soil surface to the atmosphere. 

𝑅𝐻𝑉𝑃𝐷/𝛽  term in the above equation is a constraint parameter to for a soil moisture constraint, with 𝛽 assigned a constant 

value of 200. The soil surface resistance 𝑟𝑠
𝑠 is calculated as: 

 𝑟𝑠
𝑠 = 𝑟𝑐𝑜𝑟𝑟𝑟𝑡𝑜𝑡𝑐 B14 

where 𝑟𝑡𝑜𝑡𝑐 is a function of VDP and biological parameters 𝑟𝑏𝑙
𝑚𝑖𝑛   and 𝑟𝑏𝑙

𝑚𝑎𝑥 as  follows: 

𝑟𝑡𝑜𝑡𝑐 =

{
 
 

 
 

𝑟𝑏𝑙
𝑚𝑎𝑥 𝑉𝑃𝐷 ≤ 𝑉𝑃𝐷𝑜𝑝𝑒𝑛

𝑟𝑏𝑙
𝑚𝑎𝑥 −

(𝑟𝑏𝑙
𝑚𝑎𝑥 − 𝑟𝑏𝑙

𝑚𝑖𝑛) × (𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷)

𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷𝑜𝑝𝑒𝑛
𝑉𝑃𝐷𝑜𝑝𝑒𝑛 < 𝑉𝑃𝐷 < 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

𝑟𝑏𝑙
𝑚𝑖𝑛 𝑉𝑃𝐷 ≥ 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

 B15 

𝑉𝑃𝐷𝑜𝑝𝑒𝑛  is the VPD for when leaves transpire with no water stress and 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 is the VPD when there is no transpiration 5 

due to water stress. Values for 𝑟𝑏𝑙
𝑚𝑎𝑥 , 𝑟𝑏𝑙

𝑚𝑖𝑛 , 𝑉𝑃𝐷𝑜𝑝𝑒𝑛 and 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒  for various land covers are provided in the works of Mu et 

al. (2011) and Ershadi et al. (2015). 

The aerodynamic resistance at the soil surface (𝑟𝑎
𝑠) is parallel to both the resistance to convective heat transfer (𝑟ℎ

𝑠) and the 

resistance to radiative heat transfer 𝑟𝑟
𝑠, with its components calculated as: 

 𝑟𝑎
𝑠 =

𝑟ℎ
𝑠𝑟𝑟
𝑠

𝑟ℎ
𝑠 + 𝑟𝑟

𝑠
 B16 

where 𝑟𝑟
𝑠 = 𝑟𝑟

𝑤𝑐 and 𝑟ℎ
𝑠 = 𝑟𝑠

𝑠. 10 

Appendix C: SEBS Model Description 

The SEBS model includes routines for calculating the sensible heat flux (𝐻) using meteorological and land surface data, and 

using 𝐻 to estimate the latent heat flux as a fraction of the total available energy at the surface. 𝐻 estimation in the SEBS 

model follows the physically-based flux-gradient functions of momentum and heat transfer near the surface. When the 

measurement height of meteorological variables is in the atmospheric surface layer, the SEBS model uses the flux-gradient 15 

functions of the Monin-Obukhov similarity theory (MOST) (Monin and Obukhov 1945), as following: 

 
 

C1 
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𝑢𝑎 =
𝑢∗
𝜅
[ln (

𝑧 − 𝑑0
𝑧0𝑚

) − Ψ𝑚 (
𝑧 − 𝑑0
𝐿

) + Ψ𝑚 (
𝑧0𝑚
𝐿
)] 

 𝜃𝑠 − 𝜃𝑎 =
𝐻

𝜅𝑢∗𝜌𝑐𝑝
[ln (

𝑧 − 𝑑0
𝑧0ℎ

) − Ψℎ (
𝑧 − 𝑑0
𝐿

) + Ψℎ (
𝑧0ℎ
𝐿
)] C2 

where 𝑧 is the measurement height for the meteorological variables (m), 𝑢𝑎 is wind speed (m.s-1), 𝑢∗ is the friction velocity 

(m.s-1) , 𝜌 is the density of the air (kg.m-3), 𝑐𝑝 is specific heat capacity of air at constant pressure (J.kg-1.K-1), 𝜅 (= 0.41) is the 

von Karman’s constant (-), 𝜃𝑠 is the potential land surface temperature (K), 𝜃𝑎 is the potential air temperature (K) at height 𝑧, 

𝐻 is the sensible heat flux (W.m-2) , 𝑑0 is the zero-plane displacement height (m), 𝑧0𝑚 is the roughness height for momentum 

transfer (m), 𝑧0ℎ is the roughness height for heat transfer (m) and Ψ𝑚 and Ψℎ are the stability correction functions for 5 

momentum and heat transfer. 𝐿 is the Obukhov length (m) defined as: 

 𝐿 = −
𝜌𝑐𝑝𝑢∗

3𝜃𝑣

𝜅𝑔𝐻
 C3 

with 𝑔 the acceleration due to gravity (m.s-2) and 𝜃𝑣 the atmospheric virtual potential temperature (K). 

SEBS uses the stability-correction functions proposed by Beljaars and Holtslag (1991) for stable conditions and the functions 

proposed by Brutsaert (2005) are used for unstable conditions. The roughness length for momentum and heat transfer (𝑧0𝑚 

and 𝑧0ℎ) are estimated using the methodology developed by  Su et al. (2001), which employs vegetation phenology, air 10 

temperature and wind speed. 

SEBS uses a correcting method to scale the MOST derived sensible heat flux between hypothetical dry and wet limits based 

on the relative evapotranspiration concept. Finally, this scaled sensible heat flux can be used to calculate the evaporative 

fraction (Λ), which then can be used to calculate the latent heat flux as 𝜆𝐸 = Λ(Rn − 𝐺0). Further details on the SEBS model 

description are provided by Su (2002b) and Su et al. (2005b). 15 
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Figures  

Figure 1: Location of the Baldry study area in the central-west of NSW Australia, along with a photograph of the study area. 
Figure 2: (a) Scatter plot of average daily soil moisture vs. daily evaporation; (b) scatter plot of day-to-day change in average 

daily soil moisture vs. day-to-day change in daily evaporation; (c) cumulative distributions of average daily soil moisture and 5 

daily evaporation; (d) cumulative distributions of day-to-day change in average daily soil moisture and daily evaporation. 
Figure 3: Standardized soil moisture (COSMOS and TDR), evaporation (modelled and observed) and precipitation 

signatures for entire duration of record. 
Figure 4: Quantile-Quantile (Q-Q) plots of standardized COSMOS soil moisture vs. standardized evaporation estimates and 

observations (at EC tower) for entire period of record. 10 

Figure 5: ANOVA boxplots of standardized COSMOS soil moisture, and standardized evaporation estimates and 

observations for the entire time series. 
Figure 6: Q-Q plots of standardized soil moisture vs. standardized evaporation for each defined period of analysis. R-values 

denote Pearson's correlation between standardized soil moisture and modelled evaporation for that particular period. 
Figure 7: ANOVA boxplots of standardized COSMOS soil moisture, and standardized evaporation estimates and 15 

observations for each defined period of analysis. 
Figure 8: Q-Q plots of standardized soil moisture vs. standardized evaporation for each season. R-values denote Pearson's 

correlation between standardized soil moisture and modelled evaporation for that particular season. 
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Figure 1: Location of the Baldry study area in the central-west of NSW Australia, along with a photograph of the study area. 
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Figure 2: (a) Scatter plot of average daily soil moisture vs. daily evaporation; (b) scatter plot of day-to-day change in average daily 

soil moisture vs. day-to-day change in daily evaporation; (c) cumulative distributions of average daily soil moisture and daily 

evaporation; (d) cumulative distributions of day-to-day change in average daily soil moisture and daily evaporation. 
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Figure 3: Standardized soil moisture (COSMOSCRNP and TDR), evaporation (modelled and observed) and precipitation signatures 

for entire duration of record. 
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Figure 4: Quantile-Quantile (Q-Q) plots of standardized COSMOSCRNP soil moisture vs. standardized evaporation estimates and 

observations (at EC tower) for entire period of record. 
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Figure 5: ANOVA boxplots of standardized COSMOSCRNP soil moisture, and standardized evaporation estimates and 

observations for the entire time series. 

 



 

38 

 

 



 

39 

 

 

Figure 6: Q-Q plots of standardized soil moisture vs. standardized evaporation for each defined period of analysis. R-values denote 

Pearson's correlation between standardized soil moisture and modelled evaporation for that particular period. 
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Figure 7: ANOVA boxplots of standardized COSMOSCRNP soil moisture, and standardized evaporation estimates and 

observations for each defined period of analysis. 
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Figure 8: Q-Q plots of standardized soil moisture vs. standardized evaporation for each season. R-values denote Pearson's 

correlation between standardized soil moisture and modelled evaporation for that particular season. 
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