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Abstract. In this study we examine the potential of snow water equivalent data assimilation (DA) using the ensemble Kalman 10 

Filter (EnKF) to improve seasonal streamflow predictions. There are several goals of this study. First, we aim to examine some 

empirical aspects of the EnKF, namely the observational uncertainty estimates and the observation transformation operator.  

Second, we use a newly created ensemble forcing dataset to develop our ensemble model states (e.g. model state uncertainty). 

Finally, we also examine the impact of varying the observation and model state uncertainty on forecast skill.  We use basins 

from the Pacific Northwest, Rocky Mountains, and California in the western United States with the coupled Snow17 and 15 

Sacramento Soil Moisture Accounting (SAC-SMA) models. Results show that most EnKF implementation variations result in 

improved streamflow prediction, but the methodological choices in the examined components impact predictive performance 

in a non-uniform way across the basins. Finally, basins with relatively higher calibrated model performance (> 0.80 NSE) 

without DA generally have lesser improvement with DA, while basins with poorer historical model performance show greater 

improvements. 20 
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1 Introduction 

In the snow-dominated watersheds of the Western US, spring snowmelt is a major source of runoff (Barnett et al., 2005; Clark 

and Hay, 2004; Singh and Kumar, 1997; Slater and Clark, 2006). In such basins, the initial conditions of the basin, primarily 25 

in the form of snow water equivalent (SWE), drive predictability out to seasonal time scales (Wood et al., 2005; Wood and 

Lettenmaier, 2008; Harrison and Bales, 2015; Wood et al. 2015). Thus better estimates of basin mean initial SWE should lead 

to better seasonal streamflow predictions (Clark and Hay, 2004; Slater and Clark, 2006; Wood et al. 2015). For various reasons 

(e.g., the uncertainty in model parameters, forcing data, model structures), simulated SWE in hydrological models can be very 

different from reality (Pan et al., 2003). Fortunately, a variety of snow observations (including point gauge and spatial satellite 30 

data) contain valuable information (Andreadis and Lettenmaier, 2006; Barrett, 2003; Mitchell et al., 2004; Su et al., 2010; Sun 

et al., 2004). Many studies have explored the role of snow data assimilation in different modeling frameworks (Kerr et al., 

2001; Moradkhani, 2008; Takala et al., 2011; McGuire et al, 2006; Wood and Lettenmaier, 2006).  

Of particular focus here are papers that have examined the impact of SWE data assimilation (DA) on runoff modelling and 

prediction (e.g. Wood and Lettenmaier, 2006; Franz et al., 2014; Jörg-Hess et al., 2015; Moradkhani, 2008; Slater and Clark, 35 

2006). Among the major challenges facing SWE-based DA are that the time-space resolution of remote sensing SWE data are 

too coarse or period-limited for many watershed-scale hydrological applications in mountainous regions (Dietz et al., 2012; 

Jörg-Hess et al., 2015), and point gauge snow data have sparse and uneven spatial coverage. For point measurements, spatial 

interpolation based on distance are typically used to estimate observed SWE state in a watershed of interest (e.g.,Franz et al., 

2014; Jörg-Hess et al., 2015; Slater and Clark, 2006; Wood and Lettenmaier, 2006). 40 

Here we use the Ensemble Kalman Filter (EnKF) method for DA using an implementation that allowing for seasonally varying 

estimates of observation and model error variances (Evensen, 1994, 2003; Evensen et al., 2007). The EnKF framework has 

been successfully implemented in research basins in several previous studies (Clark et al., 2008; Franz et al., 2014; Moradkhani 

et al., 2005; Slater and Clark, 2006; Vrugt et al., 2006). The EnKF provides an objective analytical framework to optimize the 

update of model states based on observed values and their corresponding uncertainties. While the EnKF approach has a formal 45 

theory, its overall objectivity in an application (contrasting with an arbitrary DA approach such as direct insertion) nonetheless 

depends on several methodological choices that are often empirical when applied to SWE DA. Here we examine DA 

performance sensitivities related to three elements: 1) the estimation of watershed mean SWE from surrounding point 

measurements; 2) the transformation operator that relates watershed mean SWE to model mean SWE; and 3) sensitive analyses 

of the relative size of observed and model error variance. 50 

Following Slater and Clark (2006), this study uses two slightly different approaches to estimate ensemble SWE observations 

with point gauge SWE data from surrounding gauge sites for study basins. When using calibrated hydrologic modeling 

systems, model SWE states may exhibit systematic biases from observed SWE estimates for a number of reasons – e.g., all 
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hydrologic models must simplify real watershed physics and structure, and model parameter estimation (calibration) may result 

in SWE behavior that in part compensates for forcing or model errors (e.g. Slater and Clark, 2006). Therefore, transformation 55 

of snow observations to model space is needed before they are used to update the model states to ensure that the model ingests 

SWE estimates that are as close to unbiased relative to the model climatology as possible. We explore two variations on an 

approach using cumulative density function (CDF) transformations of observations to model space (following Wood and 

Lettenmaier, 2006, among others). Additionally, we undertake a sensitivity analysis to highlight the importance of robust 

observations and model uncertainty estimates. We focus on the impacts of updates made just once per snow accumulation 60 

season, noting that an important choice that is not examined as a result is the selection of DA dates and frequency. For a given 

generally optimal selection of the EnKF system, the Ensemble Streamflow Forecast (ESP) approach is used to test the impact 

of SWE DA on subsequent streamflow forecasts. 

We apply the EnKF system to nine river basins in the Western US that have a range of basin features and environmental 

conditions. This is distinct from many previous studies that focus on one or two basins in more detail (e.g., Clark et al., 2008; 65 

Franz et al., 2014; He et al., 2011; Moradkhani et al., 2005). We also use ensemble simulations driven by a new probabilistic 

forcing dataset (Newman et al, 2015) as a basis for estimating model SWE uncertainty, in contrast to prior studies which used 

more arbitrary distributional assumptions. The following sections discuss the study basins and data sets, and the model and 

EnKF DA approach, before the presenting study results, and discussion and conclusions. 

 70 

2 Study basins and data 

In this study, nine basins across the Western US are selected for SWE DA evaluation. They are in the Pacific Northwest, 

California (Sierra Nevada Mountains), and central Rocky Mountains. We focus on these three areas as they span a range of 

snow accumulation and melt conditions of the Western US and are in areas with active seasonal streamflow prediction and 

water resource management. Note we do not examine rain driven low-lying basins as they do not have significant SWE 75 

contributions to runoff.  The locations of the basins and nearby SWE gauge sites are shown in Figure 1, illustrating that all of 

the study watersheds have SWE measurements distributed in and/or around the basins. The main features of these basins are 

shown in Table 1. The basin areas range from 16 to 1163 km2 and the mean elevations of the basins range from 998 to 3459 m 

with a large spread in basin mean slopes (as estimated from a fine-resolution digital elevation model) and forest percentage. 

Two sources of SWE observations are used in this study: (1) the widely used Snow Telemetry (Snotel) network for Natural 80 

Resources Conservation Service (NRCS) (www.wcc.nrcs.usda.gov/snow/), which covers most of the western US; and (2) the 

California Department of Water resources (DWR) (cdec.water.ca.gov/snow) (denoted as CADWR sites hereafter), which 

maintains a snow pillow network for California. The SWE data from CADWR sites have frequent missing data and some 

unrealistic extreme values, thus extensive manual quality control was required before using the CADWR data in the study. 
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3 Methodology 

3.1 Models and calibration 

The Snow-17 temperature index snow model is coupled to the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual 

hydrologic model (Anderson, 2002; Anderson, 1973; Burnash and Singh, 1995; Burnash et al., 1973; Franz et al., 2014; 

Newman et al., 2015a) to simulate streamflow in this study. This model combination has been in operational use by US National 90 

Weather Service (NWS) River Forecast Centers (RFCs) since the 1970s (Anderson, 1972; 1973). The Snow-17 model is a 

conceptual snow pack model that employs an air temperature index to partition precipitation into rain and snow and 

parameterize energy exchange and snowpack evolution processes. The only required forcing inputs are near-surface air 

temperature and precipitation. The output rain-plus-snowmelt (RAIM) time series from Snow-17 is part of the forcing input 

of the SAC-SMA model. SAC-SMA is a conceptual hydrologic model that uses five moisture zones to describe the movement 95 

of water through watersheds. The required forcing input is the potential evaporation and the surface water input from Snow-

17.  

Daily streamflow data from United States Geological Survey (USGS) National Water Information System server 

(http://waterdata.usgs.gov/usa/nwis/sw) are used to calibrate 20 parameters of Snow-17 and SAC-SMA model. The calibration 

is obtained using the shuffled complex evolution global search algorithm (SCE; Duan et al, 1992) via minimizing daily 100 

simulation Root Mean Square Error (RMSE). UGSS streamflow data are also used to verify the model predictions. 

Model uncertainty arises from model parameter and structural uncertainty (e.g. Clark et al., 2008) and forcing input uncertainty 

(e.g., Carpenter and Georgakakos, 2004). Focusing on the latter, we drive the hydrology models with 100 equally likely 

members of meteorological data ensemble generated as described in Newman et al. (2015b), producing an 100 member 

ensemble of model moisture states, including SWE, and streamflow. The daily-varying spread of the ensemble model states 105 

serve as the estimate of model uncertainty. Because this method estimates SWE uncertainty without also considering sources 

other than forcing input uncertainty, and therefore may underestimate model uncertainty in initial SWE (e.g. Franz et al. 2015), 

we also include a sensitivity analysis to explore the sensitivity of DA results to variations in the estimated observation and 

model uncertainty magnitudes.  

3.2 Generating ensembles of estimated observed watershed SWE  110 

Since the SWE observations are point measurements that do not represent the watershed mean conditions and have observation 

error, observation uncertainty needs to be robustly estimated to ensure reasonable DA performance. In this study, we follow 

Slater and Clark (2006) to generate ensemble SWE observations using a multiple linear regression in which the predictors are 

the attributes of SWE gauge sites (longitude, latitude and elevation). The observation uncertainty is estimated by leave-one-

out (LOO) cross validation: i.e., each station is left out of the regression training and then its SWE is predicted and verified 115 
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against its actual measurement. The SWE values are transformed into percentiles or Z-score before the regression is performed, 

and the corresponding inverse transformations are used to convert them back to SWE values. These two approaches are denoted 

as percentile and Z-score interpolation respectively and detailed descriptions for them are as follows.  

3.2.1 Percentile interpolation 

First, the non-exceedance percentile ( )o

yp k  of each SWE observation (observation based values noted with superscript o) at 120 

gauge site k on DA date in year y is calculated based on its rank, or percentile, within a sample of all SWE observations at the 

same site within a time-window of +/- n days centered on the date of the observation.  

Then we use the percentiles to do linear regression on geographic features latitude, longitude and elevation to estimate the 

SWE percentile for the target basin: �̂�𝑦
𝑜, where the hat indicates the basin mean estimate. By LOO cross validation, the 

interpolation error of the linear regression is estimated as ˆo

ye . We sample from normal distribution N( ˆ o

yp , ˆo

ye ) to get the 125 

ensemble percentiles ˆ{ ( )}o

yp j , where j = 1,…, 100 represents ensemble member.  

Finally, we take the corresponding ˆ ( )o

yp j  percentile from the full ensemble model SWE within the time-window of +/- n 

days centered on the DA date in year y, denoted as 
fˆ ( )yS j . The final ensemble SWE observations on DA date at year y for 

the target basin are 
fˆ{ ( )}yS J , where J = 1,…, 100.  

3.2.2 Z-score interpolation 130 

First, we use the observed SWE at gauge site k on DA date in year y to calculate the Z-score: 

𝑍𝑠𝑐𝑜𝑟𝑒𝑦(𝑘) =
𝑆𝑦

𝑜(𝑘)−𝑆𝑜(𝑘)̅̅ ̅̅ ̅̅ ̅̅

𝜎(𝑆𝑜(𝑘))
, (1) 

where 𝑆𝑜(𝑘)̅̅ ̅̅ ̅̅ ̅̅  and 𝜎(𝑆𝑜(𝑘)) are the are the long-term mean and standard deviation of a sample of all non-zero SWE 

observations at the same site within a time-window of +/- n days centered on the date of the observation respectively.  Here 

we use the Z-score in the linear regression and again use LOO cross validation to estimate the mean and interpolation error of 135 

the Z-score for a target basin. Then we sample from normal distribution to get ensemble Z-scores for target basin, denoted as

ˆ{ -score ( )}o

yZ j , where j = 1,…, 100 represents ensemble member. Finally we use the following equation to transform Z-

score to back to SWE values: 

�̂�𝑦
𝑜(𝑗) = �̂�𝑠𝑐𝑜𝑟𝑒𝑦

𝑜 × 𝜎 (𝑆𝑓(𝑘)) + 𝑆𝑓(𝑘)̅̅ ̅̅ ̅̅ ̅̅ , (2) 

where 𝑆𝑓(𝑘)̅̅ ̅̅ ̅̅ ̅̅  and  𝜎 (𝑆𝑓(𝑘)) are the long-term non-zero mean and standard deviation of the full ensemble model SWE within 140 

the time-window of +/- n days centered on the DA date in year y respectively. The final ensemble SWE observations on DA 

date at year y for the target basin are ˆ{ ( )}o

yS j , where j = 1,…, 100. 

3.3 EnKF approach and experimental design 
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  For evaluating the relative performance of DA and for re-initializing the soil moisture of DA runs at the beginning of each 

water year (WY), an open loop or ‘control’ retrospective simulation (denoted No DA) is performed using the calibrated model 145 

parameters with ensemble forcing data. This control run is one continuous simulation per ensemble member for the entire 

hindcasting and evaluation period (1981-201X) for each basin. 

In operational practice, manual adjustments to model SWE are applied repeatedly throughout the water year, and particularly 

before initializing seasonal forecasts.  Because this study is focusing on assessing variations in methodological aspects of the 

DA approach, we simplify this configuration by applying DA updates only once per year, using the date on which the SWE 150 

correlation with future runoff is highest for the study basin, but no later than 1 April, a common date for initiation of spring 

seasonal runoff forecasts.    

The EnKF method used in this study is a time-discrete forecast and linear observation system described by two relationships 

(generally following the notation of Ide et al. (1997) and Wu et al. (2012) : 

𝒙𝒊+𝟏
𝒕 = 𝑀(𝒙𝒊

𝒕) + 𝜼𝑖, (3) 155 

𝒚𝒊
𝒐 = 𝒉(𝒙𝒊

𝒕) + 𝜺𝑖, (4) 

where i is the time step, M is the coupled Snow17 and SAC-SMA model system, x is the state variable and y is the observation 

variable (in this study both x and y are the one-dimensional vector containing basin mean SWE for the target watershed across 

all ensemble members), the superscripts t and o stand for truth and observed respectively, η and ε are the model and observation 

errors respectively, and h is the observation operator that maps the model states to the observation variable. In this study, h is 160 

simply the identity vector as we regard the SWE estimates that have been transformed to model space as observation y, as a 

pre-processing step. 

The SWE DA approach is implemented via the following procedure: 

1) Run the watershed model once for each ensemble forcing member from the beginning of a WY until the DA date with 

initial states 𝒙0 taken from the retrospective control runs, producing the ensemble forecast states 𝒙𝑖
𝑓
. The superscript f 165 

denotes forecast. 

2) Calculate the ensemble analysis states: 

𝒙𝑖
𝑎 = 𝒙𝑖

𝑓
+ 𝑠𝑖𝒉𝒊

𝑇(𝒉𝒊𝑠𝑖𝒉𝒊
𝑇 + 𝑜𝑖)−1𝒅𝑖 , (5) 

where superscript a means analysis, o and s are the observed and model simulation error variances (estimated by the variance 

of ensemble observations and model states respectively) respectively, and the innovation vector (residual)  is calculated as: 170 

𝒅𝑖 = 𝒚𝑖
𝑜 − 𝒉𝒊(𝒙𝑖

𝑓
), (6) 

3) Update the Snow-17 SWE states with the analysis states to use for initialization of forecasts through the end of the 

WY. 

Steps 1-3 are repeated for all WY available in the hindcast period (1981-201X).  Soil states are re-initialized using the states 
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from the retrospective (No DA) run at the start of every WY (October 1), when there is no SWE.  175 

3.4 Model and observation error variance  

In this study, only the uncertainty of the forcing data is taken into account in our model uncertainty, and uncertainty that arises 

from model structural and parameter errors could cause the true model error to be larger. Thus we assess the impacts of inflating 

model error variance to evaluate the relative size of observed and forecast error variance. We simply set the model SWE error 

variance to 1/2 and 2 times of the original size to see how the DA performances change. If increasing the model error variance 180 

results in DA performance improvements, it would indicate that the model error variance is underestimated, and vice versa. 

This sensitivity analysis underscores the importance of a careful effort to properly estimate both model and observational 

uncertainty when using the EnKF – a challenge that is well known in the DA community. 

3.5 Seasonal Ensemble Streamflow Prediction 

Although the impacts of the SWE DA on forecast accuracy can be assessed through verification of post-adjustment simulations 185 

using ‘perfect’ future forcing, we demonstrate the performance of SWE DA by initializing seasonal ESP forecasts for a 

streamflow forecast product that is widely used in water management, the snowmelt-period runoff volume from April through 

July. ESP uses historical climate data to represent the future climate conditions each year from the start point of forecast period 

to predict streamflow. Two typical ESP applications are tested in this study. Because we have an ensemble of historical forcing 

instead of the traditional application in which only a single historical forcing time series is available, there are different ways 190 

to construct an ESP. We adopt two: (1) We construct the ESP forcing ensemble by randomly selecting one year of the historical 

ensemble forcing data for each historical member of the ESP; and (2) We use all historical years of ensemble mean forcing 

data for each ESP historical year member, yielding a 30*100 member ensemble for an ESP based on meteorology from 1981-

2010 (variations are noted ens forcing and ens mean forcing respectively in subsequent figures discussing ESP results).   

3.6 Verification metrics 195 

In this study, five frequently used statistics are calculated for evaluating the two DA approaches. The Bias, Correlation 

coefficient (R), Relative root mean squared error (R-RMSE), Nash-Sutcliffe efficiency (NSE) are based on the ensemble 

averages. And Continuous Ranked Probability Score (CRPS) is a measurement of error for probabilistic prediction (Murphy 

and Winkler, 1987). It is defined as the integrated squared difference between cumulative distribution function (CDF) of 

forecasts and observations: 200 

2
f oCRPS ( ) ( )F x F x dx




    , (7) 

where 
fF  and 

oF are CDF for forecasts and observations respectively. Smaller CRPS means more accurate forecasts. 

 

4 Results 

4.1 Overall performance in the case basins 205 
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Using the two approaches described in Section 3.2 with three different window lengths (7 days, 3 months, 1 year), a sample 

comparison from one year (2004) of the results for estimated watershed SWE from the two methods versus the model SWE 

ensemble on DA date (DA dates for the case basins are listed in Table 1) for the case basins are shown in Figure 2. The 

distributions of SWE from the model ensemble and from the percentile and Z-score interpolation methods differ in ways that 

are not consistent across all watersheds. The variance of the estimated observed SWE for both methods is generally largest for 210 

the 1-year, an effect that is more pronounced for the Z-score interpolation. However, we also note that the ensemble 

observations of 7-day window can have a large variance, likely due to the more limited sample size for the regression, which 

can negatively impact DA performance (see Supplement Tables S1.1 and S1.2). Therefore, a 3-month window is recommended 

for both approaches..  

The evaluation statistics for ensemble SWE observations estimated by percentile and Z-score interpolation approach are shown 215 

in Table 2 and Table 3 respectively. Only results for the 3-month window are shown in these two tables, the tables for 7-day 

and 1-year windows are in supplement S1. In Tables 2 and 3, the 2nd column shows the forecast error variance used to calculate 

analysis states, where “No DA” means the open loop control run (see Section 3.3), and the P, 1/2·P and 2·P refer to the DA 

runs with the model error variance estimated by 1, 1/2 and 2 times the original size of the ensemble model variance. Both 

percentile and Z-score interpolation approach exhibit enhanced DA performances among the case basins, indicating that both 220 

these approaches are effective in adding observation based information to the model simulations. The percentile interpolation 

and Z-score interpolation methods vary in performance across the basins with both performing better in some basins and not 

others. The results of forecast error variance inflation shows that for both percentile and Z-score interpolation, “2·P” has better 

performance than “P” in most of the case basins – i.e., increasing the model error variance leads the assimilation to trust 

observations more and improves the DA performance. This indicates that the model error variance tends to be underestimated 225 

or our observation uncertainties tend to be overestimated.  

The evaluation statistics of Table 2 and 3 are also presented as scatter plots in Figures 3 and 4 respectively. The metrics R-

RMSE, R and NSE indicate that both approaches bring enhancements to the ensemble mean streamflow in most basins, 

although the DA does not help correct forecast biases. Post-processing procedures (e.g. bias correction) could be used to further 

enhance the system performance, but is not a focus of this study. These figures also show that No DA forecasts with relatively 230 

better performance, mostly due to better simulations of forecast initial conditions, benefit less from DA.  

Figure 5 summarizes the ESP evaluation statistics. For simplicity, only the percentile interpolation approach with a 3-month 

window is shown without forecast error inflation. It shows that for both ESP forcing methodologies used (Section 3.5) in all 

the case study watersheds, SWE DA enhances seasonal runoff prediction skill, including the probabilistic prediction metric 

CRPS. Again, higher skill No DA watersheds saw smaller DA improvements. The DA evaluation metric improvement 235 

increment versus the corresponding No DA evaluation metric score for the case basins are shown in Figure 6. It can be seen 
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that the DA improvements in all evaluation metrics have a general weak negative correlation with No DA performance, which 

again highlights that better simulated basins benefit less from SWE DA. 

4.2 Case study analyses 

 To provide a more in-depth examination of the SWE DA impacts to the watershed model states and fluxes, time series of 240 

runoff and SWE are shown in Figures 7, 8 and 9 for three example basins, one for each region (the same figures for the other 

six basins are included in the supplemental material), and for one hindcast year. The feedback from the change of SWE on DA 

date to seasonal runoff is readily apparent. Increasing the ensemble model SWE through DA will lead to increased model 

runoff, and vice versa. For basins with a strong seasonal cycle of streamflow (e.g. Greys and Merced River), SWE DA generally 

improves daily runoff forecasts in addition to seasonal volume forecast improvements, although this is not true in every 245 

watershed (e.g. Tolt River).  

Figures 10, 11 and 12 show several scatter plots of forecast period runoff for the ESP ensemble forcing and perfect forcing 

forecasts, versus observed runoff, in the three case basins for all of the hindcast years. The left two columns show the 

comparison for No DA and DA simulated seasonal runoff vs observed runoff for perfect (top row) and ESP ensemble forcing 

(bottom row) respectively. The 1:1 lines are shown as grey dashed lines and regression lines for the results are shown as green 250 

solid line. The results after DA have higher correlation and are closer to the 1:1 line, which indicates that for both forcing types 

SWE DA improves seasonal runoff simulation and prediction skill. The rightmost columns in these three figures show the 

scatter plots of SWE increment (i.e., SWE analyses states minus model SWE without DA) vs runoff error (i.e., the simulated 

seasonal runoff without DA minus the observed seasonal runoff). If the runoff errors are positive (the seasonal runoff is 

overestimated), we expect the SWE increment to be negative in order to decrease the model seasonal runoff (counteract model 255 

error) and vice versa. Thus the ideal results are that the points fall onto different sides of y=0 and x=0 lines (shown as grey 

dashed lines in this panel), i.e., the points all fall into the 2nd (upper left) and 4th (lower right) quadrants. This is generally the 

case for our case basins for both perfect and ESP forcing, which again shows that the SWE DA approach is successful in 

reducing model and forecast error.  

 260 

5 Discussion and Conclusions 

SWE observations generally contain valuable information that has potential to enhance seasonal runoff forecasts. However, 

relating point SWE measurements that have uneven spatial distribution and varying environmental conditions to watershed 

mean conditions is a challenge that is often met by empirical solutions. Two approaches of constructing SWE ensemble 

observations are examined in this study in an effort to reduce the spatial variability and decrease the interpolation uncertainty 265 

while also transforming the observations to model space (e.g., the range of the model climatology). Both percentile and Z-

score transformations normalize the original SWE values in a way to decrease the spatial variability (Slater and Clark 2006; 
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Wood and Lettenmaier, 2006). The former ensures the ensemble observations have the same mean as the ensemble model 

SWE and the variance of ensemble observations is proportional to ensemble model SWE variance. The latter emphasizes the 

shape of the observation time series. SWE observations in and near a watershed but at different elevations may have greatly 270 

varying values, but their percentile and Z-score statistics will show reduced variation because they arise from similar relative 

weather conditions with respect to conditions in other years. Using normalized statistics significantly reduces the interpolation 

uncertainty and systematic biases relative to the watershed’s SWE climatology. 

 Sensitivity analyses of model uncertainty impacts on DA performance suggest that either the forcing-alone based estimation 

of model errors underestimate the total model error variance, or the observed SWE error estimation approaches (interpolation 275 

plus the SWE regression) tend to overestimate observation uncertainty, or both. It is likely we are underestimating model 

uncertainty because we have not taken model structural and parameter uncertainty into consideration. Future work should 

examine this in more detail, as this work clearly indicates that uncertainty scaling approaches (for the model and/or the 

observations) are likely to be a valuable step for achieving successful DA performance.  

In this study, a 3-month window of SWE observations generally gives the best performance. However, in some basins a 280 

different window length may bring larger improvements. Generally, longer windows mean that more SWE values are used for 

transformation, and the transformation tends to be more statistically representative of the long-term model-observation 

climatology. However, shorter time windows mean that the model SWE values used for transformation are more relevant to a 

specific seasonal time period, avoiding aliasing for seasonality, but have much smaller sample sizes and may not properly 

represent the relationship between model and observation climatologies. The window length must be a balance between these 285 

two considerations.  

The ESP-based assessment of SWE DA in the case study watersheds shows clearly the potential for SWE DA to enhance 

seasonal runoff forecasts in an automated fashion, which is notable as this has been a long-standing challenge in operational 

forecasting. We show at least minor improvement in seasonal runoff forecasts in all nine basins. A notable finding is also that 

the benefits of SWE are linked to the quality of the model simulations of the basin, which can help to target the application of 290 

DA to locations where it will have the most benefit. 

We chose a DA update frequency of once per year, the date of climatological maximum correlation of modeled and observed 

runoff.  In operational practice, updates would be applied more frequently, pointing to an area for future research. We note also 

that this study was conducted using conceptual lumped watershed models, similar to those used in operational practice in the 

US. As a result, this study did not shed light on how to address additional challenges that may be associated with using SWE 295 

DA for the spatially distributed models, or with spatially continuous datasets (e.g., satellite and remote sensing SWE estimates) 

that are increasingly being developed or applied in streamflow forecasting contexts. Although SWE DA has been implemented 

in distributed models in limited experimental contexts (e.g., Wood and Lettenmaier, 2006), a systematic examination of EnKF 
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DA in spatially distributed hydrological models, coupled with a thoughtful accounting for model parameter and structural 

errors, remains a potentially fruitful area of research and development.  300 

 

Data Availability 

All data used in this study are publicly available.  The watershed shapefiles and basin information are described in Newman 

et al. (2015a) at: doi:10.5065/D6MW2F4D.  The forcing ensemble is described in Newman et al. (2015b) and are available at: 

doi:10.1065/D6TH8JR2. The streamflow data are available through the USGS via: http://waterdata.usgs.gov/usa/nwis/sw and 305 

in doi:10.5065/D6MW2F4D. The Snotel observations are available at: www.wcc.nrcs.usda.gov/snow/ while the California 

SWE observations are available at: cdec.water.ca.gov/snow. 
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Table 1 Basin features of nine case basins. 

Region Basin ID 
Elevation 

(m) 
DA date 

Basin area 

(km2) 
Slope 

Forest 

percent 
Basin name 

14 09081600 3092.15 April 1 436.88 150.58 0.6136 Crystal River 

14 09352900 3459.15 April 1 187.74 156.09 0.5199 Vallecito Creek 

17 13023000 2468.57 March 1 1163.72 98.51 0.6753 Greys River 

17 12147600 998.25 April 1 16.07 159.37 1 SF Tolt River 

17 13235000 2077.16 April 1 1158.47 126.25 0.8604 SF Payette River 

17 14158790 1210.48 March 15 40.76 116.44 1 Smith River 

16 10336645 2180.92 April 1 20.09 118.27 0.7136 General Creek 

16 10336660 2188.08 April 1 32.46 83.46 0.7908 Blackwood Creek 

18 11266500 2576.54 April 1 836.15 140.18 0.6741 Merced River 
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Table 2 Evaluation statistics for percentile interpolation before and after DA. 

Basin name 
Forecast error 

variance (P) 
R-RMSE R NSE Bias CRPS 

Crystal River 

No DA 0.124 0.931 0.832 -16.64 34.92 

P 0.118 0.942 0.847 -12.34 33.12 

1/2·P 0.12 0.94 0.842 -14.29 33.39 

2·P 0.115 0.944 0.856 -9.21 32.7 

Vallecito River 

No DA 0.11 0.971 0.874 -33.89 29.95 

P 0.103 0.975 0.89 -30.69 28.37 

1/2·P 0.106 0.974 0.883 -32.11 28.87 

2·P 0.099 0.975 0.898 -28.34 27.85 

Greys River 

No DA 0.113 0.952 0.887 -2.98 18.67 

P 0.082 0.974 0.94 -3.91 15.55 

1/2·P 0.09 0.969 0.929 -3.8 16.3 

2·P 0.077 0.977 0.948 -3.83 15.06 

SF Tolt River 

No DA 0.242 0.76 0.467 81.64 176.98 

P 0.234 0.823 0.505 120.04 156.87 

1/2·P 0.234 0.812 0.503 111.55 164.73 

2·P 0.234 0.837 0.504 132.76 150.56 

SF Payette 

River 

No DA 0.124 0.963 0.895 -26.77 29.43 

P 0.118 0.967 0.905 -24.91 28.81 

1/2·P 0.117 0.968 0.906 -25.88 28.07 

2·P 0.119 0.963 0.903 -23.41 30.02 

Smith River 

No DA 0.211 0.872 0.722 -28.5 76.42 

P 0.178 0.907 0.803 -26.25 65.92 

1/2·P 0.187 0.898 0.781 -28.04 69.24 

2·P 0.168 0.916 0.824 -22.91 62.07 

General Creek 

No DA 0.118 0.978 0.952 -15.54 36.64 

P 0.092 0.99 0.971 -17.36 29.76 

1/2·P 0.097 0.988 0.968 -18.19 30.29 

2·P 0.089 0.99 0.973 -15.22 30.86 

Blackwood 

Creek 

No DA 0.127 0.976 0.935 -52.44 55.12 

P 0.118 0.982 0.944 -49.95 52.8 

1/2·P 0.119 0.982 0.943 -53.23 51.11 

2·P 0.117 0.98 0.945 -44.53 55.04 

Merced River 

No DA 0.266 0.952 0.737 -105.4 83.41 

P 0.253 0.963 0.762 -105.95 84.98 

1/2·P 0.258 0.961 0.752 -107.76 86.62 

2·P 0.245 0.964 0.776 -102.65 81.87 
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Table 3 Evaluation statistics for Z-score interpolation before and after DA. 

Basin name 
Forecast error 

variance (P) 
R-RMSE R NSE Bias CRPS 

Crystal River 

No DA 0.124 0.931 0.832 -16.64 34.92 

P 0.119 0.942 0.845 -11.22 33.94 

1/2·P 0.12 0.939 0.841 -13.4 34.05 

2·P 0.117 0.945 0.85 -8.57 33.56 

Vallecito 

River 

No DA 0.11 0.971 0.874 -33.89 29.95 

P 0.1 0.975 0.896 -29.84 28.7 

1/2·P 0.103 0.975 0.89 -31.15 29.06 

2·P 0.098 0.974 0.9 -28.27 28.19 

Greys River 

No DA 0.113 0.952 0.887 -2.98 18.67 

P 0.092 0.969 0.926 -3.5 16.22 

1/2·P 0.098 0.965 0.916 -3.41 16.8 

2·P 0.087 0.972 0.933 -3.48 16.02 

SF Tolt River 

No DA 0.242 0.76 0.467 81.64 176.98 

P 0.182 0.879 0.7 102.55 127.9 

1/2·P 0.193 0.857 0.661 97.22 137.26 

2·P 0.174 0.896 0.725 109.53 121.26 

SF Payette 

River 

No DA 0.124 0.963 0.895 -26.77 29.43 

P 0.117 0.965 0.907 -22.69 28.69 

1/2·P 0.115 0.967 0.909 -22.99 27.89 

2·P 0.122 0.961 0.897 -23.36 30 

Smith River 

No DA 0.211 0.872 0.722 -28.5 76.42 

P 0.173 0.911 0.813 -30.55 63.69 

1/2·P 0.183 0.902 0.792 -31.22 67.56 

2·P 0.163 0.921 0.835 -29.45 59.99 

General Creek 

No DA 0.118 0.978 0.952 -15.54 36.64 

P 0.096 0.99 0.968 -19.96 29.97 

1/2·P 0.1 0.988 0.966 -18.65 30.95 

2·P 0.096 0.992 0.969 -21.17 30.4 

Blackwood 

Creek 

No DA 0.127 0.976 0.935 -52.44 55.12 

P 0.118 0.984 0.944 -53.46 51.82 

1/2·P 0.118 0.983 0.944 -53.17 50.62 

2·P 0.12 0.983 0.942 -53.52 53.74 

Merced River 

No DA 0.266 0.952 0.737 -105.4 83.41 

P 0.24 0.967 0.787 -99.26 79.81 

1/2·P 0.246 0.964 0.775 -101.37 83.11 

2·P 0.234 0.969 0.797 -96.91 76.03 
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Figure 1. Location of nine case basins in the Western US and SWE gauge sites. 
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Figure 2. Boxplots of ensemble model SWE and estimated ensemble SWE observations for the nine case basins on the 420 

DA date in 2004, for three window lengths – 7 days, 3 months, and 1 year. 
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Figure 3. Evaluation metrics for April-July ensemble mean streamflow from the percentile-based interpolation method 

for the nine case basins.  425 
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Figure 4. Evaluation metrics for April-July ensemble mean streamflow from the Z-score interpolation for the nine case 

basins. 430 
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Figure 5. Evaluation statistics of percentile interpolation for the nine case basins with the two variations on ESP and 

with perfect forcing data (ens in the legend denotes ensemble). 
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Figure 6. Incremental change in evaluation statistics for ESP and perfect forcing forecasts using percentile-based 440 

interpolation for the nine case basins. 
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Figure 7. Time series plots for runoff and SWE for Greys River. Light blue lines indicate individual ensemble member 445 

traces.  Vertical black dashed line denotes data assimilation date. 
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Figure 8. Time series plots for runoff and SWE for SF Tolt River following Figure 7. 450 
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Figure 9. Time series plots for runoff and SWE for Merced River following Figure 7. 
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Figure 10. Scatter plots for seasonal runoff and SWE on DA date in the DA years for Greys River. Black dashed diagonal 

lines is the 1:1 line, while the green lines indicate linear regression fits to data. 
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 460 

Figure 11. Scatter plots for seasonal runoff and SWE on DA date in the DA years for SF Tolt River following Figure 10. 
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Figure 12. Scatter plots for seasonal runoff and SWE on DA date in the DA years for Merced River following Figure 465 

10. 
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