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Abstract. Conventional means to estimate land surface temperature (LST) from space relies on the thermal infrared (TIR) 

spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new 

method was developed to estimate LST based on passive microwave (MW) observations. The MW-LST product is informed 10 

by 6 polar orbiting satellites to create a global record with up to 8 observations per day for each 0.25° resolution grid box. 

For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of 

the DTC were scaled to match that of a geostationary based TIR-LST product.  

This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with 

respect to flux tower observation sites (4 in Europe and 9 in the United States), over a range of cloudiness conditions up to 15 

heavily overcast skies. The results show that TIR-based LST has slightly better performance than MW-LST for clear sky 

observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete 

masking of cloud covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST 

we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. 

Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite 20 

retrieval products to all-weather applications.  

1 Introduction 

Information about the temperature of the land surface (LST) is an important element in the retrieval of many hydrological 

states and fluxes from satellite measured radiances. For example, the retrieval of soil moisture or precipitation from passive 

microwave observations requires a coincident estimate of LST (e.g. Owe et al., 2008). In other applications, the rate of 25 

change in temperature is contrasted with net radiation to estimate evaporation as a residual of the surface energy balance 

(e.g. Anderson et al., 2011).  

The most direct way to estimate LST from space-borne instruments is by radiometers which measure within the thermal 

band of the infrared spectrum (TIR). Thermal emission within this frequency band can be related directly to the physical 

temperature of the land surface, and is more precisely termed the ensemble radiometric temperature (Norman and Becker, 30 
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1995). Space-borne TIR radiometers allow for very high spatial resolution imagery. Even at the height of geostationary 

platforms radiometers can deliver 3-km spatial resolution, eg the Spinning Enhanced Visible and Infrared Imager (SEVIRI). 

A drawback to the TIR technique is that - at such wavelengths - clouds completely block the emission from the land surface. 

This means that space-borne TIR radiometers give no information about the land surface below the clouds, and instead 

reflect the temperature and emissivity of the clouds. The result is that the quality of the cloud screening directly affects the 5 

quality of a TIR LST product. 

An alternative, more cloud-tolerant technique is based instead on passive microwave (MW) observations. In particular the 

Ka-band (~37 GHz) was shown to have a strong link with LST (Owe and Van de Griend, 2001). Based on these 

observations, linear regression-based LST estimates were derived for the Ka-band (Holmes et al., 2009) and variants of these 

linear relations are currently used in soil moisture retrieval (Jackson et al., 1999; Owe et al., 2008). However, using a single 10 

linear regression across the globe ignores potentially significant differences in microwave emissivity and can result in large 

biases, especially in desert areas. It also cannot account for large differences in the amplitude of the diurnal cycle between 

MW- and TIR-based LST, which have been implicated in reduced soil moisture retrieval skill during daylight hours (Lei et 

al., 2015; Parinussa et al., 2011). In contrast to these relatively simple linear methods, a neural network method was 

developed by Aires et al. (2001) to estimate LST based on multiple microwave channels besides Ka-band. By using 15 

atmospheric and surface information in addition to TIR LST in the training of the scheme, this method minimized systematic 

bias in monthly mean temperatures. However, because the training is based on a single polar orbiting satellite, it cannot give 

diurnal temperature information. Both of these methods were compared with station data by Catherinot et al. (2011), giving 

strong confirmation on the lack of sensitivity of microwave-based LST estimates to cloud liquid water path. This method has 

recently been developed further to allow for more continuous application to a more diverse suite of satellites and overpass 20 

times possible (Prigent et al., 2016). One drawback to all passive microwave-based methods is relatively coarse spatial 

resolution as compared to TIR sensors.  At Ka-band, the smallest footprint size currently achieved with polar orbiting 

satellites is 10 x 15 km. 

Because of the complementary nature of TIR and MW-based LST, there is a clear interest in merging these two independent 

technologies. For example, TIR-LST based evaporation retrievals would benefit from observational data during cloudy 25 

periods (e.g. Anderson et al., 2011). On the other hand, microwave soil moisture retrievals from SMAP have the goal of 9 

km spatial resolution and this poses a resolution challenge to MW-LST inputs if TIR-LST cannot be leveraged. Reconciling 

the systematic differences in diurnal temperature cycle (DTC) between TIR and Ka-band is the first step towards an ultimate 

merger of diurnally continuous TIR and MW LST products. To do thisHolmes et al. (2015) developed a method to scale the 

diurnal characteristics of multi-satellite dataset of Ka-band observations to TIR-LST to  a TIR-LST product with 15-minute 30 

temporal sampling from geostationary satellites. This scaling was able to account for biases in characteristics of the DTC 

related to Ka-band emissivity, sensing depth, and atmospheric effects (Holmes et al., 2015) By explicitly taking account of 

systematic differences in DTC between TIR and Ka-band, this method is able to estimate LST at any time of day from sparse 
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Ka-band observations. Note that a similar pixel-by-pixel approach was applied by André et al (2015) over the arctic region 

where a single satellite can provide diurnal sampling.   

The aim of this paper is to evaluate the new global MW-LST dataset in comparison to existing TIR-LST data over clear-sky 

days and particularly to test the assumption that MW-LST is tolerant to high levels of cloud coverage. Ground observations 

provide a common benchmark to test the relative accuracy of the two satellite products. Because the diurnal MW-LST 5 

product (Holmes et al., 2015) was scaled to TIR-based LST as produced by the Land Surface Analysis Satellite Application 

Facility (LSA-SAF, see http:/landsaf.meteo.pt), the evaluation is mostly concerned with temporal precision, not with 

absolute bias. In previous work it was shown that relative aspects of a coarse-scale product can be evaluated using sparse in 

situ observations (Holmes et al., 2012). For a thorough discussion of absolute accuracy, readers are referred to papers 

detailing validation exercises for LSA-SAF-LST (e.g. Ermida et al., 2014; Göttsche et al., 2013, 2016).  10 

After establishing the accuracy of MW-LST relative to TIR-LST for a particular site, the stability of the precision of MW-

LST (relative to ground data) for increasing cloudiness will be tested. Previous work showed indications of cloud tolerance 

of MW-LST in comparison to TIR-LST (Holmes et al., 2015), but the analysis used proxies for both cloud cover and LST 

quality. In this paper we use a more direct estimate of cloudiness and provide a more detailed look at the validation statistics 

for different levels of daytime cloudiness with the ground station as the reference. The hypothesis we test is that clouds 15 

affect a satellite measured LST by introducing an error (E). If E is consistent in sign throughout the measurement period (e.g. 

if clouds always lower the satellite LST estimate) this will introduce a systematic bias that will increase with cloud cover. If 

on the other hand the sign of E varies it will increase the random error in LST, but not necessarily a systematic bias. Only if 

we do not see a systematic bias with increasing cloud cover, nor an increase in random error can we reject the hypothesis 

that clouds affect the satellite LST.  20 

2. Materials 

2.1 Satellite LST estimates: Thermal infrared 

TIR-LST is available from many sources, including both low-earth orbiting satellites and geostationary satellites. Because of 

our interest in the diurnal features of LST, used in surface energy balance evaluations, this study focuses on TIR-LST 

products developed from geostationary satellites. The first product is based on the SEVIRI onboard the Meteosat Second 25 

Generation (MSG-9) satellite. MSG-9 is positioned over the equator at 0° longitude. It has geographic coverage of Africa, 

Europe and the east coast of South America (with incidence angles below 70°). The Land Surface Analysis, Satellite 

Application Facility (LSA SAF) produces operational LST products based on split window observations (channels centered 

at 10.8 μm and 12.0 μm) of MSG-9. LSA SAF LST is originally produced at 3 km spatial resolution. For this study, the data 

is aggregated to match the 0.25° resolution of MW-LST. If two-thirds of the 3-km observations are masked than the sample 30 

average is rejected for that location and time.  
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For North-America, NOAA operates the Geostationary Operational Environmental Satellites (GOES). GOES Surface and 

Insulation Products (GSIP) are produced by the office of Satellite Data Processing and Distribution, NESDIS, NOAA, and 

includes LST (V3 was used for this study). Unlike MSG-based LST, GOES GSIP LST is based on a dual window technique 

(3.9 and 11.0 μm), rather than the preferred split window technique due to the lack of a 12 micron thermal channel on the 

current generation of the GOES imager. An operational hourly LST at 0.125° degree spatial resolution is available from 2 5 

April 2009 onwards. For this study, we averaged the nine 0.125° degree nodes that cover the edge and center of the 0.25° 

MW-LST product grid cell. In order to further reduce possible cloud contamination, a particular data point is only used if all 

nine 0.125° degree pixels covering the 0.25° grid box contain (non-cloud-masked) data.   

2.2 Satellite LST estimates: Microwave 

The MW-LST product is based on vertical polarized Ka-band (36-37 GHz) brightness temperature (𝑇 
𝐾𝐾) as measured by 10 

microwave radiometers on 6 satellites in low earth orbit. These satellites include the Advanced Microwave Scanning  

Radiometer on EOS (AMSR-E) to October 2011 and its follow on AMSR2 from July 2012. Several platforms of  the Special 

Sensor Microwave and Imager (SSM/I), the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), 

and Coriolus-WindSat. These observations are combined to create a global record with up to 8 observations per day for each 

0.25° resolution grid box. The data are binned in 15 minute windows of local solar time (0:00-0:15 is first window of the 15 

day). The brightness temperatures are inter-calibrated using observations from the TRMM satellite (with an equatorial 

overpass) as a transfer reference. Individual 0.25° averages are masked if the spatial standard deviation of the oversampled 

Ka-band observations exceeds a prior determined threshold for a given grid box. Both the inter-calibration and quality 

control procedures are described in detail in Holmes et al (2013a).  

The methodology to estimate LST from this record of Ka-band observations is described in (Holmes et al., 2015) and 20 

summarized below. For days with suitable observations (a minimum of 4, including at least one within a third day length 

from solar noon) and no 𝑇 
𝐾𝐾 < 250 𝐾 (an indication of frozen soil), a continuous diurnal temperature cycle (DTC) is fitted. 

The DTC model used is based on Göttsche and Olesen (2001) with slight adaptations to limit the number of parameters. This 

implementation (DTC3) is fully described in Holmes et al (2015). DTC3 summarizes the DTC with two daily parameters 

(daily minimum 𝑇0  at start and end of day, and diurnal amplitude 𝐴) together with diurnal timing (𝜑), that is assumed a 25 

temporal constant (Holmes et al., 2013b). The daily mean is defined by the daily minimum and the amplitude (𝑇�  = 𝑇0 +

𝐴 
 /2). The Ka-band DTC parameters for individual days (𝑇� 𝑑

𝐾𝐾 , 𝐴 𝑑
𝐾𝐾 ) are scaled to match the long term mean of TIR 

observations:   

𝐴 𝑑
𝑀𝑀 = 𝐴 𝑑

𝐾𝐾 𝛿 ⁄   (1) 

𝑇� 𝑑
𝑀𝑀 = 𝛽0 + 𝛽1𝑇�𝑑𝐾𝐾 (2) 30 

The scaled parameters are indicated with the superscript ‘MW’. The parameter 𝛿 represents the slope of the zero-order least 

squares regression line for estimating the amplitude of TIR-LST (𝐴 𝑑
𝑇𝑇𝑇) from 𝐴 𝑑

𝐾𝐾 . The intercept (𝛽0) and slope (𝛽1) to 
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correct the mean daily temperature (𝑇�𝑑𝐾𝐾) for systematic differences with TIR-LST ( 𝑇� 𝑑
𝑇𝑇𝑇) are determined with a constrained 

numerical solver, as in Holmes et al. (2015). The constraint is based on radiative transfer considerations and assures that the 

scaling of the mean is in agreement with the prior scaling of the amplitude (Eq. 1). These scaling parameters were 

determined for each 0.25° grid box based on data for the period 2009-2012. The scaling (Eqs. 1 and 2) is applied to every 

day for which estimates of  𝑇� 𝐾𝐾 and 𝐴 
𝐾𝐾 are available. Together with the timing of the diurnal cycle of TIR-LST, 𝜑 

𝑇𝑇𝑇, as 5 

determined based on (Holmes et al., 2013b),  we then calculate the diurnal MW-LST based on the same DTC3 model: 

 

MW-LST =  𝐷𝑇𝐷3(𝜑 
𝑇𝑇𝑇,𝑇0𝑀𝑀 ,𝐴 

𝑀𝑀) (3) 

 

Comparing actual Ka-band observations to estimates provided by the fitted DTC model provides a valuable means of quality 10 

control. The root mean square error (RMSE) of the misfit between the DTC3 model and the sparse 𝑇 
𝐾𝐾 observations is used 

to flag days where the assumptions imposed by the shape of clear sky DTC are not valid or individual Ka-band observations 

have a large bias.  

Besides the continuous MW-LST product, we can also evaluate the product at the actual Ka-band observation times (thus 

weakening our reliance on the DTC3 model). To do this we project the difference between the original MW data and the 15 

DTC model fit onto MW-LST. This product is referred to as MW-LST-Sparse:  

 

MW-LST-Sparse = 𝐷𝑇𝐷3(𝜑 
𝑇𝑇𝑇,𝑇0𝑀𝑀  ,𝐴 

𝑀𝑀) + 〈𝐴 
𝑇𝑇𝑇〉

〈𝐴 𝐾𝐾〉
�𝑇 

𝐾𝐾 − 𝐷𝑇𝐷3(𝜑 
𝐾𝐾 ,𝑇0𝐾𝐾 ,𝐴 

𝐾𝐾)� (4) 

In MW-LST-Sparse the impact of the DTC3 model is limited to providing the minimum and amplitude of the diurnal. The 

differences between the observations and the diurnal model at the actual observation time are preserved. The difference 20 

between the continuous MW-LST and the MW_LST-Sparse is illustrated in Fig. 1 (lower panel).  

2.3 Ground observations 

FLUXNET is a worldwide network of meteorological measurement towers (flux tower) with common measurement 

protocols  (Baldocchi et al., 2001). Each flux tower includes an instrument positioned above the vegetation canopy to 

measure net radiation. This instrument is made up of two pyranometers to measure up and down welling short wave 25 

radiation and two pyrgeometers to measure up and down welling long wave radiation. The radiometric surface temperature 

(𝑇) can be derived from the long wave radiation measurements (upwelling: 𝐿↑, Wm-2, and downwelling: 𝐿↓, Wm-2) using the 

following equation:  

 

𝐿↑ = 𝜀𝐿𝜎𝑇  
4 + (1 − 𝜀𝐿)𝐿↓ (5) 30 
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where 𝜀𝐿 is the broadband emissivity over the spectral range of the pyrgeometer (4.5-42 μm), 𝜎 is the Stefan-Boltzmann 

constant (σ=5.670 x 10-8 Wm-2K-1).  

2.3.1 Long wave emissivity 

An estimate of 𝜀𝐿  is obtained for each site based on measurements of 𝐿↑ together with additional measurements of screen 

level air temperature (𝑇𝐾), sensible heat flux (H) and wind speed (u). This estimate is based on three assumptions: 1) 𝐻 is 5 

directly proportional to the near surface temperature gradient, 2) the difference 𝑇 − 𝑇𝐾 represents that temperature gradient, 

and 3) 𝐻 = 0 when there is no vertical temperature gradient (i.e.  𝑇 =  𝑇𝐾). With these three assumptions in mind we then 

iterate over 𝜀𝐿 to find the solution where the regression of H against (𝑇- 𝑇𝐾) goes through zero and the squared errors are 

minimized. When measurements of wind speed are available they are used to select atmospheric conditions where the 

relationship between H and the near surface temperature gradient is strongest (u> 2 m/s). For forest sites, the direct 10 

relationship between H and 𝑇 gradients breaks down. In those cases the simpler assumption is used that the long term 

average of 𝑇 and 𝑇𝐾 are equal: 〈𝑇〉 =  〈𝑇𝐾〉. For more discussion and examples of this method see Holmes et al. (2009). In 

this study we apply this method to determine monthly 𝜀𝐿 for each site individually, and then use the median value of 𝜀𝐿 

(listed in Table 1) to calculate 𝑇 based on Eq. 5. The standard deviation of the monthly measurements of 𝜀𝐿 are also listed in 

Table 1 and provides an indication of both uncertainty and seasonal variation in 𝜀𝐿 .  15 

2.3.2 Spatial representativeness and selection tower sites 

The tower-based estimate of 𝑇, from (Eq. 5), directly represents only the immediate tower surroundings within a radius of 

approximately 50 m. Clearly this is a very small spatial sampling of the 0.25° grid box (~25x25 km) represented by the 

satellite LST estimates used in this study (see Section 2.1 and 2.2). As a consequence, we typically find large systemic 

differences between the station data and the areal average. Given that overall weather conditions are relatively homogenous 20 

over distances of 25 km, these differences can be attributed to the land cover type at the station location in comparison to 

that over the entire grid box (for examples of this, see Holmes et al. (2009)). The representation of the spatial average by 

ground observations can be improved significantly if more than one station is available in the same grid box and the towers 

are situated in thermodynamically contrasting land cover types: (forest and cropland/herbaceous). In that case the land cover 

associated with the tower site(subscript, s) determines the weight (𝑊) according to the spatial fraction of that land cover type 25 

within the 0.25° grid box (MCD12C1, Friedl et al. (2010)). We use this information to estimate the grid average LST as the 

weighted average of site measured 𝑇 according to Eq. (6): 

𝐿𝐿𝑇 = ∑ 𝑀𝑠𝑇𝑠𝑛
𝑠=1
∑ 𝑀𝑠𝑛
𝑠=1

. (6) 

For example, site DE-Hai of location A is located in a forest and represents 16 % of the pixel. Site DE-Geb is located in 

croplands and represents the 80 % of the pixel that has low vegetation cover or bare soil. Urban, open water, or wetland 30 
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account for the remaining 4 %, which does not affect the weighting. We only considered locations where this rest fraction is 

below 5 % of the grid coverage. Another criterion for site selection was that the land cover at the site must represent more 

than 75 % of the pixel. Sites in mountainous areas are also excluded. For the period of 2009-2012 this means there are 13 

locations with at least 2 years of flux tower sites available for this study, and four of these locations contain multiple stations. 

For locations where only one stations is available, LST is set equal to the site measurement: 𝐿𝐿𝑇 = 𝑇. All the validation 5 

targets are listed in Table 1, together with the geographic location of the individual stations, the land cover type as reported 

by the flux tower operators and the parameters 𝑊 and 𝜀𝐿 as described above. 

2.3.3 Cloudiness at tower location 

The down welling short wave radiation (𝐿↓) as measured at the fluxtower is strongly affected by the amount of condensed 

water in the atmosphere. We can therefore use the reduction in site measured daytime 𝐿↓ relative to an expected value during 10 

clear skies as a proxy for cloudiness. The clear-sky irradiance 𝐿𝑐𝑐𝑐𝐾𝑐↓  is estimated based on top-of-atmosphere solar irradiance 

(𝐿𝑇𝑇𝐴) which can be calculated based on geographic location and day of year (Van Wijk and Ubing, 1963). Even on a clear 

day, atmospheric absorption reduces the irradiance at the surface by 20 to 30 % from the top of atmosphere value. We 

estimate this clear sky absorption (Aclr) by calculating the slope (𝛽) of the zero order linear regression between 𝐿↓ and 𝐿𝑇𝑇𝐴 

for days that are in the highest quintile of 𝐿↓/𝐿𝑇𝑇𝐴 : Aclr=1-𝛽. These estimates of Aclr (listed in Table 1 for each individual 15 

site) range from 0.22 to 0.31 and show a good agreement between stations of the same cluster.  We use the minimum 

recorded value for each cluster to calculate 𝐿𝑐𝑐𝑐𝐾𝑐↓ : 

𝐿𝑐𝑐𝑐𝐾𝑐↓  = 𝐿𝑇𝑇𝐴(1 − Aclr) . (7) 

By using 𝐿𝑐𝑐𝑐𝐾𝑐↓ to normalize measured 𝐿↓, we account for solar zenith effects and can formulate a measure for shortwave 

cloud absorption (Acloud), expressed in percentage:  20 

Acloud = 100 𝑆𝑐𝑐𝑐𝐾𝑐
↓ −𝑆↓

𝑆𝑐𝑐𝑐𝐾𝑐
↓  (8) 

This definition of Acloud is used as a measure of cloudiness and calculated based on 3 hour totals of insolation for the 

daytime between 6AM to 6PM. Obviously this definition of cloud absorbtion does not apply when the sun is below the 

horizon. For night-time hours we use the neighboring daytime window:  

Acloud(0 − 6) = Acloud(6 − 12) (9) 25 

Acloud(18 − 24) = Acloud(12 − 18) (10) 

Figure 1 gives an example of the site measured 𝐿↓ and the calculated Acloud for an 8-day summer period at station B (top 

panel). The bottom panel shows the site measured LST and illustrates how the temporal sampling of the satellite products is 

affected by clouds. 
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2.4 Statistical metrics 

In the description of the results we make use of standard statistical metrics. In terms of absolute error metrics we report bias, 

the long term mean difference between satellite product and in situ data, and the root mean square error (RMSE). By 

removing the long term mean difference we can calculate RMSE of the unbiased data (ubRMSE). These three metrics are 

related as follows: 5 

𝑅𝑅𝐿𝑅 = √𝑢𝑢𝑅𝑅𝐿𝑅2 + 𝑢𝑏𝑏𝑏2. (11) 

We further report standard error of estimate (SEE) as a measure of temporal precision:  

𝐿𝑅𝑅 = 𝜎�1 − 𝜌2 (12) 

where 𝜎 is the standard deviation of in situ data and 𝜌 is Pearson’s correlation coefficient. 

3. Results 10 

We acquired data for 17 field sites in 13 unique grid locations with data records within the 4-year time period of 2009 to 

2012. Table 2 lists the amount of days with at least 12 hours of observations for either MW or TIR-LST to give an overall 

sense of available validation data for this study . In total we have 13316 data days of in situ data (36 out of 44 data years). Of 

these data days, 50 % also have MW-LST estimates, and 36 % have TIR-LST observations. For MW, this percentage is 

negatively affected by the gap between AMSR-E (radiometer turned off on October, 2011) and AMSR2 (first observations in 15 

July 2012). The MW-LST product is heavily-reliant on these satellites with a midday overpass for constraining the diurnal 

amplitude. For TIR, the percentage is particularly low for GOES due to a more stringent cloud filter than employed for 

MSG.  

To better represent the relative data coverage that is possible with the two LST retrieval techniques, we focus on the four 

station pairs in the MSG domain and limit the time period to 2009-2011. We further focus on the days where the minimum 20 

temperature (as measured at the station) stays above freezing (the MW method is not applicable for subfreezing 

temperatures). Within this smaller subset, we have 2506 data days of in situ data and the coverage of MW is 55 % in 

comparison with the 42 % coverage for TIR. However, breaking this down by cloud cover reveals the big difference in 

coverage resulting from the wavelength-dependant tolerance to clouds. During clear skies, the coverage of TIR is 93 %, and 

MW comes in at 76 % (mainly attributed to the 2/3 days coverage for AMSR-E). During cloudy days the coverage drops to 25 

13 % for TIR, whereas for MW it maintains 55 % coverage.   

In the following section we want to answer two questions. How does the MW LST compare to TIR LST in relation to 

ground data during days with clear skies? And is the performance of MW-LST affected by clouds? We focus on hourly 

average temperatures for days where the station data remains above 1˚C to avoid snow or frozen surface conditions.   
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3.1 Clear-sky comparison of satellite LST products 

The ground observations provide a common benchmark to test the relative accuracy and bias of the two satellite products 

with the same in situ data. Days with clear skies are selected based on the measure of cloudiness as defined in Section 2.3.3, 

with a maximum accepted value of Acloud = 0.2. This is in addition to the cloud screening performed in the generation of 

the TIR products (Section 2.1), the quality control of the MW LST (Section 2.2), and the selection of frost-free days. Even 5 

though the spatial representativeness and uncertainty in 𝜀𝐿  may insert systematic errors in the estimation of the spatial 

average from the ground stations, they can be used as a reference to compare different satellite LST products. 

For each of the 13 validation targets we tabulate (see Table 3) ubRMSE and bias (see Section 2.4 for defintion). By 

excluding long term bias the ubRMSE gives an indication of the overall data quality, which  includes the random error and 

errors resulting from a mismatch in variance (either seasonal or diurnal). Errors in spatial representation of the sites affect 10 

MW and TIR in the same way. In order to highlight the relative performance of the two satellite products with respect to the 

common benchmark, we compare their performance directly in Fig. 3.  

Encouragingly, the multi-site average ubRMSE for the four European Fluxnet sites shows the MW-LST (2.3 K) to be only 

moderately higher than TIR-LST (2.1 K) for these frost-free and cloud-free observations. This is a positive result for MW-

LST because of the extra processing needed to correct MW data for sensing depth differences with TIR. Both satellite 15 

products have a higher ubRMSE with the Ameriflux stations, but again the multi-site average ubRMSE for MW-LST (3.0 K) 

is only slightly higher than that for TIR-LST (2.8 K). Figure 2a compares the ubRMSE with in situ data directly for the two 

satellite technologies. The high correlation between the two methods is an indication that spurious effect of spatial 

representation of the site affects both methods to similar degrees. Of all the stations, MW-LST has a lower ubRMSE at 5 of 

the 13 stations and the only stations where we record more than 0.5 K difference in ubRMSE between TIR and MW-LST are 20 

Fluxnet station D (2.5 K for MW Vs. 1.7 K for TIR) and Ameriflux station I (3.5 K for MW Vs. 2.9 K for TIR) and  J (3.4 K 

for MW Vs. 2.4 K for TIR) . These stations, together with K and L, all have dry conditions with low vegetation. When there 

is less vegetation, the influence of soil emissivity on the observed Ka-band brightness temperature becomes larger. Small 

changes in soil moisture can affect the soil emissivity and will result in errors in MW-LST when a constant emissivity is 

assumed (as in current implementation). This points to possible improvements when the scaling to TIR is performed at 25 

shorter window lengths, perhaps in 3-month moving windows. 

Because MW-LST is scaled directly to TIR-LST its bias is almost completely determined by the bias between TIR-LST and 

the site (Table 3 and Figure 2b.). The European Fluxnet sites fall within the MSG domain, and these data years were part of 

the data on which the scaling of MW-LST is trained (Holmes et al. 2015). Although the mean bias (Fig 2b) is almost 

identical, the bias in morning heating (𝛥𝑇, Fig 2c) has more variation between the two satellite products. It is interesting that 30 

generally the satellite products overestimate 𝛥𝑇 compared to ground data: on average they both overestimate the recorded 

heating at the stations by about 10 % .  
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3.2 Cloud Tolerance of Satellite LST  

To test the stability of the MW-LST for increasing levels of cloudiness we took a closer look at the 4 sites in Europe and 3 in 

the US (site A-G). To isolate the effect of clouds on the agreement between satellite and ground observations, we first 

remove structural differences by fitting a linear regression for each location, based on data with cloudiness below 20 % (Γ – 

see section 2c). We then divide the data in 5 equal bins of increasing cloud coverage from 0 to 100 %. The RMSE and mean 5 

difference (bias) between the satellite data and the regression-corrected in situ data is then calculated for each 20 % cloud 

bin. The purpose is to test the assumption that MW-LST is tolerant to higher levels of cloud coverage.  

Figure 3 shows the result of this analysis for location A-G (from left to right). For each location the data coverage (top row), 

RMSE (middle row), and bias (bottom row) are displayed for the five 20% bins of cloudiness. First of all, the large increase 

in negative bias with increasing cloudiness for the TIR-LST product stands out. At all stations we see a clear negative bias in 10 

response to increasing cloudiness for TIR-LST, and the overall agreement between stations is striking. At 40-60% cloud 

cover, all but one station show a significant negative bias for TIR-LST. Above 60 % cloud cover all stations (where TIR-

LST is still available, presumably due to failure of the cloud mask) show a negative bias of 2 K or more. This clearly shows 

that for TIR-LST we have to accept the hypothesis that clouds affect the satellite LST estimate, even after a cloud mask is 

applied. It is well known that TIR observations are sensitive to clouds and that a failure to mask for cloud conditions will 15 

result in an underestimated LST (for land surface above freezing). Because of this systematic response to clouds, the bias 

metric by itself is a good indicator of the effect of cloud contamination in clear sky TIR-LST products. The symbols in the 

top row show the diminishing temporal sampling with increasing cloud cover. When we contrast this with the size of the bias 

it is clear that the cloud mask as implemented in the LSA-SAF product (for sites A-D) is not sufficient at removing cloud 

artifacts. The GOES product (for sites E-G) appears to remove times with high cloud values more completely. Although 20 

investigating the efficacy of cloud masks for TIR techniques is not the purpose of this paper, it does help illustrate how cloud 

effects can be identified with these ground stations. 

In clear contrast to the TIR-LST products, the response of MW-LST to increasing cloudiness is much more muted and not as 

consistent across stations. Stations A, B, C, and E show no response in terms of bias and below 80 % cloud cover there is no 

station with a MW-LST bias of more than 1 K. One station shows a negative trend (D), and two stations show a positive 25 

trend (F and G). But only above 80 % cloudiness do these trends result in bias error of greater than 1 K.  Because we see 

both positive and negative biases in the MW LST analysis we cannot rely solely only on the bias metric to assess the impact 

of clouds. If there are cancelling biases affecting an individual station, this could suppress the bias. The increased retrieval 

error would still be reflected in an increased RMSE. However, the RMSE of MW LST changes minimally relative to its 

baseline value at 0-20 % cloudiness, and mirrors the size of the bias. This indicates that there is little potential for ‘hidden’ 30 

biases behind these numbers. For MW-LST we can therefore reject the hypothesis that clouds affect the satellite LST 

estimate. 
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The MW-LST-Sparse product (Eq. 4) adopts the same scaling with TIR as the diurnal MW-LST but has much less 

sensitivity to the imposed shape of the diurnal model (DTC). For clear skies this distinction is negligible, as apparent from 

the almost identical values of ubRMSE shown in Table 3. The effect of the clear sky model is likely to be higher in days 

with cloudy or partial cloud covered sky. And although the sparse set only has 4-8 observations per day, it allows more 

samples in days with complex temperature changes. Such days are removed from the MW-DTC product if no good match is 5 

found between the diurnal model and observations. We can therefore use the MW-LST-Sparse product to test for undue 

influence of the DTC model (and its related quality flags) on the relationships between LST errors and cloudiness. The 

response in bias of MW-LST-Sparse to increasing cloudiness is almost identical to the response of MW-LST for each station 

(see Fig. 3). In terms of RMSE the sparse set shows equal or higher values than the diurnally-continuous MW-LST product, 

which is not surprising as it does not have the smoothing and quality control associated with the DTC model.  10 

3.3 All-sky validation by satellite overpass time  

The MW-LST record is a combination of different satellites. In the following analysis the validation results of the MW-LST 

product are broken down by time of day and satellite input record. All data pairs where the minimum temperature at the 

station stays above freezing are included in this analysis, regardless of cloud cover. It is interesting to compare these results 

to the much simpler approach that uses a single linear regression model globally (Holmes et al., 2009). Table 4 lists RMSE, 15 

SEE and bias for the old and new approach. The statistics are aggregated for all locations as listed in Table 1. The mean 

scaling with TIR-LST results in a drop in bias for the MW-LST, reducing the average RMSE by 1 K. Part of this reduced 

RMSE results from the improved characterization of the amplitude of the diurnal cycle, which improves the slope at all times 

of day and accounts for 0.2 K of the improvement in RMSE. The impact on the precision (quantified here by SEE) is mixed 

– on average there is no change. Biggest improvements in all metrics are recorded for the forest locations (Sites C, E, and H).  20 

4 Discussion 

Considering all 8 locations used in the cloud analysis we see little to no response to clouds in terms of bias and RMSE for 

MW-LST and this allows us to reject the hypothesis that clouds negatively affect its accuracy. However, for three sites we do 

find weak and opposing biases at higher cloud coverage which require an explanation. The wavelength of Ka-band (8 mm) is 

two orders of magnitude larger than a typical cloud droplet (10 μm). Therefore, clouds do not scatter the 37 GHz radiation 25 

coming from the surface. They do however absorb and emit radiation themselves. The effect of clouds on MW-LST would 

thus be moderated by associated meteorological conditions like atmospheric vapor content and temperature profiles.  

According to the zero-order radiative transfer model, an increased atmospheric opacity (through increasing atmospheric 

water content) increases the weight of the atmospheric contribution to the satellite measured brightness temperature, relative 

to the top of vegetation emission. The sign and size of the effect of a change in atmospheric opacity thus depends on the 30 

contrast between the atmospheric temperature and the land surface temperature times the effective emissivity. It is therefore 
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possible that this could explain the site-to-site differences in bias as shown in Fig 3. Analyzing the overall effect of the 

atmosphere on biases in MW-LST will require more detailed atmospheric profile information coupled with a radiative 

transfer model.  

Another possible explanation is that the positive biases recorded at locations F and G are related to scale differences between 

the site and the 0.25 degree grid cell. Spatial heterogeneity in LST is likely more pronounced during clear-sky periods when 5 

spatially varying soil and vegetation yield a strong influence on the day time temperature gradients. During cloudy periods 

the temperature gradients are not as pronounced and more directly linked to the more uniform air temperature. If the mean 

temperature at the station is generally higher than the areal mean LST, and this bias diminishes with increasing cloudiness, 

this would be transformed through our clear-sky training into a positive bias for the satellite product at high cloudiness. 

However, this effect would affect both MW and TIR to the same extent. We have tested this at locations with two stations in 10 

contrasting land cover types (A-C). What we found is that indeed it is possible to ‘rotate’ the bias response by changing the 

weights of the individual stations, and that this rotation affects both MW and TIR-LST. This effect of site representation can 

therefore explain the greater variation in response from station to station for locations where only one station was available 

(D-G).  

5 Conclusion 15 

In this paper, a recently developed satellite MW-LST product is compared to ground station data and satellite TIR-based 

LST products. The MW-LST was developed to complement TIR-LST with a coarser spatial resolution but at a higher 

temporal resolution. The higher temporal resolution of MW-LST is based on the assumption that MW has a relatively high 

tolerance to clouds, which allows for observations at times when no TIR observations are possible. This paper tests this 

assumption by looking at the precision with respect to ground stations for increasing levels of estimated cloudiness. Our 20 

analysis is performed at the 0.25° spatial resolution as predicated by the MW-LST product. At this coarse spatial resolution, 

the overall unbiased RMSE between TIR-LST and ground stations during clear sky days is 2.1 K for the four locations in the 

MSG domain, and 2.8 K for the 9 locations in the GOES domain. For the same locations we find that the MW-LST is only 

slightly higher (+0.2 K for both domains).  

With increasing cloudiness the RMSE increases significantly for TIR-LST, caused by a matching negative trend in bias that 25 

is seen at all seven locations. This demonstrated the known effect that clouds have on TIR estimates of LST. The fact that 

these trends are so apparent highlights the limitations of current cloud screening techniques as employed in TIR-LST 

products that are in general use. In clear contrast to this we find a much more limited response in both RMSE and bias for 

MW-LST. Because of this we conclude that there is no significant direct impact of clouds on the accuracy of the MW-LST 

product. However, at three stations the size and sign of the response is such that further research is needed to identify the 30 

exact causes introducing error in MW-LST. By taking into account the atmospheric humidity and temperature profile further 

analysis may investigate the extent to which this mixed response can be explained by atmospheric conditions associated with 
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cloudiness. Alternatively, if a greater database were available of locations with flux tower sites in contrasting land covers 

this could be used to isolate the role of scale mismatch between station and the satellite product.  

As an immediate outcome the result of this work highlights the utility of MW technology for cloud screening of TIR-LST. 

This is something that will be explored in future work. Ultimately, the goal is to find the best way of combining MW and 

TIR technology for the estimation of LST from space. 5 
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Table 1. List of ground validation targets detailing geographic location and IGBP vetetation type. Local parameters determined 
for each station are weight (W) in spatial average, long wave emissivity and clear sky absorbtion 

Cluster ID, name Site ID Geographic 
location 

Vegetation (IGBP) W 𝜺𝑳 
median (st.dev) 

Clear sky 
absorbtion 
(Aclr) 

Notes 

A. DE-Thuringia 
 

DE-Hai 
51.0792 ˚N,       
10.453 ˚E 

Deciduous Broadleaf 
Forest .16 0.993 (0.001) 0.33 

(a) 
DE-Geb 51.1001 ˚N, 

10.9143 ˚E 
Croplands .80 0.983 (0.004) 0.31 

B. DE-Dresden 
DE-Tha 

50.9636˚N, 
13.5669˚E 

Evergreen needleleaf 
forest .36 0.983 (0.005) 0.26  

DE-Kli 50.8928 ˚N, 
13.52250 ˚E 

Croplands .61 0.993 (0.001) 0.27  

C. CZ-Billy Kris 
CZ-BK1 

49.50021˚N, 
18.5368˚E 

Evergreen needleleaf 
forest .72 0.985  (0.001) 0.29 

(a) 
CZ-BK2 49.4944˚N, 

18.5429˚E 
Grasslands .23 0.985  (0.001) 0.30 

D. ES-LMa 
ES-LMa 
 

39.9415˚N, 
5.7734 ˚W Savannas .77 0.987  (0.001) 0.25  

E. US-Marys River  US-MRf 44.6465˚N, 
123.5515˚W  

Evergreen needleleaf 
forest 

1.0 0.995 (0.000) 0.27  

F. US-Woodward US-AR1 
36.4267˚N, 
99.42˚W Grasslands .98 0.993 (0.003) 0.23  

G. US-SGP Main US-ARM 36.6058 ˚N, 
97.4888˚W 

Croplands 1.0 0.963 (0.011) 0.23  

H. US-Wind River US-Wrc 
45.8205 ˚N, 
121.9519 ˚W 

Evergreen needleleaf 
forest .99 0.993 (0.004) 0.23  

I. US-Santa Rita 
US-SRC 31.9083 ˚N,  

110.8395 ˚W 
Open Shrublands .5 0.960 (0.008) 0.21  

US-SRM 
31.8214 ˚N, 
110.8661 ˚W Woody Savannas .5 0.983 (0.006) 0.21  

J. US-Audubon US-Aud 31.5907 ˚N, 
110.5092 ˚W 

Grasslands .99 0.950 (0.003) 0.20  

K. US-Lucky Hills US-Whs 
31.7438 ˚N, 
110.0522 ˚W 

Open Shrublands 1.0 0.972 (0.017) 0.19  

L. US-Woodward US-AR2 36.6358 ˚N, 
99.5975 ˚W 

Grasslands 1.0 0.992 (0.003) 0.26  

M. US-Kansas US-KFS 
39.0561 ˚N, 
95.1907 ˚W 

Grasslands 1.0 0.945 (0.015) 0.25  

a. Sites are located in neighboring grid cells. 
Reference: C: (2011),  

  5 
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Table 2. Percentage coverage for two LST products.  

SAT 
Product ALL 

MSG Domain 2009-2011 

All 
Frost-Free Days 

All Clear 
Sky 

Cloudy 
Sky 

TIR 36 42 47 94 14 
MW 50 55 64 75 56 
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Table 3. Summary of ‘clear-sky’ validation results. 

European Fluxnet    Statistic TIR-LST MW-LST MW-LST-Sparse 
 A: DE-Thuringia   ubRMSE 2.2 2.4 2.4 
                      BIAS 0.4 1.2 1.1 
                      N 2050 2636 525 
B: DE-Dresden ubRMSE 1.6 1.7 1.7 
                      BIAS -0.6 -0.7 -0.9 
                     N 4157 4521 1245 
C: CZ-BK      ubRMSE 2.6 2.6 2.6 
                      BIAS 2 2 1.9 
                     N 2787 2985 850 
D:  ESLMa  ubRMSE 1.7 2.5 2.6 
                      BIAS 0.4 0.8 0.7 
                      N 12055 9652 2560 
Multi Site Average ubRMSE 2.1 2.3 2.3 

  |BIAS| 0.9 1.2 1.2 

     
Ameriflux     Statistic TIR-LST MW-LST MW-LST-Sparse 
E: US-Marys River          ubRMSE 3.2 3 3.3 
                      BIAS 1.9 1.5 1.7 
                     N 2810 1991 756 
F: US-Woodward    ubRMSE 3.1 3 2.8 
                      BIAS -0.6 -0.5 -0.5 
                      N 2925 10386 3811 
G: US-SGP Main ubRMSE 2.8 3.3 3 
                      BIAS 0.5 0.4 0.6 
                     N 2895 8362 3105 
H: US-Wind River  ubRMSE 2.5 2.3 2.5 
                      BIAS -0.9 -1.1 -1.1 
                     N 4219 6915 1687 
I: US- Santa Rita  ubRMSE 2.9 3.5 3.3 
                      BIAS -1.5 -0.7 -1.2 
                     N 8908 13478 5312 
J: US-Audubon ubRMSE 2.4 3.4 3.4 
                      BIAS -1.3 -1.3 -1.6 
                     N 3301 8345 3078 
K: US-Lucky Hills ubRMSE 3.1 3.5 3.5 
                      BIAS -0.7 0.3 -0.1 
                     N 7870 10786 4545 
L: US-AR2 ubRMSE 3.2 2.6 2.4 
                      BIAS -0.5 -0.6 -0.6 
                     N 2033 8766 3124 
M: US-Kansas ubRMSE 2.3 2.1 2 
                      BIAS -0.2 -0.1 -0.4 
                     N 1454 4788 1627 

Multi Site Average ubRMSE 2.8 3 2.9 
 |BIAS| 0.9 0.7 0.9 

 



19 
 

Table 4. Validation results broken down by MW satellite (all data, descending (D), ascending (A) path), aggregated for the 13 

fluxnet sites.  

  

2009 Linear regression 2015 diurnal scaling  

Satellite Path RMSE SEE BIAS RMSE SEE BIAS N 

AMSR-E 

 

4.5 3 0.7 3.2 2.6 0.2 6227 

 

D 4.4 1.9 3 3.1 2.1 -1.1 2817 

 

A 4.6 2.7 -1.5 3.3 2.6 1.4 3410 

AMSR2 

 

4.4 2.4 1.6 3 1.9 0.8 843 

 

D 5 1.7 3.7 2.6 2 -0.7 347 

 

A 3.8 1.6 -0.3 3.2 1.6 1.9 478 

WindSat 

 

3.5 2.3 0.8 3.1 2.5 -0.6 3080 

 

D 3.3 2.1 1.4 3.1 2 -0.2 1617 

 

A 3.7 1.9 0.2 3 2.1 -0.9 1463 

SSM/I 

 

3.8 2.4 0.9 3.1 2.6 -0.3 5401 

 

D 3.5 2.3 1.1 3.1 2.2 0.2 2740 

 

A 4 2.1 0.8 3 2.3 -0.8 2661 

AVERAGE   (All Sites) 4.1 2.4 1.2 3.1 2.4 0.6  

FOREST (Sites: C, E, H) 5.1 2.1 4.3 3 2 0.5  

LOW VEGETATION 3.9 2.5 0.9 3.2 2.5 0.7  

 

 
  5 
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Figure 1. An example of the available data at station B, showing 8-day time series of station measured shortwave incoming 5 
radiation (𝑺↓, or SW in, top) and LST (bottom graph). In the top graph 𝑺↓ (black lines) is compared to the clear sky expected 
value, 𝑺𝒄𝒄𝒄𝒄𝒄↓  (Eq. 7, red dash), to illustrate the computation of the cloud cover proxy (𝑨𝒄𝒄𝒄𝒄𝒄, Eq. 8, values in blue text). In the 
lower graph the station LST is compared to the TIR and MW satellite LST products. The dashed line is an occurrence where the 
MW-LST is masked due to a high misfit between sparse observations and the diurnal model.   

  10 
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Figure 2. Comparison between TIR-LST (X-axis) and MW-LST (Y-axis) in terms of their validation metrics with station LST for 5 
frost-free and cloud-free days. From left to right the three panels show (a) ubRMSE, (b) mean bias, and (c) bias in Δ(LST). Each 
marker represents the statistics as calculated for individual locations as identified by the letter (see Table 1 for definition). For the 
GOES domain the filled markers highlight the stations used in the cloud analysis. Black lines provide visual support and indicate 
targets (eg. 1:1 line, cross at zero bias (b,c)). 
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Figure 3.  RMSE and bias of satellite LST with regression corrected in situ data for five levels of cloud cover (Acloud, Eq. 8-10). 
From left to right are locations A-G (see Table 1 for site information). Results for TIR-LST (red) are contrasted with those for 
MW (blue). Markers indicate that more than 15 days with data were available for a particular cloud cover bin. Green dashed lines 
indicate the results for MW-LST-Sparse. For each site and cloud interval the percentage coverage of the temporal record is 5 
depicted in the top row with half-rounds in proportion to the number of data pairs. The potential number of data pairs (grey) 
refers to the number of in situ data points for each cloud bin. The actual number of data pairs is superimposed on this for MW 
(blue) and TIR (red).  
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