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We greatly appreciate referee K. Engeland for your thoughtful and positive comments on this manuscript.  Below 1 

are our detailed responses to the points raised in bold. 2 

 3 

K. Engeland (Referee) 4 

 5 

General comments 6 

The paper is interesting and deserves publication after a moderate revision. The scientific content and the modelling experiment 7 

carried out is excellent. I think, however, that the presentation and discussion can be improved in several ways. 8 

Response: Thank you for the positive comment. 9 

 10 

Structure of paper 11 

I think there are at least two ways to improve the structure of the paper 1. It could be helpful if you in the introduction provide 12 

some explicit aims, objectives, hypotheses or research questions you want two answer, and provide the answers to those in the 13 

conclusions. 2. You discuss your results to a large degree in the results-chapter as well as in this discussion and conclusion 14 

chapter. It might be better to make a Results and discussion-chapter and make a much shorter conclusion chapter. Now follows 15 

comments to each chapter of the paper. 16 

Response to comment 1 on the structure of the paper:  We agree with this point.  It would be good to add more explicit 17 

motivation and specific questions examined in the paper to the introduction.  Corresponding answers would be added 18 

to the conclusions as you note. 19 

 20 

Response to comment 2 on the structure of the paper: We agree with this point as well.  It is possible to include a vast 21 

majority of the discussion in a new Results and Discussion section.  We’d likely then rename the final section to 22 

“Summary” and include only key discussion points for reference with concluding statements and answers to the study 23 

questions. 24 

 25 

1 Introduction 26 

In the introduction a couple of references could be added: (Griessinger et al., 2016) and (Bergeron et al., 2016) are very fresh 27 

paper in this journal and could be included. Some background material from Scandinavian assimilation experiments could be 28 

added, see (Udnæs et al., 2007) and (Engeset et al., 2003) for Norway and (Arheimer et al., 2011) for Sweden. For the 29 

background information, I think it could be interesting to add a few sentences how data assimilation is used operationally in 30 

western US. I guess there are several reports (grey literature) that covers this topic, and that in many cases subjective methods 31 

are used. On page 6 lines 148-49 your write a bit about manual practice, this could be moved to the introduction as a background 32 
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information. 33 

Response: Thank you for the references, they will be great to add to the introduction.  As mentioned in lines 148-149, 34 

snow data assimilation is implemented manually in operation currently. We plan to move this to the introduction with 35 

a few more sentences describing the state of operational DA in the Western US.  This helps more clearly defines the 36 

motivation of the paper. 37 

 38 

2 Models and calibration 39 

I would like to have some more details on the snow model: (1) Do you divide the catchment into elevation zones? This is 40 

standard for operational forecasting models in Scandinavia and is important for the performance in catchments with seasonal 41 

snow cover. (2) Do you have any sub-catchment distribution of snow (uniform, gamma, lognormal) or do you consider the 42 

snow depth to be equal all over the catchment? In Table 1 you list the mean elevation (please specify) but it would also be 43 

interesting to show the min and max elevation. 44 

Response: We did not divide the catchment into elevation zones currently. We agree that elevation bands are standard 45 

practice in many regions, including the Western US.  For this study, the reference models (no DA simulations) are also 46 

lumped, thus we feel the DA work and improvements are still relevant.   47 

We are working toward elevation band simulations with DA across many basins currently, but it is not included in this 48 

manuscript.  49 

The snow model assumes uniform depth across the basin, but does have an empirical snow covered area curve (see 50 

Snow-17 references in this paper).   51 

We will add the min and max elevation in Table 1.    52 

 53 

3.2 Generating ensembles of estimated observed watershed SWE 54 

I think the use of the term "observation" is confusing since it might refer both to the point observations and the estimated 55 

catchment SWE from the regression equations. Especially "estimated observed watershed SWE" is confusing. Maybe it arise 56 

from the Ensemble Kalman filtering setting where the term "observation" is standard terminology. In the text it is not always 57 

evident when "observation" refers to the point measurement and when "observation" refers to the observation based catchment 58 

SWE. E.g. in line 111 "observation" refers to point observation, whereas for lines 112 and 113 I am confused if you refer to 59 

"observation based catchment SWE”"or the point measurements. Some suggestion are to write "observation based SWE", 60 

"observation based catchment SWE" or "observed catchment SWE". At least you should use a consistent terminology in order 61 

to distinguish between the point measurements and the estimated catchment SWE from the point measurements. 62 

Response: We agree with this point and will clarify and change the terminology upon revision.  63 

3.2.1 Percentile-regression 64 
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• In lines 121-122 you write: “within a sample of all SWE observations at the same site within a time-window of +/- n 65 

days centered on the date of the observation.” For me it is not evident if you then use all SWE observations from the 66 

year y, from the years preceding y or from all years in your dataset. Maybe the term “date” means “month and day” 67 

in this context and not “year, month, day”. Please specify. 68 

Response: We mean all the years in our dataset, and will revise the sentences in our manuscript accordingly. 69 

 70 

• Why do you do the regression on the percentile? Does the percentile give you different information than the observed 71 

SWE? Please explain why with some sentences. 72 

Response: We did this mainly for reducing interpolation uncertainty caused by spatial heterogeneity of SWE gauge 73 

sites following Slater and Clark (2006). We will include clarification in the revised draft. 74 

 75 

• Did you have any challenges since p has a lower and upper bound? On line 125, did you need to truncate the simulated 76 

p-values to be between 0 and 100? 77 

Response: Yes, we needed to truncate the simulated p-values to between 0 and 100. We experimented with various 78 

assumptions related to this truncation and found that straight truncation (e.g. a regression percentile of 110 is set 79 

to 100) worked the best in these cases. 80 

 81 

• The LOO cross validation approach is similar to the Jackknife approach. What is the difference since you do not call 82 

it Jackknife. 83 

Response: We call it LOO cross validation approach just for specifying that it is a special Jackknife approach that 84 

only one sample is cut out each time. 85 

 86 

• Lines 127-129 could be explained better. Do you calculate the percentile p for each ensemble member in order to get 87 

100 pairs of p and SWE from the model? Both the observation based and the model based ensembles are random, it 88 

is not evident how the transformation works. Do you order the samples of p-values? 89 

Response: Yes, we calculated the percentile p for each ensemble member in order to get 100 pairs of p and SWE 90 

from the model.  91 

We will include the following discussion to improve clarity. We did not order the samples of p-values.  We just 92 

calculate the corresponding percentiles of the full ensemble model SWE (i.e., a sample of (2n+1)*Y*100 members, 93 

where (2n+1) is the length of time window each year, Y is the total number of years of our dataset, 100 is the number 94 

of ensemble model SWE members) according to the estimated sample p-values ˆ ( )o

yp j . 95 
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 96 

• Line 129. Why is capital J used? 97 

Response: Initially we used capital J just for distinguishing it from the index of percentile ( ˆ ( )o

yp j ), but the capital 98 

J does seem unnecessary.  We will revise to use just lowercase j in our manuscript. 99 

 100 

3.2.2 Z-score regression 101 

• Why do you use the term z-score. It might be a bit confusing since the term"score" is often used for model evaluation 102 

Response: It is just a conventional name referring to the transformation of Eq. (1).  When using a Gaussian 103 

distribution, distance from the mean is often discussed in terms of standard deviations, and when normalized by 104 

the standard deviation of a particular distribution, a deviation is termed “Z-score” for Z-standard deviations from 105 

the mean in statistics. 106 

 107 

• Lines 140-141: "long-term non-zero mean and standard deviation of the full ensemble model SWE within the time-108 

window of +/- n days". Does this mean that you calculate the mean and standard deviation over a sample of 2*n*100 109 

model simulations? 110 

Response: We calculated the mean and standard deviation over a sample no greater than (2n+1)*Y*100 (only non-111 

zero members are used), where (2n+1) is the length of time window of +/- n days in each year, Y is the total number 112 

of years of our datasets, and 100 is the number of ensemble model SWE members.  113 

 114 

3.3 EnKF approach and experimental design 115 

For the data assimilation, it could be useful to (i) write eq. 5 also without the h operator that is actually not used. (ii) describe 116 

in two sentences how the analysis works. 117 

Response: We prefer to keep the transformation vector h as it is the formal terminology and if the transformation is 118 

not done in a pre-processing step as we have done it does need to be performed. 119 

We calculate an analysis via eq. 5 and use that analysis to update the Snow-17 SWE states.  We then run the model 120 

system with the updated states until the end of the WY.  This clarification would be included as revised text at the end 121 

of section 3.3. 122 

 123 

3.6 Verification metrics 124 

It could be useful to write for which variables the verification metrics is calculated. 125 

Response:  The verification metrics are for seasonal streamflow volume. Text will be modified to state this. 126 
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 127 

4 Results 128 

It is not necessary to put tables 2 and 3 in the paper, move them to supplementary material. Figures 3 and 4 are sufficient. 129 

Response: We will move them to the supplementary material upon revision. 130 

 131 

From the text and the figures it is confusing for which variable the evaluation statistics is calculated: On line 216 it is written: 132 

"The evaluation statistics for ensemble SWE observations". Whereas in the Figure captions it is written that the evaluation is 133 

for ensemble mean streamflow. It is not evident for which period the verification metrics is calculated.  134 

Response: Our evaluation statistics are all calculated for streamflow. We can clarify the text to clearly state that the 135 

evaluation metrics are for seasonal streamflow volume, applied to the two SWE interpolation approaches using varying 136 

window lengths for the SWE transformation. 137 

In Figure 3 and 4 it is not evident which forcing you use. Is it “perfect forecast” or one of the two ESP forecasts? What is the 138 

difference between the evaluations in Figures 3 and 4 versus Figures 5 and 6. Both pairs of figures show evaluation statistics 139 

for streamflow forecasts, but I am not able, based on the text, to tell the difference between the two set of plots.  140 

Response: In figures 3 and 4, perfect forcing is used.  This will be clarified in the text and figure captions. 141 

The difference between the evaluations in Figures 3 and 4 versus Figures 5 and 6 is that their focuses are different. 142 

Figure 3 and 4 show the evaluation results of the sensitivity analysis of model and observation error variance (i.e., P, 143 

0.5P and 2P).  144 

Figure 5 and 6 show the evaluation results of seasonal ESP (two types of ESP forecasts) compared with perfect forcing.  145 

Further clarification will be added to the text. 146 

 147 

There are two results and comments that seem to be contradicting: Line 229: Comment to Figures 2 and 3: "although the DA 148 

does not help correct forecast biases." Line 243-245: Comments to Figures 7,8 and 9: "Increasing the ensemble model SWE 149 

through DA will lead to increased model runoff, and vice versa. For basins with a strong seasonal cycle of streamflow (e.g. 150 

Greys and Merced River), SWE DA generally improves daily runoff forecasts in addition to seasonal volume forecast 151 

improvements" How is it possible that DA does not help correct forecast biases whereas it improves seasonal volume forecasts? 152 

Response:  We believe this comes through modification of both negative and positive runoff errors.  Bias is a sum of 153 

signed errors, thus the noDA and DA runs can have similar total error even if the no DA run has large year to year 154 

errors.  The DA run can improve a statistic like RMSE which is a squared error metric without changing bias.  For 155 

example Figure 12, lower left panels highlights that DA reduces large positive error for a few years and conversely, 156 

increases negative runoff error over many years.  This improves correlation, RMSE, etc, but leave bias nearly 157 

unchanged. 158 



6 
 

5 Discussion and conclusion: 159 

• In general, it is helpful if you refer to specific tables and figures in the discussion to make it evident which results 160 

you discuss. 161 

Response: We will revise the paper to include more specifics figure and table references in the summary section. 162 

 163 

• Lines 264-273 could be moved to section 3.2 since it is a good description of the method used and not a discussion 164 

of the results presented in this paper. 165 

Response: Agreed, this will be moved. 166 

• I would like more discussion of Figures 10-12, and I would like to know how often the DA improves the simulated 167 

seasonal runoff and how often it becomes worse. Figures 7-9 could also include on year when DA makes the simulated 168 

seasonal runoff worse. For the subplots to the right in Figures 10-12, it could be interesting to know more about the 169 

cases when the points are located in the lower left or upper right quadrants, i.e. to little/much runoff is simulated and 170 

you decrease/increase the simulated runoff. 171 

Response:  Reviewer 2 had a similar comment to this.  Most of this response is repeated there as well.  Generally, when 172 

the SWE increment is incorrect, it is less than 10% of that year’s SWE and runoff with the exception of the Merced 173 

River where five of the years have SWE increment errors larger than 10% of that year’s runoff. In the Greys River, all 174 

incorrect increments are less than 10% of the observed runoff for that year and also in years where the noDA runoff 175 

error is less than 10% of observed.  A small increment implies that the estimated observed and model SWE are very 176 

similar, and thus in years with small model error, the model SWE climatology closely matches observed climatology 177 

after transformation for this basin.  Since SWE-Runoff are not perfectly correlated and there is likely information loss 178 

in the EnKF and modeling systems, it would be expected that in years where there is weak signal in the observations, 179 

the increment may end up being incorrect. Overall, there are 11 of 28 (39%), 4 of 24 (17%), and 8 of 26 (31%) years 180 

for the Greys, Tolt and Merced rivers where the DA increment is in the incorrect direction. However, the years with 181 

large SWE increments are always of the same sign as the runoff error except for the Merced River. 182 

The Merced River is the only basin to use state of California SWE observations, and these may be of lower quality as 183 

evidenced by the large amount of manual quality control we had to perform on the data and the quality control 184 

discussion of these data in Lundquist et al. (2015).  This suggests that observed SWE data need to be of higher quality 185 

(or information content) than the calibrated model SWE to have a positive impact in the DA system. Conversely, there 186 

are years where the noDA runoff error is large, but the SWE increment is small in all three basins.  This is not 187 

unexpected as spring SWE is not perfectly correlated with subsequent runoff.  This may also hint at a level of data loss 188 

in the EnKF and modeling system, future work should compare streamflow hindcasts using this type of system with 189 

traditional statistical methods using SWE as a primary input. 190 

We will look a bit more into these years and try to identify if there was anything that makes them “special.”  191 

Reference: 192 

Lundquist, J. D., M. Hughes, B. Henn, E. D. Gutmann, B. Livneh, J. Dozier, and P. Neiman, 2015: High-elevation 193 
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precipitation patterns: using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. 194 

J. Hydrometeorology, 16, 1773-1792. doi: 10.1175/JHM-D-15-0019.1. 195 

  196 

 197 

Details: 198 

(i) Why is ESP an abbrevation for "Ensemble Streamflow Forecast"? (ii) What is X in 1981-201X on line 174? 199 

Response:  We will fix the text, ESP should be an abbreviation for “Ensemble Streamflow Prediction”.  200 

 201 

Suggested references: 202 

Arheimer, B., Lindström, G., Olsson, J., 2011. A systematic review of sensitivities in the Swedish flood-forecasting system. 203 

Atmos. Res. 100, 275–284. doi:10.1016/j.atmosres.2010.09.013 204 

Bergeron, J.M., Trudel, M., Leconte, R., 2016. Combined assimilation of streamflow and snow water equivalent for mid-term 205 

ensemble streamflow forecasts in snowdominated regions. Hydrol. Earth Syst. Sci. Discuss. 1–34. doi:10.5194/hess-2016-166 206 

Engeset, R.V., Udnæs, H.C., Guneriussen, T., Koren, H., Malnes, E., Solberg, R., Alfnes, E., 2003. Improving runoff 207 

simulations using satellite-observed time-series of snow covered area. Nord. Hydrol. 34, 281–294. 208 

Griessinger, N., Seibert, J., Magnusson, J., Jonas, T., 2016. Assessing the benefit of snow data assimilation for runoff modelling 209 

in alpine catchments. Hydrol. Earth Syst. Sci. Discuss. 1–18. doi:10.5194/hess-2016-37 210 

Udnæs, H.-C., Alfnes, E., Andreassen, L.M., 2007. Improving runoff modelling using satellite-derived snow covered area? 211 

Nord. Hydrol. 38, 21. doi:10.2166/nh.2007.032 212 

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-185, 2016. 213 

  214 
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We greatly appreciate this anonymous referee for your thoughtful and positive comments on this manuscript. We 215 

have revised the manuscript accordingly. Below are detailed responses to the points raised. 216 

 217 

Anonymous Referee #2 218 

I found the topic relevant to HESS and a contribution to DA understanding for water resources in snow-dominated watersheds. 219 

While I found the paper well written, it was often difficult to follow because of the number of DA-model scenarios and 220 

corresponding acronyms (though I struggled to come up with good alternatives). I also thought the results section lacked 221 

specifics and overly asked the reader to interpret the figures/tables. Finally, I found the major contribution of the paper to be 222 

its potential utility for improving streamflow prediction in watersheds with relatively low model skill. I would like to see the 223 

authors leverage their previous work to highlight the utility of the approach presented. It should be noted that I reviewed 224 

‘version 2’ of the manuscript. 225 

Response:  Thank you for your overall summary comments of the paper.  We agree with the general comment that 226 

additional specific analysis can be added to the results section.  We will clarify the text throughout, with emphasis on 227 

the results section.  Our replies to your specific comments give more detail to this general response.  228 

 229 

Comment 1: Include more detail in the results. The reader is left to do most of the work in interpreting and quantifying many 230 

statements. Tell us how much and where things were improved and where they were not. Statements like this on line 211: 231 

“However, we also note that the ensemble observations of 7-day window can have a large variance, likely due to the more 232 

limited sample size for the regression, which can negatively impact DA performance (see Supplement Tables S1.1 and S1.2).” 233 

would strongly benefit from specific number. What is large variance? What is a negative impact to DA? 234 

Response: The negative impact is truly a reduction in the positive impact of DA when comparing the 7-day window to 235 

the 3-month window.  We will include specific numbers and clarify this text. 236 

 237 

I became frustrated having to look at all the figures and table to understand what was meant by sentences like this. A number 238 

of examples are listed below, but I encourage the authors to re-read the manuscript to address this problem completely. Lines 239 

221-225: Where by how much?  240 

Response: We agree that the results section needs more analysis clearly stated in the text. We will tabulate key results 241 

for the metrics across example metrics for the entire basin set and add those results to the text. 242 

  243 

 244 

Line 227-228: Which basins? By how much?  245 

Response: Again, we will revise this discussion 246 
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 247 

Lines 243-246: Improves runoff forecasts by how much  248 

Response: We will quantify the improvement to daily flow for the example basins given. 249 

Comment 2: Can you remove some of the acronyms or more clearly explain every acronym in the figure captions. 250 

Response: Yes, we agree these need to be more clearly defined for each figure, or removed entirely in the captions.  We 251 

will do that upon revision. 252 

 253 

Comment 3: There should be more discussion of why the DA could make predictions worse and where that occurred. Should 254 

we be worried about this for future DA efforts? How might we screen sites to ensure that DA does not make predictions worse? 255 

Response: We can see from the right two subplots in Figures 10-12 that the years when DA makes the simulated runoff 256 

worse is when runoff error is generally very small. Generally, those SWE increments are less than 10% of that year’s 257 

SWE and runoff with the exception of the Merced River where five of the years have SWE increment errors larger 258 

than 10% of that year’s runoff. Overall, there are 11 of 28 (39%), 4 of 24 (17%), and 8 of 26 (31%) years for the Greys, 259 

Tolt and Merced rivers where the DA increment is in the incorrect direction.  260 

In terms of observational sites, the Merced River is the only basin to use state of California SWE observations, and 261 

these may be of lower quality as evidenced by the large amount of manual quality control we had to perform on the 262 

data and the quality control discussion of these data in Lundquist et al. (2015).  This suggests that observed SWE data 263 

need to be of higher quality (or information content) than the calibrated model SWE to have a positive impact in the 264 

DA system. Conversely, there are years where the noDA runoff error is large, but the SWE increment is small in all 265 

three basins.  This is not unexpected as spring SWE is not perfectly correlated with subsequent runoff.  This may also 266 

hint at a level of data loss in the EnKF and modeling system, future work should compare streamflow hindcasts using 267 

this type of system with traditional statistical methods using SWE as a primary input. 268 

We believe screening of observational sites is a difficult task.  The above discussion and our results in California does 269 

suggest screening is needed.  High quality sites with no information content would also need to be screened as well (also 270 

see discussion in reply to comment 4).  It is possible that guidelines for this could be developed and then potentially 271 

automated, but this is likely a major undertaking.  In this study, site selection was first taken using closest distances to 272 

the basin, then manual screening of suspect sites and sites that had little relationship with runoff were removed.  It is 273 

possible some formalization of this methodology could be developed.   274 

That being said, the relationship between SWE and runoff will likely be basin dependent and the addition of an 275 

assimilation system and model forecast introduces information losses that are also likely basin dependent since the 276 

hydrologic modeling system is basin dependent, such that a screening methodology based solely on observations is likely 277 

to misidentify potential degradation or improvement when DA is applied. 278 

 279 

Comment 4: It seems that one of the major contributions of the paper is pointing out that DA methods are likely only make 280 
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improvements in snow dominated watersheds when model performance was <0.80 NSE. Given that Newman et al., 2015a has 281 

quantified the performance of SAC-SMA skill in >500 watersheds, I think a major contribution would be to discuss how many 282 

watersheds could benefit from DA and how they are spatially distributed. I think that this should be discussed in the context 283 

of where the DA methods did not perform well, i.e. comment 2. 284 

Response: This idea you mention is an interesting topic.  We will look back through the database and add some 285 

additional analysis examining spatial location of basins that may benefit from DA using the basic metrics of noDA NSE 286 

and contribution of SWE to runoff.  That being said, a comprehensive description and analysis about how many 287 

watersheds could benefit from DA and how they are spatially distributed is a large topic and could be a separate paper.   288 

Preliminary screening of candidate basins would not only require the basic metrics of being snow dominated, generally 289 

lower noDA skill, but also somehow assessing the quality of information from the nearby observation sites.  290 

Furthermore, we’d expect that implementation of the enKF DA would result in potential differences as there may be 291 

data loss in the observation transformation operator, etc. 292 

 293 

Minor comments: 1. It seems odd to combine the discussion and conclusions section. 294 

Response: We will revise the last two sections to be Results and Discussion and Summary.  More discussion will be 295 

included in section 4, while the summary section will restate key discussion points and then findings of the study. 296 

 297 

References: 298 

Lundquist, J. D., M. Hughes, B. Henn, E. D. Gutmann, B. Livneh, J. Dozier, and P. Neiman, 2015: High-elevation 299 

precipitation patterns: using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. 300 

J. Hydrometeorology, 16, 1773-1792. doi: 10.1175/JHM-D-15-0019.1. 301 

  302 
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 311 

Abstract. In this study we examine the potential of snow water equivalent data assimilation (DA) using the ensemble Kalman 312 

Filter (EnKF) to improve seasonal streamflow predictions. There are several goals of this study. First, we aim to examine some 313 

empirical aspects of the EnKF, namely the observational uncertainty estimates and the observation transformation operator.  314 

Second, we use a newly created ensemble forcing dataset to develop our ensemble model states (e.g.that provide an estimate 315 

of model state uncertainty). Finally, we alsoThird, we examine the impact of varying the observation and model state 316 

uncertainty on forecast skill.  We use basins from the Pacific Northwest, Rocky Mountains, and California in the western 317 

United States with the coupled Snow17 and Sacramento Soil Moisture Accounting (SAC-SMA) models. Results show thatWe 318 

find that most EnKF implementation variations result in improved streamflow prediction, but the methodological choices in 319 

the examined components impact predictive performance in a non-uniform way across the basins. Finally, basins with 320 

relatively higher calibrated model performance (> 0.80 NSE) without DA generally have lesser improvement with DA, while 321 

basins with poorer historical model performance show greater improvements. 322 

Keywords: 323 

Hydrological data assimilation; SWE; EnKF; Snow-17; SAC 324 

mailto:anewman@ucar.edu


12 
 

1 Introduction 325 

In the snow-dominated watersheds of the Western US, spring snowmelt is a major source of runoff (Barnett et al., 2005; Clark 326 

and Hay, 2004; Singh and Kumar, 1997; Slater and Clark, 2006). In such basins, the initial conditions of the basin, primarily 327 

in the form of snow water equivalent (SWE), drive predictability out to seasonal time scales (Wood et al., 2005; Wood and 328 

Lettenmaier, 2008; Harrison and Bales, 2015; Wood et al. 2015). Thus better estimates of basin mean initial SWE should lead 329 

to better seasonal streamflow predictions (Arheimer et al., 2011; Clark and Hay, 2004; Slater and Clark, 2006; Wood et al. 330 

2015). For various reasons (e.g., the uncertainty in model parameters, forcing data, model structures), simulated SWE in 331 

hydrological models can be very different from reality (Pan et al., 2003). Fortunately, a variety of snow observations (including 332 

point gauge and spatial satellite data) contain valuable information (Andreadis and Lettenmaier, 2006; Barrett, 2003; Engeset 333 

et al., 2003; Mitchell et al., 2004; Su et al., 2010; Sun et al., 2004).  334 

Many studies have explored the role of snow data assimilation in different modeling frameworks (Kerr et al., 2001; Moradkhani, 335 

2008; Takala et al., 2011; McGuire et al, 2006; Wood and Lettenmaier, 2006). Of particular focus here are papers that have 336 

examined the impact of SWE data assimilation (DA) on runoff modelling and prediction (e.g. Bergeron et al., 2016; Griessinger 337 

et al., 2016; Wood and Lettenmaier, 2006; Franz et al., 2014; Jörg-Hess et al., 2015; Moradkhani, 2008; Slater and Clark, 338 

2006). Among the major challenges facing SWE-based DA are that the time-space resolution of remote sensing SWE data are 339 

too coarse or period-limited for many watershed-scale hydrological applications in mountainous regions (Dietz et al., 2012; 340 

Jörg-Hess et al., 2015), and point gauge snow data have sparse and uneven spatial coverage. For point measurements, spatial 341 

interpolation based on distance are typically used to estimate observed SWE state in a watershed of interest (e.g.,Franz et al., 342 

2014; Jörg-Hess et al., 2015; Slater and Clark, 2006; Wood and Lettenmaier, 2006). 343 

Here we use the Ensemble Kalman Filter (EnKF) method for DA using an implementation that allowing for seasonally varying 344 

estimates of observation and model error variances (Evensen, 1994, 2003; Evensen et al., 2007). The EnKF framework has 345 

been successfully implemented in research basins in several previous studies (Clark et al., 2008; Franz et al., 2014; Moradkhani 346 

et al., 2005; Slater and Clark, 2006; Vrugt et al., 2006). The EnKF provides an objective analytical framework to optimize the 347 

update of model states based on observed values and their corresponding uncertainties. While the EnKF approach has a formal 348 

theory, its overall objectivity in an application (contrasting with an arbitrary DA approach such as direct insertion) nonetheless 349 

depends on several methodological choices that are often empirical when applied to SWE DA. Here we examine DA 350 

performance sensitivities related to three elements: 1) the estimation of watershed mean SWE from surrounding point 351 

measurements; 2) the transformation operator that relates watershed mean SWE to model mean SWE; and 3) sensitive analyses 352 

of the relative size of observed and model error variance. 353 

Following Slater and Clark (2006), this study uses two slightly different approaches to estimate ensemble SWE observations 354 

with point gauge SWE data from surrounding gauge sites for study basins. When using calibrated hydrologic modeling systems, 355 
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model SWE states may exhibit systematic biases from observed SWE estimates for a number of reasons – e.g., all hydrologic 356 

models must simplify real watershed physics and structure, and model parameter estimation (calibration) may result in SWE 357 

behavior that in part compensates for forcing or model errors (e.g. Slater and Clark, 2006). Therefore, transformation of snow 358 

observations to model space is needed before they are used to update the model states to ensure that the model ingests SWE 359 

estimates that are as close to unbiased relative to the model climatology as possible. We explore two variations on an approach 360 

using cumulative density function (CDF) transformations of observations to model space (following Wood and Lettenmaier, 361 

2006, among others). Additionally, we undertake a sensitivity analysis to highlight the importance of robust observations and 362 

model uncertainty estimates. We focus on the impacts of updates made just once per snow accumulation season, noting that an 363 

important choice that is not examined as a result is the selection of DA dates and frequency. For a given generally optimal 364 

selection of the EnKF systemEnKF approach, the Ensemble Streamflow Prediction (ESP) approach is used to test the impact 365 

of SWE DA on subsequent streamflow forecasts. 366 

For context, essentially all operational seasonal streamflow forecasts in the US use nocurrently do not use formalized DA. 367 

Typically If the initial states of the model are assumed correctsuspected to contain error (He et al. 201221).  If any,  DA is 368 

performed it is through subjective forecaster intervention; .  Mmanual adjustments (termed ‘MODs’, e.g. Anderson 2002) to 369 

model states (e.g. SWE) are applied repeatedly throughout the water year, and particularly before initializing seasonal forecasts.  370 

This manual nature of the correction hinders the ability to scale up DA procedures to many basins, to benchmark modelDA 371 

performance, and makequantify improvements to the forecast system as skill depends on forecaster experience (Seo et al. 372 

2003). 373 

Thus, tThe maincentral motivating aim of this study is thus to examine assess the potential benefits of objective, automated 374 

SWE DA using an EnKF system against a reference model configuration to identify forecast improvement opportunities.  We 375 

do this via application ofapply  We apply the EnKF DA approach system to nine river basins in the Western US that have a 376 

range of basin features and environmental conditions, over a period of multiple decades. This experimental scope is 377 

distinctdiffers from many previous studies that focus on one or two basins in more detail (e.g., Clark et al., 2008; Franz et al., 378 

2014; He et al., 20112; Moradkhani et al., 2005), or assess DA performance over shorter periods. We also use ensemble 379 

simulations driven by a new probabilistic forcing dataset (Newman et al, 2015) as a basis for estimating model SWE uncertainty, 380 

in contrast to prior studies that which usedrelied on more arbitrary distributional assumptions.  This experimental design range 381 

of basins permits us to explore the question of: “In what types of basins might automated SWE DA improve seasonal 382 

streamflow forecasts?”   383 

Additionally, as discussed throughout the introduction, the EnKF systemEnKF approach has several empirical components 384 

that require tuning. TWe therefore,  eHere we examineation ofe EnKF DA performance sensitivities related to three elements: 385 

1) the estimation of watershed mean SWE from surrounding point measurements; 2) the transformation operator that relates 386 
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watershed mean SWE to model mean SWE; and 3) sensitivitye analyses of the relative size of observed and model error 387 

variance is also undertaken..  388 

The following sections discuss the study basins and data sets, and the model and EnKF DA approach, before the presenting 389 

study results and discussion, and discussion and conclusionsa summary. 390 

 391 

2 Study basins and data 392 

In this study, nine basins across the Western US are selected for SWE DA evaluation. They are in the Pacific Northwest, 393 

California (Sierra Nevada Mountains), and central Rocky Mountains. We focus on these three areas as they span a range of 394 

snow accumulation and melt conditions of the Western US and are in areas with active seasonal streamflow prediction and 395 

water resource management. Note wWe do not examine rain driven low-lying basins as because they do not have significant 396 

SWE contributions to runoff.  The locations of the basins and nearby SWE gauge sites are shown in Figure 1, illustrating that 397 

all of the study watersheds have SWE measurements distributed in and/or around the basins. The main features of these basins 398 

are shown in Table 1. The basin areas range from 16 to 1163 km2 and the mean elevations of the basins range from 998 to 3459 399 

m with a large spread in basin mean slopes (as estimated from a fine-resolution digital elevation model) and forest percentage. 400 

Two sources of SWE observations are used in this study: (1) the widely used Snow Telemetry (SnotelSNOTEL) network for 401 

Natural Resources Conservation Service (NRCS) (www.wcc.nrcs.usda.gov/snow/), which covers most of the western US; and 402 

(2) the California Department of Water resources (DWR, ) (cdec.water.ca.gov/snow) (denoted as CADWR sites hereafter), 403 

which maintains a snow pillow network for California. The SWE data from CADWR sites have frequent missing data and 404 

some unrealistic extreme values, thus extensive manual quality control was required before using the CADWR data in the 405 

study. 406 

 407 

3 Methodology 408 

3.1 Models and calibration 409 

The Snow-17 temperature index snow model is coupled to the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual 410 

hydrologic model (Anderson, 2002; Anderson, 1973; Burnash and Singh, 1995; Burnash et al., 1973; Franz et al., 2014; 411 

Newman et al., 2015a) to simulate streamflow in this study. This model combination has been in operational use by US National 412 

Weather Service (NWS) River Forecast Centers (RFCs) since the 1970s (Anderson, 1972; 1973). The Snow-17 model is a 413 

conceptual snow pack model that employs an air temperature index to partition precipitation into rain and snow and 414 

parameterize energy exchange and snowpack evolution processes. The only required forcing inputs are near-surface air 415 

temperature and precipitation. The output rain-plus-snowmelt (RAIM) time series from Snow-17 is part of the forcing input 416 

of the SAC-SMA model. SAC-SMA is a conceptual hydrologic model that uses five moisture zones to describe the movement 417 
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of water through watersheds. The required forcing input is the potential evaporation and the surface water input from Snow-418 

17.  419 

Daily streamflow data from United States Geological Survey (USGS) National Water Information System server 420 

(http://waterdata.usgs.gov/usa/nwis/sw) are used to calibrate 20 parameters of Snow-17 and SAC-SMA model. The calibration 421 

is obtained using the shuffled complex evolution global search algorithm (SCE; Duan et al, 1992) via minimizing daily 422 

simulation Root Mean Square Error (RMSE). UGSS USGS streamflow data are also used to verify the model predictions. 423 

Model uncertainty arises from model parameter and structural uncertainty (e.g. Clark et al., 2008) and forcing input uncertainty 424 

(e.g., Carpenter and Georgakakos, 2004). Focusing on the latter, we drive the hydrology models with 100 equally likely 425 

members of meteorological data ensemble generated as described in Newman et al. (2015b), producing an 100 member 426 

ensemble of model moisture states, including SWE, and streamflow. The daily-varying spread of the ensemble model states 427 

serve as the estimate of model uncertainty. Because this method estimates SWE uncertainty without also considering sources 428 

other than forcing input uncertainty, and therefore may underestimate model uncertainty in initial SWE (e.g. Franz et al. 2014), 429 

we also include a sensitivity analysis to explore the sensitivity of DA results to variations in the estimated observation and 430 

model uncertainty magnitudes.  431 

3.2 Generating ensembles of estimated observed watershed SWE  432 

Since the SWE gauge observations are point measurements that do not represent the watershed mean conditions and have 433 

observation error, observation uncertainty needs to be robustly estimated to ensure reasonable DA performance. In this study, 434 

we follow Slater and Clark (2006) to generate ensemble estimated catchment SWE from gauge observations using a multiple 435 

linear regression in which the predictors are the attributes of SWE gauge sites (longitude, latitude and elevation). The 436 

observation uncertainty is estimated by leave-one-out (LOO) cross validation: i.e., each station is left out of the regression 437 

training and then its SWE is predicted and verified against its actual measurement. For reducing interpolation uncertainty 438 

caused by spatial heterogeneity of SWE gauge sites, tThe SWE values are transformed into percentiles or Z-scores (eg, standard 439 

normal deviates) before the regression is performed, and the corresponding inverse transformations are used to convert them 440 

back to SWE values. These two approaches are denoted as percentile and Z-score interpolation respectively and detailed 441 

descriptions for them are as follows.  442 

3.2.1 Percentile interpolation 443 

First, the non-exceedance percentile ( )o

yp k  of each SWE observation (observation based values noted with superscript o) at 444 

gauge site k on DA date in year y is calculated based on its rank, or percentile, within a sample of all SWE observations in all 445 

years at the same site within a time-window of +/- n days centered on the date of the observation in each year.  446 

Then we use the percentiles to do linear regression on geographic features latitude, longitude and elevation to estimate the 447 

SWE percentile for the target basin: 𝑝̂𝑦
𝑜 , where the hat indicates the basin mean estimate. By LOO cross validation, the 448 
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interpolation error of the linear regression is estimated as ˆo

ye . We sample from normal distribution N( ˆ o

yp , ˆo

ye ) to get the 449 

ensemble percentiles ˆ{ ( )}o

yp j , where j = 1,…, 100 represents ensemble member.  450 

Finally, we take the corresponding ˆ ( )o

yp j  percentile from the full ensemble model SWE within the time-window of +/- n 451 

days centered on the DA date each year in all years in year y, denoted as 
fˆ ( )yS j . The final ensemble SWE observations on 452 

DA date at year y for the target basin are 
fˆ{ ( )}yS j , where J j = 1,…, 100.  453 

3.2.2 Z-score interpolation 454 

First, we use the observed SWE at gauge site k on DA date in year y to calculate the Z-score: 455 

𝑍𝑠𝑐𝑜𝑟𝑒𝑦(𝑘) =
𝑆𝑦

𝑜(𝑘)−𝑆𝑜(𝑘)̅̅ ̅̅ ̅̅ ̅̅

𝜎(𝑆𝑜(𝑘))
, (1) 456 

where 𝑆𝑜(𝑘)̅̅ ̅̅ ̅̅ ̅̅   and 𝜎(𝑆𝑜(𝑘))  are the are the long-term mean and standard deviation of a sample of all non-zero SWE 457 

observations at the same site within a time-window of +/- n days centered on the date of the observation respectively.  Here 458 

we use the Z-score in the linear regression and again use LOO cross validation to estimate the mean and interpolation error of 459 

the Z-score for a target basin. Then we sample from normal distribution to get ensemble Z-scores for target basin, denoted as460 

ˆ{ -score ( )}o

yZ j , where j = 1,…, 100 represents ensemble member. Finally we use the following equation to transform Z-461 

score to back to SWE values: 462 

𝑆̂𝑦
𝑜(𝑗) = 𝑍̂𝑠𝑐𝑜𝑟𝑒𝑦

𝑜 × 𝜎 (𝑆𝑓(𝑘)) + 𝑆𝑓(𝑘)̅̅ ̅̅ ̅̅ ̅̅ , (2) 463 

where 𝑆𝑓(𝑘)̅̅ ̅̅ ̅̅ ̅̅  and  𝜎 (𝑆𝑓(𝑘)) are the long-term non-zero mean and standard deviation of the full ensemble model SWE within 464 

the time-window of +/- n days centered on the DA date each year in all yearsin year y respectively. The final ensemble SWE 465 

observations on DA date at year y for the target basin are ˆ{ ( )}o

yS j , where j = 1,…, 100. 466 

Both percentile and Z-score transformations normalize the original SWE values in a way to decrease their spatial variability 467 

(Slater and Clark 2006; Wood and Lettenmaier, 2006). The latterformer ensures the ensemble observations have the same mean 468 

as the ensemble model SWE and the variance of ensemble observations is proportional to ensemble model SWE variance. The 469 

formerlatter emphasizes the shape of the observation time series. SWE observations in and near a watershed but at different 470 

elevations may have greatly varying values, but their percentile and Z-score statistics will show reduced variation because they 471 

arise from similar relative weather conditions with respect to conditions in other years. Using normalized statistics significantly 472 

reduces the interpolation uncertainty and systematic biases relative to the watershed’s SWE climatology. 473 

3.3 EnKF approach and experimental design 474 

  For evaluating the relative performance of DA and for re-initializing the soil moisture of DA runs at the beginning of each 475 

water year (WY), an open loop or ‘control’ retrospective simulation (denoted No DA) is performed using the calibrated model 476 
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parameters with ensemble forcing data. This control run is one continuous simulation per ensemble member for the entire 477 

hindcasting and evaluation period (1981-201X) for each basin.   478 

In operational practice, manual adjustments to model SWE are applied repeatedly throughout the water year, and particularly 479 

before initializing seasonal forecasts.  Because this study is focusesing on assessing variations in methodological aspects of 480 

the DA approach rather than differences in performance throughout a forecasting season, we simplify this configuration by 481 

applying DA updates only once per year, using the date on which the SWE correlation with future runoff is highest for the 482 

study basin, but no later than 1 April, a common date for initiation of spring seasonal runoff forecasts.    483 

The EnKF method used in this study is a time-discrete forecast and linear observation system described by two relationships 484 

(generally following the notation of Ide et al. (1997) and Wu et al. (2012)) : 485 

𝒙𝒊+𝟏
𝒕 = 𝑀(𝒙𝒊

𝒕) + 𝜼𝑖, (3) 486 

𝒚𝒊
𝒐 = 𝒉(𝒙𝒊

𝒕) + 𝜺𝑖, (4) 487 

where i is the time step, M is the coupled Snow17 and SAC-SMA model system, x is the state variable and y is the observation 488 

variable (in this study both x and y are the one-dimensional vector containing basin mean SWE for the target watershed across 489 

all ensemble members), the superscripts t and o stand for truth and observed respectively, η and ε are the model and observation 490 

errors respectively, and h is the observation operator that maps the model states to the observation variable. In this study, h is 491 

simply the identity vector as we regard the SWE estimates that have been transformed to model space as observation y, as a 492 

pre-processing step. 493 

The SWE DA approach is implemented via the following procedure: 494 

1) Run the watershed model once for each ensemble forcing member from the beginning of a WY until the DA date with 495 

initial states 𝒙0 taken from the retrospective control runs, producing the ensemble forecast states 𝒙𝑖
𝑓
. The superscript f 496 

denotes forecast. 497 

2) Calculate the ensemble analysis states: 498 

𝒙𝑖
𝑎 = 𝒙𝑖

𝑓
+ 𝑠𝑖𝒉𝒊

𝑇(𝒉𝒊𝑠𝑖𝒉𝒊
𝑇 + 𝑜𝑖)−1𝒅𝑖 , (5) 499 

where superscript a means analysis, o and s are the observed and model simulation error variances (estimated by the variance 500 

of ensemble observations and model states respectively) respectively, and the innovation vector (residual)  is calculated as: 501 

𝒅𝑖 = 𝒚𝑖
𝑜 − 𝒉𝒊(𝒙𝑖

𝑓
), (6) 502 

3) Update the Snow-17 SWE states with the analysis states to use for initialization of forecasts through the end of the 503 

WY. 504 

Steps 1-3 are repeated for all WY available in the hindcast period (1981-201X).  Soil states are re-initialized using the states 505 

from the retrospective (No DA) run at the start of every WY (October 1), when there is no SWE. To summarize, we calculate 506 

an analysis via Eeq. 5 and use that analysis to update the Snow-17 SWE states.  We then run the model system with the updated 507 

states until the end of the WY. 508 
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 509 

3.4 Model and observation error variance  510 

In this study, only the uncertainty of the forcing data is taken into account in our model uncertainty, and uncertainty that arises 511 

from model structural and parameter errors could cause the true model error to be larger. Thus we assess the impacts of inflating 512 

model error variance to evaluate the relative size of observed and forecast error variance. We simply set the model SWE error 513 

variance to 1/2 and 2 times of the original size to see how the DA performances change. If increasing the model error variance 514 

results in DA performance improvements, it would indicate that the model error variance is underestimated, and vice versa. 515 

This sensitivity analysis underscores the importance of a careful effort to properly estimate both model and observational 516 

uncertainty when using the EnKF – a challenge that is well known in the DA community. 517 

3.5 Seasonal Ensemble Streamflow Prediction 518 

Although the impacts of the SWE DA on forecast accuracy can be assessed through verification of post-adjustment simulations 519 

using ‘perfect’ future forcing, we demonstrate the performance of SWE DA by initializing seasonal ESP forecasts for a 520 

streamflow forecast product that is widely used in water management, the snowmelt-period runoff volume from April through 521 

July. ESP uses historical climate data to represent the future climate conditions each year from the start point of forecast period 522 

to predict streamflow. Two typical ESP applications are tested in this study. Because we have an ensemble of historical forcing 523 

instead of the traditional application in which only a single historical forcing time series is available, there are different ways 524 

to construct an ESP. We adopt two: (1) We construct the ESP forcing ensemble by randomly selecting one year of the historical 525 

ensemble forcing data for each historical member of the ESP; and (2) We use all historical years of ensemble mean forcing 526 

data for each ESP historical year member, yielding a 30*100 member ensemble for an ESP based on meteorology from 1981-527 

2010 (variations are noted ens forcing and ens mean forcing respectively in subsequent figures discussing ESP results).   528 

3.6 Verification metrics 529 

In this study, five frequently used statistics are calculated for April through July seasonal streamflow volume expressed as 530 

runoff (mm) for evaluating the two DA approaches. The bBias, cCorrelation coefficient (R), rRelative root mean squared error 531 

(R-RMSE), Nash-Sutcliffe efficiency (NSE) are based on the ensemble averages. And The cContinuous rRanked pProbability 532 

sScore (CRPS) is a measurement of error for probabilistic prediction (Murphy and Winkler, 1987). It is defined as the integrated 533 

squared difference between cumulative distribution function (CDF) of forecasts and observations: 534 

2
f oCRPS ( ) ( )F x F x dx




    , (7) 535 

where 
fF  and 

oF are CDF for forecasts and observations of streamflow respectively. Smaller CRPS means more accurate 536 

forecasts. 537 

 538 

4 Results and Ddiscussion 539 
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4.1 Overall performance in the case basins 540 

Using the two approaches described in Section 3.2 with three different window lengths (7 days, 3 months, 1 year), a sample 541 

comparison from one year (2004) of the results for estimated watershed SWE from the two methods versus the model SWE 542 

ensemble on DA date (DA dates for the case basins are listed in Table 1) for the case basins are shown in Figure 2. The 543 

distributions of SWE from the model ensemble and from the percentile and Z-score interpolation methods differ in ways that 544 

are not consistent across all watersheds. The variance of the estimated observed SWE for both methods is generally largest for 545 

the 1-year, an effect that is more pronounced for the Z-score interpolation. However, we also note that the ensemble 546 

observations of 7-day window can have a larger variance  than the 3-month window, and as large as the 1-year window in 547 

some cases.  See the (e.g., percentile interpolation for Smiththe Payette River for 7-d window in Figure 2 where the 7-day 548 

window interquartile range is about 250 mm, the 1-year window range is 300 mm while the 3-month window is only about 549 

120 mm.  This ),is likely due to the more limited sample size for the regression, which can negatively impactreduce the positive 550 

impact of DA performance.  For example, the  (e.g., SF Payette River and the Greys River have positive DA impact for both 551 

the 7-day and 3-month windows  in Table 3 of Supplement S1 and Crystal River in Table 4 of Supplement S1 where DA 552 

improvements is limited.see Supplement Tables S1.1 and S1.2)but for the 7-day window the positive impact is reduced by 553 

roughly half in both basins for most metrics (Tables S.1 and S.3 of Supplement S1). Increased estimated observation variance 554 

decreases the weight of the observations in an EnKF systemEnKF approach and thus decreases the impact of the observations. 555 

In this study, a 3-month window of SWE observations generally gives the best performanceTherefore, a 3-month window is 556 

recommended for both approaches.. However, in some basins a different window length may bring larger improvements. 557 

Generally, lLonger windows mean that more SWE values are used for transformation, and the transformation tends to beis 558 

more statistically representative of the long-term model-observation climatology. . However, sShorter time windows mean 559 

imply that the model SWE values used for transformation are more relevant to a specific seasonal time period, avoiding aliasing 560 

for seasonality, but have much smaller sample sizes and may not properly represent the relationship between model and 561 

observation climatologies. The window length must be a balance between these two considerations. Therefore, a 3-month 562 

window is recommended for both approaches. 563 

Both percentile and Z-score transformations normalize the original SWE values in a way to decrease the spatial variability 564 

(Slater and Clark 2006; Wood and Lettenmaier, 2006). The former ensures the ensemble observations have the same mean as 565 

the ensemble model SWE and the variance of ensemble observations is proportional to ensemble model SWE variance. The 566 

latter emphasizes the shape of the observation time series. SWE observations in and near a watershed but at different elevations 567 

may have greatly varying values, but their percentile and Z-score statistics will show reduced variation because they arise from 568 

similar relative weather conditions with respect to conditions in other years. Using normalized statistics significantly reduces 569 

the interpolation uncertainty and systematic biases relative to the watershed’s SWE climatology..  570 
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The evaluation statistics for simulated streamflow usingwith perfect forcing after DA with ensemble SWE observations 571 

estimated by the percentile and Z-score interpolation approaches for the 3-month 7-day and 1-year windows are shown in 572 

Figures 3 and 4.  They are also compiled in Tables S.1-62 and Table 3 respectively. Only results for the 3-month window are 573 

shown in these two tables, the tables for 7-day and 1-year windows are in supplement S1. In thoseese tablesTables 2 and 3, the 574 

2nd column shows the forecast error variance used to calculate analysis states, where “No DA” means the open loop control 575 

run (see Section 3.3), and the P, 1/2·P and 2·P refer to the DA runs with the model error variance estimated by 1, 1/2 and 2 576 

times the original size of the ensemble model variance. Both percentile and Z-score interpolation approaches exhibit enhanced 577 

DA performances among the case basins, indicating that both  these approaches are effective in adding observation based 578 

information to the model simulations. Overall, using the original model variance estimate (case P) the mean improvement for 579 

the percentile interpolation method (Z-score method) is a reduction in relative RMSE (R-RMSE) of about 11% (12%) and an 580 

increase in NSE of 0.03 (0.05).  The percentile interpolation and Z-score interpolation methods vary in performance across the 581 

basins with both performing better in some basins and not others (e.g, comparing the results in Table 1 and Table2 in 582 

supplement S2, percentile interpolation performs slightly better than Z-score interpolation in Grey River using NSE as the 583 

evaluation metric (0.94 vs 0.93) and slightly worse  than that in SF Tolt River (0.82 vs 0.88)).  Using NSE, percentile 584 

interpolation performs better in the Greys River, while Z-score interpolation performs better in the Vallecito, South Fork of the 585 

Tolt, Merced, and Smith Rivers.  To the hundredth NSE value (0.01) both methods are equivalent in the South Fork of the 586 

Payette River, and General and Blackwood Creeks.  587 

The results of forecast error variance inflation shows that for both percentile and Z-score interpolation, “2·P” has better 588 

performance than “P” in most of the case basins – i.e., increasing the model error variance leads the assimilation to trust 589 

observations more and improves the DA performance (circles in both figures generally have improved evaluation metrics than 590 

squares or triangles). Using NSE, the percentile (Z-score) interpolation “2·P” case is on average another 0.01 (0.01) better than 591 

the “P” case across the nine basins.  Thiseseis indicates that the model error variance tends to be underestimated or our 592 

observation uncertainties tend to be overestimated. sensitivity analysises of model uncertainty impacts on DA performance 593 

suggest that either the forcing-alone based estimation of model errors underestimate the total model error variance, or the 594 

observed SWE error estimation approaches (interpolation plus the SWE regression) tend to overestimate observation 595 

uncertainty, or both. It is likely we are underestimating model uncertainty because we have not taken model structural and 596 

parameter uncertainty into consideration.  597 

The evaluation statistics of Table 12 and 2 3 in supplement S1 are also presented as scatter plots in Figures 3 and 4 respectively.   598 

BThe metrics R-RMSE, R and NSE indicate that both approaches bring incremental enhancements to the ensemble mean 599 

streamflow hindcast in most basins when evaluated across the R-RMSE, R and NSE metrics, although however the DA does 600 

not help correct forecast biases in these simulationss. Post-processing procedures (e.g. bias correction) could be used to further 601 
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enhance the system forecast performance, but is not a focus of this study. These figures also show that nNo DA forecasts 602 

without DA (“No DA” in figures, “NoDA” in text) with that have relatively better performance, mostly due to better 603 

simulations of forecast initial conditions, benefit less from DA.  Three of the basins have a No DA seasonal runoff NSE of less 604 

than 0.8, with an average improvement of 0.05 for the percentile regression and 0.12 for the Z-score regression versus 0.03 605 

and 0.05 across all nine basins.  Four basins have seasonal runoff NSE values of at least 0.89 and the two DA methods result 606 

in minimal improvement, 0.02 for both methods.  With a sample size of nine, nolittle statistical significance can be attached to 607 

these results, but they do suggest DA is more beneficial in poorly calibrated basins.  Future work will examine the potential 608 

for DA based on No DA (open loop) model performances and the characteristics of nearby observed SWE data..  609 

Figure 5 5 summarizes the ESP evaluation statistics. For simplicity, only the percentile interpolation approach with a 3-month 610 

window is shown without forecast error inflation. It shows that for both ESP forcing methodologies used (Section 3.5) in all 611 

the case study watersheds, SWE DA enhances seasonal runoff prediction skill, including the probabilistic prediction metric 612 

CRPS. Again, higher skill  nNoNo DA watersheds saw smaller DA improvements. The DA evaluation metric improvement 613 

increment versus the corresponding No noDANoDA evaluation metric score for the case basins are shown in Figure 6. It can 614 

be seen that tThe DA improvements in all evaluation metrics have a generally weak negative correlation with NnoNo DA 615 

performance, which again highlights that better simulated basins benefit less from SWE DA. 616 

4.1.1 Broader DA Potential 617 

SWE information from the two data sources (CADWR and SnotelSNOTEL) are available across the western US.  Here In 618 

general, we find general trends where the incremental DA improvements are generally relatively smaller aswhere the NoDA 619 

model performance increasesis relatively better.  However, specific basin performance is dependent on many factors including: 620 

1) representativeness of nearby observations to basin conditions; 2) quality of observations; 3) specific basin characteristics of 621 

the calibrated hydrologic model.  Because we are operatinguse calibrated, watershed scale hydrologic models, transferability 622 

of performance characteristics of the DA systemapproach without implementation in each basin is limited.  That being said, 623 

Figure 7 displays the difference between the rank correlation of SWE and runoff for the calibrated model (NoDA) and highest 624 

correlated observation site (from the nearest 10 sites).  It highlights the same general trendsspatial patterns seen in the 9 basins 625 

simulated here.  The potential for larger DA improvement appears to be in the Pacific Northwest (upper left of figure).  Basins 626 

in the Dakotas (upper right basins) are far from SnotelSNOTEL sites and have little areal SWE; basins along the far southern 627 

US have little SWE and runoff as well.  Throughout the central Rockies (central basins), model-observation correlation 628 

differences are small,  potentially indicating reduced DA improvement potential, in agreement with the results seen above.  629 

Again, we note that actual DA performance will vary from basin to basin and actual system implementation is needed.  630 

 631 

4.2 Case study analyses 632 
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 To provide a more in-depth examination of the SWE DA impacts to the watershed model states and fluxes, time series of 633 

runoff and SWE are shown in Figures 87, 98 and 109 for three example basins, one for each region (the same figures for the 634 

other six basins are included in the supplemental material), and for one hindcast year. The feedback from the change of SWE 635 

on DA date to seasonal runoff is readily apparent. Increasing the ensemble model SWE through DA will lead to increased 636 

model runoff, and vice versa. For basins with a strong seasonal cycle of streamflow (e.g. Greys and Merced River), SWE DA 637 

generally may improves daily runoff forecasts inin addition to years when seasonal volume forecast improvements are seen, 638 

although this is not true in every watershed (e.g. Tolt River).  For example, the daily NSE for the Greys River in 1997 after 639 

DA was improved from 0.53 to 0.80 in the perfect forcing example, and this is via bias reduction as the daily flow time series 640 

is unchanged.  In Figure 98, the NSE of the daily flow prediction of the Tolt River is essentially unchanged (0.54 for DA, 0.53 641 

for NoDA) even though the seasonal volume prediction is improved (1990 mm observed, 1968 mm DA, 1534 mm NoDA).  In 642 

this case improvements to bias did not improve NSE as the bias improvements did not improve the squared daily flow 643 

differences (e.g. RMSE: 7.76 vs 7.88 for DA vs NoDA)., although this is not true in every watershed (e.g. Tolt River).  644 

Figures 110, 121 and 132 show several scatter plots of forecast period runoff for the ESP ensemble forcing and perfect forcing 645 

forecasts, versus observed runoff, in the three case basins for all of the hindcast years. The left two columns show the 646 

comparison for NnoNo DA and DA simulated seasonal runoff vs observed runoff for perfect (top row) and ESP ensemble 647 

forcing (bottom row) respectively. The 1:1 lines are shown as grey dashed lines and regression lines for the results are shown 648 

as green solid line. The results after DA have higher correlation and are generally closer to the 1:1 line, which indicates that 649 

for both forcing types SWE DA improves seasonal runoff simulation and prediction skill. The rightmost columns in these three 650 

figures show the scatter plots of SWE increment (i.e., SWE analyses states minus model SWE without DA) vs runoff error 651 

(i.e., the simulated seasonal runoff without DA minus the observed seasonal runoff). If the runoff errors are positive (the 652 

seasonal runoff is overestimated), we would expect the SWE increment to be negative in order to decrease the model seasonal 653 

runoff (counteract model error) and vice versa. Thus the ideal results are that the points fall onto different sides of y=0 and x=0 654 

lines (shown as grey dashed lines in this panel), i.e., the points all fall into the 2nd (upper left) and 4th (lower right) quadrants. 655 

This is generally the case for our case basins for both perfect and ESP forcing, which again shows that the SWE DA approach 656 

is successful in reducing model and forecast error.  657 

For the three basins highlighted here, there are years where the DA SWE increment is not in the 2nd or 4th quadrants.  In these 658 

years, the increment decreases subsequent forecast skill.  Overall, there are 11 of 28 (39%), 4 of 24 (17%), and 12 of 26 (46%) 659 

years for the Greys, Tolt and Merced rivers where this is the case using perfect forcing.  These years generally correspond to 660 

small SWE increments relative to that year’s SWE and runoff in all basins except for five years in the Merced River where the 661 

SWE increment is larger than 10% of that year’s streamflow production and incorrect.  In the Greys River, all incorrect 662 

increments are less than 10% of the observed runoff for that year and also in years where the NoDA runoff error is less than 663 
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10% of observed.  A small increment implies that the estimated observed and model SWE are very similar, and thus in years 664 

with small model error, the model SWE climatology closely matches observed climatology after transformation for this basin.  665 

Figure 143 highlights an example WY in the Merced River where the SWE increment and runoff error are both negative, 666 

indicating so that DA increased the model forecast error.. 667 

The Merced River is the only basin to use state of California SWE observations, and these may be of lower quality as evidenced 668 

by the large amount of manual quality control we had to perform on the data and the discussion of these data in Lundquist et 669 

al. (2015).  This suggests that observed SWE data need to be of higher quality (or information content) than the calibrated 670 

model SWE to have the positive impact in the DA systemapproach. The calibrated Merced model has -19% April-July runoff 671 

bias with 23 (88%) of years having a negative runoff error.  EnKF SWE increments are negative in 15 (58%) and positive in 672 

11 (42%) of the years.  This indicates suggests that the modelobserved SWE transformation to model space is largely unbiased, 673 

but the calibrated model bias impacts SWE DA performance.  Calibration of the model specifically for seasonal flow to ensure 674 

minimal bias, or hydrologic parameter estimation within the EnKF systemEnKF approach (e.g. He et al. 2012) would likely 675 

improve hydrologic model performance and thus seasonal SWE DA performanceforecasts in the Merced.  Finally, examination 676 

of El Nino/La Nina signals (not shown) revealed no clear pattern with degradation of DA forecast skill (not shown). 677 

Finally, there are years where the NoDA runoff error is large, but the SWE increment is small in all three basins.  This is not 678 

unexpected as spring SWE is not perfectly correlated with subsequent runoff.  This may also hint at a level of data loss in the 679 

EnKF and modeling systemapproach, and future work should compare streamflow hindcasts using this type of systemDA 680 

approach with traditional statistical methods using SWE as a primary input.  It also suggests that improved model calibration, 681 

or in combination with model parameter estimation in the EnKF systemEnKF approach (e.g. He et al. 2012) may improve DA 682 

performance across all basins, not just the Merced.  683 

 684 

5 Discussion and ConclusionsSummary and Conclusions 685 

This study tests variants of EnKF SWE DA approaches in 9 case basins in Western US. These basins have seasonal runoff 686 

representative of basins used for water resource management across the Western US and have at least 6 close SWE gauge sites 687 

with 20+ years of observation history.  While SWE observations generally containing valuable information that has potential 688 

to enhance seasonal runoff forecasts,. However, relating point SWE measurements that have uneven spatial distribution and 689 

varying environmental conditions to watershed mean conditions which is a challenge that is often met by empirical solutions. 690 

Two approaches of constructing SWE ensemble observations are examined in this study in an effort to reduce the spatial 691 

variability and decrease the interpolation uncertainty while also transforming the observations to model space (e.g., the range 692 

of the model climatology). In this study, Aa 3-month window of SWE observations generally gives the best performance for 693 

these two approaches in this study (Figs. 2-4, Tables S.1-6 in S1). However, in some basins a different window length may 694 
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bring larger improvements. A suitable window length needs to include sufficient samples for transformation as well as 695 

including the most relevant samples (i.e., a specific seasonal time period).  696 

  Sensitivity analyses of model uncertainty impacts on DA performance suggest that either the forcing-alone based estimation 697 

of model errors underestimate the total model error variance, or the observed SWE error estimation approaches (interpolation 698 

plus the SWE regression) tend to overestimate observation uncertainty, or both (Figs. 3-4, Tables S.1-6 in S1) . It is likely we 699 

are underestimating model uncertainty because we have not taken model structural and parameter uncertainty into 700 

consideration. Future work should examine this in more detail, as this work clearly indicates that uncertainty scaling 701 

approaches (for the model and/or the observations) are likely to be a valuable step for achieving successful DA 702 

performancefurther DA r DA .  703 

Theimprovements.  704 

Encouragingly, tThe ESP-based assessment of automated SWE DA in the case study watersheds shows clearly the potential 705 

for SWE DA to enhance seasonal runoff forecasts in an automated fashion, which is notable as the objective incorporation of 706 

observed SWEis has been a long-standing challenge in operational forecasting. We show at least minor improvement in 707 

seasonal runoff forecasts in all nine basins (Figs 5-6). A notable finding is also that the benefits of SWE are linked to the quality 708 

of the model simulations of the basin, which can help to target the application of DA to locations where it will have the most 709 

benefit (Figs 5-6). For the basins with poor no DA simulations (e.g., the SF Tolt River Fig. 112), the SWE DA can potentially 710 

have greater model performance impacts. Broadly speaking tThe Pacific Northwest and California was found to have the 711 

mostgreatest potential for DA improvements to seasonal forecasting in this study (Fig. 7).  This stems from reducedweaker No 712 

DA model performance; the NoDA model run will have more years with larger runoff errors.  However, there are still individual 713 

years where DA may not improve the forecast.  This likely stems from the calibrated hydrologic model not being unbiase bias 714 

that d so thatleads to SWE state corrections often enhancing rather than reducinge runoff errors (e.g. Merced River, Figs. 13-715 

14). Additionally, SWE DA can benefit daily streamflow forecasts in some cases (Figs. 7-9).  716 

We chose ae a DA update frequency of once per year, the date of climatological maximum correlation of modeled and observed 717 

runoff.  In operational practice, updates would be applied more frequently, pointing to an area for future research. We note also 718 

that this study was conducted using conceptual lumped watershed models, similar to those used in operational practice in the 719 

US. As a result, this study did notdoes not shed light on how to address additional challenges that may be associated with using 720 

SWE DA infor the spatially distributed models, or with spatially continuous datasets (e.g., satellite and remote sensing SWE 721 

estimates) that are increasingly being developed or applied in streamflow forecasting contexts.   Although SSWE DA has been 722 

implemented in distributed models in limited prior experimental contexts across large domains (e.g., Wood and Lettenmaier, 723 

2006), but a systematic examination of EnKF DA in spatially distributed hydrological models, coupled with a thoughtful 724 

accounting for model parameter and structural errors , remains a potentially fruitful area of research and development. 725 
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 726 

Data Availability 727 

All data used in this study are publicly available.  The watershed shapefiles and basin information are described in Newman 728 

et al. (2015a) at: doi:10.5065/D6MW2F4D.  The forcing ensemble is described in Newman et al. (2015b) and are available at: 729 

doi:10.1065/D6TH8JR2. The streamflow data are available through the USGS via: http://waterdata.usgs.gov/usa/nwis/sw and 730 

in doi:10.5065/D6MW2F4D. The SnotelSNOTEL observations are available at: www.wcc.nrcs.usda.gov/snow/ while the 731 

California SWE observations are available at: cdec.water.ca.gov/snow. 732 
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Table 1 Basin features of nine case basins. 847 

Region Basin ID 
Elevation 

(m) 

Minimum 

elevation 

(m) 

Maximum 

elevation 

(m) 

DA date 
Basin area 

(km2) 
Slope 

Forest 

percent 
Basin name 

14 09081600 3092.15 2050 4250 April 1 436.88 150.58 0.6136 Crystal River 

14 09352900 3459.15 2450 4250 April 1 187.74 156.09 0.5199 Vallecito Creek 

17 13023000 2468.57 1750 3450 March 1 1163.72 98.51 0.6753 Greys River 

17 12147600 998.25 550 1650 April 1 16.07 159.37 1 SF Tolt River 

17 13235000 2077.16 1150 3250 April 1 1158.47 126.25 0.8604 SF Payette River 

17 14158790 1210.48 750 1750 March 15 40.76 116.44 1 Smith River 

16 10336645 2180.92 1850 2650 April 1 20.09 118.27 0.7136 General Creek 

16 10336660 2188.08 1850 2650 April 1 32.46 83.46 0.7908 Blackwood Creek 

18 11266500 2576.54 1150 3950 April 1 836.15 140.18 0.6741 Merced River 

848 
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 849 

Figure 1. Location of nine case basins in the Western United States (US)S and Snow Water Equivalent (SWE) gauge 850 

sites. 851 
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 852 

Figure 2. Boxplots of ensemble model SWE and estimated ensemble SWE observations for the nine case basins on the 853 

data assimilationDA date in 2004, for three window lengths – 7 days, 3 months, and 1 year. 854 

 855 
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 856 

Figure 3. Evaluation metrics for April-July ensemble mean streamflow from the percentile-based interpolation method 857 

for the nine case basins using perfect forcing. The verification metrics from upper left to lower right are: R-RMSE is 858 

the relative (normalized) root mean squared error, R is the linear (Pearson) correlation coefficient, NSE is the Nash-859 

Sutcliffe Efficiency, bias is the same as mean error, and CRPS is the continuous ranked probability skill scores.  860 

  861 

  862 
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 863 

 864 

Figure 4. Evaluation metrics for April-July ensemble mean streamflow from the Z-score interpolation for the nine case 865 

basins using perfect forcing.  Verification metrics are the same as Figure 3.. 866 

  867 
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 868 

Figure 5. Evaluation statistics of percentile interpolation for the nine case basins with the two variations of Ensemble 869 

Streamflow Prediction (on ESP) and with perfect forcing data (ens in the legend denotes ensemble).  Verification metrics 870 

are the same as figure 3. 871 

 872 

 873 

 874 

 875 
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 876 

Figure 6. Incremental change in evaluation statistics for Ensemble Streamflow Prediction (ESP) and perfect forcing 877 

forecasts using percentile-based interpolation for the nine case basins. R is the linear (Pearson) correlation coefficient, 878 

NSE is the Nash-Sutcliffe Efficiency, and CRPS is the continuous ranked probability skill score. 879 

 880 

  881 
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 882 

Figure 7. Difference of the rank correlation of SWE and runoff from the best SnotelSNOTEL site (of nearest 10) and 883 

calibrated model without DA. 884 

 885 

 886 
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 887 

Figure  78. Time series plots for runoff and SWE for Greys River for water year 1997. Light blue lines indicate 888 

individual ensemble member traces.  Vertical black dashed line denotes the data assimilation (DA) date. 889 

  890 



38 
 

 891 

 892 

Figure 98. Time series plots for runoff and SWE for the South Fork (SF) of theSF Tolt River for water year 1988 893 

following Figure 87. 894 

  895 
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 896 

Figure 9 10. Time series plots for runoff and SWE for the Merced River for water year 1986 following Figure 78. 897 

 898 

  899 
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 900 

Figure 1011. Scatter plots for seasonal runoff and SWE on the data assimilation (DA) DA date in the DA years for the 901 

Greys River. Black dashed diagonal lines is are the 1:1 line, while the green lines indicates linear regression fits to data.  902 

Perfect forcing results are shown in the top row, while Ensemble Streamflow Prediction (ESP) results are in the bottom 903 

row. 904 

  905 



41 
 

 906 

Figure 121. Scatter plots for seasonal runoff and SWE on DA the data assimilation (DA) date in the  DA years for SF 907 

the South Fork of the Tolt River following Figure 101. 908 
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 910 

 911 

Figure 132. Scatter plots for seasonal runoff and SWE on DA data assimilation date (DA) in the DA years for Merced 912 

River following Figure 110. 913 

 914 
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 916 

Figure 14.  Time series plots for runoff and SWE for the Merced River for water year  WY 1984 following Figure  78. 917 
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