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Abstract 9 

Stream water temperature is a key control of many river processes (e.g. ecology, 10 

biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). 11 

Consequently, the effect of climate change and variability on stream temperature is a major 12 

scientific and practical concern. This paper aimed (1) to improve the understanding of large-13 

scale spatial and temporal variability in climate–water temperature associations, and (2) to 14 

assess explicitly the influence of basin properties as modifiers of these relationships. A dataset 15 

was assembled including six distinct modelled climatic variables (air temperature, downward 16 

shortwave and longwave radiation, wind speed, specific humidity, and precipitation) and 17 

observed stream temperatures for the period 1984–2007 at 35 sites located on 21 rivers within 18 

16 basins (Great Britain geographical extent); the study focused on broad spatio-temporal 19 

patterns hence was based on three-month averaged data (i.e. seasonal). A wide range of basin 20 

properties was derived. Five models were fitted (all seasons, winter, spring, summer, and 21 

autumn). Both site and national spatial scales were investigated at once by using multi-level 22 

modelling with linear multiple regressions. Model selection used Multi-Model Inference, 23 

which provides more robust models, based on sets of good models, rather than a single best 24 

model. Broad climate-water temperature associations common to all sites were obtained from 25 

the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, 26 

were assessed against basin properties with ANOVA. All six climate predictors investigated 27 

play a role as a control of water temperature. Air temperature and shortwave radiation are 28 

important for all models/ seasons, while the other predictors are important for some models/ 29 
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seasons only. The form and strength of the climate-stream temperature association vary 1 

depending on season and on water temperature. The dominating climate drivers and physical 2 

processes may change across seasons, and across the stream temperature range. The role of 3 

basin permeability, size, and elevation as modifiers of the climate-water temperature 4 

associations was confirmed; permeability has the primary influence, followed by size and 5 

elevation. Smaller, upland, and/or impermeable basins are the most influenced by atmospheric 6 

heat exchanges, while larger, lowland and permeable basins are least influenced. The study 7 

showed the importance of accounting properly for the spatial and temporal variability of 8 

climate-stream temperature associations and their modification by basin properties. 9 

1 Introduction 10 

River and stream water temperature (WT) is a key control of many river processes (e.g. 11 

ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational 12 

use); Webb et al. (2008). From the perspective of river ecology, WT’s influence is both 13 

direct—e.g. organism growth rates (Imholt et al., 2013), predator-prey interactions (Boscarino 14 

et al., 2007), activity of poikilotherms, geographical distribution (Boisneau et al., 2008)—and 15 

indirect, e.g. water quality (chemical kinetics), nutrient consumption, food availability 16 

(Hannah and Garner, 2015). 17 

Consequently, the effect of climate change and variability on stream temperature is a major 18 

scientific and practical concern (Garner et al., 2014). River thermal sensitivity to climate 19 

change and variability is controlled by complex drivers that need to be unravelled (a) to better 20 

understand patterns of spatio-temporal variability and (b) the relative importance of different 21 

controls to inform water and land management, especially climate change mitigation and 22 

adaptations strategies (Hannah and Garner, 2015). There is a growing body of river 23 

temperature research but there is still limited understanding of large-scale spatial and 24 

temporal variability in climate–WT associations, and of the influence of basin properties as 25 

modifiers of these relationships (Garner et al., 2014). This paper capitalises on the PhD 26 

research carried out by the first author (Laizé, 2015). 27 

River thermal regimes are complex because they involve many interacting drivers (Hannah et 28 

al., 2004, 2008). Caissie (2006) identified atmospheric conditions as the primary group of 29 

controls, with hydrology linked to basin physical properties (e.g. topography, geology) as 30 

secondary influencing factors. 31 
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The main climate variables (Fig. 1) which constitute an ‘atmospheric conditions’ group, can 1 

be identified by analysing the theoretical heat budget for a stream reach without tributary 2 

inflow, which may be expressed as (adapted from Hannah and Garner, 2015): 3 

Qn = Q* + Qh + Qe + Qbhf + Qf + Qa                                                                         Equation 1 4 

where Qn is the total net heat exchange, Q* the heat flux due to net radiation, Qh the heat flux 5 

due to sensible transfer between air and water (sensible heat), Qe the heat flux due to 6 

evaporation and condensation (latent heat), Qbhf the heat flux to and from the river bed, Qf the 7 

heat flux due to friction at the bed and banks, and Qa the heat flux due to advective transfer by 8 

precipitation and groundwater. 9 

The different components of Eq. (1) correspond to different processes, related to climatic and 10 

hydrological conditions. Q* corresponds to shortwave radiation (insolation from the sun) and 11 

longwave radiation (emitted towards the stream by clouds and overhanging surfaces such as 12 

vegetation, and reemitted back to space (lost) at water surface temperature). Qh corresponds 13 

to convective energy exchanges between air and water (at the surface) causing heat loss or 14 

gain. Qe represents heat loss by evaporation or gain by condensation. Qbhf and Qf do not 15 

relate directly to climate processes but rather local hydrological conditions. (Qf can be 16 

assumed to be negligible in many systems; e.g. Hannah et al., 2008). Qa corresponds to 17 

advective heat exchanges, e.g. inflow or outflow into the river reach, hyporheic exchange, 18 

groundwater. A direct, climatic component of Qa is precipitation inputs, which is thought to 19 

have a limited contribution (Caissie, 2006). 20 

These variables are not independent. Figure 1 features a schematic representation of the 21 

interactions between these variables. Downward short and long wave radiations increase WT 22 

but also air temperature, then there are exchanges between air and water, to influence sensible 23 

heating. Additionally, wind plays a significant role by increasing evaporative cooling and in 24 

modifying the air–water exchanges by increasing mixing (Hannah et al., 2008). The physical 25 

equations underpinning the role of wind can be found in Caissie et al. (2007). 26 

A review of recent international water temperature research can be found in Hannah and 27 

Garner (2015). To date most, UK-focused studies (Table 1) tend to be either specific to a few 28 

monitoring sites, to have a limited geographical extent (i.e. focused with specific region of the 29 

country), and /or to consider few climate drivers. In addition, seasonality is only explored 30 

formally in a small number of papers (e.g. Langan et al., 2001 ). A major difficulty is to pair 31 

WT and climate monitoring sites, as monitoring is coordinated rarely, then to identify time 32 
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series with long enough common periods of record. For example, Garner et al. (2014) 1 

undertook a England and Wales scale study and matched water temperature monitoring sites 2 

with climate and hydrological monitoring sites for 38 temperature sites out of ~ 3,000 sites in 3 

the Environment Agency’s Freshwater Temperature Archive (Orr et al., 2014). Garner et al. 4 

(2014) is one of the very few studies (internationally) to consider explicitly the role of a 5 

limited number of basin properties. 6 

In most of these studies, analyses are done on a site by site basis, which limits the extent to 7 

which broad patterns can be inferred (statistical results for a given site are only valid for that 8 

site); Caissie, 2006 emphasized this as a limitation when having to work across different 9 

spatial scales. In contrast, studies like Garner et al. (2014) group sites together using 10 

classification techniques to identify regional patterns. However, doing so causes a loss of 11 

information since data-points of all sites within a class are summarised and intra-class 12 

differences lost, and inferences at group level are not necessarily valid at site level. An 13 

alternative analytical/ statistical method, which can characterise broad patterns while 14 

preserving individual site information, should be investigated. 15 

The following research gaps are identified (above): (a) climate–WT studies in the UK used a 16 

limited number of WT sites or climate explanatory variables (focus on air temperature links to 17 

WT) and /or are limited in geographical extent; (b) limited formal analysis of seasonality; (c) 18 

limited knowledge of role of basin properties as modifiers of climate–WT associations; and 19 

(d) need for alternative analysis method to optimise data utility. 20 

Given this context, the aims of this study are (1) to improve the understanding of large-scale 21 

spatial and temporal variability in climate–WT associations, and (2) to assess explicitly the 22 

influence of basin properties as modifiers of these relationships. This paper resolves the issue 23 

of driving data availability by using a comprehensive and consistent set of modelled climate 24 

data (see Table 3 below). With a period of records of 1984–2007 (24 years), for a total of 35 25 

sites located on 21 rivers within 16 basins (providing a Great Britain wide geographical 26 

extent) six distinct modelled climatic variables were taken within 1 km of the sites. The study 27 

focuses on broad spatio-temporal patterns; hence it is based on three-month averaged data 28 

(i.e. seasonal). Such a temporal scale addresses issues of temporal auto-correlation often 29 

found in water temperature time series (Caissie, 2006). The study also investigates a wider 30 

range of basin properties than previous studies. 31 

Innovatively, this paper investigates both site and national spatial scales at once. Multi-level 32 

(ML) modelling with linear multiple regressions is applied as an alternative to site-specific or 33 
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to classification-based analyses because it allows pooling of all site data together while taking 1 

into account data structure (i.e. observations at site, sites within same basin) as well as not 2 

losing any information (Zuur et al., 2009). With this modelling technique, it is possible to 3 

investigate both study aims (i.e. the broad climate-WT associations common to all sites, and 4 

the site-specific responses which may be related to basin properties) within the same analysis 5 

framework. In addition, model selection used Multi-Model Inference (MMI), another state-of-6 

the-art technique, which provides more robust models based on sets of good models rather 7 

than selecting a single best model (Grueber et al., 2011). 8 

2 Data 9 

With regards to research Aim 1 of this paper, observed river temperature data were assembled 10 

with a view to maximise spatial and temporal coverage as much as practically possible. To 11 

address the issue of mismatching monitoring networks, climate variables were obtained from 12 

a modelled dataset. The paired climate–WT dataset used in this paper has been published 13 

online via an open-access data repository (Laizé and Bruna Meredith, 2015). With regards to 14 

Aim 2, a comprehensive and consistent set of basin properties were derived for all study sites. 15 

2.1 Water temperature data 16 

WT data (unit: ºC) were collated from various research projects run by the UK’s Centre for 17 

Ecology and Hydrology (CEH). The period of record, temporal resolution, and recording 18 

method of the individual datasets vary. These datasets totalled 41 sites, of which 35 were 19 

retained after quality-control (e.g. removal of duplicates; see Fig. 3). As often the case, water 20 

temperature was not the main focus of these projects: fish for the River Frome (1 site, 1991-21 

2009, 15-min logger; Welton et al., 1999), Great Ouse (1 site, 1989-1993, hourly logger), and 22 

Tadnoll (2 sites, 2005-2006, 15-min logger; Edwards et al., 2009) studies; impact of forestry 23 

on water quality for the Plynlimon catchment project (4 sites, 1984-2008, weekly manual 24 

recording; Neal et al., 2010); acidification monitoring for the UK Acid Water Monitoring 25 

Network (UKAWMN) project (10 sites, 1988-2008, monthly (not necessarily on same day) 26 

manual recoding; Evans et al., 2008); hydrological and biogeochemical processes for the 27 

LOwland CAtchment Research (LOCAR) project (17 sites, 2002-2011, 15-min logger; 28 

Wheater et al., 2006). Because these original projects were focused on natural rivers, the 29 

temperature data used herein may be considered as largely free from artificial influences (e.g. 30 

no industrial use for cooling or heated effluent discharges). 31 
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2.2 Climate data 1 

The Climate Hydrology and Ecology research Support System (CHESS) dataset features six 2 

climate variables (Table 3). CHESS is the forcing dataset for the Joint UK Land Environment 3 

Simulator model (JULES; Best et al., 2011). CHESS is a UK-wide 1-km grid dataset derived 4 

by downscaling the UK Meteorological Office Rainfall and Evaporation Calculation System 5 

(MORECS) 40-km grids (Hough and Jones, 1997), except for precipitation that is based on 6 

observed rain gauge data (Keller et al., 2006). For each 1-km cell, modelled daily time series 7 

of all variables are available for the period 1971–2007. The processes linked to AT, LWR, P, 8 

and SWR are given in the stream heat budget overview (see Introduction) and summarised in 9 

Table 3. Specific humidity (SH) gives a measure of evaporation potential (i.e. the more 10 

humidity, the less evaporation due to reduced vapour pressure gradients; e.g. Hannah et al., 11 

2008). Wind speed (WS) captures the various effects of wind in increasing evaporation 12 

(cooling) and convective air-water exchanges (cooling or warming) Each CHESS cell was 13 

matched to the study temperature site(s) it contained. 14 

2.3 Seasonal time series 15 

Firstly, sub-daily water temperature data were averaged at a daily time step (Frome, Great 16 

Ouse, Tadnoll, LOCAR) while spot measurements (Plynlimon, UKAWMN) were assumed 17 

representative of the day on which they were taken, although it is worth keeping in mind that 18 

they are only representative of daylight conditions. Secondly, daily water temperature data 19 

were matched by date to the daily climate data. Thirdly, seasonal averages were computed 20 

from these daily data for all variables. Seasons were defined as: December–February (winter), 21 

March–May (spring), June–August (summer), and September–November (autumn). For 22 

winter, these seasonal data for year y were based on data from December of year y-1 to 23 

February of year y (e.g. for 1976, December 1975, January and February 1976). Lastly, five 24 

time series were derived from these data: one series per season at an annual time step (i.e. 25 

winter 2000, winter 2001, winter 2002, etc.), and one series with all seasons at a seasonal time 26 

step (i.e. autumn 2000, winter 2000, spring 2000, etc). These series and their related models 27 

are referred to as thereafter ‘autumn’, ‘winter’, ‘spring’, ‘summer’, and ‘all seasons’. 28 
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2.4 Basin properties 1 

Basin properties were derived from the UK Flood Estimation Handbook (FEH), the UK 2 

‘industry standard’ for flood regionalisation studies, which includes 19 basin descriptors 3 

(Bayliss, 1999). A selection of descriptors was used, which are listed with detailed definitions 4 

in the Methods section. These descriptors relate to elevation, permeability, and size, which are 5 

known to modify hydroclimatological links (Bower et al., 2004; Laizé and Hannah, 2010; 6 

Garner et al., 2014). 7 

3 Methods 8 

This section describes the analytical methods used. Firstly, as stated in the introduction, the 9 

Multi-level (ML) modelling technique was chosen as the core method because it allowed to 10 

analyse the multiple-site data in terms of both overall climate–WT associations (linked to 11 

research Aim 1) and site-specific responses (linked to research Aim 2; role of basins as 12 

modifiers of those associations). Secondly, with regards to overall climate-WT associations, 13 

ML model selection was done with Multi-Model Inference (MMI) to yield more robust 14 

models than with standard single model selection, especially given the number of climate 15 

predictors used. Lastly, any relation between site-specific climate-WT responses and basin 16 

properties were tested formally using an analysis of variance (ANOVA). 17 

The study work flow is summarised in Fig. 2: (a) WT observed data linked with (b) modelled 18 

climate variables, then (c) all converted to seasonal (three-month) average series used within 19 

(d) ML modelling / MMI framework producing (e) five output models (individual seasons 20 

and all seasons; Aim 1), and (f) sets of basin properties (Aim 2). 21 

3.1 Multi-level modelling 22 

To take into account the hierarchical nature of the water temperature dataset (e.g. sites located 23 

on the same river), ML modelling was used to build linear models with water temperature as 24 

the predicted variable, and the six climate variables as explanatory variables. When analysing 25 

multiple-site datasets, there are two common alternatives: (a) performing one regression for 26 

individual sites, or (b) one regression on all sites pooled together. On the one hand, site-27 

specific regressions can make results highly uncertain (sites may have few data-points; fitting 28 

numerous regressions is more prone to identify spurious relationships, ie Type II errors). 29 

Thus, drawing out general patterns (e.g. variation between sites, effect of site characteristics) 30 

can be difficult. On the other hand, full pooling of sites ignores the clustering of samples 31 
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within groups, which may hide important differences between sites and may cause problems 1 

with statistical inference (e.g. violation of the assumption of independence between samples, 2 

sites with large or small numbers of samples equally influencing the model outcome). 3 

To overcome these issues, ML modelling allows for the pooling of data from different sites 4 

while taking into account the hierarchical data structure. A ML model has two components, 5 

which correspond to generic patterns (i.e. similar to a regression on fully-pooled data) and to 6 

level-specific patterns. The generic patterns, which are described by the explanatory variables 7 

as in a standard regression, are called the ‘fixed component’ or ‘fixed effects’ of the model. 8 

The unexplained variation between levels (i.e. site-specific patterns here) is termed the 9 

‘random component’ or ‘random effects’. The random component captures the fact that levels 10 

may respond differently to a given predictor. 11 

In our analyses, a three-level data structure was applied: individual observations (level 1) 12 

nested within monitoring sites (level 2) nested within river stretches (level 3). In addition, a 13 

time variable was included as a predictor to take into account any linear trend in the time 14 

series. To avoid instability issues when fitting models, the predictors were centred (i.e. 15 

predictor values minus their mean). 16 

3.2 Model selection with multi-model inference 17 

Following standard ML modelling practice (e.g. Zuur et al., 2009), the model selection was 18 

applied in two stages: (a) selection of the random component variables; (b) selection of the 19 

fixed component variables. 20 

First, with all predictors included in the fixed component, models with the various 21 

combinations of predictors in the random component were ranked using Akaike’s Information 22 

Criterion (AIC; Akaike, 1974) that selects models offering the best compromise between fit 23 

and predictor parsimony (AIC corrected for small-size datasets, AICc was used). Selection 24 

was done for the four seasonal series as well as the ‘all season’ series. In each case, the 25 

random component giving the lowest AICc was retained. 26 

Secondly, with the random component selected, the fixed component model selection 27 

followed the MMI approach, which selects sets of ‘good’ models rather a single ‘best’ one. 28 

Using a traditional model selection technique, like stepwise regression, the model with the 29 

best (i.e. the lowest) AICc would be selected. This presents two issues: (a) due to the 30 
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algorithms underlying these types of selection techniques, some model formulations may end 1 

up not being tested thus causing a sub-optimal selection; (b) given models with similar AICc 2 

values have similarly good performance, it is not statistically correct to keep the lowest AICc 3 

model only as the best model and discard the others. MMI addresses these issues by selecting 4 

sets of good models. In practice, all possible combinations using from one to six of the 5 

climate predictors described above are fitted. The resulting models are ranked based their 6 

AICc. All models within four points of the lowest AIC are selected (Zuur et al., 2009). 7 

Grueber et al. (2011) cover the above points in details and give a very good example of such 8 

an application of MMI in a natural sciences context. 9 

Akaike weights (Burnham and Anderson, 2002) were calculated; weights are re-scaled AICc 10 

scores, which give an indication of the relative importance of each model within a set. If only 11 

one model was tested, the weight would be one. Models with similar AICc scores have 12 

similar Akaike weights. Weights are used when reporting on MMI outputs. Then, following 13 

recommended statistical usage, all models within four points of the lowest AICc were selected 14 

(Zuur et al., 2009). Note that in some cases, there is only one model selected because its AICc 15 

is lower by more than four points from the next second model in line, and it would have the 16 

higher Akaike weight too. 17 

With MMI, the role of each explanatory variable is assessed using its relative importance 18 

(RI). For a given predictor, RI is calculated as the sum of the AICc weights of the models in 19 

which that predictor is included. RI ranges from 0 (variable never included) to 1 (included in 20 

all models). For example, results showed that the ‘all seasons’ model is based on two models 21 

with AICc weights 0.74 and 0.26; the explanatory variable P is only included in the latter 22 

model, hence its RI of 0.26, while the other five predictors are in both models and have a RI 23 

of 1 (see Table 4 below). With MMI, RI is analogous conceptually to predictor significance, 24 

assessed with p values, in a standard regression model. 25 

3.3 Analysis of basin property influence 26 

For those explanatory variables that were included in the random effects (i.e. different sites 27 

can have different coefficients), any relation between site-specific coefficients and site basin 28 

properties was investigated by using maps and scatter plots of coefficients against basin 29 

properties, and by applying ANOVA to confirm observed patterns. For each coefficient and 30 

basin property, ANOVA is comparing formally (a) a model assuming there is no difference in 31 
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coefficient between sites against (b) a model assuming the coefficient is function of the basin 1 

property. A basin property is considered having significant influence on the WT–climate 2 

variable relationship when the ANOVA p value is <0.05. To quantify the influence of these 3 

properties, either alone or combined, linear regressions of the site-specific coefficients were 4 

fitted. 5 

4 Results 6 

The result section has three parts:  7 

 Selection and performance of the five models (all seasons, winter, spring, summer, 8 

autumn). 9 

 Analysis of the fixed component of the five ML models to inform on climate-WT 10 

associations (research Aim 1); results are split in three sub-sections (relative 11 

importance of the predictors, form and strength of predictor-WT associations, relative 12 

contributions of predictors to modelled WT). 13 

 Analysis of the random component of the five ML models to inform on site-specific 14 

climate-WT responses (for those predictors included as random effects), followed by 15 

ANOVA to assess the role of basins as modifiers of the climate –WT associations. 16 

(research Aim 2). 17 

4.1 Model selection and performance 18 

As described above, selecting the five ML models was done in two stages. First, with all 19 

predictors included in the fixed component of the ML model, combinations of predictors as 20 

random effects were tested, and the combination yielding the lowest AICc was retained. As a 21 

result, the following variables were included as random effects (i.e. variables for which 22 

different sites have different coefficients): all seasons = AT and SWR; winter = SH; summer 23 

= P; autumn = SWR; no predictor was included for spring. 24 

Second, all combination of the predictors in the fixed components were tested with MMI. The 25 

number of models included in each final set as selected by MMI was: all seasons = 2; winter = 26 

4; spring = 12; summer = 6; autumn = 14. With MMI, each set of models is summarised as an 27 

‘average model’, for which a given variable coefficient is its average value over all models in 28 

the set. The average model coefficients are presented in Table 4. Thereafter, if unqualified, 29 

the term ‘model’ means the average model for a given set of selected models. 30 
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All models perform adequately (as evidenced by plots of fitted against observed water 1 

temperature data in Fig. 4). 2 

4.2 Relative influence of climate drivers 3 

4.2.1 Relative importance of the predictors 4 

Predictor RIs for all average models are given in Table 4. First, there is no predictor with a 5 

zero RI for any average model. This means that all predictors are used in all or part of the sets 6 

of selected individual models. Predictors can be ordered by decreasing importance: AT (RI=1 7 

for all models); SWR (RI=1 for four models, and 0.64 for the summer one); WS (RI=1 for 8 

two models, and 0.33-0.68 for others); SH (RI=1 for two models, 0.34-0.53 for others); P 9 

(RI=1 for one model, 0.15-0.41 for others); LWR (RI=1 for one model, 0.13-0.25 for others). 10 

Second, each model has its own set of most important predictors (with RI > 0.50 as a 11 

threshold, i.e. predictor included in half of the selected individual models): all seasons, all 12 

predictors except P; winter, AT, SWR, WS, and SH; spring, AT, SWR, and WS; summer, all 13 

predictors; autumn, AT and SWR. 14 

4.2.2 Form and strength of associations between climate predictors and water 15 

temperature 16 

The section focuses on the fixed effect coefficients of the predictors (i.e. coefficients valid for 17 

all sites). Predictors AT, SWR and SH have positive coefficients for all models (i.e. increases 18 

of these predictors are associated with a consistent warming effect on water temperature). 19 

Predictors LWR, WS, and P have positive or (mostly) negative coefficients (i.e. increases of 20 

these predictors are associated with warning or cooling, depending on season; Table 4). 21 

The strength of the association varies with season. Comparing the absolute value of the 22 

seasonal coefficients for each variable (not between variables as they have different scales): 23 

AT, lowest in winter, highest in autumn; SWR, lowest in autumn, highest in winter; LWR, 24 

lowest in winter, highest in summer; WS, lowest in autumn, highest in summer; SH, lowest in 25 

autumn, highest in winter; P, lowest in summer, highest in autumn. 26 

4.2.3 Relative predictor contributions 27 

By definition, the predictors may have different units and orders of magnitude. Their 28 

coefficients cannot be compared directly to get an indication of their relative contribution to 29 
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WT predictions. Instead, WT predictions were generated for the whole period of record and 1 

the percentage contributions of each predictor to the WT modelled values were calculated. 2 

Boxplots of the percentage contributions for the six predictors and the five models are 3 

featured on the left-hand side of Fig. 5 (for readability, outliers are not displayed). The thick 4 

black central line corresponds to the median percentage contribution. The shorter the boxes 5 

and whisker extents are, the more constant are predictor contributions to modelled WT, with 6 

longer extents representing more variation. While, the boxplots inform about contribution 7 

differences between models, plotting predictor contributions against modelled WT (right-hand 8 

side of Fig. 5) shows that the contribution variability, for a given model, is in many cases 9 

related to WT rather than random (i.e. some predictors are more or less influential depending 10 

on thermal conditions). 11 

AT is the main contributor except in winter (second to SH); its median contribution is around 12 

12% for winter, and 30-35% for the other models. In all cases, AT contribution increases as 13 

WT increases (AT has more influence at warmer WT). 14 

SWR influence is quite constant for all models (medians ranging from +4.5% to 7.5%; up to a 15 

maximum of +15.8% in winter) except autumn, for which it is very limited (median +0.13%). 16 

Within each model, SWR contribution is fairly stable across the WT range but showing 17 

slightly more variability for colder WT. 18 

LWR is the second contributor for the ‘all seasons’ and the summer models. Its contribution is 19 

negative except for spring, but in all cases, the contribution decreases as WT increases (i.e. 20 

LWR has more influence on colder WT). 21 

WS has a negative contribution for all models except autumn. WS is most influential for 22 

colder WT (e.g. down to a minimum of -13.70% for all seasons model, -11.74% for summer); 23 

its contribution decreases as WT becomes warmer (e.g. around -1% for most models). WS 24 

contributions are more variable for colder WT (ie more scatter right-hand side plots; Fig. 5) 25 

than for warmer WT. For autumn, WS has limited influence, with its contribution ranging 26 

from +0.17% to +0.90%. 27 

SH contribution is highest in winter (main contributor with median +27.20%) and for ‘all 28 

seasons’, but otherwise limited for the other seasons (medians ranging +2.10% to +7.23%). 29 

SH contributions are independent from WT. 30 
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P has limited influence with its contributions ranging from -1.13% (minimum, spring) to 1 

+0.22% (maximum, winter). Its contributions show very little variability and no pattern in 2 

relation to WT. 3 

4.3 Role of basin properties 4 

The site-specific coefficients were initially mapped against elevation and permeability to 5 

explore basin modification of the WT–climate relationship, and any pattern linked to 6 

easting/northing. While there was no clear easting/northing pattern, the maps showed 7 

potential associations between coefficients and basin properties. 8 

As explained above, a set of 19 catchment descriptors were derived for each site. Many basin 9 

properties co-vary, often substantially, and they are best interpreted as groups of properties 10 

(‘meta-properties’) rather than on their own. Descriptor specifications (Bayliss, 1999), pair 11 

plots, and correlation matrices were checked to identify likely groups of descriptors (for 12 

example, all FEH rainfall descriptors capturing basin wetness). Then, ANOVA was run on 13 

those descriptors to identify the ones significantly associated with the model site-specific 14 

coefficients. Finally, the descriptors for each meta-property were checked to confirm they 15 

have consistent associations (positive or negative) with each model predictor. Considering the 16 

basin properties significantly associated with the site-specific coefficients only, one descriptor 17 

was retained to represent each meta-property. 18 

The following meta-properties and their corresponding FEH descriptors were thus selected: 19 

 Elevation/wetness (‘elevation’ hereafter): as noted in Laizé and Hannah (2010), basin 20 

elevation and wetness are very strongly correlated in the UK; the meta-property 21 

‘Elevation’ is represented by the FEH descriptor ALTBAR (mean basin elevation 22 

above sea level; m) and, for the winter model only, by PROPWET (proportion of time 23 

basin soils are wet (%), based on soil moisture time series classified as wet/dry days; 24 

highly correlated to rainfall); 25 

 Size: AREA (basin area; km2); using its natural log; 26 

 Permeability: BFIHOST (Base Flow Index from Hydrology of Soil Type (HOST); 27 

dimensionless); ranging from 0 (less permeable basin) to 1 (more permeable); 28 

The 35 study sites are representative of a wide range of UK basin types in terms of the above 29 

properties: (1) upland/lowland (ALTBAR approximately within 20-700 m and PROPWET 30 
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within 24-80%); (2) small and medium size (AREA ~0.5-415 km2); (3) 1 

impermeable/permeable (BFIHOST 0.24-0.92). In addition, the study sites feature 2 

combinations of all three meta-properties. 3 

Associations between meta-properties/descriptors and site-specific coefficients are showed in 4 

Table 5. Note: no property was found to be associated with P coefficients in summer. 5 

To quantify the influence of the properties, either alone, or combined, simple linear 6 

regressions of the site-specific coefficients were fitted and ranked with AICc following the 7 

MMI technique used above. Models are featured in Table 6. The best models are the ones 8 

with the lowest AICc (displayed in bold characters); while all models featured are within four 9 

AICc points, hence are considered equally good (Zuur et al., 2009). Depending on the site-10 

specific coefficient, the R2 range from 0.125 (autumn SWR) to 0.411 (‘all seasons’ AT). In 11 

each case, a single regression (on BFIHOST or ALTBAR) is the best model AICc-wise, 12 

although most of the multiple regressions are within 4 AICc points so equally valid models. 13 

These meta-properties are themselves not independent in the UK: (i) high upland basins are 14 

impermeable generally (permeable geology occurs in the lowlands); (ii) there are 15 

comparatively more small basins at higher elevation. Results in Table 6 demonstrate this. For 16 

the ‘all seasons’ AT coefficient models, single regressions on BFIHOST, ln(AREA), and 17 

ALTBAR achieves a R2 of 0.370, 0.284, and 0.127, respectively, but the multiple regressions 18 

with either two or all of them only achieve R2 within 0.381–0.411. The comparatively small 19 

gain when adding several predictors is due to the three properties co-varying. Similar 20 

comments can be made on the other models. 21 

5 Discussion 22 

This section has two parts: 23 

 Discussion of the ML modelling fixed components (national-scale patterns of climate-24 

WT associations; research Aim 1); this includes outcomes of MMI, physical 25 

interpretation of the models, and dependence between climate-WT association and 26 

season/temperature. 27 

 Discussion of the ML modelling random components (site-specific climate-WT 28 

responses to assess their modification by basin properties; research Aim 2); identified 29 

basin properties are first considered individually, then combined. 30 
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5.1 Influence of climate drivers 1 

This section discusses results related to the fixed component of the ML models, which 2 

provide information on national-scale patterns (i.e. patterns valid for every sites used in the 3 

analysis). As explained above, these patterns would be analogue conceptually to those sought 4 

by using cluster analysis or fully-pooled regressions but without their shortcomings (e.g. loss 5 

of information, issues with dependent observations). The use of ML modelling adressed one 6 

of the limitation of empirical regression-based models, for which temperatures are predicted 7 

at specific sites only. Note: the four seasonal models are by definition related to the ‘all 8 

seasons’ model, since they are based on subsets of the same original dataset, so that seasonal 9 

patterns are not independent from the ‘all seasons’ patterns. 10 

The six climate predictors investigated were identified as significant within the MMI 11 

framework (note: MMI applied to the selection of the fixed component part of the ML models 12 

only). Standard model selection techniques (e.g. stepwise) would have most likely excluded 13 

the predictors that are not retained in all models of the MMI selected model sets (i.e. 14 

predictors with lower RI values). In this regard, this study illustrated how MMI can be useful 15 

in picking the effect of secondary controls, otherwise masked by dominant primary drivers. 16 

The models broadly make sense against known physical processes. In interpreting model 17 

results, it important to bear in mind that the aim of the study was to assess the relative 18 

empirical associations between WT and the set of climate drivers, therefore the models are not 19 

explicitly process-based. In addition, the climate variables are inter-related in some extent 20 

(e.g. P associated with more cloud cover, hence reduced SWR and greater SH), and the 21 

analysis is based on 3-month averaged data, which may cause some aspects of the physical 22 

processes to be lost by the averaging (e.g. distinction between variable like SWR, only 23 

contributing during daylight and others like LWR contributing continuously). 24 

All models flag a close association between AT and WT. This finding is consistent with the 25 

literature: it is well documented that AT and WT are both influenced by similar climatic 26 

drivers (e.g. incoming radiation), and tend towards thermodynamic equilibrium (Caissie, 27 

2006). Both variables consequently tend to co-vary positively, making AT a very useful 28 

predictor (as it has been widely demonstrated in the literature; e.g. Webb and Nobilis, 1997), 29 

although the association is partly causal only (Johnson, 2003). SWR (insolation from sun) is 30 

physically a positive input of energy; and it is appropriately captured in the models with 31 

positive coefficients. In this study, LWR is the downward component of longwave radiation 32 

(see Table 3). From an energy budget perspective, LWR therefore corresponds to a positive 33 
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flux toward the river water. Consequently, LWR contribution to WT should be positive. 1 

Results (Table 4 and Fig. 5) show this is necessarily the case. LWR corresponds to radiation 2 

diffused by clouds, so co-varies positively with cloud cover (in addition, a pairwise plot of the 3 

study dataset shows that within a given season LWR inversely co-varies with SWR). 4 

Therefore, the negative WT-LWR associations would most likely be due to LWR acting as a 5 

proxy for processes driving colder water temperatures (e.g. cloud cover). SH represents the 6 

mass of water vapour in moist air. The rate of evaporation at the water surface is directly 7 

proportional to the SH gradient (the more humid the air, the lower the evaporation rate). All 8 

models give a positive association between SH and WT. As SH increases, the evaporation rate 9 

decreases, and consequently, cooling due energy loss as latent heat decreases as well. WS has 10 

a cooling effect by increasing evaporation at the water surface, which would be captured by a 11 

negative contribution to WT. In addition, WS plays a significant role in air–water energy 12 

exchanges by increasing mixing, which would manifest as increased cooling or warming 13 

depending on the AT-WT gradient. For all models but autumn, WS has an overall negative 14 

contribution (cooling). For the autumn model, the variable RI and its percentage contribution 15 

are both low, so the positive association has to be considered with caution. P have positive or 16 

negative coefficients depending on model. When rainfall occurs, its temperature may be 17 

higher or lower than that of the river depending on season. In addition, P can also act as a 18 

proxy for cloud cover, thus for reduced SWR and increased LWR. P has limited importance 19 

and percentage contribution in all the models, which is probably due to precipitations being 20 

event-based whereas other variables are continuous (e.g. AT). 21 

The form and strength of the climate-WT association vary depending on season and on WT 22 

range, as showed by the variability in predictor coefficients and contributions. This most 23 

likely captures that the dominating climate drivers and physical processes (e.g. 24 

evaporation/condensation, radiative fluxes; see energy budget above) may change from one 25 

season to another, or within the same season, from colder to warmer weather conditions. As a 26 

consequence, the impact of short (e.g. seasonal climatic drought) and long term climate 27 

variability or change, and of mitigation schemes (e.g. increasing riparian tree shading) on 28 

stream temperature may not be uniform across time (e.g. higher long-term temperature 29 

increases in winter and spring; Langan et al., 2001). 30 

Most empirical models have been based on single AT-WT regressions (Caissie, 2006) with 31 

very few using other climate predictors (e.g. AT and solar radiation; Jeppesen and Iversen, 32 

1987). The present study demonstrated the potential of several other climate variables to 33 
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contribute explanatory power (even if they are weaker predictors than AT), which can be 1 

beneficial when trying to tease out the relative influences of the various interconnected 2 

processes controlling water temperature regimes, or when AT is not available at a site. 3 

Although this was not the primary objective of the study, the models could be used to 4 

generate seasonal water temperatures for the whole spatial and temporal extent of the CHESS 5 

datasets (whole country, 1971–2007 period of records), for example allowing to investigate 6 

broader geographical pattern, or the impact of extreme events like drought. 7 

5.2 Role of basin properties 8 

The analysis of the random component of the models (i.e. site-specific) identified 9 

permeability, elevation, and basin size as the main modifiers of the climate-WT response 10 

(note: unlike for the fixed component, the random predictors were selected using standard 11 

AIC, i.e. there is only one random component formulation for each of the five models). The 12 

use of ML modelling addressed the limitations of empirical regression-based models to work 13 

across different spatial scales (see above; Caissie, 2006). The basin properties are first 14 

reviewed individually, then together to assess how their respective influences may combine 15 

within a basin (i.e. are all influences cumulating, or one property dominating?) 16 

For all models and for all predictors (all seasons AT, autumn SWR, winter SH), the more 17 

(less) permeable the basin, the lower (higher) the coefficients. Thus, water temperature in 18 

impermeable basins appears to be more sensitive to climate than in permeable basins. Indeed, 19 

in permeable basins, the temperature regime is comparatively more influenced by the 20 

groundwater input to the river; groundwater temperature tends to have more inertia and to 21 

have a damper effect on river WT (groundwater warmer than river in winter, cooler in 22 

summer) - see for example, Webb and Zhang (1999), Hannah et al. (2004), Caissie, 2006, 23 

Kelleher et al. (2012). This pattern is consistent with Garner et al. (2014), which used 24 

different temperature monitoring sites and basin properties to investigate air–water 25 

temperature associations only. 26 

With regard to basin size, results can be summarised as follows: (a) ‘all seasons’ model, WT 27 

in smaller basins is more sensitive to AT but less sensitive to SWR than in larger basins; (b) 28 

autumn mode, WT in smaller basins is more sensitive to SWR; (c) winter model, WT in 29 

smaller basins is more sensitive to SH. Although, there are seemingly contradictory patterns 30 

for SWR, this can be explained by the modelling. Where studies typically use only one 31 
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variable to represent the whole climate (e.g. AT, Garner et al., 2014), several climate 1 

predictors are considered herein. As noted in the Introduction, AT and SWR co-vary in some 2 

extent. In the ‘all seasons’ model, AT and SWR were both selected to capture the between-3 

site variability of the climate-WT response, while in the autumn model, only SWR was 4 

retained. As a consequence, in the autumn model, SWR represents climate control, most 5 

probably capturing part of the WT variability explained by AT when both variables are 6 

included as in the ‘all seasons’ model. Overall, WT is more sensitive to climate in smaller 7 

basins. Then, the inclusion of both AT and SWR in ‘all seasons’ allows to refine the 8 

assessment of river thermal sensitivity beyond climate as a whole, to different types of energy 9 

processes: smaller streams are more sensitive to air-water heat exchanges but less sensitive to 10 

radiative fluxes than larger streams. One can hypothesize that smaller streams have a lower 11 

volume of water to heat up than larger streams but also are likely to experience greater 12 

relative shading by riparian trees than wider rivers downstream. 13 

This finding, at first, looks partly inconsistent with Garner et al. (2014), who concluded that 14 

larger basins were more sensitive to climate than smaller ones, because (i) headwater stream 15 

being located at the start of the network have less time than larger streams to reach 16 

equilibrium with AT further downstream, and (ii) headwater streams are more likely to be 17 

shaded (riparian woodlands, topography). However, Garner et al. (2014) was based on cluster 18 

analysis; small basins were included in one cluster only, which also included permeable 19 

basins. As a consequence, it is likely that permeability and size influences were in some 20 

extent confounded. In contrast, the sites used in this paper cover all combinations of 21 

size/permeability basin types. Secondly, as noted by Kelleher et al. (2012), within the small 22 

stream type, one needs to distinguish between shaded (i.e. due to with riparian woodland or 23 

topography) and exposed streams, with shaded streams behaving more like permeable 24 

streams. Only basin-wide land cover information was available for 29 out of 35 sites: 27 25 

basins are under 20% woodland. While one cannot exclude woodland being concentrated on 26 

the riparian corridor of each site, it is sensible to assume the 35 sites have a mix of shaded and 27 

exposed streams. Although it would explain the pattern with ‘all seasons’ SWR (more 28 

shading, less incoming sun), the shaded headwater argument has to be considered 29 

inconclusive in relation to the wider climate controls. 30 

With regard to basin elevation, results can be summarised as follows: (i) ‘all seasons’ model, 31 

WT in higher elevation basins is more sensitive to AT but less sensitive to SWR; (ii) winter 32 
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model, WT in higher elevation basins is more sensitive to SH. These patterns can be 1 

explained partly by elevation, partly by the fact that permeability, size and elevation are not 2 

strictly independent in the UK. As noted above, elevation and rainfall co-vary greatly in the 3 

UK, so that upland basins are wetter than lowland basins, hence associated with greater 4 

precipitation (i.e. with more cloud cover and consequently, less influenced by SWR). In terms 5 

of basin types, the study sites have no upland permeable basins (the UK geology is such that 6 

this type hardly occurs in any case), plus high elevation basins tend to be smaller basins. The 7 

patterns observed with elevation, which are consistent with those for permeability and size, 8 

are most likely partly reflecting the upland basins are also largely impermeable and smaller. 9 

Although each property has been statistically identified as having an influence, the latter point 10 

leads to investigating how these influences may combine. The regression models of site-11 

specific coefficients against permeability, size, and elevation presented in Table 6 provide 12 

some quantification of the influence of basin properties, both on their own, and combined. In 13 

each case, the best model uses a single basin property, although the retention of other 14 

properties in the MMI sets confirms the role of all three. In three cases out of four (‘all 15 

seasons’ AT, autumn SWR, winter SH), permeability (BFIHOST) is dominant. Therefore, the 16 

patterns described above would be primarily set by basin permeability, then by size and 17 

elevation. At one end of the spectrum, small, upland, and/or impermeable basins are the most 18 

exposed to atmospheric heat exchanges, at the other end, large, lowland, and permeable 19 

basins are the least exposed. 20 

6 Conclusions 21 

By focusing on a nation-wide set of water temperature sites and extensive climate dataset, this 22 

study addressed some of the limits of previous UK papers (limited number of WT sites, 23 

climate predictors, and /or geographical extent); it also investigated formally seasonal 24 

patterns, and, by using a wide range of basin descriptors, improved knowledge of the role of 25 

basin properties as modifiers of climate–WT associations. 26 

With regards to the need to explore alternative modelling techniques to maximise data utility, 27 

ML modelling allowed to model climate-WT responses both at site and at national scales, 28 

thereby adressing the limitation of empirical regression-based models compared to 29 

deterministic models (Caissie, 2006). In addition, the model selection based on the MMI 30 

approach permitted to investigate climate variables that would been most likely excluded by 31 

standard selection techniques, and identify their influence as secondary controls. 32 
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In relation to research Aim 1 (improved understanding of large-scale climate–WT 1 

associations), the modelling exercise showed that all of the six climate predictors investigated 2 

in this study play a role as a control of water temperature. AT and SWR are important for all 3 

models/ seasons, while LWR, SH, and WS are important for some models/ seasons only. The 4 

form and strength of the climate-stream temperature association vary depending on season 5 

and on water temperature. The dominating climate drivers and physical processes may change 6 

across seasons, and across the stream temperature range. The impact of climate variability or 7 

change, whether short or long term (e.g. seasonal supra-seasonal, or inter-annual climatic 8 

drought, long-term air temperature increaes), and the benefit of mitigation measures (e.g. 9 

increasing shading) on stream temperatures need to be assesed accordingly. 10 

In relation to research Aim 2 (assessing influence of basin properties as modifiers of climate-11 

WT associations), the study confirmed the role of basin permeability, size, and elevation as 12 

modifiers of the climate-WT associations. The primary modifier is basin permeability, then 13 

size and elevation. Smaller, upland, and/or impermeable basins are the ones most influenced 14 

by atmospheric heat exchanges, while the larger, lowland and permeable basins are least 15 

influenced (note: some basin types occur less frequently or hardly in the UK, e.g. upland 16 

permeable). This means that, in addition to seasons and temperature range, the impact of 17 

climate on stream temperatures and the benefits of mitigation schemes may vary with 18 

location. This study shows the importance of accounting properly for the spatial and temporal 19 

variability of climate-stream temperature associations and their modification by basin 20 

properties. 21 
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Table 1. Climate–water temperature studies carried out in the UK. 1 

Reference Number 

of Sites 

Number 

of 

Basins 

Location Number 

of 

Climatic 

Variables 

Length of 

Study 

Period 

Wilby et al. (2014)  36 2 central England 1 2 years 

Garner et al. (2014)  38 38 England & Wales 1 18 years 

Broadmeadow et al. (2011) 10 2 south England 3 3 years 

Brown et al. (2010)  6 1 north England 2 2 years 

Hrachowitz et al. (2010) 25 1 northeast Scotland 0 2 years 

Hannah et al. (2008)  2 1 northeast Scotland 7* 2 years 

Malcolm et al. (2004)  6 1 northeast Scotland 1 3 years 

Hannah et al. (2004)  1 1 northeast Scotland 9* 6 months 

Webb et al. (2003) 4 1 southwest England 1 5 years 

Langan et al. (2001)  1 1 northeast Scotland 1 30 years 

Webb and Zhang (1999) 2 2 South England 5 2 seasons 

Evans et al. (1998) 1 1 west England 9* 17 days 

Crisp (1997) 5 1 northwest Wales 1 3 years 

Webb and Zhang (1997)  11 1 southwest England 4 2 seasons 

* includes different measurements of related climatic variables 2 

3 
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Table 2. Water temperature datasets used in study. 1 

Dataset Period of Record Recording (Time Step) Number of Sites 

Frome 1991-2009 Logger (15 min) 1 

Great Ouse 1989-1993 Logger (hour) 1 

LOCAR 2002-2011 Logger (15 min) 17 

Plynlimon 1984-2008 Manual (week*) 4 

Tadnoll 2005-2006 Logger (15 min) 2 

UKAMN 1988-2008 Manual (month*) 10 

*Approximately once a week or month but not necessarily on same day 2 

3 
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Table 3. CHESS data. 1 

Climate Variable Abbreviation Units Process 

Air temperature AT oK Convective energy exchanges at water 

surface; energy loss or gain 

Long wave radiation LWR W m-2 Downward energy bounced back by 

clouds; energy gain 

Specific humidity SH kg kg-1 Air moisture content; higher humidity 

reduces evaporation rate; energy loss 

(evaporation) or gain (condensation) 

Precipitation P kg m-2d-1 

(mm d-1) 

Advective exchanges; energy loss or 

gain 

Short wave radiation SWR W m-2 Downward direct energy (i.e. 

insolation); energy gain 

Wind speed WS m s-1 Increases evaporation (energy loss) and 

convective exchanges (air mixing; 

energy loss or gain) 

2 
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Table 4. Generic response for the five average models. 1 

 all seasons winter spring summer autumn 

 Coef. RI Coef. RI Coef. RI Coef. RI Coef. RI 

AT 0.5824  1.00  0.3955  1.00  0.6815  1.00  0.4969  1.00  0.6860  1.00  

SWR 0.0055  1.00  0.0193  1.00  0.0073  1.00  0.0049  0.64  0.0003  1.00  

LWR -0.0149  1.00  0.0001  0.13  0.0020  0.18  -0.0126  0.52  -0.0013  0.25  

WS -0.1348  1.00  -0.0685  0.68  -0.0774  0.63  -0.3028  1.00  0.0181  0.33  

SH 0.4664  1.00  0.6658  1.00  0.0772  0.34  0.1542  0.53  0.0507  0.37 

P 0.0003  0.26  0.0007  0.15  -0.0041  0.38  -0.0004  1.00  -0.0045 0.41 

2 
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Table 5. Basin descriptors significantly related to site-specific model coefficients (ANOVA; 1 

p≤0.05). 2 

Model Predictor Basin Meta-

property 

FEH Descriptor Type of 

Association 

all seasons AT Elevation ALTBAR Positive 

  
Permeability BFIHOST Negative 

  
Size AREA* Negative 

all seasons SWR Elevation ALTBAR Negative 

  
Size AREA Positive 

autumn SWR Permeability BFIHOST Negative 

  
Size AREA* Negative 

winter SH Elevation PROPWET Positive 

  
Permeability BFIHOST Negative 

  
Size AREA* Negative 

*tested on natural log 3 

4 
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Table 6. Linear regressions of site-specific coefficients as function of basin properties 1 

(models ordered by increasing AICc; best model in bold characters, all other models are 2 

within four AICc points of best model hence selected via MMI). 3 

WT Model Coefficient Linear Regression R2 AICc 

all seasons AT BFIHOST 0.370 -31.3 

  

BFIHOST+ALTBAR 0.403 -30.1 

  

BFIHOST+ln(AREA) 0.381 -29.3 

  

BFIHOST+ln(AREA)+ALTBAR 0.411 -28.3 

all seasons SWR ALTBAR 0.177 -277.5 

  

ALTBAR+ln(AREA) 0.183 -275.2 

  

ln(AREA) 0.089 -274.0 

autumn SWR BFIHOST 0.125 -223.1 

  

ln(AREA) 0.115 -222.6 

  

BFIHOST+ln(AREA) 0.136 -220.9 

winter SH BFIHOST 0.192 48.7 

  

ln(AREA) 0.162 50.0 

  

BFIHOST+ln(AREA) 0.203 50.8 

  

BFIHOST+PROPWET 0.192 51.3 

  

PROPWET 0.123 51.6 

  

PROPWET+ln(AREA) 0.178 51.9 

4 
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 1 

Figure 1. Multiple interdependent climate controls of water temperature [adapted from Caissie 2 

(2006) and Hannah et al. (2008)]. 3 
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 1 

Figure 2. Study flow chart. 2 

 3 
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 1 

Figure 3. Location map of the study sites. 2 
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 1 

Figure 4. Plots of observed and modelled water temperature for the five models. 2 

 3 
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 1 

Figure 5a. Contributions of climate predictors to modelled WT (all seasons, winter, and 2 

spring): left-hand side, boxplots of percentage contributions of climate predictors to modelled 3 

WT values for all data-points (except outliers); right-hand side, scatter plots of percentage 4 

contributions of climate predictors to modelled WT values against modelled WT values for all 5 

data-points; colour-coding for all plots: magenta, AT; red, SWR; green, LWR; dark blue, WS; 6 

cyan, SH; black, P. 7 
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 1 

 2 

Figure 5b. Contributions of climate predictors to modelled WT (summer and autumn): left-3 

hand side, boxplots of percentage contributions of climate predictors to modelled WT values 4 

for all data-points (except outliers); right-hand side, scatter plots of percentage contributions 5 

of climate predictors to modelled WT values against modelled WT values for all data-points; 6 

colour-coding for all plots: magenta, AT; red, SWR; green, LWR; dark blue, WS; cyan, SH; 7 

black, P. 8 
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